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Abstract 

The qualitative behavior of solutions of the mixed problem u,  =A u - a ( x ) u  t 
in IRxf2, u = 0  on lRxOI2, is studied in the case when a > 0  and Q c R "  is 
bounded. Roughly speaking, if a>-amin>0, then solutions decay at least as fast 
as exp t(e - �89 amin) , with the possible exception of a finite dimensional set of smooth 
solutions whose existence is associated with a phenomenon of overdamping. If 
area x is sufficiently small, depending on 12, then no overdamping occurs. 

Let f2cIR" be a bounded open set lying on one side of its smooth boundary 
r We are interested in solutions of the dissipative wave equation 

(1) u , , = A u - a ( x ) u ,  on lRxI2, 

where A is the Laplacian and where the coefficient of friction a(x) is a smooth 
positive function on ~. On the boundary the Dirichlet boundary condition 

(2) u =0  on IR x ~f2 

is imposed. The methods used generalize immediately to a wide class of equations 
and boundary conditions. 

A feeling for the phenomena encountered can be obtained by considering the 
special case a =constant,  which can be solved by an eigenfunction expansion. 
Let ~s, J = l , 2 , ' " ,  be an orthonormal sequence of eigenfunctions of A with 
Dirichlet conditions. That is, A~ s =2j  ~/'s in f2, ~j =0  on ~O and 0 >~'1 >22 ~>-~'3 . . . .  

Then 

u = Y,  user) 
where us(t ) satisfies the damped spring equation 

(4) ii s + a i~ s - )l s u s = 0 

with u j(0), hi(O) determined by the Cauchy data of u. The general solution of (4) is 

(5) fl+ er+t+fl_ e r- ' ,  fl_+EO7 

- a  + 1 / ~  +42  s 
(6) r• - 2 
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Since 2j ~ - oo as j ~ oo we see that for j large Re r_+ = - a/2 and the correspond- 
ing terms in (3) decay like e -t"/2. The "slow modes" with Re r > - a / 2  occur 
when the spring equation (4) is overdamped. In summary, solutions consist of a 
finite dimensional part decaying exponentially, but slower than e -'"/2, and a 
part decaying like e -'"/2. Our goal is to prove similar results when a depends 
on x. To do this, an appropriate framework for discussing (1), (2) must be built. 

The energy of a solution u at time t is defined as 

E(t, u) = ~ (]ut(t, x)l 2 +lVu(t ,  x)l 2) dx. 
I2 

The basic energy identity for smooth solutions of (1), (2) is then 

d 
-dr E(t, u) = - 2  S a(x) Jut(t, x)l 2 dx <0. 

This relation would seem to indicate that if one increases a then the energy should 
decay more rapidly. It was pointed out in [5, pp. 365-367] however that this is 
not quite correct, since for large a the overdamped states actually decay slower. 
With the exception of this finite dimensional set of states, however, the idea is 
right. 

We introduce the natural Hilbert space of states, H=HI(g2)xL2(f2) with 
norm 

II(~, 0)112 = S (I v r  2 +1012) dx 
O 

and define the evolution operator S(t): H ~ H by 

S(t)(r ~)=(u(t), ut(t)), 

where u is the solution of the mixed problem (1), (2) with initial conditions 

(7) u(0) = r u,(0) = ~,. 

(If one wants to avoid weak solutions one may consider functions (r ~k)e C~~ 2, 
in which case the solution of(l), (2), (7) is smooth and S(t) has a unique continuous 
linear extension to all of H.) The family S(t), - oo < t < o% is a Co one-parameter 
group of linear transformations on H with IIS(t)ll < 1 for t>0.  The generator of 
this group is 

G=(0A 1 0 0)+(0 oo) 
D(G)--(H2(D ) n/?/1 (D)) x nl(~~).  

Notice that (0 i ) ,  wit h the same domain, is skewadjoint (see [4, w 

t at(  O)isabounde dissi ativeo eratoronHsot at  smaxima,o 
dissipative. 

We are interested in S(t) for t large. If D were a Riemannian manifold without 
boundary and A the Laplace-Beltrami operator, then the results of [7], see 
especially w give a precise formula for IlS(t)ll~e/:~ where La is the algebra of 
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bounded operators on H and cr ~ the ideal of compact operators. In particular, 
IIS(t)ll~e/~r depends monotonically on a, in the sense that increasing a decreases 
the norm of S(t). We have also the simple estimates 

(8) e- t  . . . .  /2 < II S(t)ll~/x < e - '  . . . .  /2, 

where 

(9) a r e a  x = max a, a m l  n = min a. 
12 f~ 

The proof in I-7] relies on a detailed construction using geometrical optics, not 
available in case O has a boundary because of the existence of glancing rays. We 
will give a direct and elementary proof of inequalities corresponding to (8) in the 
case of regions with boundary. The method is that of energy integrals with an 
indefinite energy form. 

Definition. Let  n 1 : H ~ H1 (12) be defined by ~1 (((~, ~r = q~" If h e H then u = 
rq(S(t) h) is called a f ini te energy solution of (1), (2). Notice that 

o 

The next result contains our basic estimate. 

Theorem 1. I f  u is a solution o f  (1), (2) with f ini te  energy, then 

(10) 

where 

and 2 is given by (11). 

E(t, u)< c 12 e -am.i * E(O, u)+c2 Ilu(t)ll ~2, 

c 2 = max (4, a~i,/2 2), 

C 2 ~amax amin - -~  

One consequence of (10) is that for solutions which decay slower than e - t  . . . .  /2 
the energy is dominated by (c 2 +e) times the L 2 norm, for large time. Thus the 
slowly decaying modes must be fairly smooth. 

Proof. First assume that ue C~ x f]). Let ~ =amin/2 and v =e~tu. Then 

ut = e - ~ t ( v t - ~ v )  

ut, = e - ~ t ( v , t -  2or v t -Jco~ 2 V) 

A v = e  ~' A u =e~'(u,t +au~). 

Substituting the expressions for ut, u ,  into the last equation yields 

v,, - A v +(~ z - a T )  v = - ( a  --amin) V, 

(notice that a - a m i n > 0  and a Z - a a < - a 2 < O ) .  Multiply this equation by ~t, 
integrate over f2, and form the real part. This shows that 

d 
d t  J ( t ) =  - 2  ~ (a--amir0 Iv,(t)l 2 dx  <0, 

O 
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where 

J ( t )  = ~(Ivt(t)l 2 + l Vv(t)l 2 +(ct2 -act)Iv(t)l 2) dx. 
O 

Notice that the decreasing functional J ( t )  is indefinite since ctz -ac t  <0. To make 
use of the decrease of J ,  observe that 

e 2r E(t, u)= ~(Ivt-ctvl 2 +1Vvl ~) d x  

< j'(2 ]vii 2 +2ct 2 Iv] 2 +l Vvl 2) dx  
12 

<2J( t )  +2ama x ct II v(t)ll ~2 -II Vv(t)ll ~2, 

where we have used the relation 2 ama x ct +2(ct 2 --act)>2ct 2. Let 2 be the smallest 
eigenvalue of - A  with Dirichlet boundary conditions, that is 

(11) 2 =  min IIVr 

Then the decrease of J and the inequality for E yield 

E(t, u) <2e  -:~t J (0)  +(ama x a m i  n --2)II u(t)ll ~.~. 
In addition, 

J(O) = j" (lut(O) +gu(O)l 2 + [ Vu(O)l 2 +(~2 -a~)lu(O)l 2) d x  
I2 

< E(0, u) + ~ (lu,(0)l 2 +(3 ct2 -act)lu(0)l 2) dx 
O 

ct2 

< max (2, ~-  E(0, u)), 

where we have used the estimate 3ct 2 -ac t  <ct2. Substituting the above estimate 
for J (0)  into the inequality for E(t, u) yields (10). 

If u is a solution with finite energy, say u =lh(S(t  ) h), we choose h, = ( r  0,)e 
(C~~ 2 with (r 0 , ) ~ h  in H, and let u , = n  1 S(t)h, .  Then Une C| x ~) and 
E(t, u,) ~ E(t, u) by virtue of the continuity of S. Applying inequality (10) to u, 
and passing to the limit n ~ oo proves the theorem. 

Theorem 1 has strong implications for the spectrum of S(t). On H, let I I be 
the continuous seminorm defined by 

I(~b, 0)12 = 5 IqsI 2 dx. 
fl 

This seminorm is compact in the following sense. 

Definition. If Y is a Banach space and p: Y-~IR is a continuous seminorm, 
then p is compact if every bounded sequence {y,} in Y has a subsequence {Y,k} 
such that p(y.k - y . , )  ---*0 as k, 1 ~ ~ .  

Notice that if {(~b,, 0,)} is bounded in H, then {~b.} is bounded in /4~(I2). 
Hence by Rellich's theorem there is a subsequence {q~,,} convergent in L2(s'2 ). 
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This proves the compactness of I I. As a second observation note that if A: Y-o Y 
is a continuous linear map and p: Y - o R  is a compact seminorm, then poA is a 
compact seminorm. For  any t>0 ,  let q: H - O R  be the seminorm defined by 
q(h)=lS(t)hl. The above remarks show that q is compact. The basic estimate 
(10) shows that 

(12) IIS(t)hllH <cl e - '  . . . .  /2 Ilhllu + l/~2 q(h). 

Though this is not as strong as the estimate [IS(0N <const  e - '  . . . .  /2 we will show 
that it is also not much weaker (see Theorem 4). 

First we study the spectrum a(S(t)) of S(t). Recall that an isolated point 2 of 
a(S) is an eigenvalue of finite multiplicity if [ z - S ]  -a has a pole at z=2 .  The 
(geometric) multiplicity of 2 as an eigenvalue is the rank of the projection 

(2n i)-l~(z-S) - 1  dz, 
r 

where F is a circle enclosing 2 but no other part of a(S). 

Theorem 2. Let D be the disc {zl lzL<cl e--'am'n/2}. Then a (S ( t ) )~ f f J \D  is a 
discrete subset of C \ D consisting only of eigenvalues of finite multiplicity. 

Theorem 2 follows by applying the next lemma, which is a standard Fredholm 
type result (proof omitted). 

Lemma. Suppose H is a Hilbert space, S: H -o H is a bounded linear trans- 
formation, and q a compact seminorm on H. I f  

IIShllu~CHhllH+C' q(h), he l l ,  

then a(S) n {Izl > c} consists of isolated eigenvalues with finite multiplicity. 

If G is the generator of the group S(t), then a(G) c {Re z <0}. The following 
more detailed result also holds. 

Theorem 3. We have a(G) ~ {Re z <0}. Moreover for any e >0 the set a(G) c~ 
{Re z>e+amiff2 } consists of a finite number of isolated eigenvalues of finite 
multiplicity. 

Proof. The second assertion follows from Theorem 2 and the basic spectral 
theory of semigroups, for example, Theorems 16.7.1 and 16.7.2 of [3]. It remains 
to show that there are no purely imaginary eigenvalues. If Gh =ilah w i t h / a ~ ,  
and h =(~b, ~9)~ H, then 

0 = R e ( G h ,  h ) = - 2 ~ a l ~ 1 2 d x .  
f~ 

Since a > 0  we see that ~9=0. The equation G h = i # h  implies ~O=i#q~. Hence if 
# 4:0 it follows that h = 0. If # = 0 we have G h = 0, so A ~b = a ~O. Now ~9 = 0, whence 
~beHl(Q ) and A q~ =0. Thus 4)=0 and again h =0. This completes the proof. 

Fix e >0  and let F be a smooth simple closed curve enclosing the eigenvalues 
of G with real parts greater than or equal to e-amin/2, but enclosing no other 
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part of a(G). Let P be the corresponding spectral projection, that is, 

P=I ~(z--G)-I dz. 
2hi  r 

By Theorem 3, P has finite rank. The general spectral theory of closed operators 
shows that the decomposition H = P H  O(I  - P )  H reduces G and S in the following 
sense: 

(i) S(t) maps PH and (I - P) H into themselves. 
(ii) PH c D(G), and the generator of the group S(t)len is GIpn. The generator 

of S(t)lu-e)n is GIo(G}~U-e)n. 
(iii) a(S(t)lrn)c {Izl _->e t( . . . .  in /2}} 

and 
a(S(t)lu_e)n)c{izl <d(r . . . . .  /z)} for some e 's[0,  e). 

From this we derive the following basic decay theorems. 

T h e o r e m  4. For e >0, let P be the spectral projection of G corresponding to the 
eigenvalues of G with real part >-ami~/2+e. 7hen H = P H G ( I - P )  H, PH is 
finite dimensional, both PH and ( I - P )  H are invariant under S(t), and there is an 
e' < e such that 

(14) IIS(t)l(i_e)nll <= C e '(r --amtn/2) t --_~0. 

Proof. All that needs to be proved is the decay estimate. Let S =S(1)lu_e)n. 
Then by (iii), a (S )c  {I z l < p} for some p < e . . . . .  /2 +~. The spectral radius formula 
now implies 

p = lim II~"llX/"--lim IIS(n)lu_e)i~[I 1/". 
n ~ 3  

It follows that 

II S(n)I(i- ~ ) , ,  II ~ const, e (r - amin/2) n 

for n =0, 1, 2 . . . . .  Since S is a contraction semigroup for t>0 ,  we have 

IIS(t)lu_e)~ll ~ IIS(l-t3)lu_P)~ll 5const .  e (r . . . . .  /2)tt] 

where [ ] is the greatest integer function. This inequality implies the desired 
estimate. 

The above theorem renders precise the heuristic description of decay de- 
scribed in the introduction. 

Corollary 5. I f  r = sup {Re z Iz ~ a(G)} and r > - a m i n / 2  , then there is an integer m 
and a real number c such that for all t >=O we have 

(15) IIS(t)ll ~c(1 +tm)e "t. 

Proof. Choose e > 0  so that e -  amin/2 < r, and then write H = P H O ( I - P ) H  as 
in Theorem4.  The estimate (14) suffices for the consideration of Sl(~_p)n. How- 
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ever, PH is finite d imensional  and tr(Glen)~ {Re z <r},  so for t > 0  

II S(t)l~.ll ~ const. (1 + t") ert 

with m +  1 < d i m  PH. 

Remark .  It is a simple mat te r  to derive decay est imates for the higher derivatives 
of u. For  example,  if hsD(G) and u =n~(S(t)h), then u, =7 h (S(t)Gh)is also a finite 
energy solution of (1), (2). Hence E(t, u~) decays exponential ly,  and in par t icular  
Ilu, ll,~= and line, IlL= decay like e -(~-~)'. F r o m  equat ion (1) it follows that  IIAuIIL2 
decays at the same rate. Thus  l[ u I[ ,2(~) = O(e-  ( ' -  ~)t), since A : H 2 (O) n if/1 (~e'~) 
L2(I2 ) is an i somorphism.  In the same way, i fheD(G k) then IID~.xUllL= = O ( e  -( ' -~) ' )  

for I f l l < k + l .  
The occurence of eigenvalues of  G with real par t  greater  than - ami , / 2  is 

connected with overdamping .  If ama x is sufficiently small, one might expect that  
these eigenvalues do not  occur  and that  IIS(t)ll = O ( e  t( . . . .  ,~/2)) as t ~ ~ for any 
e > 0 .  

Theorem 6. Let 2 be the smallest eigenvalue of - A with Dirichlet boundary condi- 
tions. I f  

ami,(2 am~ x -- amirO < 4 2  

then a(G) ~ {Re z < -amid/2}- 

Remark .  If a is cons tant  the above  inequali ty becomes  4 2 >  a 2. Since 2 =  - 2 ~  
in the notatx"on'of (6), this is precisely the condi t ion on a needed to rule out  over-  
damping .  

Proof.  Suppose  there is a value # ~vith R e #  > -amin/2 and an h s H \ {0} such 
that  Gh = i#h. If h = (q~, qJ) then u = eU'q5 satisfies (1), (2). We now apply  the me thod  
of p roof  used in T h e o r e m  1. Let ~ =  ami,/2 and v =  e~tu. Then  

e 2~' II 17nil ~= <E(t, v) 
__< J ( t )  + (~ amax --~2)II v(t)ll LZ~ 
< J ( 0 )  + (~ amax-- ~2) e 2 ~, II u(t)ll ~ .  

Since h :~0 and Gh =i#h, it follows that  ~b ~e0. Hence Ilu(t)llL2 =I=0. Then as t ~ 

II Vq~l122 II Vul[22 
-- =~amax- -~2  +O(1) .  

I1~11~ IlulL 2 

Lett ing t ~ ~ we have 
2_< II v4'11~2 

- IIq~rl~2 <~amax--~2' 

that  is, 4)~<=ami.(2amax--amin). 

Remark .  If one applies est imate (10) to the solution u, this gives the weaker  
est imate 22 < area x aml n. In part icular ,  when a is constant  this does not  give a sharp  
result. The reason is that  in (10) the need to est imate Ilu, ll~= introduces some leeway 
into the es t imate  for IZu. 
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Based on Theorem 6 and the case a =constant,  we make the following con- 
jecture: 

If 2~ is the Nth largest (counting multiplicity) eigenvalue of - d  with Dirichlet 
boundary conditions, and if area x2 <4~.N, then there are at most N eigenvalues 
(counting multiplicity) of G with real part larger than -amid/2. 

We have been concerned with upper bounds for S(t), and the theme has been 
that "essentially" II S(t)14 _-< const, e - t  . . . .  /2. There is a corresponding lower bound 
which, somewhat surprisingly, is true without qualification. 

Theorem 7. I f  u is a finite energy solution of  (1), (2), then there is a positive 
constant c such that 

E ( t , u ) > c e  . . . . .  tE(O,u) ' t>O.  

Proof. Let ~ =amax/2 and v =e~tu. Then for v we have the differential equation 

v t t - d v + ( ~  2 +a~)v  =(amax-a) v ~. 

Since amax-a =>0 the functional 

d(t) = S ([vt( t)12 + llTv(t)l 2 +((x2 +a~)lv(t)[2) d x  

is increasing in t. Notice also that 0~ 2 + a 0 ~ 0 ,  so the n o r m s  j1/2 and E(t, v) 1/2 are 
equivalent. Thus, for positive constants independent of t, u, v, we have 

e . . . . .  rE(t, u)> const. E(t, v) 

> const. J(t) > const. J(0) 

> const. E(0, v) > const. E(0, u). 

In terms of S this theorem asserts that 

i[S(t)hl ln>ce-t  . . . .  /2 IIhJln 

for all t > 0  and h ~ H .  Since S ( - t ) = S ( t )  -1 this shows that I[S(-t)ll <ce  '~ for 
all t _>_0. 

Corollary 8. a(G) c {z[ Re z > -amaJ2 } . 

Proof. For Re z <  -am J 2  we have 

0 
( G - z I )  - l =  ~ e - z tS ( t )d t ,  

- - o o  

an absolutely convergent integral central in the theory of semigroups (see [3]). 

Note. This work was partially supported by the National Science Foundation under Grant No. 
GP 34260. 
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