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Abstract 

We show that each quasi-light mapping f i n  the Sobolev space W~'n(s R n) 
satisfying ]Df(x)ln<=K(x,f)J(x,f)  for almost every x and for some 
K~Lr(s r > n -  1, is open and discrete. The assumption that f be quasi- 
light can be dropped if, in addition, it is required that f~ WI'P(f2, R n) for 
some p ___ n + 1/(n - 2). More generally, we consider mappings in the John 
Ball classes dp, q(s and give conditions that guarantee their discreteness 
and openness. 

1. Introduction 

Let f be a mapping in the Sobolev space WI'P(s Rn), where ~ C R n is 
open, n => 2, and 1 _< p __< co. A fundamental problem in  nonlinear elasticity 
is to determine what analytic data on f provide topological information on the 
deformation that f represents. For instance, under what conditions is f locally 
or globally invertible? Does f map open sets to open sets? These problems 
have been studied in a series of articles by BA~L and others; see [BI, B2, S, IS, 
MTY] and the references therein. The purpose of this paper is to give some 
further results in this direction. Before we formulate our objective more 
precisely, we introduce some terminology. 

Throughout  this paper IDf(x)[ designates the supremum norm of  the dif- 
ferential Df(x) with J(x, f )  = det Df(x) its Jacobian determinant; they exist 
for almost every x in ~.  

Definition. A measurable function K(., f )  in s is called a dilatation of f if 

(1.1) 1 <= K(x , f )  < co for almost every x ~ s 

(1.2) IDf(x)[~<=K(x,f)J(x,f)  for almost every xEs 

We say that f i s  a mapping of finite dilatation if a function K( . , f )  exists satis- 
fying (1.1) and (1.2). 
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The above terminology is essentially the same as used by IWANIEC & 
SVERXE [IS]. They assume that J(x, f )  >_ 0 a.e. and that Df(x) = 0 whenever 
J ( x , f )  = 0 ;  they then define K ( x , f )  to be the quotient IDf(x) ln/J(x, f ) ,  
whenever this exists, and K(x, f )  = 1 otherwise. The usual regularity assump- 
tion on f in this connection would be f ~w l ' n ( f 2 ,  Rn), which trivially 
gurantees the integrability of the Jacobian J ( x , f ) .  However, recent studies 
have shown that there are natural, weaker integrability hypotheses on Df 
guaranteeing the same conclusion; see, e.g., [IS, MTY]. Notice that for a 
mapping of finite dilatation we have J(x, f )  >__ 0 a.e. and that any mapping 
satisfying J(x, f )  > 0 a.e. is a mapping of finite dilatation. 

The following theorem lists some important properties of mappings of 
finite dilatation in Wl'n(Y2, Rn): 

1.3. Theorem. Let f~  WL~(Y2, W') be a mapping of finite dilatation. Then 
(1) f has a continuous representative (also called f ) ,  
(2) locally 

(1.4) I f (x)  - f ( y )  <= C(n)[Dflln log 2 , 

(3) f is differentiable a.e., 
(4) f is sense-preserving, 
(5) f satisfies condition (N), i.e., f (E)  = 0 whenever E C f2 is such that 

I E[ = 0, where l "  stands for Lebesgue n-measure. 

We recall that a continuous mapping f:~2--,  R ~ is sense-preserving if 
the topological index g(y , f ,  D) is positive for all domains D CC f2 and 
y ~ f ( D ) \ f ( O D ) .  We refer to JR, p. 851 or [Ri, Chapter 11 for the precise 
definition and basic properties of the topological index. 

The adverb "local ly" in (2) can be made more precise: for each compact 
F C f~ there is a constant 0 > 0, depending only on dist(F, 0f~), such that 
(1.4) holds for each pair of points x, y E F with x - y l  < 0. 

Proof. Assertion (1) is due to GOL'DSI-ITEIN & VOBOP'YANOV [GV]; they show 
that f is monotone, and the proof in [R, p. 339] can be modified so as to 
yield the continuity together with (2) (and the more precise statement cited 
after the theorem). A more elementary proof of (1) was recently given by MAN- 
FREDI [M]. See also [S]. 

Now (3) follows from the proof of Theorem 1.2 in [R, p. 84]; the only 
property of quasiregular mappings used in that proof is the equicontinuity of 
a family of maps, but this property is guaranteed by (2). 

Next, by [Ri, Lemma 5.1] f is weakly sense-preserving, and by the proof 
of [Ri, 1.4.5] f is actually sense-preserving (see also JR, p. 175]). The crucial 
point is that for mappings of finite dilatation the differential Df(x) vanishes 
at almost every point x where J(x, f )  = 0. (See also Section 5 below.) 

Finally, (5) is a consequence of a result of GO~'DSnT~rN & VODOP'YANOV 
[GV, 2.41. See also [MZl and [MMI for recent studies on condition (N). 

The reader familiar with quasiregular mappings notices that if fE 
W~dO(g2, R ~) and if K ( x , f ) ~ L ~ ( ( 2 ) ,  then f is by definition quasiregular, 
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and hence either a constant or a discrete and open mapping in each compo- 
nent of  D, by a fundamental result of RESHETNYAK [R, p. 183]. Recall that 
a continuous mapping is said to be discrete if the inverse image of  each point 
consists of  isolated points. 

The question we wish to address is: 

Problem. Under which conditions is a mapping of finite dilatation discrete and 
open ? 

Because this problem is of  a local nature, we assume from now on that 
f2 is bounded and connected, and that all mappings in question are non-con- 
stant. 

IWANl~C & SWm4K proved in [IS] that if n = 2, fE  WI'Z(Q, R2), and 
K(x , f )  ~LI(f2) ,  then f is not only discrete and open but admits a factoriza- 
tion f = (p o h, where h is a homeomorphism and (0 is a holomorphic function. 
Their proof  uses the powerful existence theorem for the two-dimensional 
Beltrami equation, not available in space. It was conjectured in [IS] that for 
all n _> 3 and f~ Wl"n(f2, R ~) the condition K(x , f )  ELn-a(Q) implies that f 
is a discrete and open mapping. In our first theorem (Theorem 1.7) we confirm 
this conjecture for quasi-light mappings which satisfy K ( x , f ) ( L  n-l+c for 
some e > 0. 

Definition. A continuous mapping f~ f2 ~ R" is quasi-light if for each y E R" 
the components of the set f - l ( y )  are compact. 

The term quasi-light is due to VXlS;~L~ [V1]. Notice that f is quasi-light, 
for instance, if it agrees with a discrete mapping in a neighborhood of 0Q, 
in particular, if f is a homeomorphism near 0Q. Thus (modulo e) Theorem 1.7 
extends some results of BAL~ [B2] and SvzRgX [S]. We emphasize that we do 
not assume that J(x , f )  > 0 a.e. as was done in [B2] and IS]. It is in fact 
an interesting problem whether J(x, f )  > 0 a.e. provided K(x, f )  is integrable 
to some power r < oo (see Section 6 below). 

In an attempt to dispense with any a priori topological assumptions on f ,  
we have to take a slightly different approach. It seems that for our method to 
work, the regularity requirement fE  Wl'n(f2, R n) is too weak. If we assume 
instead that fEWI'P(f2, R ") for some p > n ,  then we can always find 
r = r(n, p) < oo such that K(x , f )  ~Lr(f2) implies f is discrete and open; in 
fact, it turns out that for p => n + 1/(n - 2), any r > n - 1 works. A further 
glance at t h e  method (which is a refinement of  RESnETNY~'S idea) reveals 
that what is essential is not the integrability of  Df, but the integrability of 
the adjugate adj Df of Dr, which we recall satisfies 

(1.5) Df(x) adj Df(x) = J ( x , f )  Id 

for almost every x. Since the entries of  adj Df are polynomials of  degree n - 1 
of  entries of Df, we have by HOlder's inequality that 

(1.6) adj Df(x) EL p/(n-1) ((2) 

whenever f~ WI'P(Q, R n) and p __ n - i. 
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We consider the following classes of  mappings:  

@ , q ( ~ )  ~--- [ f~  WI'P(Y2, R n) :adj  Df~ Lq}, 

where p => n - 1 and q > p~ (p - 1). It  follows from the identity (1.5) that 
J ( x , f )  ~L:( f2)  i f f ~  Sp,  q(f2). The classes dp,  q(f2) were introduced by BAL~ 
and they have been studied by several people in nonlinear elasticity; see 
[B l, B2, S, M, MTY]. 

Now we are ready to state the main results of  this paper:  

1.7. Theorem. Suppose that fE @,q(~"2) is a continuous, quasi-light mapping of 
finite dilatation, where p >= n - 1 and q >= p / (p - 1). I f  K ( x, f ) ~L~-l+e(s for 
some e > O, then f is discrete and open. 

1.8. Corollary. I f  fE Wl,n(f2, R ~) is a quasi-light mapping of finite dilatation 
and if K ( x , f )  ~L~-l+e(f2)  for some e > O, then f is discrete and open. 

1.9. Theorem. Suppose that f ~  @,q(g2) is a continuous mapping of finite dila- 
tation, where p > = n - 1  and q > = p / ( p - 1 ) .  I f  K ( x , f ) ~ L r ( f 2 )  for some 
r > n - 1 such that 

q 
r > _ 

- n ( q -  1) - q '  

then f is discrete and open. 

I f  p >__ n in these theorems, we do not need to assume that f is continuous, 
as this follows from Theorem 1.3. I f  n - 1 <__ p < n in Theorem 1.9, it suffices 
to assume that  K ( x , f )  is in Lr((2) for some r >= n/ (n - p) ,  as can be 
seen from the condition q >__p/(p-  1). Moreover, since any mapping in 
WI'P(f2, R n) belongs to @,q( f2 )  for some q >= p/ (n - 1 ) ,  the requirement 
for r in terms of p >__ n reads 

P r_~> 
- ( n -  1 ) ( p - n ) '  

which in the borderline case p = n means r = c~. In orther words, starting with 
mappings in WI'"(f2,  R n) we do not find a n y  integrability assumption on 
K ( x , f )  (beyond K ( x , f ) ~ L  ~ which is RESHETNYAK'S theorem) to guarantee 
the discreteness and openness of  f ,  unless an extra condition on adj D f  is im- 
posed. However, if p > n, then adj D f  automatically satisfies something which 
gives a finite value of r. Since 

P = n - 1  
( n -  1 ) ( p - n )  

for 
1 4n 

- - < - - ,  n > 2 .  
p = n +  ( n - - 2 )  = 3 

Theorem 1.9 permits us to deduce the following result: 
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1.10, Corollary. Suppose that n > 3 and that fE WI'P(Q, R ~) for some 
p > n + 1/(n - 2). If  K ( x , f )  EL~(Q) for some r > n l ~ '  then f is discrete 
and open. 

The example in [B2, p. 317-318] shows that the integrability condition on 
K(. ,  f )  in both Theorems 1.7 and 1.9 cannot be improved much. Indeed, BAI~ 
exhibits a mapping f in the Sobolev space W i'= (f2, R ") such that f is the 
identity on the boundary of (2 and K ( x , f ) E L f ( f 2 )  for all r <  n -  1, yet f 
takes a line segment to a point. Thus both of our results are quite sharp for 
mappings with sufficient regularity. 

The borderline case fE W~'"(f2, R ") remains somewhat problematic, and 
in light of  the above discussion we reformulate the conjecture advanced by 
IWANIEC & Svi~ltAX~: Let a(n) denote the infimum of exponents p _> n so that 
each Sobolev mapping fE WI'P(f2, R n) whose dilatation belongs to Lr(f2) 
for some r > n -  1 is discrete and open. Corollary 1.10 states that 
a(n) <_ n + 1/(n - 2) __< 4n/3 for n __> 3 and by [IS], a (2)  = 2. Hence we are 
led to the conjecture a(n) = n for all n => 2. This conjecture is slightly weaker 
than  that in [IS]. Indeed, for n = 2 we only need K ( x , f ) E L l ( O ) .  

2. The Degenerate Equation Associated with f 

Throughout this section we assume that fE  W~'P(g2, Rn), p > n - 1, is a 
continuous mapping with dilatation K = K(. ,  f ) .  By Theorem 1.3 the continui- 
ty assumption is superfluous provided p __> n. We also recall that s is assumed 
to be a bounded domain and f non-constant. 

Define S :  Q x R n ~ R n by 

n--2 

S ( x , ~ )  = ( G ( x ) { , ~ )  2 G ( x ) ~ ,  

where 
G(x) = d f ( x )  2/n [Df (x)] -1 [Df (x) ] -sT 

if X Ef2 and Jf(x)e~ 0 exists, and G ( x ) =  Id otherwise; here T denotes 
transpose. We also write 

F(x, ~) = (G(x) ~, ~)n12. 

Then a calculation (see, e.g., [HKM, p. 269]) shows 

(2.1) F(x, ~) = S ( x ,  ~) . ~ >__ K ( x ) - l l ~ l "  for almost every x,  

(2.2) ] S ( x ,  ~)l - K(x )n - i I~ i~ - I  for almost every x,  

(2.3) F(x, ~) < ]~[nK(x) , -1  for almost every x.  

Next, let h(x) = - l o g l f ( x  )/.  Then we have that h E Wl~&P(f2\Zf) and 

- D f ( x )  Tf(x) 
Vh (x) = 

I f (x ) ]  2 
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where Z f = f - l ( O )  is the zero-set of f .  Further, 

- a d j  Df(x)  . f ( x )  
(2.4) S(x,  Vh) = If(x)l" eLfoc(OXZs), 

(2.5) d ( x ,  gh) .  Vh = J ( x , f )  i f ( x  ) 12-n (L~oc(O XZI) 

i f f ~  @,q(~2). Moreover, the above integrability conditions hold in any subset 
of f2 with positive distance from Zf. It is important to observe that we have 
used the fact that f is of finite dilatation in an essential way in formulas (2.4) 
and (2.5), namely, if J ( x , f )  = 0, then 5J(x, Vh) = IVhl~-2Vh, but then be- 
cause Df(x)  = 0, we also find that gh(x) = 0 so that (2.4) and (2.5) always 
hold. 

Next we invoke the important identity [BI, p. 271]: 

2.6. Proposition. S ( x ,  Vh) is a divergence-free vector field in f2\Zf;  that is, 

(2.7) ~ 5~(x, Vh). gO dx = 0 

for each (o ~ C~ ( ~ \ Zu ) . 

Moreover, if f~  @,q(~), then by approximation we see that 

(2.8) S d ( x ,  Vh). Vv ak = 0 

for each vEW~'S(f2\Zf) ,  s > _ q / ( q - 1 ) ,  provided the support of gv has 
positive distance to Zf. 

Equation (2.7) means that h(x) = - l o g  I f (x ) l  is a weak solution to the 
second-order partial differential equation - d i v  S ( x ,  V u ) =  0 outside Zf. 
This equation is quasilinear elliptic with bounded coefficients if and only if 
f is a quasiregular mapping, and in the general case the difficulties arise from 
the degeneracy described in (2.1) and (2.2). In the bounded-coefficient case 
there is a well-understood connection between polar sets (i.e., sets where a 
supersolution can take the value at infinity) and sets of zero capacity, and the 
latter concept provides a way to metric estimates; see [HKM, Chapters 2 and 

7 ] .  We shall mimic this approach as much as possible, and for that purpose 
we next introduce weighted capacities. 

Let 1 < s ___ n and let co be a nonnegative locally integrable function in t2. 
For a compact set C C f2, define 

(2.9) caps, co(C, O) = inf f IVgtl "co dx, 
~/ f2 

w h e r e  the infimum is taken over all ~,ECg(~2) with qJ= 1 in a 
neighborhood of C. If c o -  1, we have the standard variational s-capacity 
Caps(C, f2). By HOlder's inequality, 

IlV ,IS - < 

for 1 < s < n, and hence 

(2.10) cap~,o~(C, O) = 0 ~ caps(C, f2) = 0 
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provided co-ls If co is bounded, we can take the infimum in 
(2.9) over continuous functions ~/eWlo'S((2) without affecting the value 
of  cap=,~o(C, s Finally we recall the well-known Hausdorff  dimension 
estimates: 

(2.11) caps ( C, f2) = 0 = dim H C N n - s 

for 1 < s _-< n. See, e.g., [HKM, 2.24]. 

3. Proof  of Theorem 1.7 

We first show that C(y) = f - l ( y )  has Hausdorff  dimension less than 1 
for each y E Rn; in particular, C(y) is a totally disconnected set for each 
y ~ R n, which means that f is a light mapping. To prove this, we assume, for 
simplicity, that y = 0. Denote C(0) = Zf. Because f is quasi-light, we may 
further assume that ZU is a compact and non-empty subset of  f2, and that f 
is continuous in a neighborhood of 0f2 (cf. [V1, Theorem 3.1]). 

Consider h(x) = - l o g  If(x)1.  Since h(x) --, oo as x--, ZU, we may further 
assume that 

;2={x:h(x) >0} 

and that h(x) --, 0 as x -~ 0s For M > 0 write 

EM = [xs  >=M> 0}. 

Then EM is compact and ZU C EM. Pick ~ ~ C0 ~176 (f2) such that 4~ = 1 in a fixed 
neighborhood U of Zf. Then EM C U for all large M, and the support of the 
gradient of  the function 

VM = 4~-  min IMh~, 11 s  

stays away from Zf. Because p >_ q~ (q - 1) by assumption, (2.8) yields 

O= f S(x, Vh).VVMdX= f S(x, Vh).(YO-V~hM)dX 
E2\E  M ~ \ E  M 

and hence (see (2.4) and (2.5)) 

f O D  f ,h M n-1 5S __ . V_hh dx = d ( x ,  Vh). M 
' M 

$~2 \ E M ~C2 \ E M 

= f d ( x ,  V h ) . V ~ d x =  f 5S(x, V h ) . V ( ~ d x = c <  ~ .  

n\EM ~ \~  
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Applying (2.1) we observe that 

M n-1 S , - -  . ~ d x > _  dx 

f 2 \ E  M ~ \ E  M 

> M n-1 capn, x-,(Em, f2) >_ M n-1 capn, K-1 (Zf, E2), 

where we also used the fact that K = K(x, f )  _> 1. Because c does not depend 
on M, we conclude by letting M ~ oo that 

Caprl, K - l ( Z f ,  ~-~) = O.  

Since KELr((2) for some r > n - 1, we deduce that the variational s-capacity 
of  Zf is zero for s = n r / ( l + r ) > n - 1 ,  and hence that the Hausdorff  
dimension of ZI is strictly less than 1; see (2.10) and (2.11). 

Next, we invoke a theorem of TITUS & YOUNG [TY], [Ri, 1.5.6], which 
asserts that every sense-preserving light mapping is discrete and open. 
Therefore we only need to verify that f is sense-preserving. For p _> n this 
follows from Theorem 1.3, while the case n - 1 ___ p < n is established in Sec- 
tion 5 below. We thus conclude the proof  of Theorem 1.7. 

Remark. That the integrability degree of  K(x, f )  is at least some r > n - 1 in 
Theorem 1.7 was needed only to ensure that the Hausdorff  dimension of the 
inverse image of each point under f is less than 1. A glance at the above proof  
together with (2.11) implies the following result: Let f~  @,q(f2)  be a con- 
tinuous quasi-light mapping of finite dilatation. If K(x,f)~Lr(f2) for some 
r > 1/(n - 1), then for each y ~ R n the Hausdorff  dimension of f - 1  (y) is at 
most n/(r + l) < n - 1 .  

The following simple example shows that this estimate for the Hausdorff  
dimension of the preimage of  a point is essentially sharp. Define f :  B(0, 2) 
B(0 ,1)  by f (x)  =x( lx  I - 1 )  if l < l x l  < 2  and f (x)  = 0  otherwise. Then 
f~WI'~ 2)) and a straightforward calculation shows that K(x , f )  6 
Lr(B(O, 2)) for all r <  1 / ( n -  1). However, f - l ( 0 )  is the closed unit ball. 

Notice that the case r = n - 1 gives dim H f - ~ ( y )  __< 1, and in particular 
f - 1  (y) may not be totally disconnected. Therefore our method cannot fully 
solve the conjecture of IWANIEC & SVERAK. 

4. Proof  of Theorem 1.9 

As in the proof  of Theorem 1.7, we only need to show that Z f = f - l ( o )  
has Hausdorff  dimension less than 1. The rest follows by invoking the theorem 
of  TITUS & YOUNG and observing that f is sense-preserving (by Theorem 5.1 
if p < n and by Theorem 1.3 if p >_ n). 
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Fix XoEOZfnf2 and pick a ball B=B(xo, r)CCO; such an x0 exists 
because f is non-constant. We shall write �89 B = B(xo, r/2). 

Fix n -  1 <s__<n such that 

q 
(4.1) s > - -  

q - 1  

S 
(4.2) r ~ - - .  

n - - S  

This selection is possible by the assumption of the theorem. We also under- 
stand that s = n  if and only if q = n / ( n -  1), which requires K~L~~ 
This is the well-known case of  quasiregular mappings which also are covered 
by our theorem, and it may be worth pointing out that the ensuing proof  does 
not use the relatively deep, albeit well-known regularity theory of  nonlinear 
elliptic equations. 

Here and throughout this section q.e. means quasieverywhere with respect 
to the variational s-capacity meaning "everywhere except on a set of zero s- 
capacity". We say that u E WI'S(B) is quasicontinuous if for each e > 0 there 
exists an open set E of  s-capacity less than e such that the restriction of u 
to B\E  is continuous. We remind the reader that each function in WI'S(B) 
has a quasicontinuous representative, and while discussing Sobolev functions 
we always assume that a quasicontinuous representative has been selected. See 
[HKM, Chapter 4] or [Z, Chapter 3]. 

Our strategy is to construct a quasicontinuous function u~ W~'S(B) such 
that u = l  q.e. on Zfn�89 and that u - - 0  q.e. in �89  Because f is 
continuous and because x0 E OZf n O, this clearly implies that Caps Zf = 0 and 
hence, by (2.11), that the Hausdorff  dimension of Zf is less than 1. 

We begin by introducing the function space 

and putting 

i/n 

Here, as in Section 2, 

F(x, ~) = (G(x) ~, ~)n/2 = [O(x) ~1 n, 

G(x) -~- O ( x ) T O ( x ) ,  where O(x) =Jf(x) l/n[Df(x)] -1T if Jf(x) =~ 0 exists 
and O(x) = Id otherwise. Now F(x, ~) is strictly convex and homogeneous of  
degree n in ~, and we recall from (2.1) and (2.3) that 

(4.3) i~[nK(x)-2=< F(x, ~) N [~lnK(x) n-1 
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for almost every x, where K(x)  = K ( x , f ) .  In particular, F(x, Vgt) f iLl(B) for 
all qJ ~ Co ~ (B) ; moreover, for all u E H, 

S lVul  ~ <~ = f IV, , I  ~ I<:-sl"f ~1" dx 
B B 

(; = I V . I ~ K  - I  dx K *i(n-*) dx 

(; dos' __ II/r f(x, Vu) 

Consequently, since 
K ~ L ~/(n-s) (f2) 

by (4.2), we have the embedding H ~ W U ( B ) .  
More precisely: 

4.4. Lemma. The space H is a reflexive Banach space under the norm [j. I/v,~, 
continuously embedded in W~o '~ (B). 

Proof. Since 

N. H~,s = II u 1[~ + I OVu l" , 

it is clear that ]l. I]~,, defines a norm. 
To show that H is complete, let (ufl be a Cauchy sequence in H. Then, 

as we noticed above, (ufl is a Cauchy sequence in W~'S(B), and thus 

uj ~ u E W~'S(B) 
in W~'S(B). Also 

~ lOVuj  - OVui] n dx -- l F(x ,  Vuj - % )  dx, 
B B 

and so (OVuj) is a Cauchy sequence in L~(B; Rn). Let v~L~(B; R n) satisfy 

OVuj --* v in Ln(B; R ~) 

and write w = O- iv ;  notice that O ( x ) - 1  exists for all x ~ B  by the definition 
of  O(x).  Now 

f ( x ,  w) dx = ~ [Owl ~ dx = $1vl  ~ dx < oo. 
B B B 

(4.5) 

Moreover, 

S F(x ,  V . j  - w) dx = f h O(Vuj  - w) l" d~ 
B B 

= j I o v . : -  vj" d~-§ 0 
B 

as j - - ,  ao. In particular, we conclude from the embedding H ~ W U ( B )  that 

Vu i ~ w in LS(B, R n) . 
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Thus w = Vu, u ~ W~'S(B), ~BF(x, Vu) dr < ~ by (4.5), and (uj) converges 
to u in H. This shows that H is complete. 

Finally, the norm 11" IIF,~ is clearly uniformly convex, whence H is reflexive; 
see, e.g., [HS, p. 224-225] .  The lemma follows. 

For a positive integer k let 

E k = { h  > k } n � 8 9  
and set 

where 

I k = inf ~ F(x, Vu) dr ,  
~ k B  

3kk={u~H:u>-- 1 q.e. on Ekl. 

By (4.3), the family ~ is non-empty. We next establish the existence of a 
unique minimizer in ~ .  This follows from the fact that H is reflexive; for 
completeness we provide the standard details. 

Pick a sequence (uj) of functions in ~kk for which 

I k = !im ~ F(x, Vuj) dr. 
J-*~ B 

Since F(x, O) -- 0 for almost every x, we may also assume that 0 ___< uj <__ 1 
q.e. in B. Then (uj) is a bounded sequence in the reflexive Banach space H, 
and so passing to a subsequence if necessary we find that 

u j ~  v ~ H .  

By the weak lower semicontinuity of  norms, we obtain 

I k = lira inf ~ F(x, Vuj) dr >= ~ F(x, Vv) dr .  
j~oo  B B 

Mazur 's  lemma guarantees that a sequence of convex combinations (vj) of  uj 
converges to v in [1" UF, s and by the embedding H '-* W~,S(B) we deduce that 
v6 W01'~(B); moreover, v j ~ v  in W U ( B ) .  

Passing to a subsequence if necessary we may assume that the sequence 
(vj) converges to v pointwise q.e. in B (see [HKM, Theorem 4.3]), and hence 
v = 1 q.e. on E~. In consequence, v ~ ~kk, and we rename it as uk. We thus 
have 

(4.6) Ik = 
B 

where uk E W U ( B )  satisfies Uk = 1 
For each k = 1, 2 . . . .  we have 

By using the strict convexity of  F, 

(4.7) ~ F(x, Vuk) 
B 

for all v ( ~  different from u k. 

F(x, Vuk) dr. 

q.e. on E k. 
now obtained a minimizer uk as in (4.6). 
we easily obtain the uniqueness: 

dx < f F(x, Vv) dr 
B 

As earlier, write h(x) = - l o g  l f ( x )  l. 

4.8. Lemma.  uk < h/k q.e. in B \ E k  for each k >= 1. 
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Proof.  Write v = k u ~  and put U = [ v > h } .  Recall that v is assumed to be 
quasicontinuous so that U is a measurable set which is well-defined up to zero 
s-capacity. We may assume that h > 0 on OB. Since v = 0 on OB and since 
0 _< v _ k, we conclude that U C B \ Ek. In particular, U CC s \ Zf. Define 

w = min {v, h}. 

Then w ~ WU(B) ,  because 

F(x, Vh) - Jf(x) 
I f ( x )  l "-2 

by (2.5). In fact, w = h q.e. on U, w = v q.e. on B \ U ,  and 

I F(x,  Vw) d~ = ~ U(x, Vh) & + 5 F(x,  Vv) gx < ~ .  
B U B \ U  

Thus 

(4.9) f F(x, Vv) dx < ~ F(x, Vw) dx 
B B 

by homogeneity and the uniqueness (4.7), provided ]U I > 0. 
If tU I = 0, there is nothing to prove because h is continuous and v is 

quasicontinuous (see [HKM, Theorem 4.12]). Thus suppose that I U[ > 0. 
Then 

F(x, Vw) dx= ~ F(x, Vv) d x +  f F ( x ,  Vh) dx 
B B \ U  U 

by (4.9), and hence 

(4.10) 

> ~ F(x, Vv) dx + j F(x, Vv) dx 
B \ U  U 

F(x, Vv) dx < I F(x, Vh) dx. 
U U 

On the other hand, 

(4.11) ~ F(x, Vv) - F(x, Vh) dx >= l VcF(x, Vh). (Vv - Vh) dx 
U U 

= n ~ H ( x ,  Vh).  (Vv - Vh) c~ 
B 

by convexity (see [HKM, p. 98]). Next, notice that 

w' = max{v - h, 0} 6 W~'S(B\Ek); 

indeed, w' can be extended to a quasicontinuous Wl'S-function in R ~ by 
setting w ' =  0 in E~ w (RnkB) ,  and hence the assertion follows from [HKM, 
4.51. 

Because s >_ q~ (q - 1) by (4.1), it follows that 

I s~(x,  Yh).  Vw' dx = 0 
B 

by (2.8). From the definition of  U we conclude that 

S S ( x ,  Vh).  (Vv - Vh) ~ = 0, 
U 
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and combining this with (4.11) yields 

I F(x, Vh) dx <__ l F(x, Vv) dx, 
U u 

which contradicts (4.10). We have thus proved t h a t ] U ]  = O, and the lemma 
follows. 

We have constructed a sequence (Uk) of functions in WU(B)  such that 

Uk = 1 q.e. on Ek, 

uk <= h/k q.e. on B \ E  k. 

Moreover, this sequence is bounded in W01'~(B), and hence a sequence of  its 
convex combinations converges to some u0~ W U ( B ) .  Passing to a subse- 
qnence allows us to assume that the convergence occurs pointwise q.e. in B 
and that u0 is quasicontinuous. It follows that u0 = 1 q.e. on Zf n ~ B and 
u0 = 0 q.e. on �89 B\Z f ,  as desired. 

This completes the proof  of  Theorem 1.9. 

5. Sense-Preserving Sobolev Mappings 

Suppose that f is a continuous mapping in WI'P(s Rn), where ~2 is an 
arbitrary open subset of  R n. For simplicity, we assume that f is not constant 
in any of the components of  s 

I f  p _> n, relatively mild analytic conditions guarantee that f is a sense- 
preserving mapping;  it suffices, for instance, to assume that f is of  finite 
dilatation (see Theorem 1.3). For p < n no simple criteria seem to be available, 
although it would be desirable to have some. In this section we provide a con- 
dition under which a mapping f6  WI'P(Y2, R ' )  of  finite dilatation is sense- 
preserving. The considerations in [S] most  likely would yield more general 
results in this direction, but we prefer a more elementary argument sufficient 
to the purposes of  this paper. 

5.1. Theorem. Suppose that fE ~p,q(~'2)  is a continuous mapping of finite dilata- 
tion, where p >= n - 1 and q >_ p~ (p - 1). If  the 1-dimensional Hausdorff measure 
of f - l ( y )  is zero for each y ~ R n, then f is sense-preserving. 

Proof.  Fix a domain D CC s and y ~ f ( D ) \ f ( O D ) .  We must show that 
p ( y , f , D ) > O .  Let E = f - l ( y )  r~D; then E is compact  and has zero 
1-dimensional Hausdor f f  measure. In particular, projections of  E into the 
coordinate axes all have zero l-dimensional Hausdor f f  measure, and a simple 
argument then shows that E can be covered by a finite number  of  open n-cubes 
Q1 . . . . .  QN in D with pairwise disjoint closures such that OQi ~ E = 0 for all 
i = 1 . . . . .  N. (See [G, Lemma 1] for a more precise argument.) Next, by 
precomposing f with an appropriate bi-Lipschitz mapping we can assume 
without loss of  generality that E is covered by open balls B 1 . . . . .  BN whose 
closures are pairwise disjoint and lie in D such that c)B i c3 E = 0 for all 
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i = / ,  . . . ,  N. Moreover, by invoking [S, Proposition 1 and Theorem 3] we can 
further assume that, for all i = 1 . . . . .  N, 

(5.2) ~ u ( f ( x ) ) J ( x , f )  dx = p(y , f ,  Bi) 
Bi 

whenever u is a smooth function, supported in the y-component of  R~\f(OB~) 
with I u dy = 1. Here we need the assumption that f 6  @,q(sO). 

Since E C UiB i and since the balls are disjoint, by well-known properties 
of the topological index (see [Ri, I 4.4] or [R, p. 88]) we have that 

N 

l~(Y,f, D) = E P(Y'f '  Bi). 
i=1 

Consequently, it suffices to show that, for all i = 1 . . . . .  N, 

u ( f ( x ) ) J ( x , f )  dx > 0 
B i 

for some u as in (5.2). 
To this end, fix i and consider an open ball B e = B(y, e), where e > 0 

is so small that /~e belongs to the y-component of R~\f(OBi).  Let D e be 
a component of the open set f - i ( B e ) n  Bi containing points from E (we 
may naturally assume that Bi r E :t= 0). It clearly suffices to show that the 
measure of  [ z ~ D e : J ( z , f ) > 0 }  is positive. Suppose on the contrary that 
J ( z , f )  = 0 a.e. in D e. Then Df= 0 a.e. in D~ since f has finite dilatation, 
and the absolute continuity on lines of Sobolev functions (see [Z, p. 44]) 
now implies that f is constant in D~; more precisely, f(D~) = {y}. A n  easy 
argument using the continuity of f then shows that De must coincide 
with Bi, but  this is a contradiction since y6R" \ f (OBi ) .  The theorem 
follows. 

Remarks. (a) For the above proof  it is essential that f - l ( y )  has zero 
1-dimensional Hausdorff  measure. In fact, the covering argument may fail if 
we only assume that f - 1  (y) is totally disconnected, as can be seen by con- 
sidering the well-known Antoine's necklace (a compact, totally disconnected 
set in R 3 whose complement is not simply-connected). 

(b) The techniques in [R, p. 173] and [MZ] can be combined to obtain fur- 
ther conditions which guarantee that a Sobolev mapping f~  WLP(f2, R n) is 
sense-preserving for p < n. For instance, consider the following Jacobian ap- 
proximation property: J ( x , f ) E L l ( O )  and there exists a sequence of  smooth 
mappings fi: f2 -+ R n such that fi -- ' f  locally uniformly in f2 and J(x ,  f i )  -+ 
J ( x , f )  locally in LI( f2) .  

One can show that if p = 1 and if f6  W~'P(f2, R n) is of finite dilatation 
and has the Jacobian approximation property, then f is sense-preserving. It 
would be interesting to find some analytic conditions on f which are weaker 
than being in W1'~(~2, R ~) and which would guarantee the Jacobian approx- 
imation property. 
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6. Homeomorphisms with Integrable Dilatation 

In this section we assume that f is a mapping in Wl'n(s R ~) with finite 
dilatation K(., f ) .  For simplicity, we further assume that s is bounded and 
connected. Then Theorem 1.3 implies that f is continuous and satisfies condi- 
tion (N), that is, f maps sets of measure zero into sets of  measure zero. 

Definition. We say that a continuous mapping f :  ~ ~ R n satisfies condition 
(N -s) if l f - S ( E )  l = 0 whenever ]E] = 0 for a measurable set E C R n. 

It is not difficult to give examples of Lipschitz homeomorphisms of finite 
dilatation which do not satisfy condition (N-S).  However, quasiregular map- 
pings satisfy (N -1) and therefore it is natural to ask whether some in- 
tegrability condition on K(. ,  f )  implies the same conclusion, at least when f 
satisfies certain natural topological assumptions such as discreteness and open- 
ness. In the quasiregular case this is usually done by first establishing that the 
branch set Bf of f has zero measure and then exploiting the fact that the in- 
verse of  a quasiconformal mapping (i.e., a homeomorphic quasiregular map- 
ping) is also quasiconformal. Recall that the branch set Bf is the set of all 
points where f does not define a local homeomorphism. 

We have the following result: 

6.1. Theorem. Suppose that f ~ WI'~(t'2, R ~) is a homeomorphism with dilatation 
K(x , f )  ~L~-I(Y2). Then f - 1  belongs to Wl'n(f([2)) and is of finite dilatation 
with K(y , f  -I) = K ( f - l ( y ) , f )  n-s for almost every y Ef(f2) .  In particular, 
J ( x , f )  > 0 for almost every x~f2 and f satisfies condition ( N - l ) .  

From this result one easily deduces: 

6.2. Corollary. If f~  W~'n(Y2, R n) satisfies K(x , f )  ELn-I( /2) ,  then IBfl = 0 if 
and only if J ( x , f )  > 0 for almost every xE[2. 

We do not know whether IBfl = 0  even if it is assumed that f~  
Wl'n(g2, R n) is discrete and open and K(x , f )ELf ( f2 )  for some r < c~. 

Proof. To prove the first assertion we use the reasoning in [BI, Theorem 9.1, 
p. 314]. In fact, we employ the change of  variables formula: 

(6.3) ~ u ( f ( x ) ) J ( x , f )  dx = ~ u(y) dy 
~2 f(~) 

for all nonnegative measurable u in f ( f 2 )  such that the integrals converge. This 
follows, e.g., from [V2, Theorem 24.8] by standard arguments; note that we 
need both the fact that f satisfies condition (N) and that J(x, f )  = 0 for almost 
every x in any set E fi s such that I f(E) I = 0 (the latter fact follows from 
[MZ, Theorem 3.1]). Now with formula (6.3) in hand, we can apply the argu- 
ment in [BI, pp. 314, 315] verbatim to conclude 

(6.4) ~ Pq~(y)rg(y) dy = - ~ adj Df(x)rq)( f (x) )  dx 
f(~2) s 
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for any mapping (p 6 C~ ( f ( D ) ,  Rn), where g = f - 1 .  By basic linear algebra, 
we have the inequality 

[adj Of(x)]  = [Df(x)  -1J(x , f )  I <- K(x , f )  (~-l)/~J(x,f) (~-1)/~ 

for almost every x (see, e.g., JR, p. 59]); note that here again we use the fact 
that f is of finite dilatation, which implies that Df(x) = adj Df(x) = 0 for 
almost every x such that J(x , f )  = 0. Thus by (6.4) and (6.3) 

j D~o(y)rg(y)dy <_ I K(x,f)(n-1)/nJ(x,f)(n-1)/n](o(f(x))[ dx 
f(;2) ;2 

~_ Q ~ K ( x , f ) n - l d x ) l / n Q ~ l ( p ( f ( x ) ) l n / ( n - l ' J ( x , f , d x )  (n-I}/n 

< K(x , f )n - ldx  [ ~9 (y) [ ~/(~-1) dy 
f( ) 

for all mappings ~0E C~~ R~). This implies (see [BI, (1.23)1) that 
g = f -1  ~ W~,n(f(~2), R n) with 

(6.5) I ]Dg(Y)l~dY <- ~ g ( x , f  )~-l dx" 
f(;2) f2 

A theorem of RESI-IETNYAK [R, Corollary 1, p. 182] asserts that homeomor- 
phisms in W l'n satisfy condition (N). Therefore the change of variables for- 
mula holds for f - i  as well, and we find 

I K(x , f )  n-1 dx = ~ K ( f - l ( y ) , f ) n - l J ( y , f  -1) dy. 
;2 f(;2) 

Next, because (6.5) holds true for any subdomain of ~,  we arrive at the point - 
wise estimate 

iDg(y ) [n <= K( f -1  (y), f )~-l j (y, g) 

for almost every y Ef(fa) ,  and it remains to observe that K(y, g) is finite a.e. 
in f ( f a )  because K(x, f )  is finite a.e. in 9 and f satisfies condition (N). This 
completes the proof of both the first assertion of the theorem and the asser- 
tion that f satisfies condition (N-I ) .  

Finally, that J(x, f )  > 0 a.e. follows from the change of variables formula 
(6.3) because f satisfies condition (N- l ) .  

Remark. To illustrate the sharpness of Theorem 6.1, consider the mapping 
f ( x l ,  x2) = (Xl, x~), c~ > 1, in the unit disk B 2 in R 2. A calculation shows 
that K(x , f )~Lr(B 2) for all r < 1 / ( o ~ - 1 ) ,  but f - 1 6 W I ' 2 ( B  2) only if 
oe<2.  

Note added in proof Recently J. MANFREDI & E. VrLLAMOR have announced a positive 
answer to the conjecture stated at the end of the Introduction. 
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