RECURSIVE INTEGRAL EQUATIONS FOR THE DETECTION OF COUNTING PROCESSES[†]

F. B. Dolivo

and

F. J. Beutler

Computer, Information and Control Engineering Program
The University of Michigan, Ann Arbor, Michigan 48104

September 1974

[†] This research was sponsored by the Air Force Office of Scientific Research, AFSC, USAF, under Grant No. AFOSR-70-1920C, and the National Science Foundation under Grant No. GK-20385.

01

MRU655

ABSTRACT. A recursive stochastic integral equation for the detection of Counting Processes is derived from a previously known formula [5] of the likelihood ratio. This is done quite simply by using a result due to Doléans-Dade [4] on the solution of stochastic integral equations.

1. INTRODUCTION. Recently modern martingale theory has been used to describe Counting Processes (hereafter abbreviated CP) in a way specially appropriate to the problems of detection and filtering. This has given rise to the notion of Integrated Condtional Rate (ICR) [5], which generalizes the notion of random rate.

Expressions for likelihood ratios (involving ICR's) for the detection of CP's have been obtained in [5] using a three-step technique introduced by Kailath [9] and Duncan ([6], [7]) in their works on detection of a stochastic signal in white noise. The three steps are the Likelihood Ratio Representation Theorem ([2], [5], [6]), the Girsanov Theorem ([5], [8], [13]) and the Innovation Theorem ([2], [5], [9]). By this method likelihood ratios for a large class of CP's can be found. These expansions represent a generalization of the formulas given in [1] and [12] in the context of Poisson processes and [2] in the context of CP's which admit a conditional rate.

The purpose of this paper is not to present a proof of the likelihood ratio formula (for that see [5]) but to derive from this formula stochastic integral equations by which the likelihood ratio can be computed recursively. This can be done quite simply using a result due to Doléans-Dade [4] on the solution of stochastic integrals equations involving semimartingales. These recursive equations are most useful in applications as they give a way of

implementing the computation of the likelihood ratio continuously in time.

2. PRELIMINARIES. Let (Ω, \mathcal{H}, P) be a complete probability space. By (X_t) we denote a real valued stochastic process defined on R_+ , the positive real line and by a Counting Process (CP) we mean

<u>Definition 2.1:</u> A CP is a stochastic process having sample paths which are zero at the time origin and consisting of right-continuous step functions with positive jumps of size one.

The time of n^{th} jump J_n of a CP (N_t) is the stopping time defined by

$$J_{n} = \begin{cases} \inf \{t \colon N_{t} \ge n\} \\ \\ \infty \text{ if the above set is empty.} \end{cases}$$

Let (\mathcal{H}_t) be a right-continuous increasing family of σ -subalgebras of \mathcal{H} with \mathcal{H}_0 containing all the P negligible sets, and suppose (N_t) is a CP, adapted to \mathcal{H}_t , with the sole assumption that EN_t is finite for each t. Then, as a consequence of the Doob-Meyer decomposition for supermartingales we can associate to (N_t) a unique natural increasing process (A_t) , dependent on the family (\mathcal{H}_t) , which makes the process $(M_t \stackrel{\triangle}{=} N_t - A_t)$ a martingale (see [11]). This decomposition $(N_t = M_t + A_t)$ is intuitively a decomposition into the part (M_t) which is not predictable and (A_t) which can be perfectly predicted. This unique process (A_t) is called the Integrated Conditional Rate (ICR) of (N_t) with respect to (\mathcal{H}_t) ("the (\mathcal{H}_t) ICR of (N_t) ") and has been studied in [5]. The terminology ICR is motivated by the fact that when (N_t) satisfies some

sufficiency conditions its ICR takes on the form $(\int_0^t \lambda_s ds)$ where (λ_t) is a nonnegative process called the conditional rate (with respect to (\mathcal{H}_t)) satisfying $\lambda_t = \lim_{h \to 0} \mathbb{E}[h^{-1}(N_{t+h}-N_t)|\mathcal{H}_t]$ ([5], Section 2.5). The existence of CP's possessing a bounded conditional rate with respect to the family of σ -algebras generated by the process itself has been first shown in [2] and in [5]. Sufficiency conditions for the existence of a conditional rate have been given in [5]. By a change of time we can show similar results (i.e., existence (see [5], Corollary 3.1.3) and sufficiency conditions) for (\mathcal{H}_t) ICR's of the form $(\int_0^t \lambda_s dm_s)$ where (λ_t) is a locally bounded predictable process and m_t a deterministic increasing right-continuous function with $m_0 = 0$. Denote by $\mathcal{H}(\mathcal{H}_t)$ the class of all locally bounded predictable (with respect to (\mathcal{H}_t)) processes (see [3], p. 98). For example, processes adapted to (\mathcal{H}_t) and having left-continuous sample paths belong to $\mathcal{H}(\mathcal{H}_t)$.

Remark 2.2: Let the ICR (A_t) be of the form $(\int_0^{\lambda} \lambda_s dm_s)$ and denote by Λ the union of all intervals of IR_+ on which the function m_t is constant. Observe that the ICR (A_t) is not affected by a change of values of (λ_t) for $t \in \Lambda$ and we may well have $\lambda_t = \infty$ for $t \in \Lambda$. To avoid problems due to this indeterminacy we adopt the following convention: for $t \in \Lambda$ we set λ_+ equal to unity.

We assume here that modern martingale theory ([11], [3]) is known. Recall that a semimartingale (X_t) is a process which can be written as a sum $(X_t = X_0 + L_t + A_t)$ where X_0 is \mathcal{F}_0 -measurable, (L_t) is a (\mathcal{F}_t) local martingale and (A_t) is a right-continuous process adapted to (\mathcal{F}_t)

having sample paths of bounded variation on every finite interval and with

A = 0 a.s. (see [3]). A result basic to this study and due to Doléans-Dade [4] is the following: the stochastic integral equation

$$Z_{t} = 1 + \int_{0}^{t} Z_{s} dX_{s}$$

where $(\mathbf{X}_{\mathbf{t}})$ is a semimartingale has a unique solution, which is a semimartingale given by †

$$Z_{t} = \exp(X_{t} - \frac{1}{2} < X^{c}) \prod_{s \le t} (1 + \Delta X_{s}) \exp(-\Delta X_{s})$$

where the product in the right hand side converges a.s. for each t. Here we define $(<X^c>_t)$ as the unique natural increasing process (see [3]) associated to the continuous part of the local martingale (L_t) ; $(<X^c>_t)$ is identically zero when (X_t) is a semimartingale with sample paths of bounded variation on every finite interval (see [3]).

3. THE DETECTION PROBLEM. Let P_0 and P_1 be two measures carried on (Ω,\mathcal{H}) . Suppose that (N_t) is a CP defined on (Ω,\mathcal{H}) and denote by \mathcal{H}_t the minimal σ -algebra generated by (N_t) up to and at time t. The notation $E_i(\cdot)$ for i=0, l is intended for the expectation operator with respect to the measure P_i .

<u>Definition 3.1:</u> For a (\mathcal{H}_t) stopping time R (possibly infinite) denote by \bar{P}_i^R for i=0, 1 the restriction of the measure P_i to the σ -algebra \mathcal{M}_R .

 $[\]uparrow$ When f_t is a right-continuous function with left-hand limits Δf_t denotes the jump f_t - f_t .

We have the inclusion $\mathcal{N}_R \subset \mathcal{H}$ so that if $P_0 << P_1^{\dagger}$ then $\bar{P}_0^R << \bar{P}_1^R$ and the Radon-Nikodym derivative $d\bar{P}_0^R/d\bar{P}_1^R$ is well defined. We examine now the meaning of this Radon-Nikodym derivative. In the case where the stopping time R is equal to a constant a then $\mathcal{N}_{R} = \mathcal{N}_{a} = \sigma(N_{u}, 0 \le u \le a)$ so that $d\bar{P}_0^a/d\bar{P}_1^a$ is the likelihood ratio for testing the two hypotheses H_i for i=0, l: P_1 is the probability measure on (Ω, \mathcal{F}) , by observations on the CP (N_t) for $t \le a$. The detection scheme then consists in selecting H_0 or H_1 . according as $d\bar{P}_0^a/d\bar{P}_1^a$ is above or below a given threshold. Now in the case where R is a stopping time which is not a constant we know that $\mathcal{H}_{R} \supset \sigma(N_{u \wedge R}, 0 \leq u)$ (this follows from the fact that $N_{u \wedge R}$ is (\mathcal{H}_{R}) measurable by Theorem 49-IV of [11]) but the reverse inclusion is not necessarily true. For this reason $d\bar{P}^R_0/d\bar{P}^R_1$ is not the likelihood ratio for our detection problem when the time of observation is the stochastic interval [0, R], as one could have conjectured. But one can interpret $d\bar{P}_0^R/d\bar{P}_1^R$ as a likelihood ratio if we assume that the information accessible to the observer is \mathcal{H}_{R} and not simply $\sigma(N_{u \in R}, 0 \le u)$. For i=0, 1 with the measure P_i carried on (Ω, \mathcal{F}) suppose that the CP (N_t) has the process $(\int_{-1}^{1} \lambda_s^i dm_s)$ for (\mathcal{F}_t^i) ICR, where (\mathcal{F}_t^i) is a family of σ -algebras with $\mathcal{F}_t^i \supset \mathcal{N}_t$, $(\lambda_t^i) \in \mathcal{A}(\mathcal{T}_t^i)$ is a positive process, and m_t^i is an increasing deterministic function with $m_o = 0$.

It is known that we can make a change of measure under which (N_t) is a CP of independent increments with mean $m_t = EN_t$ under the new measure P (Theorem 2.6.1 of [5]). Using this fact and the three-step technique

 $^{^{\}dagger}$ P₀ << P means that the measure P₀ is absolutely continuous with respect to P while P₀ ~P indicates that the two measures are equivalent.

of Duncan and Kailath (see Introduction) the likelihood ratio for detecting CP's has been obtained according to

THEOREM 3.2 (Theorem 3.4.4 of [5]): For i=0, 1 let (N_t) be, under the measure P_i , the CP described above. Assume

(a) $P_0 \ll P$ and $P \sim P_1$ and define for i=0, 1 the (P, \mathcal{M}_t) martingale

$$L_{t}^{i} = E(\frac{d\bar{P}_{i}^{\infty}}{d\bar{P}^{\infty}} | \mathcal{N}_{t});$$

(b) For i=0, 1, the stopping times T^i are such that there exists increasing sequences of stopping times (T^i_n) for which $T^i = \lim_n T^i_n$ a.s. and $E(\ln^- L^i_n)^2 < \infty$ for each n. Let $T = T^1 \wedge T^0$;

(c) For i=0, 1 $E_i \int_0^t \lambda_s^i dm_s < \infty$.

Then
$$\frac{d\bar{P}_{0}^{t \wedge T}}{d\bar{P}_{1}^{t \wedge T}} = \prod_{\substack{J \leq t \wedge T \\ 1}} \begin{bmatrix} \hat{\lambda}_{J}^{0} \\ \frac{1}{\hat{\lambda}_{J}^{1}} \end{bmatrix} \exp \left[\int_{0}^{t \wedge T} (\hat{\lambda}_{s}^{1} - \hat{\lambda}_{s}^{0}) dm_{s} \right]$$

where $\lambda_t^i \stackrel{\triangle}{=} E_i(\lambda_t^i | \mathcal{N}_t)$ for i=0, 1 and J_n is the time of n^{th} jump of (N_t) . By convention the product $\Pi(\cdot) = 1$ for $J_1 > t \wedge T$.

Remark 3.3: (a) The stopping time T^i which is the first time after which the martingale (L_t^i) can behave badly may take the value $+\infty$. It is in fact desirable for T^i to be as large as possible.

(b) By our convention (Remark 2.2) condition (c) above insures that the process $(\hat{\lambda}_t^i)$ is well defined.

4. RECURSIVE INTEGRAL EQUATIONS FOR LIKELIHOOD RATIOS

We show here that the likelihood ratio (1) of our detection problem can be obtained as the unique solution of a stochastic integral equation. This stochastic integral equation can be mechanized by a feedback scheme tantamount to a recursive filter, as shown in Figure 1.

THEOREM 4.1: The likelihood ratio $d\bar{P}_0^{t_{\Lambda}T}/d\bar{P}_1^{t_{\Lambda}T}$ of Theorem 3.2 is the unique solution of the following stochastic integral equation:

$$(2) Z_t = 1 + \int_0^t Z_{s-} dX_{s \wedge T}$$

where

(3)
$$X_{t} = \int_{0}^{t} \left\{ \left[\frac{\hat{\lambda}^{0}}{\hat{\lambda}^{1}_{s}} \right] - 1 \right\} dN_{s} + \int_{0}^{t} (\hat{\lambda}^{1}_{s} - \hat{\lambda}^{0}_{s}) dM_{s}$$

Proof: By assumption (λ_t^i) , i=0, 1, is positive a.s. finite for all t (by condition (c) of Theorem 3.2 and Remark 2.2). The process (N_t) has a finite number of jumps in any finite interval so that the process $(\int_{0}^{t_{\Lambda}T} (\lambda_s^0/\lambda_s^1) - 1] dN_s$) has sample paths of bounded variation on any finite interval; and so does the process $(\int_{0}^{t_{\Lambda}T} (\lambda_s^1 - \lambda_s^0) dm_s)$ by assumption (c) of Theorem 3.2. Hence $(X_{t_{\Lambda}T})$ is a semimartingale with sample paths of bounded variation on any finite interval so that $(\langle X^c \rangle) = 0$ (see the remark, on p. 90, following proposition 3 of [3]). Then by Theorem 1 of [4] the unique solution of (2) is given by

(4)
$$Z_t = \exp(X_{t \wedge T}) \prod_{s \leq t} (1 + \Delta X_{s \wedge T}) \exp(-\Delta X_{s \wedge T})$$

Now $\Delta X_{s \wedge T} = ((\hat{\lambda}_s^0 / \hat{\lambda}_s^1) - 1) \Delta N_{s \wedge T}$ and hence the product in (4) becomes

$$\frac{\Pi(\cdot)}{s \le t} = \frac{\Pi}{s \le t} \left[1 + \begin{bmatrix} \hat{\lambda}_{\frac{s}{n}}^{0} - 1 \\ \hat{\lambda}_{\frac{s}{n}}^{1} - 1 \end{bmatrix} \Delta N_{s \wedge T} \right] \exp \left[\sum_{s \le t \wedge T} - \begin{bmatrix} \hat{\lambda}_{\frac{s}{n}}^{0} - 1 \\ \hat{\lambda}_{\frac{s}{n}}^{1} - 1 \end{bmatrix} \Delta N_{s \wedge T} \right]$$

$$= \frac{\Pi}{J_{n} \le t \wedge T} \begin{bmatrix} \hat{\lambda}_{\frac{s}{n}}^{0} \\ \hat{\lambda}_{\frac{1}{n}}^{1} \end{bmatrix} \exp \begin{bmatrix} -\int_{0}^{t \wedge T} \begin{bmatrix} \hat{\lambda}_{\frac{s}{n}}^{0} - 1 \\ \hat{\lambda}_{\frac{s}{n}}^{1} - 1 \end{bmatrix} dN_{s}$$

Substituting the above relation and expression (3) in (4) gives the desired result (compare with (1))

$$Z_{t} = \prod_{\substack{J_{n} \leq t \wedge T}} \begin{bmatrix} \hat{\lambda}_{J}^{0} \\ \frac{n}{\hat{\lambda}_{J}^{1}} \end{bmatrix} \exp \begin{bmatrix} \int_{0}^{t \wedge T} (\hat{\lambda}_{s}^{1} - \hat{\lambda}_{s}^{0}) dm_{s} \end{bmatrix} = \frac{d\bar{P}_{0}^{t \wedge T}}{d\bar{P}_{1}^{t \wedge T}}$$

Observe that if under the measure P_1 the CP (N_t) is a process of independent increments with mean m_t then $P = P_1$, $\lambda = 1$ and Eq. (3) becomes

(5)
$$X_t = \int_0^t (\hat{\lambda}_s^0 - 1) d(N_s - m_s)$$

The process $(M_t \stackrel{\triangle}{=} N_t - m_t)$ is a (P, \mathcal{M}_t) martingale. Hence (5) shows that the process $(X_{t \wedge T})$ is a local martingale. In turn, (2) then implies that the process (Z_t) is a local martingale. In this case we in fact have $Z_t = E_1[(d\bar{P}_0^\infty/d\bar{P}_1^\infty)|\mathcal{M}_{t \wedge T}]$, i.e. the likelihood function is a uniformly integrable martingale.

In applications, Eqs. (2) and (3) give a way of implementing the computation of the likelihood ratio continuously in time. They represent recursive

equations if one also obtains the best estimates $(\hat{\lambda}_t^i)$ in a recursive manner. The block diagram of this implementation is given in Figure 1.

Recursive Scheme for Obtaining the Likelihood Function Z_t.

Figure 1

REFERENCES

- 1. I. Bar David, Communication under the Poisson regime, IEEE Transactions on Information Theory, IT-15, January 1969, pp. 31-37.
- 2. P. M. Brémaud, A martingale approach to point processes, Memorandum No. ERL-M345, Electronic Research Laboratory, University of California, Berkeley, California, August 1972.
- 3. C. Doléans-Dade and P. A. Meyer, Intégrales stochastiques par rapport aux martingales locale, Séminaires de Probabilités IV, Lecture Notes in Mathematics No. 124, Springer-Verlag, Berlin, 1970, pp. 77-107.
- 4. C. Doléans-Dade, Quelques applications de la formule de changement de variables pour les semimartingales, Z. Wahrscheinlichkeitstheorie verw. Geb., 16, 1970, pp. 181-194.
- 5. F. B. Dolivo, Counting Processes and Integrated Conditional Rates:
 A Martingale Approach with Application to Detection, Ph. D. Thesis,
 The University of Michigan, Ann Arbor, Michigan, June 1974.
- 6. T. E. Duncan, On the absolute continuity of measures, Ann. Math. Stat., 41 (1970), pp. 30-38.
- 7. T. E. Duncan, Likelihood functions for stochastic signals in white noise, Information and Control, 16 (1970), pp. 303-310.

- 8. I. V. Girsanov, On transforming a certain class of stochastic processes by absolutely continuous substitution of measures, Theory of Probability and Its Applications, V:3 (1960), pp. 285-301.
- 9. T. Kailath, A further note on a general likelihood formula for random signals in a Gaussian noise, IEEE Transactions on Information Theory, IT-16, July 1970, pp. 393-396.
- 10. H. Kunita and S. Watanabe, On square integrable martingales,
 Nagoya Math. Journal, 30 (1967), pp. 209-245.
- 11. P. A. Meyer, Probability and Potentials, Blaisdell, Waltham,
 Massachusetts, 1966.
- 12. B. Reiffen and H. Sherman, An optimum demodulator for Poisson processes: photon source detectors, Proceedings of the IEEE, 51, October 1963, pp. 1316-1320.
- 13. J. H. Van Shuppen and E. Wong, Transformation of local martingales under a change of law, Electronic Research Laboratory, Memorandum No. ERL-M385, University of California, Berkeley, California, May 1973.

