Qualitative Behavior of Dissipative Wave Equations on Bounded Domains

JEFFREY RAUCH

Communicated by C. DAFERMOS

Abstract

The qualitative behavior of solutions of the mixed problem $u_{tt} = \Delta u - a(x) u_t$ in $\mathbb{R} \times \Omega$, u = 0 on $\mathbb{R} \times \partial \Omega$, is studied in the case when a > 0 and $\Omega \subset \mathbb{R}^n$ is bounded. Roughly speaking, if $a \ge a_{\min} > 0$, then solutions decay at least as fast as exp $t(\varepsilon - \frac{1}{2}a_{\min})$, with the possible exception of a finite dimensional set of smooth solutions whose existence is associated with a phenomenon of overdamping. If a_{\max} is sufficiently small, depending on Ω , then no overdamping occurs.

Let $\Omega \subset \mathbb{R}^n$ be a bounded open set lying on one side of its smooth boundary $\partial \Omega$. We are interested in solutions of the dissipative wave equation

(1)
$$u_{tt} = \Delta u - a(x) u_t$$
 on $\mathbb{R} \times \Omega$,

where Δ is the Laplacian and where the coefficient of friction a(x) is a smooth positive function on $\overline{\Omega}$. On the boundary the Dirichlet boundary condition

(2)
$$u=0$$
 on $\mathbb{R} \times \partial \Omega$

is imposed. The methods used generalize immediately to a wide class of equations and boundary conditions.

A feeling for the phenomena encountered can be obtained by considering the special case a = constant, which can be solved by an eigenfunction expansion. Let Φ_j , j=1, 2, ..., be an orthonormal sequence of eigenfunctions of Δ with Dirichlet conditions. That is, $\Delta \Phi_j = \lambda_j \Phi_j$ in Ω , $\Phi_j = 0$ on $\partial \Omega$ and $0 > \lambda_1 > \lambda_2 \ge \lambda_3 ...$ Then

(3)
$$u = \sum u_j(t) \Phi_j,$$

where $u_i(t)$ satisfies the damped spring equation

$$\ddot{u}_i + a\dot{u}_i - \lambda_i u_i = 0$$

with $u_i(0)$, $\dot{u}_i(0)$ determined by the Cauchy data of u. The general solution of (4) is

(5)
$$\beta_+ e^{r_+ t} + \beta_- e^{r_- t}, \quad \beta_{\pm} \in \mathbb{C}$$

(6)
$$r_{\pm} = \frac{-a \pm \sqrt{a^2 + 4\lambda_j}}{2}$$

Partially supported by NSF grant NSF GP 34260.

Since $\lambda_j \to -\infty$ as $j \to \infty$ we see that for *j* large Re $r_{\pm} = -a/2$ and the corresponding terms in (3) decay like $e^{-ta/2}$. The "slow modes" with Re r > -a/2 occur when the spring equation (4) is overdamped. In summary, solutions consist of a finite dimensional part decaying exponentially, but slower than $e^{-ta/2}$, and a part decaying like $e^{-ta/2}$. Our goal is to prove similar results when *a* depends on *x*. To do this, an appropriate framework for discussing (1), (2) must be built.

The energy of a solution u at time t is defined as

$$E(t, u) = \int_{\Omega} \left(|u_t(t, x)|^2 + |\nabla u(t, x)|^2 \right) dx.$$

The basic energy identity for smooth solutions of (1), (2) is then

$$\frac{d}{dt}E(t,u) = -2\int_{\Omega} a(x) |u_t(t,x)|^2 dx \leq 0.$$

This relation would seem to indicate that if one increases a then the energy should decay more rapidly. It was pointed out in [5, pp. 365-367] however that this is not quite correct, since for large a the overdamped states actually decay slower. With the exception of this finite dimensional set of states, however, the idea is right.

We introduce the natural Hilbert space of states, $H = \mathring{H}_1(\Omega) \times L_2(\Omega)$ with norm

$$\|(\phi,\psi)\|_{H}^{2} = \int_{\Omega} (|\nabla \phi|^{2} + |\psi|^{2}) dx$$

and define the evolution operator $S(t): H \rightarrow H$ by

$$S(t)(\phi, \psi) = (u(t), u_t(t)),$$

where u is the solution of the mixed problem (1), (2) with initial conditions

(7)
$$u(0) = \phi, \quad u_t(0) = \psi.$$

(If one wants to avoid weak solutions one may consider functions $(\phi, \psi) \in C_0^{\infty}(\Omega)^2$, in which case the solution of (1), (2), (7) is smooth and S(t) has a unique continuous linear extension to all of H.) The family S(t), $-\infty < t < \infty$, is a C_0 one-parameter group of linear transformations on H with $||S(t)|| \le 1$ for $t \ge 0$. The generator of this group is

$$G = \begin{pmatrix} 0 & 1 \\ A & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & -a \end{pmatrix},$$
$$D(G) = \begin{pmatrix} H_2(\Omega) \cap \mathring{H}_1(\Omega) \end{pmatrix} \times \mathring{H}_1(\Omega).$$

Notice that $\begin{pmatrix} 0 & 1 \\ d & 1 \end{pmatrix}$, with the same domain, is skewadjoint (see [4, §V.1]) and that $\begin{pmatrix} 0 & 0 \\ 0 & -a \end{pmatrix}$ is a bounded dissipative operator on H so that G is maximal dissipative.

We are interested in S(t) for t large. If Ω were a Riemannian manifold without boundary and Δ the Laplace-Beltrami operator, then the results of [7], see especially §4, give a precise formula for $||S(t)||_{\mathscr{L}/\mathscr{K}}$ where \mathscr{L} is the algebra of bounded operators on H and \mathscr{K} the ideal of compact operators. In particular, $||S(t)||_{\mathscr{L}/\mathscr{K}}$ depends monotonically on a, in the sense that increasing a decreases the norm of S(t). We have also the simple estimates

(8)
$$e^{-ta_{\max}/2} \leq \|S(t)\|_{\mathscr{L}^{\infty}} \leq e^{-ta_{\min}/2},$$

where

(9)
$$a_{\max} = \max_{\alpha} a, \quad a_{\min} = \min_{\alpha} a.$$

The proof in [7] relies on a detailed construction using geometrical optics, not available in case Ω has a boundary because of the existence of glancing rays. We will give a direct and elementary proof of inequalities corresponding to (8) in the case of regions with boundary. The method is that of energy integrals with an indefinite energy form.

Definition. Let $\pi_1: H \to \mathring{H}_1(\Omega)$ be defined by $\pi_1((\phi, \psi)) = \phi$. If $h \in H$ then $u = \pi_1(S(t)h)$ is called a *finite energy solution* of (1), (2). Notice that

$$u \in C(\mathbb{R} \mid \mathring{H}_1(\Omega)) \cap C^1(\mathbb{R} \mid L_2(\Omega)).$$

The next result contains our basic estimate.

Theorem 1. If u is a solution of (1), (2) with finite energy, then

(10)
$$E(t, u) \leq c_1^2 e^{-a_{\min} t} E(0, u) + c_2 \|u(t)\|_{L_2}^2,$$

where

$$c_1^2 = \max(4, a_{\min}^2/2\lambda),$$

$$c_2 = a_{\max} a_{\min} - \lambda$$

and λ is given by (11).

One consequence of (10) is that for solutions which decay slower than $e^{-ta_{\min}/2}$ the energy is dominated by $(c_2 + \varepsilon)$ times the L_2 norm, for large time. Thus the slowly decaying modes must be fairly smooth.

Proof. First assume that $u \in C^{\infty}(\mathbb{R} \times \overline{\Omega})$. Let $\alpha = a_{\min}/2$ and $v = e^{\alpha t} u$. Then

$$u_t = e^{-\alpha t} (v_t - \alpha v)$$

$$u_{tt} = e^{-\alpha t} (v_{tt} - 2\alpha v_t + \alpha^2 v)$$

$$\Delta v = e^{\alpha t} \Delta u = e^{\alpha t} (u_{tt} + \alpha u_t).$$

Substituting the expressions for u_t , u_{tt} into the last equation yields

$$v_{tt} - \Delta v + (\alpha^2 - a\alpha) v = -(a - a_{min}) v_t$$

(notice that $a - a_{\min} \ge 0$ and $\alpha^2 - a\alpha \le -\alpha^2 < 0$). Multiply this equation by \bar{v}_t , integrate over Ω , and form the real part. This shows that

$$\frac{d}{dt} \mathscr{I}(t) = -2 \int_{\Omega} (a - a_{\min}) |v_t(t)|^2 dx \leq 0,$$

where

$$\mathscr{I}(t) = \int_{\Omega} \left(|v_t(t)|^2 + |\nabla v(t)|^2 + (\alpha^2 - a\alpha) |v(t)|^2 \right) dx.$$

Notice that the decreasing functional $\mathscr{I}(t)$ is indefinite since $\alpha^2 - a\alpha < 0$. To make use of the decrease of \mathscr{I} , observe that

$$e^{2\alpha t} E(t, u) = \int_{\Omega} (|v_t - \alpha v|^2 + |\nabla v|^2) dx$$

$$\leq \int_{\Omega} (2|v_t|^2 + 2\alpha^2 |v|^2 + |\nabla v|^2) dx$$

$$\leq 2\mathscr{I}(t) + 2a_{\max} \alpha ||v(t)||_{L_2}^2 - ||\nabla v(t)||_{L_2}^2$$

where we have used the relation $2a_{\max}\alpha + 2(\alpha^2 - a\alpha) \ge 2\alpha^2$. Let λ be the smallest eigenvalue of $-\Delta$ with Dirichlet boundary conditions, that is

(11)
$$\lambda = \min_{\phi \in H_1(\Omega) \setminus \{0\}} \frac{\|\nabla \phi\|_{L_2}^2}{\|\phi\|_{L_2}^2}.$$

Then the decrease of \mathcal{I} and the inequality for E yield

$$E(t, u) \leq 2e^{-2\alpha t} \mathcal{I}(0) + (a_{\max} a_{\min} - \lambda) \|u(t)\|_{L_2}^2$$

In addition,

$$\begin{aligned} \mathscr{I}(0) &= \int_{\Omega} \left(|u_t(0) + \alpha u(0)|^2 + |\nabla u(0)|^2 + (\alpha^2 - a\alpha) |u(0)|^2 \right) dx \\ &\leq E(0, u) + \int_{\Omega} \left(|u_t(0)|^2 + (3\alpha^2 - a\alpha) |u(0)|^2 \right) dx \\ &\leq \max\left(2, \frac{\alpha^2}{\lambda} E(0, u) \right), \end{aligned}$$

where we have used the estimate $3\alpha^2 - a\alpha \leq \alpha^2$. Substituting the above estimate for $\mathscr{I}(0)$ into the inequality for E(t, u) yields (10).

If u is a solution with finite energy, say $u = \pi_1(S(t)h)$, we choose $h_n = (\phi_n, \psi_n) \in (C_0^{\infty}(\Omega))^2$ with $(\phi_n, \psi_n) \to h$ in H, and let $u_n = \pi_1 S(t) h_n$. Then $u_n \in C^{\infty}(\mathbb{R} \times \overline{\Omega})$ and $E(t, u_n) \to E(t, u)$ by virtue of the continuity of S. Applying inequality (10) to u_n and passing to the limit $n \to \infty$ proves the theorem.

Theorem 1 has strong implications for the spectrum of S(t). On H, let || be the continuous seminorm defined by

$$|(\phi,\psi)|^2 = \int_{\Omega} |\phi|^2 \, dx.$$

This seminorm is compact in the following sense.

Definition. If Y is a Banach space and $p: Y \to \mathbb{R}$ is a continuous seminorm, then p is compact if every bounded sequence $\{y_n\}$ in Y has a subsequence $\{y_{n_k}\}$ such that $p(y_{n_k} - y_{n_k}) \to 0$ as $k, l \to \infty$.

Notice that if $\{(\phi_n, \psi_n)\}$ is bounded in *H*, then $\{\phi_n\}$ is bounded in $\mathring{H}_1(\Omega)$. Hence by Rellich's theorem there is a subsequence $\{\phi_{n_k}\}$ convergent in $L_2(\Omega)$.

80

This proves the compactness of | |. As a second observation note that if $A: Y \to Y$ is a continuous linear map and $p: Y \to \mathbb{R}$ is a compact seminorm, then $p \circ A$ is a compact seminorm. For any t > 0, let $q: H \to \mathbb{R}$ be the seminorm defined by q(h) = |S(t)h|. The above remarks show that q is compact. The basic estimate (10) shows that

(12)
$$\|S(t)h\|_{H} \leq c_{1} e^{-ta_{\min}/2} \|h\|_{H} + \sqrt{c_{2}} q(h).$$

Though this is not as strong as the estimate $||S(t)|| \leq \text{const} e^{-ta_{\min}/2}$, we will show that it is also not much weaker (see Theorem 4).

First we study the spectrum $\sigma(S(t))$ of S(t). Recall that an isolated point λ of $\sigma(S)$ is an eigenvalue of finite multiplicity if $[z-S]^{-1}$ has a pole at $z=\lambda$. The (geometric) multiplicity of λ as an eigenvalue is the rank of the projection

$$(2\pi i)^{-1} \oint_{\Gamma} (z-S)^{-1} dz,$$

where Γ is a circle enclosing λ but no other part of $\sigma(S)$.

Theorem 2. Let D be the disc $\{z \mid |z| \leq c_1 e^{-ta_{\min}/2}\}$. Then $\sigma(S(t)) \cap \mathbb{C} \setminus D$ is a discrete subset of $\mathbb{C} \setminus D$ consisting only of eigenvalues of finite multiplicity.

Theorem 2 follows by applying the next lemma, which is a standard Fredholm type result (proof omitted).

Lemma. Suppose H is a Hilbert space, $S: H \rightarrow H$ is a bounded linear transformation, and q a compact seminorm on H. If

$$|Sh||_{H} \leq C ||h||_{H} + C' q(h), \quad h \in H,$$

then $\sigma(S) \cap \{|z| > C\}$ consists of isolated eigenvalues with finite multiplicity.

If G is the generator of the group S(t), then $\sigma(G) \subset \{\text{Re } z \leq 0\}$. The following more detailed result also holds.

Theorem 3. We have $\sigma(G) \subset \{\text{Re } z < 0\}$. Moreover for any $\varepsilon > 0$ the set $\sigma(G) \cap \{\text{Re } z \ge \varepsilon + a_{\min}/2\}$ consists of a finite number of isolated eigenvalues of finite multiplicity.

Proof. The second assertion follows from Theorem 2 and the basic spectral theory of semigroups, for example, Theorems 16.7.1 and 16.7.2 of [3]. It remains to show that there are no purely imaginary eigenvalues. If $Gh = i\mu h$ with $\mu \in \mathbb{R}$, and $h = (\phi, \psi) \in H$, then

$$0 = \operatorname{Re} (Gh, h) = -2 \int_{\Omega} a |\psi|^2 dx.$$

Since a > 0 we see that $\psi = 0$. The equation $Gh = i\mu h$ implies $\psi = i\mu\phi$. Hence if $\mu \neq 0$ it follows that h = 0. If $\mu = 0$ we have Gh = 0, so $\Delta\phi = a\psi$. Now $\psi = 0$, whence $\phi \in \mathring{H}_1(\Omega)$ and $\Delta\phi = 0$. Thus $\phi = 0$ and again h = 0. This completes the proof.

Fix $\varepsilon > 0$ and let Γ be a smooth simple closed curve enclosing the eigenvalues of G with real parts greater than or equal to $\varepsilon - a_{\min}/2$, but enclosing no other

J. RAUCH

part of $\sigma(G)$. Let P be the corresponding spectral projection, that is,

$$P = \frac{1}{2\pi i} \oint_{\Gamma} (z-G)^{-1} dz.$$

By Theorem 3, P has finite rank. The general spectral theory of closed operators shows that the decomposition $H = PH \oplus (I - P) H$ reduces G and S in the following sense:

(i) S(t) maps PH and (I-P) H into themselves.

(ii) $PH \subset D(G)$, and the generator of the group $S(t)|_{PH}$ is $G|_{PH}$. The generator of $S(t)|_{(I-P)H}$ is $G|_{D(G) \cap (I-P)H}$. (iii) $\sigma(S(t)|_{PH}) \subset \{|z| \ge e^{t(\varepsilon - a_{\min}/2)}\}$

and

$$\sigma(S(t)|_{(I-P)H}) \subset \{|z| \leq e^{t(\varepsilon' - a_{\min}/2)}\} \text{ for some } \varepsilon' \in [0, \varepsilon).$$

From this we derive the following basic decay theorems.

Theorem 4. For $\varepsilon > 0$, let P be the spectral projection of G corresponding to the eigenvalues of G with real part $\geq -a_{\min}/2 + \varepsilon$. Then $H = PH \oplus (I - P) H$, PH is finite dimensional, both PH and (I - P)H are invariant under S(t), and there is an $\varepsilon' < \varepsilon$ such that

(14)
$$\|S(t)|_{(I-P)H}\| \leq C e^{t(\varepsilon' - a_{\min}/2)}, \quad t \geq 0.$$

Proof. All that needs to be proved is the decay estimate. Let $\tilde{S} = S(1)|_{(I-P)H}$. Then by (iii), $\sigma(\tilde{S}) \subset \{|z| \leq \rho\}$ for some $\rho < e^{-a_{\min}/2 + \epsilon}$. The spectral radius formula now implies

$$\rho = \lim_{n \to \infty} \|\tilde{S}^n\|^{1/n} = \lim \|S(n)|_{(I-P)H}\|^{1/n}.$$

It follows that

 $||S(n)|_{(I-P)H}|| \leq \text{const. } e^{(\varepsilon'-a_{\min}/2)n}$

for $n = 0, 1, 2, \dots$ Since S is a contraction semigroup for $t \ge 0$, we have

$$||S(t)|_{(I-P)H}|| \leq ||S([t])|_{(I-P)H}|| \leq \text{const. } e^{(\varepsilon' - a_{\min}/2)[t]}$$

where [] is the greatest integer function. This inequality implies the desired estimate.

The above theorem renders precise the heuristic description of decay described in the introduction.

Corollary 5. If $r = \sup \{\operatorname{Re} z | z \in \sigma(G)\}$ and $r > -a_{\min}/2$, then there is an integer m and a real number c such that for all $t \ge 0$ we have

(15)
$$||S(t)|| \leq c(1+t^m)e^{rt}$$
.

Proof. Choose $\varepsilon > 0$ so that $\varepsilon - a_{\min}/2 < r$, and then write $H = PH \oplus (I - P)H$ as in Theorem 4. The estimate (14) suffices for the consideration of $S|_{(I-P)H}$. How-

82

ever, PH is finite dimensional and $\sigma(G|_{PH}) \subset \{\text{Re } z \leq r\}$, so for $t \geq 0$

$$|S(t)|_{PH} \leq \text{const.} (1+t^m) e^{rt}$$

with $m+1 \leq \dim PH$.

Remark. It is a simple matter to derive decay estimates for the higher derivatives of u. For example, if $h \in D(G)$ and $u = \pi_1(S(t)h)$, then $u_t = \pi_1(S(t)Gh)$ is also a finite energy solution of (1), (2). Hence $E(t, u_t)$ decays exponentially, and in particular $||u_t||_{L_2}$ and $||u_{tt}||_{L_2}$ decay like $e^{-(r-\varepsilon)t}$. From equation (1) it follows that $||\Delta u||_{L_2}$ decays at the same rate. Thus $||u||_{H_2(\Omega)} = O(e^{-(r-\varepsilon)t})$, since $\Delta : H_2(\Omega) \cap \dot{H}_1(\Omega) \rightarrow L_2(\Omega)$ is an isomorphism. In the same way, if $h \in D(G^k)$ then $||D_{t,x}^{\beta}u||_{L_2} = O(e^{-(r-\varepsilon)t})$ for $|\beta| \leq k+1$.

The occurence of eigenvalues of G with real part greater than $-a_{\min}/2$ is connected with overdamping. If a_{\max} is sufficiently small, one might expect that these eigenvalues do not occur and that $||S(t)|| = O(e^{t(\varepsilon - a_{\min}/2)})$ as $t \to \infty$ for any $\varepsilon > 0$.

Theorem 6. Let λ be the smallest eigenvalue of $-\Delta$ with Dirichlet boundary conditions. If

$$a_{\min}(2a_{\max}-a_{\min}) < 4\lambda$$

then $\sigma(G) \subset \{\operatorname{Re} z \leq -a_{\min}/2\}$.

Remark. If a is constant the above inequality becomes $4\lambda > a^2$. Since $\lambda = -\lambda_1$ in the notation of (6), this is precisely the condition on a needed to rule out overdamping.

Proof. Suppose there is a value μ with $\operatorname{Re} \mu > -a_{\min}/2$ and an $h \in H \setminus \{0\}$ such that $Gh = i \mu h$. If $h = (\phi, \psi)$ then $u = e^{\mu t} \phi$ satisfies (1), (2). We now apply the method of proof used in Theorem 1. Let $\alpha = a_{\min}/2$ and $v = e^{\alpha t} u$. Then

$$\begin{aligned} e^{2\alpha t} \| \nabla u \|_{L_{2}}^{2} &\leq E(t, v) \\ &\leq \mathscr{I}(t) + (\alpha a_{\max} - \alpha^{2}) \| v(t) \|_{L_{2}}^{2} \\ &\leq \mathscr{I}(0) + (\alpha a_{\max} - \alpha^{2}) e^{2\alpha t} \| u(t) \|_{L_{2}}^{2}. \end{aligned}$$

Since $h \neq 0$ and $Gh = i\mu h$, it follows that $\phi \neq 0$. Hence $||u(t)||_{L_2} \neq 0$. Then as $t \to \infty$

$$\frac{\|\nabla\phi\|_{L_2}^2}{\|\phi\|_{L_2}^2} = \frac{\|\nabla u\|_{L_2}^2}{\|u\|^2} = \alpha a_{\max} - \alpha^2 + o(1).$$

Letting $t \to \infty$ we have

$$\lambda \leq \frac{\|\nabla \phi\|_{L_2}^2}{\|\phi\|_{L_2}^2} \leq \alpha a_{\max} - \alpha^2,$$

that is, $4\lambda \leq a_{\min}(2a_{\max}-a_{\min})$.

Remark. If one applies estimate (10) to the solution u, this gives the weaker estimate $2\lambda \leq a_{\max} a_{\min}$. In particular, when a is constant this does not give a sharp result. The reason is that in (10) the need to estimate $||u_t||_{L_2}^2$ introduces some leeway into the estimate for ∇u .

J. RAUCH

Based on Theorem 6 and the case a = constant, we make the following conjecture:

If λ_N is the *Nth* largest (counting multiplicity) eigenvalue of $-\Delta$ with Dirichlet boundary conditions, and if $a_{\max}^2 < 4\lambda_N$, then there are at most N eigenvalues (counting multiplicity) of G with real part larger than $-a_{\min}/2$.

We have been concerned with upper bounds for S(t), and the theme has been that "essentially" $||S(t)|| \leq \text{const. } e^{-ta_{\min}/2}$. There is a corresponding lower bound which, somewhat surprisingly, is true without qualification.

Theorem 7. If u is a finite energy solution of (1), (2), then there is a positive constant c such that

$$E(t, u) \ge c e^{-a_{\max} t} E(0, u), \quad t \ge 0$$

Proof. Let $\alpha = a_{\text{max}}/2$ and $v = e^{\alpha t}u$. Then for v we have the differential equation

$$v_{tt} - \Delta v + (\alpha^2 + a\alpha)v = (a_{\max} - a)v_t.$$

Since $a_{\max} - a \ge 0$ the functional

$$J(t) = \int_{\Omega} \left(|v_t(t)|^2 + |\nabla v(t)|^2 + (\alpha^2 + a\alpha) |v(t)|^2 \right) dx$$

is increasing in t. Notice also that $\alpha^2 + a\alpha \ge 0$, so the norms $J^{1/2}$ and $E(t, v)^{1/2}$ are equivalent. Thus, for positive constants independent of t, u, v, we have

$$e^{-a_{\max}t}E(t, u) \ge \text{const. } E(t, v)$$

 $\ge \text{const. } J(t) \ge \text{const. } J(0)$
 $\ge \text{const. } E(0, v) \ge \text{const. } E(0, u).$

In terms of S this theorem asserts that

$$\|S(t)h\|_{H} \ge c e^{-ta_{\max}/2} \|h\|_{H}$$

for all $t \ge 0$ and $h \in H$. Since $S(-t) = S(t)^{-1}$ this shows that $||S(-t)|| \le c e^{ta_{\max}/2}$ for all $t \ge 0$.

Corollary 8. $\sigma(G) \subset \{z | \operatorname{Re} z \ge -a_{\max}/2\}$.

Proof. For Re $z < -a_{\text{max}}/2$ we have

$$(G-zI)^{-1} = \int_{-\infty}^{0} e^{-zt} S(t) dt,$$

an absolutely convergent integral central in the theory of semigroups (see [3]).

Note. This work was partially supported by the National Science Foundation under Grant No. GP 34260.

References

- 1. DAFERMOS, C., Contraction semigroups and trend to equalibrium in continuum mechanics, to appear.
- IWASAKI, N., Local decay of solutions for symmetric hyperbolic systems with dissipative and coercive boundary conditions in exterior domains, *Publ. RIMS Kyoto U.* 5, 193-218 (1969).

- 3. HILLE, E. and R. PHILLIPS, Functional Analysis and Semigroups. AMS Colloquim Publications, vol. 31 (1957).
- 4. LAX, P. and R. PHILLIPS, Scattering Theory. New York: Academic Press 1967.
- RAUCH, J., Five problems: an introduction to the qualitative theory of partial differential equations, in Partial Differential Equations and Related Topics. Springer Lecture Notes in Mathematics 446, 355-369 (1975).
- 6. RAUCH, J. and M. TAYLOR, Exponential decay of solutions to symmetric hyperbolic systems on bounded domains. *Indiana Math. J.* 24, 79-86 (1974).
- RAUCH, J. and M. TAYLOR, Decay of solutions to non-dissipative hyperbolic systems on compact manifolds. Comm. Pure Appl. Math. 28, 501-503 (1975).

Department of Mathematics University of Michigan Ann Arbor, Michigan

(Received October 24, 1975)