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ABSTRACT

Conditional probability generating functions (CPGF) of counting
processes (CP) are studied; these determine expressions for the proba-
bilities of numbers of counts in an interval for special cases, and are in
general required for applications to prediction, estimation and detection.
Martingale theory—-in particular the Meyer-Doob decomposition and the
Doléans-Dade integral equation-leads to the desired CPGF in terms of
the integrated conditional rate (i.e., natural increasing process) appear-
ing in the Doob-Meyer decomposition,

It is shown that the integrated conditional rate is nonrandom iff the
CP has independent increments; the CP then generalizes the Poisson pro-
cess in the sense that the mean of the CP need not be continuous. For a
CP mean with discontinuities, the CPGF involves coefficients furnished by
a specified infinite product.

The other special case requires a conditional independence condition
between the count and the rate. Here the CPGF is used to derive the proba-
bility of the number of counts in an interval. The resulting formula looks
like the analogous expression for a Poisson process, but is actually a gen-
eralization in which the rate (known for a Poisson process) is replaced by

the conditional expectation of the rate, given the past of the CP.



1. INTRODUCTION

Recently martingale theory has been used to study Counting Processes
(hereafter abbreviated CP). This has given rise to the notion of Integrated
Conditional Rate (ICR){({5]). We examine here an efficient martingale tech-
nique to compute some conditional probability generating functions for CP's.

First we obtain a genéral expression (involving the ICR) of this con-
ditional probability generating function, For CP's with independent incre-
ments this expression gives actually an integral equation for this conditional
probability generating function; furthermore, due to a result of Doleans -
Dade [4], the unique solution of this equation, i.e. the conditional probability
generating function, can be obtained. As a first consequence we derive a
unique characterization of CP's with independent increments. Then we com-
pute the probability of having n jumps in an interval (s,t]. This result is
well known when the mean of the process is continuous, but our derivation
extends to the general case where no conditional rate is assumed to exist.

Finally we show how similar results can be obtained for CP's having

a conditional rate satisfying some kind of conditional independence property.

2. PRELIMINARIES
Let (S, (4, P) be a complete probability space. By (Xt) we denote
a real valued stochastic process defined on R (the positive real line) and

by a Counting Process (CP) we mean



Definition 2. 1;

A CP is a stochastic process having sample paths zero at
the time origin, and consisting of right-continuous step functions with

positive jumps of size one.

Let ( ¢t) be a right-continuous increasing family of ¢-subalgebras of 4
with 4’0 containing all the P negligible sets. Now if (Nt) is a CP adap-
ted to %t’ with the sole assumption (i) the random variable Nt is a.s.
finite for each t, then as a consequence of the Doob-Meyer decomposition

for supermartingales we can associate to (N’c) a unique natural increasing

process (At)’ dependent on the family ( %t), which makes the process

(Mt = Nt - At) a square integrable ( %t) local martingale [3]. When the

mean m, = ENt of the CP is finite then the process (Mt) is actually a mar-

tingale. This decomposition (Nt = Mt + At) is intuitively a decomposition

into the part (Mt) which is not predictable and (At) which can be perfectly

prediicted. This unique process (At) is called the Integrated Conditional

a

Rate (ICR) of (Nt) with respect to ( %t) ("'the ( %t) ICR of (Nt)”) and has

been studied in [5]. The terminology ICR is motivated by the fact that when
t

(Nt) satisfies some sufficiency conditionsits ICR takes on the form (f Xsds)
0

where ()\t) is a nonnegative process called the conditional rate (with respect
to (&7 ) satisfying \, = lim E[h" (N, - N)| &5 .] ([5], Section 2.5).

t t he0 t+h t t
The existence of CP's which possess a bounded conditional rate with respect
to the family of o-algebras generated by the process itself has been first

shown in [1] and in [5]. Sufficiency conditions for the existence of a condi-

tional rate have been given in [5].



We assume here that modern martingale theory (3], [7]) is known.
Recall that a semimartingale (Xt) is a process which can be written as a
sum (Xt = Xo + Lt + At) where Xo is ?ro—measurable, (Lt) is a ( % t) local
martingale,and (At) is a right-continuous process adapted to (%t) with Ao =0
a.s. and having sample paths of bounded variation on every finite interval
(see [3]). A result basic to this study and due to Doléans-Dade [4] is
the following: the stochastic integral equation

t

= +
z, = 1 fo Z__ dX_

with (Xt) a semimartingale has a unique solution, which is a semimar-
tingale given byT

Z, = exp(X, - l<Xc>) I (1+AX )exp(-&X )

t t 2 t s s

s <t
where the product in the right hand side converges a.s. for each t. Here
we define (<Xc>t) as the unique natural increasing process associated to
the continuous part of the local martingale (Lt); (< X¢ >t) is identically zero
when (Xt) is a semimartingale with sample paths of bounded variation on
every finite interval (see [3]).
3. A FORMULA FOR THE CONDITIONAL PROBABILITY GENERATING
FUNCTION
Let (Nt) be a CP with Nt a.s. finite for each t and adapted to a family

(;’4(/ 1:). Its conditional probability generating function {(z,t, s) is defined for

7

When f ¢ is a right-continuous function with left-hand limits Aft denotes

the jump ft - ft-'



t >s by:

(N,-N_) n
(.1) $lz.te) S Ez © | ] = 2 2" P{N-N_=n| 4 }
n
where z is a complex number with |z| < 1. Denote by (At) the ( %t) ICR

of (Nt)' Recall that the process (Mt e Nt-At) is a ( "frt) local martingale

Lemma 3.1: The conditional probability generating function is given by

t (N -N)
(3.2) Y(z,t,8) = 1+ (z-1)E f z SdAvL'éfis)
8

Proof: The CP (Nt) is a right-continuous step process with ANt being either

zero or one so that fort >s

zt-zs= 2 sz Vo= E\zv_zv-)

s<v<t s<v<t

ANv N

= E (z -1)z Ve

s<v<t
N—
= E (z-l)zVAN
v

s<v<t

t N
(z-1)) 2z ¥ aN,
S

where E is the sum over the discontinuities of (Nt) in (s, t]. Using the

expression (Nt 2 Mt + At) in the above gives

N ¢ N
(3.3) +('z—1)f z de+f z ' dA

v
S s



Let (Tn) be a sequence of stopping times reducing the local martingale (Mt)

i. e. the stopped process (M ) is a uniformly integrable martingale

t AT
n

for each n (see [3]). The sample paths of (M ) are of bounded variation

t A Tn
on every finite interval and |z| <1 so by Proposition 2 of [3] the process

t N t N

S = Tam T ) is a martingale. In particular E(fs z ' aM_ Tnl 7 |

t N t N

v- v- 1
= <
fs z VTaM T f - fv<T }aMm

and it follows from the bounded convergence theorem that

t N |
Ef =7 am |#)) = o.
S

-N
Substituting the above relation in (3. 3) and multiplying both sides by z s

we get the desired result (3.2). ||

Formula (3. 2) can be generalized to the case where the jumps of the
process (Nt) are of random size. This formula would then contain, in place
of the term (z-1), a random quantity which is a function of the random size
jumps ANt and z. This additional randomness makes this formula difficult
to manipulate and perhaps of less value. Accordingly, we shall limit our

future considerations to CP's.

4. APPLICATION TO PROCESSES OF INDEPENDENT INCREMENTS
Suppose now that (Nt) is a CP of independent increments with finite
A
mean m, and consider the family of ¢ -algebras (‘/Zt = o (Nu, 0 <uc<t))

generated by the process itself up to and at time t. We will show that CP's

of independent increments are uniquely distinguished by the fact that their



(th) ICR is deterministic and given by the mean m,. Also, the probability
generating fﬁnction U(z, t, s) and the probability P{Nt - Ns = n} will be com-
puted. The method used to devise these formulas is appealing as it does

not require the mean m,_ to be continuous, and hence generalizes currently

t

known formulas [8].

Theorem 4.1: Let (Nt) be a CP with finite mean m, for each t. Denote its

(Nt) ICR by (At)' Then
(a) (Nt) is a CP of independent increments if and only if the ICR
(At) is deterministic .

(b) If the ICR (At) is deterministic then

(c) The probability generating function of a CP with independent

increments is given by

(4.1) b(z,t,8) = exp[(z-l)(mt-m ). 1 [1+(z-1)Amv]exp[(l-z)Amv]
s<v<t

(d) Denote by 1:i the (at most countable) times of jump of m, on the

interval (s,t]. Define

m -m - E Am
s<v<t

(4. 2) &

(1) If the number of jumps of m, in (s, t] is infinite then the
product II [1 + (z-l)Amt ] is uniformly convergent in the
i i
region |z| <1 to an analytic function and we denote by a

the coefficients of the Taylor expansion of the above infi-

nite product.



(2) If the number j of jumps of m_in (s, t] is finite the

t

coefficients a of the Taylor expansion can be computed

by formulas (4.9) to (4.11) below. In particular, if

mt is continuous (j=0) then a_ = 1, ak =0, k>1and

6s T Myt rns
(3) We have
(4.3) P{N-N =n} = exp{-6 } E , (Bt)n k
t s k=0 )

Remark:

Observe that when m, is continuous we get the well known formulas

$(z,t,8) = exp[(z-l)(mt-ms)] and
1
(4. 4) P{Nt-Ns =n} = 0 (m -m ) exp[-(m - )]

for the Poisson counting process with variable rate.

Proof: (a) (=>) Itis easy to show that the process (Nt - mt) is a (Y?t)

ma.rtingale.T Furthermore the increasing process m, is natural because it

is deterministic, so (Nt) has the unique Doob-Meyer decomposition
(N = (N;-m) +m,),and by definition m,_ is the (/7 ) ICR of (N,).

(<= ) From formula (3. 2)
t (N _-N) _
Y(z,t,8) = 1+ (z-1) E(f z da_|77.)

s
The process (At) is deterministic and by Fubini's Theorem we can obtain
-N)

t (N t N -N ,
Ef = ¥ faa 7)) = [ E= " |7 _jaa

s

THere ‘/Lt is the completion of the o -algebra generated by {Ns, 0 <s <t}.



so that yi(z, t, s) satisfies the following integral equation:
t
(4. 5) Wz, t,s) = 1+ (z-1)f Y(z,v-, s)dA_
s
By the Dole’ans-Dade result, Theorem 1 of [4], the above equation
has the unique solution
(4.6) W(z,t,8) = exp[(z-l)(At-As)] r [1+ (z—l)AAv]exp[(l-z)AAv]
s<v<t
The right hand side of this relation is a deterministic function and it follows
that (Nt) is a process with independent increments.
(b) By definition of the (ﬁt) ICR (At) the process (Mt e Nt - At) is
a local martingale. This process is in fact a martingale since m, = ENt
is finite for each t (see [5], Theorem 2. 3.1) and the result follows from
EMt =0 = ENt - At'

Part (c) is a restatement of (4.6) where we have used the fact that

(d) For a process of independent increments we clearly have

PN - N_= n| 77 JJ = PN -N_=n}. Now define

6t=m-m-2Amt.
] t 8 i i

Formula (4. 1) can be rewritten with the above relation in the form

]

(4. 7) P(z,t,8) = exp{-éts}exp{zét;} 11 [1+ (z-l)A.mti

We examine now the infinite product
(4.8) I [1+(z-1)Am_ ]

t.
i i



10

Observe that: (a) for each n the partial product
n
foz) = M 1+ (z-1)Am, ]
i=1 i
is analytic in the complex plane and (b) the series
27 | (z-1 Jam,_ |
i i
is uniformly convergent in the region |z| < 1. This last point follows from

the Weierstrass test:

l(z-l)Amti| < ZAmti

and because the mean mt is finite for each t the series
2 A < <
i mt mt 00

i
is convergent. Conditions (a) and (b) above imply that the infinite product
(4. 8) converges uniformly to a function f(z) which is anal ytic in the region
|z| <1 (see [6], Corollary to Theorem 8.6.3; or [2], Theorem 5. 4. 8).
Hence we can get a Taylor series expansion for f(z) = II [1 + (z-l)Amt.]

i i
in the region Izl <l

f(z) = E azl

= II + -
; ’ \ [1+ (2 I)Amt']

i
This power series can also be differentiated term by term in the region

|z| <1. Itis then easy to compute from (4. 7)
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1 ™
P{N-N_=n} = -+ S5 ¥zt
dz
(n)
1 t. d t i
= T exp(-as) :i:;(exp 263?%2 )|z=0

" t n-k
n-

exp (-6.) 2 (5,)
k=0

Now if the mean m, has only a finite number of jumps j > 1 in the interval
(s,td then the coefficients a.k are such that

B
az = I [1+(z.1)Amt 1;

£=1£ £=1 1

they can then be computed by

J
(4.9) a = 2 (1-04m, ).
o . t.
i=1 i
For 0 <k <j
1 k |
& =T 2 (m am, ) T (1-dm,_ )]
* all permutations q=1 L  q=ktl 2
(4. 10) g azlieesi) b d
of
{a,..... ceesi}
k
(4.11) a, = .H Amt. for k=j,
i=1 i

and finally for k > j, a = 0.

If j = 0 (continuous case) then II [1+ (z-l)Amt] = 1 so that ao =1 and a.k =0,
i i
k > 1,and result (4, 3) reduces to (4. 4) (61; = mt - mS in this case). H
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If we define a non-homogeneous Poisson process (Nt)l\?s being a CP
of independent increments with a characteristic function E 2z t given by
exp {(z-1) ft A sds} where )\t is a nonnegative function called the rate, then
we have: ;

Corollary 4.2: A CP (Nt) of independent increments with finite meanm

t

for each t is a non-homogeneous Poisson process if and only if the mean m,

is absolutely continuous. The rate )\t is then given by the Radon-Nikodym
dm

dt )

derivative

Proof: By Theorem 4.1 itis easy to see that
Nt t
Ez ° = exp{(z-1) [ A _ds}
0o 8

if and only if
t
m, = fo )\sds. ||

5. APPLICATION TO COUNTING PROCESSES WITH A CONDITIONAL RATE
Assume now that (Nt) is a CP with finite mean for each t and for

which a conditional rate (A 1:) with respect to a family ( %t) exists and

s atisfies the condition

N N
(5.1) Ee A %) = Ee V| FOEM |7

for all v 2 8. This condition will be discussed later on. From (3.2) we get

t (N -N)
(5. 2) batis) =1+ @-DE([ 2 77 S av| ¥ )
S
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t

Now the CP has a finite mean so that Ef A Sds is finite which implies
0

t N -N)
Ef |z V7 *hhav<o for|z] <1,
S

Then by Fubini's Theorem

-N) t (N —N)

t (N
v- 8 v- 8
E[fs z A avi ] fs Elz A M Jav

Hence by the above relations (5. 1) and (5. 2) one has

t
- Ag

(5. 3) bz ts) = 1+ (z-1) [ Yz, v LS\ v

s

A . A
where )\‘s’ e E()\v!%s) i.e., ()\3) is the minimum mean square error
prediction of (Xv) based on past information up to and at time s. As be-

fore, this equation has a unique solution which is a semimartingale

(Theorem 1, [4])

t
(5. 4) $(z,t,s) = exp{(z-1) [ ?\idv}
s
and
1 ta s, \n ta s
(5.5) {Nt-Ns = n| ?{s} = o7 (f )\vdv) exp{-f dev}
s s

It is interesting to note that both these formulas generalize the corresponding
expressions for Poisson processes directly, with the best estimate &3 of )\v
replacing the latter, which is deterministic for a Poisson process.

All this is very appealing but is true only if condition (5. 1) is satis-

fied. This condition which can be rewritten (by adding and subtracting terms)

as
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(N_--N_) (N _-N)
(5.6) E[z '~ S(xv-xs)lf?'s] = E[z st]E[(xv-szrs]

is difficult to interpret. But in the particular case where s = 0 and
7’0 = {4,Q} (this is the case for ﬁt = ﬂt)_the above condition (5. 1)
becomes

N N
(5.7) E(z A ) = E(z

Ve

JE(x ) v>0
o V2

and is satisfied if for each t the two random variables Nt and )\t are inde-

pendent. This seems a reasonable assumption if we suppose the value of

Nt- does not influence the rate at time t. Then under this condition (5. 7)

relation (5.5) gives

t

t
, (fo (Exv)dv)n exp{-fo (EX)dv) .

’._.

P{Ntzn} =

4
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