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On the Construction of Galois Extensions
of Function Fields and Number Fields

Kuang-yen Shih

This paper consists of two parts and an appendix. In Part 1, we
investigate Galois converings and consider the problem of reducing
their fields of definition. We restrict ourselves to PSL,(Z/p Z)-coverings
in Part 2. The results of Part 1 are applied to obtain Galois extensions
with PSL,(Z/pZ) as Galois group. We show that if p is an odd prime
such that 2, 3 or 7 is a quadratic non-residue modulo p, then PSL,(Z/pZ)
occurs as Galois groups over the rationals. To prove this, Shimura's
theory of canonical system of models is used to reduce the fields of
definition of certain Galois coverings. Previously, our result is only
known for p=3,5and 7.

In the appendix, we discuss the classification of Galois coverings,
which is necessary in verifying Weil’s criterion in certain cases. We also
indicate how to use the theory developed in Part { to show Hilbert’s
result that alternating groups can be realized as Galois groups over Q.

This paper is based on the author’s doctoral dissertation. He would
like to thank Professor Goro Shimura for several valuable suggestion
during the course of the research.

Notation. For an associative ring S with an identity element, we
denote by §™ the group of all invertible elements of S.

Part 1. Generalities

1. Definitions

Let G be a finite group. A G-covering A is a quadruple (W, ¥, 7, )
consisting of two projective non-singular algebraic curves W, V defined
over C, a surjective rational map n: W— V and an isomorphism ¢ of G
into Aut(W), the group of automorphisms of W, such that the function
field C(W) is a Galois extension of C(¥) and ¢(G) coincides with the
group of covering transformations of the covering n: W— V.

Let A=(W,V,n,¢) and A'=(W',V',n,¢") be two G-coverings.
A pair (@, P) is called an isomorphism of A to A’ if @ (resp. ¥) is a biregular
birational map of W onto W’ (resp. ¥ onto V') such that n'c@d=¥en
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and @' (g)c =@ p(g) for all g€ G. We say that A and A’ are isomorphic
if there is an isomorphism from 4 to A’

Let k be a subfield of C. A G-covering A=(W,V,n, @) is defined
over k if W, V, = and ¢(g) (g € G) are defined over k. Suppose A and A’
are two G-coverings defined over k, then an isomorphism (&, ) of A
to A’ is defined over k if @ is defined over k. It is easy to see that this implies
¥ is also defined over k.

Let A=(W,V,n, ¢) be a G-covering defined over k. For an isomor-
phism ¢ of k into C, define an isomorphism ¢° of G into Aut{W°) by
P* (@ =0(g), g G. Then (W°, V°, n° ¢°) is a G-covering defined over k.
We denote this covering by A°.

Let A be a G-covering and k a subfield of C. A model of A over kis a
G-covering defined over k which is isomorphic to 4.

2. Weil's Criterion

Theorem 1. Let G be a finite group and ko, k subfields of C such that
ko Ck. Let A=(W,V,n,¢) be a G-covering defined over k. For every
o € Aut(C/k,), let (®,, V) be an isomorphism of A to A° defined over kk°.
Then the following (A) and (B) are equivalent :

(A) There exist a G-covering A, defined over ky, and an isomorphism
(@, W) of Ay to A defined over k such that ° - @~ = &, (therefore ¥* o P~ 1
=¥ for all o € Aut(C/k,).

(B) @ oD, =@, (therefore Vo ¥, ="P,) for all o, 1€ Aut(C/k,).

Proof. That (A) implies (B) is trivial. Assume (B). By Weil’s criterion
[12} there are two curves W, ¥, defined over k, and two biregular
birational maps @ : Wy~ W, ¥ : ¥, - V defined over k such that ¢°- ¢!
=@, PP =¥ for all oceAut(C/k,). Define ny: Wy—V, by n,
=¥ logod and @q:G—Aut(Wy) by @o(g) =~ 'op(g)-® for geG. Then
Ay =W, Vp, o, @) is @ G-covering defined over k,, and (P, ¥) is an
isomorphism of A, to A defined over k.

Corollary 2. Let G be a finite group and kg, k two subfields of C such
that kyCk. Let A=(W,V,n, @) be a G-covering defined over k. Then A
has a model over k, which is isomorphic to A over k if and only if for every
g€ Aut{C/k,), there is a biregular birational map ®,: W— W’ defined
over kk® such that

(@) Do, =D, for all 6,1 e Aut(C/ky)
and

(b) gy o P,=D,°@(g) for all o € Aut(C/k,) and g G.

Proof. That A has a model over k, implies the existence of @,’s is
trivial. Conversely, assume for every o € Aut{C/k,) there is a biregular
birational map @, : W-» W7 defined over kk” satisfying (a) and (b). By (b},
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there is a biregular birational map ¥, : ¥V — V° defined over kk° such that
(®D,, ¥,) is an isomorphism of A to A°. Hence by Theorem 1, condition (a)
implies the existence of a model of A over k, which is isomorphic to A
over k.

Recall that a finite group G is said to be complete if the center of G
is 1 and every automorphism of G is an inner automorphism [1{].

Theorem 3. Let A=(W, V, n, @) be a G-covering and k a subfield of C.
Suppose

(1) For all o € Aut(C/k), there is a biregular birational map from W
onto W°;

(2) The group Aut{W) is a complete finite group.
Then A has a model over k.

Proof. Let K>k be a subfield of C over which A and all elements
of Aut(W) are defined. For o € Aut(C/k), let F, be a biregular birational
map from W to W° Consider the automorphism of Aut(W) defined by
ai->F, Yoo F,. By (2) there is a unique y in Aut(W) such that F, 1ea’< F,
=yoaoy ! for all « in Aut(W). Set &, =F,-y. Then &, is a biregular
birational map from W onto W such that

D lea’o P, =a 2.1)
for all o € Aut(C/k} and « € Aut(W).

Note that ¢, is defined over KK° for o€ Aut(C/k). In fact, for
re Aut(C/KK°) and axeAut(W) we have (&%) 'oa’c ®. =a by (2.1).
It follows that &;* - @ is in the center of Aut(W). Hence @ = @,. This
being true for all 1€ Aut(C/K K?), @, is defined over KK”.

Suppose o, v € Aut(C/k). By (2.1) we have

(@71 (@) o @y o (P71 (D)0 @, ) =a

for all & € Aut(W). Therefore @; - ¢, = &@,,. Hence A has a model over k
by Corollary 2.

Remark. We can replace (1) and (2) of Theorem 3 by a somewhat
weaker condition, namely, Aut(W) has trivial center and for all
g€ Aut{C/k), there is a biregular birational map @, from W to W°
satisfying (2.1).

3. A Necessary Condition

Let A={W, ¥V, n, ¢) be a G-covering. For P € W, let G, be the isotropy
subgroup {geG:¢(g)(P)=P} and o5 CC(W) the valuation ring at
the point . Choose a local uniformizing parameter ¢ € og at . Then
for g € Gy, to ¢(g) is also a uniformizing parameter at *B. Therefore we

have
tep(g)={-t (modt’oy),
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where { is a root of unity independent of the choice of the parameter t.
Denote { by {4(g). Assigning {4(g) to g€ Gy, we get a map (g from Gg
into the circle group. It is easy to see that {y is an injective group homo-
morphism.,

Let eq denote the ramification index at 0. From the above discussion,
we know that Gy is a cyclic group of order eg. For p € V, define ¢, to be
ey for any P en~!(p). This is well-defined because n: W— V is a Galois
covering.

Let Cnexp(an/j/e,,). Denote by gq the unique g € Gy such that
{e(9)=C_. Then we have:

If n(P) = n(P'), then gy and gg are conjugate in G . (3.1)

Let p € V. From (3.1) we know that the set {gy: 7(*B) = p} is a conju-
gacy class in G. Denote this conjugacy class by C,. Let G, = {1}, G, ..., C
be the conjugacy classes of G. We call p a point of type C; if C,=C,.
Obviously, p is unramified in W if and only if p is of type C,. For i:
1 £i<s, the number of points of type C; on ¥ is finite. We denote this
number by y;(A).

We call two points p and p’ on V equivalent if there is an automor-
phism (@, ¥) of A such that p’ = ¥(p).

Propositiond. Let A=(W,V,n,p) and A'=(W',V',7,¢") be two
G-coverings and (®, V) an isomorphism of A to A'. Then C,=Cyy, for
all p e V. Especially, equivalent points on V are of the same type.

For i:0<i<s, let ¢ be the order of any element of C; and
{i= exp(Zn]/- —1/e;). Let k be a subfield of C. Define

Zk; CY={meZ: (7 is conjugate to {; over k} .

Let g be any element of C,. Call m;,m, € Z(k; C)) equivalent if g™ and
g™ are conjugate in G. It is easy to see that this definition is independent
of the choice of ge C;. The relation thus defined is an equivalence
relation on Z(k; C). Denote the number of equivalence classes of this
relation by z(k; C). Obviously, z(k; C) S [k(():k].

Let A=(W, V,n, ¢) be a G-covering defined over k, P a point on W
and p = n(P). For an automorphism o of C over k, P*e W, p*e V and
p*==n(P). Since W is defined over k, o« can be extended to an auto-
morphism of C(W), which is denoted by the same letter «. We have
(vgf = oge. Fix a local uniformizing parameter ¢ at P. Let
{ =exp(2n V:T/eg) and m(a) an integer satisfying

==, (3.2)

Then we have
@3 = (mod (*) ogs).
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Therefore gg. = g ®. Hence we have the following

Proposition 5. Let A=(W,V,n, @) be a G-covering defined over a
subfield k of C and p a point on V. Set { =exp(2n]/—1/e,). For
o € Aut(C/k), let m(a) be an integer satisfying (3.2). Then for o, f € Aut(C/k),
p® and p? are of the same type if and only if m(a) and m() are equivalent
inZ(k; C,).

Corollary 6. Let A= (W, V, =, ¢) be a G-covering and k a subfield of C.
Suppose V is defined over k. If V has a rational point p over k such that
z(k; C,)> 1, then A is not defined over k.

Define z,(k; p) to be the cardinality of the set
{i:0=5i<s,p"is of type C, for some a € Aut(C/k)}.
By Proposition 5, we have

Proposition 7. Let A=(W,V,n, ¢) be a G-covering defined over a
subfield k of C. Then z{k; C,)=zotk; p) for all pe V.

Let A=(W,V,n, ¢) be a G-covering and ¢ a positive integer. Denote
by z(e; A) the cardinality of the set

{i:0Z5iZs,e,=¢ and p(A4)>0}.

Suppose 4 has a model A= (W, V;, 7o, o) over k. Let (®, ¥) be an
isomorphism to 4 to Ay. For peV and p'=¥(p) we have ¢, =e,,
C, = C, (see Proposition 4). Therefore z(e,; Ao) = z(e,; A) and z(k; C,)
= z(k; C,). By Proposition 7, z(k; C,.) =z, (k; p') S z(e,; 4o)- Hence we
have z(k; C)) £ z(e,; A).

Theorem 8. Let A= (W, V,n, @) be a G-covering and k a subfield of C.
If there is a point p on V for which z{e,; A) < z(k; C,), then A has no model
over k.

When z(e,; A)=1, we can actually determine an algebraic number

field which is contained in every field of definition of any model of A.
To do this, for i: 1 £i<s define

Ii))={meZ(Q;C):1Sm<e~1 and g" is conjugate to g}

and

L=y " (3.3)

me I(i)
where {=exp(2n}/ —1/e). Then ek if z(k; C)=1. In fact, suppose
o € Gal(k({)/k). Then {°={ for some j in Z(k; C). Since z(k; C) =1,
¢’ is conjugate to g. Hence me I(i) if and only if g™ is conjugate to g.

Therefore )
= ¥ (mi=g.

meI(i)
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Proposition 9. Let A be a G-covering. Suppose A has a model over k
and z{e;; A)y=1. Then k contains the algebraic integer £; defined by (3.3).

Proof. By Theorem 8, z(k; C,) = 1. Therefore by the above argument,
¢, belongs to k.

4. Eichler-Selberg’s Trace Formula

Let A= (W, V,n,¢) be a G-covering. Then G acts naturally on the
space of holomorphic differential forms of the first kind on W, Denote
this representation of G by g. Then we have the trace formula

@) =1+ 3 wS;;, if ceCi+0), @.1)
i=1

where p;=pu,(4) and S;;s are algebraic numbers associated with G
defined as follows.

Let o € C;. Suppose there is g € C; such that ¢ is a power of g. Let H
be the subgroup generated by g. Denote the set of all cosets x H such that
x 'oxeH by M. For xHe M, x 'ox=g" for a unique integer m
mode;. Obviously, m mode; depends only on the coset x H, not on the
choice of the representative x. We denote m by m(xH). Let

{ = exp(2n}/~1/e)). Define
m{X)
S@g.0)= Y 7—%@;@-}— (4.2)

XeM

It is easy to see that if o is also a power of g’ € C;, then S(g, 6) = S(¢’, 0).
Therefore, we can define S;(¢) to be S(g,0) for any g e C,; such that o
is a power of g. If there is no g in C; such that o is a power of g, define
S:(¢)=0. Observe that S;(s) depends only on C;, the conjugacy class
to which ¢ belongs. We define §;;= S;(¢) for any o€ C;.

Let %o, %15 .--5 % be the characters of G, where y, denotes the trivial
character. Set y;;= y;(c) for any ce€C;. Let A=(W,V,n,¢) be a G-
covering and ¢ the representation of G in the space of holomorphic
differential forms on W. Denote the multiplicity of y; in ¢ by 4, and the
number of points of type C; on V by y;. Then from (4.1) we have

lzo Ayy=1+ Y wSy, Jj=1,...s. 4.3)
= i=1

These formulas relate the numbers of points of different types to the
multiplicities of irreducible representations of G in g.
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5. Galois Coverings Constructed from Fuchsian Groups

Let I'CSL,(R) be a Fuchsian group of the first kind [10, p. 19].
Denote by H* the union of the upper half plane $ and the cusps of I
Then I'\H* has the structure of a compact Riemann surface. Hence there
exist a projective non-singular algebraic curve V and a I-invariant
holomorphic map ¢ from $* onto V which gives a biregular birational
map from NMH* onto V. We call (V] ¢) a model of I'\* [10,p. 152].

Let 4 be a normal subgroup of finite index of the Fuchsian group I.
Let (Vr, @p) [resp. (V4, @4)] be a model of I'\H* (resp. 4\H*). Then there
is a rational map J: V,;— V. such that Jo ¢, =¢. Denote the images
of I, A in SL,(R)/{+1} by I', 4, respectively. Then I'/4 acts on A\H*
faithfully. Via @, let this action be given by an isomorphism ¢ of I'/4
into Aut(V,). Then (V,, V., J,¢) is a (I'/4)-covering. By Shimura’s
theory, this covering has a model over an abelian extension of a totally
real number field if I' and A are “arithmetically defined”. (See [10,
Chapter 9], generalizations of this theory have been treated by Shimura
and Miyake.)

Part 2. PSL,(Z[pZ)-Coverings and the Realisation
of PSL,(Z/pZ) as Galois Groups

From Shimura’s result [9], one derives easily that PSL,(Z/pZ) can
be realized as Galois groups over the cyclotomic field Q (exp(2x)/ — 1/p)).
A closer examination shows that this in fact gives us extensions over the
quadratic number field Q()/sp), where &=(—1)*~V'2. Unfortunately,
this can’t be used to produce such extensions over the rationals, as we
shall see in §2. However, Shimura’s recent result on the canonical
system of models provides the necessary tool to construct Galois ex-
tensions over the rationals with Galois groups isomorphic to PSL,(Z/pZ)
for certain prime numbers p (Theorem 12).

1. Generdlities on PS L,(Z/p Z)-Coverings
Let p be an odd prime. Set

11 { n
0 1}’ Qz[o 1}’

where n is a quadratic non-residue modulo p. Then P and Q represent
two different conjugacy classes of PSL,(Z/pZ). In the following, we
use C, (resp. C,) to denote the conjugacy class to which P (resp. Q)
belongs. It is well-known that every element of order p belongs to either P

or Q. Therefore
2(Q; C)=2(Q; Cy)=2. (.1

P=
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(For notation, see Part 1, § 3.) By Proposition 4 and Theorem 8 of Part 1,
we have

Proposition 1. Let A=(W,V,n, p) be a PS L,(Z/pZ)-covering. Con-
sider the points p on V such that e, = p. Suppose all these p’s are equivalent,
then A has no model over Q. In fact, every field of definition of a model
of A contains |/ ep, where ¢ =(—1)? "D/,

The last statement follows from Proposition 9, Part 1, and the identity

Y - :i‘;—@ { = exp(2n)/=1/p).
-1

Let y,, %, be the characters of PSL,(Z/pZ) for which

nP)= 1@ = 2V

w®-n@= =Y.

Here and throughout the rest of the paper ¢ will denote (_71)
=(—1)*~12 By Eichler-Selberg’s trace formula we can prove the
following generalization of Hecke’s result [3, 4].

Proposition 2. Let A = (W, V, n, ¢) be a PS L,(Z/p Z)-covering. Denote
the multiplicity of x,(i =1,2) in the representation ¢ of PSL,(Z/pZ) in
the space of holomorphic differential forms on W by 2, and the number
of points of type C,on V by u;. Then

Ai=4, if p=i(mod4),
A=Ay =hlp—p;) if p=3(mod4d),
where h is the class number of Q(}/ — p).

Remark. Suppose p=3{mod4) and yu, +u,. Then i, +1, by the
above Proposition. Hence tr (¢{P)) is not rational in this case. Therefore A
can not have a model over Q.

To prove Proposition 2, first observe that
n
S(P,P)= — 1+ (=] -
e.n=3 L[+ (7)) 2o
p—1 7 ( n) 1
B + e § e
4 ngl p 11— C"
where { = exp(2n}/ —1/p). [For the definition of S(P, P), see Part 1,§4.]

(1.1)
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Lemma 3. We have
Lt ] L if p=1(mod4)
2 (?) —=r {V——p-k if p=3(modd),
where h is the class number of Q(]/:_iz).
Proof. If p=1(mod4), then the assertion follows from the fact that

(_'_l) = (:l;n—) Suppose p = 3(mod4). Then

P
el n\ 1 R
ngl (?) 1_Cn =;n=1(p),/gln(i”c}
1 p—1 n p—1
- k ~n{k+1)
P n=1< ) Z C
_l_ L . ~nk
- p kg h Z ( )C
—-L f 'y (Yo
- D k=2 a=t \ P
122} k
= - — k—Dl—V~
o L Ge=0{—V=p
1 Ll " ol (k
T e —— — s k— e
p ﬁ[k:2(1’> k;2(p)}
A
=) -p-h qed

By (1.1) and the above Lemma we have
S1(P)=$,(Q)=S(P, P)

- f-’-}i if p=1(modd)

= (1.2)

____._+_..1/* h if p=3(mod4)

$:(P)=8,(Q)=S(2. P)

_ ﬁ; if p=1(modd)
_ (1.3)

,.P__.‘* __”]/ ‘b if p=3(modd).
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Proof of Proposition 2. By the trace formula (4.3), Part 1, we have
A ( (P) = 11 (@) + A2 (12 (P) — £2(Q))
= ity (S, (P) — 8, (Q)) + (52 (P) - 5,(Q)) -

VL
2

12(P)=x,(Q) = -1-“—-}-[’3». Hence by (1.2), (1.3) and (1.4), 4, = 4,.

—14]/—p
2

(1.4)

Suppose p=1(mod4), then ¢=1. So y(P)=x,(Q)=

Suppose p=3(mod4), then e = —1. So x,(P)=y,(Q) =

and 15 (P)=7,(0) = :-3*"12—-—— V=P Hence by (1.2), (1.3) and (1.4) we have
A=Ay =h{gy — p).

2. PSL,{(Z/pZ)-Coverings Associated with Subgroups of SL,(Z)

Let 4 be a subgroup of SL,(Z) of finite index such that 4. I(p)

=8 L,(Z), where
a b

I'(p)=

o=-{¢
Denote 4nI'(p) by 4. Then A/4" is isomorphic to PSL,(Z/pZ). There-
fore by § 5, Part 1, we can construct a PS L,(Z/p Z)-covering from 4, 4’
in a natural way. We call this convering the PSL,(Z/pZ)-covering
associated with A. Note that ramifications occur only at the cusps and the

elliptic points of 4°. The ramification index at a cusp is p and the ramifica-
tion index at an elliptic point is 2 or 3.

Proposition4. Let 4 be a normal subgroup of SL,(Z) of finite
index such that A-T(p)=8L,(Z). Then the PSL,(Z/pZ)-covering
A= (W, V,n, ) associated with A can not have a model over Q. In fact,
every field of definition of a model of A contains 1/5

Proof. By Proposition 1, it suffices to prove that the points on V
corresponding to the cusps of 4 are equivalent. Since 4 and I'(p) are
normal in SL,(Z), I(p)/d is contained in the centralizer of
o(PSL,(Z/pZ)) in Aut(W). It follows that I'(p)/Z can be identified
with a subgroup of the group of automorphisms of A. Being
canonically isomorphic to ST,(Z)/4, I'(p)/4 permutes the cusps of 4
transitively. Therefore the points on V corresponding to the cusps of 4
are equivalent.

Especially the covering A associated with SL,(Z) has no model
over Q. We show that it does have a model over Q(}/ep). To prove this

GSLz(Z):aEdE1,b-=“c50(m0dp)}.
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we need the following Theorem of Shimura [9]: Let j be the classical
modular function and { =exp(2n}/ —1/p).

Theorem 5. There is a field F with the following properties:

(1) F is a Galois extension of Q()).

(2) C-F is the field of modular functions of level p.

(3) There is a homomorphism 1 from GL,(Z/pZ) onto Gal(F/Q(}))
whose kernel is {+1}.

4 (eF,and {*P =P for all Be GL,(Z/pZ).

(5) Q(0) is algebraically closed in F.

From this Theorem, we see that the extension F/k(j), where k= Q({),
gives us a model of A over k. To construct a model over k' = Q(l/z;), let

H={“

0
0 a} €GL,(Z/pZ):ac (Z/pZ)x}

and
H=H-SL,(Z/pZ)

- {x € GL,(Z/p2): ( de;(X)) B 1} '

Then H’'/H is isomorphic to PSL,(Z/pZ).

Let L and L be the subfields of F corresponding to the subgroups
H/{+1} and H'/{+1}, respectively. Then Gal(L/L) is isomorphic to
PSL,(Z/pZ). 1t is easy to see that L' =k'(j), Kk =Lnkand C-L=C-F
is the field of modular functions of level p. Hence the extension L/L
gives us a model of A over k.

Such a model over k' can also be obtained by using Shimura’s theory
of canonical system of models. We omit the construction here, because
it is similar to the one we are going to give in the following section.

Since I = k'(j) is transcendental over k', by Hilbert’s irreducibility
Theorem, we have

Theorem 6. Let p be an odd prime number. Then there exist Galois
extensions of Q(/ep) with Galois groups isomorphic to PSL,(Z/pZ).

3. The PS L,(Z/pZ)-Covering Associated with I',(N)

Let N be an integer relatively prime to p. Denote by A(p; N) the
PS L,(Z/pZ)-covering associated with I',(N).

Proposition 7. The PSL,(Z/pZ)-covering A(p; N) has a model over
Q(/=p).

We prove this by Shimura’s theory of canonical system of models.
For notation see [10,§9.2].
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Proof. Let {V;, o5, Jrs(x)} be a system associated with the matrix
algebra M,(Q) over Q satisfying the conditions of [10, Theorem 9.6].
For every finite prime [ of Q, let

b

u={ 4

, _fla b
U"‘{{c d

Set
U= {x ={x) € H GL,(Z)x GLL(R) : x, e U, for all finite l}, 3.1)
i

€GL,(Z):a=d,b=c=0(modpZ),c= O(modNZI)},

€ GL,(Z): ¢ = 0(mod NZ,)} .

U= {x = (x) e [] GL,(Z)x GLL(R) : x,€ U; for all finite l} , (3.2
1

S=0Q*-U, (33)
T=0"-U. (34
Then S, Te &, § is normal in T and
I[5=8nGy+ =Q" (Lo(N)N T (p),
I'y=TNGy+ = Q% - I(N),
ks =Q(/ep),
kr=0Q.
Identify I;/I with PSL,(Z/pZ). For gePSL,(Z/pZ) define
@o(g) = Jss(x) for any x € I'; which is mapped to g under the canonical
homomorphism. Then by [10, Theorem 9.6}, Ay = (¥, V¢, Jrs(1), @) isa

model of A(p; N) over ks=Q(}/¢p).
We call the above A the basic model of A(p; N) over Q(Vgg;).

Theorem 8. If (%) = —1, then A(p; N) has a model over Q.

Proof. Let the notation be as in the proof of the above Proposition.
For a prime divisor [ of Q, let

[(1) (1)] if YN or I=0w
= 3.5

=
0 t/ .
[__1 ON] if 1IN,
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Set y =(y,)€ G4+ . Then we have:

The restriction of o(y) to Q(]/a_p) generates Gal(Q (]/a;)/Q)), (3.6)
x“ 'y lxyeS forall xeT, 3.7
y2eS. (3.8)

The statement (3.7) can be checked easily by direct computation.
To prove (3.6), note that N -det(y)e[]Z] xR} and N -det(y,)=N.
H

Hence (3.6) follows from the assumption (—lg—) = —1.Since (—N)-y2e U

[see (3.1)], y* € S by definition (3.3).

Let Ay =(Vs, Vy, Jrs(1), @) be the basic model of A(p; N) over
Q(]/;I;) and o the generator of Gal(Q(]/Q)/Q). Then (3.6) and (3.7)
imply that (Jsg(y), Jyr(y) is an isomorphism of A, to A3. By (3.8) and
[10, Theorem 9.61, Js5(7)° - Jss(y) = Jgs(p?)=id. Hence A, has a model
over Q by Theorem 1, Part 1.

Remark. The basic model A, itself is not defined over Q. In fact,
the curve V; is defined over Q and the function field Q (V) is isomorphic
to Q(j(z),j(Nz)), where j is the classical modular function (cf.[10,
p. 156]). Therefore p = ¢ (o) is a rational point over Q. Now z(Q; C,)
=z(Q; C,)=2 [see (1.1)]. Hence A, is not defined over @ by Corollary 6,
Part 1.

4. The Rational Points over Q

Let the notation be as in § 3. Recall especially that we use ¢ to denote
the generator of Gal(Q(}/ep)/Q). From the proof of Theorem 8, we see
that there exist a PSL,(Z/pZ)-covering A= (W, V,r, ¢) defined over Q
and an isomorphism (&, ¥) of A to A, rational over Q([/‘;) such that
Jos() =% bt and Jrp(y)=Po ¥ ! (cf. Theoremi, Part1). Our
task in this section is to determine whether ¥V = V(p; N) has a rational
point over Q.

Lemma 9. The curve V has a rational point over Q if and only if there
is a point zo€$H* such that @r(zo)€ V¢ is rational over Q()/ep) and

¢1(z0)” = @r(—1/N zy).

Proof. First observe that Jr1(y)(¢r(2))=@r(—1/N2) for all ze H*.

0 N
L =
et o [_1 0

by [10, Theorem 9.6] we have
JrrW (@r(2) = Jrr( @) (@r(2) = ¢r(a(2) = or(—1/N2).

and x=a0y *. Then o€ Gp+ and x € T. Therefore
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Now suppose p is a point on ¥ rational over Q. Then for any auto-
morphism 7 of C such that r=a on Q(]/s;) we have

P(p)y = V() =¥ (p) = Jrr (N (T ).

This shows that q= ¥ (p) € V7 is rational over Q(ﬁ) and q7 = Jy(y) (9).
Let z, be a point ont $* such that ¢, (z;)=gq. Then

01 (zo) = Jrr(M(0r(20) = @r(—1/Nz,).

Conversely, suppose there is z,€ $* such that p,(z,) is rational
over Q(}/@) and @1(z5)’ =@r{—~1/Nzy). Let a=¢5(z,). Then q is
rational over @(}/¢p) and q° = Jr {7} (q). From this it is easy to see that
p= ¥ 1(q) is rational over Q.

Now we restrict ourselves to the case where V is of genus zero, ie.
when N is one of

2,3,5,6,7,8,10,12,13, 18. 4.1)

The squares 1, 4, 9, 16 and 25 are not included because we require
N
=) =1,

4
As noted in the Remark at the end of § 3, V; has a rational point

over Q. Let X be a Q-rational function on V, which generates the function
field Q(Vy). Then f= X - ¢, generates the field Q(j(z), j(Nz). Con-
versely, any generator of Q(j(z), j(Nz)} is obtained in this way. From
Lemma 9, we derive easily the following.

Proposition 10. Suppose V is of genus zero. Then V has a rational
point over Q if and only if there is a point z, in H* such that f(z,) € Q(]/EI;)
and f(zo)° = f(—1/Nzy) for any generator f of the field Q(j(2), j(N z)).

Now for each N in the list {4.1), there is a I (N)-automorphic function
fv which generates Q(j(z), j(N z)) and satisfies

W@ fu(~1ND)=cy forall ze$H*, (42)
where ¢y is a constant specified in the following table:

N 23 5 6 7 8 10 12 13 18
ey 11 125 18 49 8 5 12 13 6

These fy, cy were given by Klein for prime N [7], and by Gierster for
composite N [2]. When N is prime, the function f), is defined explicitly as

fN(z) = hlf ‘2%'(“,%’

4.3)
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where 4(z) is the cusp form of weight 12 with the expression

46 =q ﬁ U—qP*  (q=expQn]/—12).

Proposition 11. Let N be one of the integers in the list (4.1). Then
V(p; N) has a rational point over Q if and only if cy is the norm of some

element of Q (]/5).

Proof. By Proposition 10, ¥ = V(p; N) has a rational point over Q
if and only if there is a z; € * such that fy(z,) e Q(/ep) and fy(z,)
= fu(—1/Nz,). Assume such a point z, exists. Then

e = fulzo) - S (—1/N 20) = fu(20) - fu(20)” = N1(fy(20)),

where Nr denotes the norm from Q(]/zg) to Q.
Conversely, suppose cy = Nr(a) for some aeQ(]/@). Let z, be a
point on $H* such that fy(zy) = a. Then

fv(@o)- fulzo) =a-a” = Nr(a) = c, = fy(z0) - fy(—1/N zo).

Hence fy(zo)" = fy(—1/N zo). .
By the above Proposition and an easy computation of the Hilbert

symbol, we obtain the following table:

N 2 3 5 6 7 8 10 12 13 18
2 5 4.4)
Vip;N) + + — |[=|l=1 + — [=]=1 —
30 (») (%)
where “+ " stands for “V'(p; N) has a rational point over Q", “—" stands

m
for “V(p; N) has no rational point over Q”, and “(7) =1" means

“V(p; N) has a rational point over Q if and only if (%) =1"

5. Realization of PS L,(Z/pZ) as Galois Groups

Theorem 12. Let p be an odd prime such that 2, 3 or 7 is a quadratic
non-residue modulo p. Then the group PSL,(Z/pZ) can be realized as the
Galois group of some Galois extension over Q.

N
Proof. Let N be one of 2, 3 and 7 such that (—;) = —1. Then A(p; N)

has a model A =(W,V,r, @) over Q such that V has a rational point
over Q [cf Theorem 8 and Table (4.4)]. Therefore the function field
Q(V) is pure transcendental over Q and the covering A gives a Galois
extension of Q(V) with Galois group isomorphic to PSL,(Z/pZ).
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By Hilbert’s irreducibility Theorem [6], this is sufficient to prove our
assertion.

6. Remarks
(A) We have the following partial converse to Theorem 8: If N is a
prime and (—Ipl) =1, then A(p; N) has no model over Q.

Proof. Suppose A(p; Ny=(W, V,n, ¢). By assumption, there is an
integer A such that N - 4% =1(modp). By the approximation theorem,

b
elg(N)suchthata=d=0,b=A,¢c- A= —1(modp). Let

y

a b 0 t W

a—[c d] [—-[/ﬁ 0 eSL,(R).

Now N is prime, so I'y(N) has exactly two cusps. Let p,, p, be the points
on V corresponding to these two cusps. It is easy to see that afo™ ' !
eFy(NYN I (p) for all fel,(N). Therefore « induces an automorphism
(P, ¥) of A(p; N) such that ¥ (p,)=p,. By Proposition 1, A{p; N) has no
model over Q.

(B) It is not necessarily true that A(p; N) has no model over Q if

. la
there is {
c

(-1;—]«) = {. For example, using Lehner and Newman’s result [8, Theo-

rem {], one can prove the following assertion: Suppose N is square free.
Then A(p; N) has a model over Q if and only if there is a divisor d of N

such that % = —1,
If N is not square free, then the resuit will not always hold. For
example, take N =25 and p = 3(mod4) such that % = —1, As in (A),

there is an x e S L, (R) which normalizes I'4(25) and I'y(25)~I (p), and
afBa Bt e [L(25)nI"(p) for all Bel,(25). Therefore « induces an
automorphism of A{p; N) of order 2. Now I,(25) has exactly 6 cusps.
The map o sorts these cusps into three groups, each contains 2 equivalent
points. Therefore the number of points of type C, is 0, 2, 4 or 6. In each
case u, % u,. So by the Remark after Proposition 2, A(p; 25) has no model
over Q.

(C) Using Theorem 3 of Part 1, we can prove Theorem 8 for the

case N=2 without arithmetic theory of modular functions. Let
A= A(p; 2)=(W, V, x, ¢). Then we have:

Ifw,V',n',¢)isa PS Ly(Z/pZ)-covering of type (2, p, p) (see ©.1)
Appendix, § 1), then W and W' are conformally equivalent; )
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Suppose p=5. Then Aut(W) is isomorphic to PGL,(Z/pZ)
if (%) — —1, to PSL,(Z/pZ)x Z, if (%) ~1. Here Z,isa (6.2)

cyclic group of order 2.

To prove Theorem 8 for N =2, let ¢ be any automorphism of C.
Then A° is of type (2, p, p). Hence by (6.1), W and W* are conformally

equivalent. By (6.2), Aut{W) is complete if (£> = —1. Hence A has a
model over Q by Theorem 3, Part 1. P

The proofs of (6.1) and (6.2) are modeled on Hecke’s proof [5] of the
following result: Let (W, V, &, @) be the PS L,(Z/p Z)-covering associated
with S L,(Z). Then we have:

If W.,V'.,7,¢) is a PSL,(Z/pZ)-covering of type (2,3, p),
then W and W' are conformally equivalent;

Suppose p=7. Then Aut(W) is isomorphic to PSL,(Z/pZ). (6.4)

6.3)

By Proposition 2 of the appendix, (6.1) is a consequence of the fol-
lowing statement:
Any two admissible systems of generators of PSL,(Z/pZ)
) AR (6.5)
with respect to (2, p, p|0) are quasi-equivalent.

The proof of (6.5) is similar to that of [5, Hilfssatz].
As for the proof of (6.2), note that p = 5 implies that W is of genus = 2,

hence Aut(W) is finite. Also observe that [__(2) (1)] induces an auto-

morphism of W not contained in ¢(PS L,(Z/pZ)). Let ¥, be the quotient
space W/Aut(W), and n,: W— ¥, the natural map. Using the method
Hecke employed in [ 5], one proves that the Galois covering ny: WV,
is of type (2,4,p) and @(PSL,(Z/p2)) is of index 2 in Aut(W). To
determine the group structure of Aut(W), we prove that the centralizer

of o(PSL,(Z/pZ))in Aut{W) is trivial if and only if (—?;) = —{,

That —;’—2 = —1 is necessary is essentially proved in (A). Conversely,

suppose @(PS L,(Z/pZ)) has a nontrivial centralizer {y,id.} in Aut(W).
bl 0 1] . b

Then y is induced by a matrix o = [z } { }, with | }e I,(2).

dl{-2 0 c d
For this o, we have

aBatf e oQ)nI(p) forall Bely(2). (6.6)

Take g = [1 1}, {1 0 in (6.6). Then we have 2 = c*(modp).

0 112 1
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(D) Condition (2 of Theorem 3, Part 1, is essential. We know that
the PS L,(Z/pZ)-covering associated with S L,(Z) has no model over Q
{§ 2). For this covering, condition (1) of the Theorem is true by (6.3),
while condition (2) is false by virtue of (6.4). In view of (A), (6.1) and (6.2},

Alp; 2) with (—EZJ—) = { would give some other such examples.

Appendix
1. Classification of Galois Coverings

Let G be a finite group, g a non-negative integer and n,,n,,...,#n,
integers = 2. An ordered system of generators (a;, By, ..., 9, B, 71, .-, 7))
of G is called admissible with respect to (ny,n,,...,n.| g} if

alﬂla;lﬁrl"‘agﬁga;.lﬁ;ll)'1"'yr=1 (11)

the order of v, is n;. (1.2)

and

Two admissible systems of generators («;, f;, 7,) and (x, B}, y;) are
called equivalent (resp. quasi-equivalent) if there is an inner automor-
phism (resp. automorphism) of G sending «; to af, §; to B, and y, to ;.

Fix a non-singular projective algebraic curve ¥ of genus g defined
over Candrpointsp,, p,, ..., p,on V. Denotethespace V- {p,, P;, ..., P,}
by V*. Then the fundamental group =, (V'*) has a system of generators
(44, By, ..., A,, B, Cy, ..., C) with the defining relation

A, B A7 By ... A,B,A;'B;'C,...C,=1. (1.3)
We fix such a system of generators in the following discussion.

We call a G-covering A =(W, V, n, ) with the above V as base space
of type {(ps» ), (P2, 12)s -, (P,, 1)} if p’s are the only points on V
ramified in Wand e,, =n;.

Now by [11] and the theory of covering spaces, ¢ gives rise to a
surjective homomorphism 6 from =, (V*) onto G. By (1.3) we see that

(G{Al)s 9(‘81), ery G(Ag), 9(Bg)9 9(C1)s revs G(Cr))

is an admissible system of generators of G with respect to (n4, n,, ..., n,|g).
Conversely, from an admissible system of generators of G with respect
to (ny,ng,...,n,|g), we get a surjective homomorphism @ from n, (V*)
onto G. The kernel of the homomorphism corresponds to a covering
of ¥V* which we can close up easily to obtain a Galois covering of V.
Then the homomorphism & endows the covering a G-covering structure.
ObViOUSly, this G-covering is of type {(pb H}), (pzs nZ)s rers (vrs nr)}'
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We call two G-coverings A=(W,V¥V,n,¢) and A =(W, V', 7, ¢’
equivalent if there is a couple (P, ¥) consisting of conformal mappings
P WoWand V: VoV suchthat Yern=n"-@. If V="V and ¥ =id,
then we say that A and A’ are V-equivalent.

Two G-coverings A and A’ with the same base space V are called
Visomorphic if there is an isomorphism from A to A’ of the form (@, id.).
From the above discussion and these definitions we have

Proposition 1. Let the notation be as above. Then there is a one-to-
one correspondence between the equivalence classes (resp. quasi-equiva-
lence classes) of admissible systems of generators of G with respect to
(ny,n5,...,n,|g) and the V-isomorphism classes (resp. V-equivalence
classes) of G-coverings of type {(py, m), (P2, 13), ..., (P 1)}

Let n;, n,, n; be three integers>2. We call a G-covering
A=(W,V,n, ¢) of type (n,,n,,ny) if V is of genus zero and A is of type
{(p1,m), (P2, n2). (P, 1)} for some p; on V.

Fix a curve V of genus zero and three points py,p,,p; on V. It is
easy to see that the classification of G-coverings of type (n,, n,, n3) into
isomorphism classes (resp. equivalence classes) is the same as the classifi-
cation of G-coverings of type {(p,,n),(P;,n,), (p3,n3)} into V-iso-
morphism classes (resp. V-equivalence classes). Therefore by Proposi-
tion 1, we have

Proposition 2. Let G be a finite group and n,, n,, ny integers 2.
Then there is a one-to-one correspondence between the equivalence
classes (resp. quasi-equivalence classes) of admissible system of generators
of G with respect to (n,n,,n;|0) and the isomorphism classes (resp.
equivalence classes) of G-coverings of type (ny, ny, ns).

Example. Classification of PS L,(Z/5 Z)-coverings of types (n,, n,, n3).
Let A=(W,V,n, ¢} be a PSL,(Z/5Z)-covering of type (n,, n,, n3).
Denote by C,, C, C;, Cy, C, the conjugacy classes of PSL,(Z/5Z)
represented by{1 0 [ 0 t} [ 0t [i l} and {1 2 respectively
0 1|—-1=1]|{—1 0|0 { 0 ] ’
Denote the number of points of type C; on V by u;. Then by the trace
formula (4.3), Part {, we have pu,+u, =1 and y, £ 1. Hence the type
of A must be one of the following: (2,3, 5), (3,3,5), (2,5,5), (3,5,5) and
(5,5,5). The numbers of equivalence classes of the corresponding
admissible systems of generators can be determined by the method used
by Hecke [5]. In fact, there are 2 (resp. 2, 2, 4, 2) equivalence classes of
admissible systems of generators with respect to (2,3,5]0) [resp.
(3,3,510), (2,5,510), (3,5,5]0), (5,5,5/0)]). So by Proposition 2, we
conclude that there are 12 non-isomorphic PSL,(Z/pZ)-coverings of
types (ny, ny, ny).
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2. Realization of Alternating Groups as Galois Groups

We give a sketchy proof of Hilbert’s result [6] on realizing alternating
groups as Galois groups over the rationals by using Theorem 3, Part 1.
Letn5, and S, (resp. A,) the symmetric group (resp. alternating group)
of degree n. Denote the elements (12),(123...n)and (nn—1...431)
of S, by a,, a, and a,, respectively.

Proposition 3. Let {y,,y,,73) be an admissible system of generators
of S, with respect to (2,n,n—1|0). Suppose y, is a transposition. Then
(715725 ¥3) is equivalent to (a;, a5, 03).

Proof. Since y; is a transposition, we may assume that y, = e, . Write
y,=A - B, where A is a product of disjoint cycles in which 1 or 2 appears,
and B is a product of cycles disjoint from A. Suppose B is of order m.
Then m divides n, the order of y,. On the other hand y;! =17, - 4 - B is of
order n—1, and y, - 4 is disjoint from B. Therefore m also divides n— 1.
Hence m==1 and y, is a product of at most two disjoint cycles in which 1
or 2 appears. Suppose there are two cycles in this product. Then it has
to be of the form (1a;...4) (24, ...a,), because y, and y, generate S,.
It follows that y3'=(1a;4,...a,2as...a) is of order n, a contradiction.
Therefore y, is a cycle of order n, say y, =(1a5...4,2a,,, ... 4,). We claim
I=2o0rmnie y,=(12a;5...a,) or (21a,...a,) In either case, there is an
inner automorphism of S, fixing y, =, =(1 2) and sending y, to a5.

Coming back to the proof that /=2 or n, we observe that y3'
={1a,,...a,)2as...a). The order of y,, (1a,4...a,) and (2a;...a)
is n—1, n—(l—1) and (I—1), respectively. Hence the least common
multiple of ({—1) and n—(I—1) is n— 1. So our assertion follows from

Lemma d. Let x, y and n be positive integers such that x+y=n.
Suppose the least common multiple [x, y] of x and y is n—1. Then x =1
ory=1.

Proof. Let m be the greatest common divisor of x and y. Then we
have m|n since x + y=n, and also m|(n—1) since [x, y]=n—1. There-
forem=1.Hencex-y=[x,y]-m=n—t=x+y—1.So(x—-1)(y—1)=0.

Let A=(W,V,n,¢) be an S,covering of type (2,n,n—1) corre-
sponding to the admissible system of generators (a,, ®,,®3) of S,. For
o € Ant(C/Q), A° is also of type (2,n, n—1). Let (y,,v,, 73} be the admis-
sible system of generators of S, corresponding to A° (see Proposition 2).
By looking at the intermediate covering of A corresponding to the sub-
group H={ye S,y fixes 1}, one can prove that y, is a transposition.
Hence A and A° are isomorphic by Proposition 2 and 3. Especially,
W and W*® are conformally equivalent. Now we can show that ¢(S,)
= Aut(W) the same way Hecke proved (6.4), Part 2. Hence in case n+ 6,
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A has a model over Q by Theorem 3, Part 1, because S,(n = 6) is complete
[1]. In general, we have to use the stronger version of the Theorem.
Let(®,, ¥,) be an isomorphism of A to A° for o € Aut(C/Q). By definition,
D, op(y)Pe®,=(y) for all yeS,. Since Aut(W)=¢(S,), (2.1) of
Part 1 holds. So A has a model over Q by the Remark after Theorem 3,
Part 1.

Therefore we may assume that A is defined over Q. By Galois theory,
corresponding to the subgroup A, of S, there is an A,-covering
(W, V', 7, ¢') defined over 0. We prove that V' is of genus zero. First
note that a point p = n(*B) is ramified in V" if and only if gy ¢ A4,. (See § 3,
Part 1 for notation) Hence there are always exactly two points of V
ramified in V'. Being a two-sheeted covering of V, V' is of genus zero by
Hurwitz formula.

Finally we show that V' has a rational point over Q. Let pe V be the
point which is ramified in W of ramification index 2. It is obvious that p
is rational over Q. Since p is ramified in V', the unique point on V'
lying over p is also rational over Q. Therefore the covering (W, V', 7', ¢')
gives a Galois extension of Q(V"), which is pure transcendental over Q,
with Galois group isomorphic to A4,. So by Hilbert’s irreducibility
Theorem [6], we have

Proposition 5. For nz= 5, there exist Galois extensions of Q with
Galois groups isomorphic to A,,.
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