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ABSTRACT. A recursive stochastic integral equation for the detec-
tion of Counting Processes is derived from a previously known formula [5]
of the likelihood ratio. This is done quite simply by using a result due to

Doléans-Dade [4] on the solution of stochastic integral equations.,

1. INTRODUCTION. Recently modern martingale theory has been
used to describe Counting Processes (hereafter abbreivia.ted CP) in a way
specially appropriate to the problems of detection and filtering. This has
given rise to the notion of Integrated Condtional Rate (ICR) [5], which gen-
eralizes the notion of random rate.

Expressions for likelihood ratios (involving ICR's) for the detection
of CP's have been obtained in [5] using a three-step technique introduced
by Kailath [9] and Duncan ([6], [7]) in their works on detection of a stochastic
signal in white noise. The three steps are the Likelihood Ratio Representation
Theorem ([2], [5], [6]), the Girsanov Theorem ([5], [8], [13]) and the Inno-
vation Theorem ([2], [5], [9]). By this method likelihood ratios for a large
class of CP'; can be found. These expansions represent a generalization
of the formulas given in [1] and [12] in the context of Poisson processes and
[2] in the context of CP'!s which admit a conditional rate.

The purpose of this paper is not to present a proof of the likelihood
ratio formula (for that seé [5]) but to derive from this formula stochastic
integral equations by which the likelihood ratio can be computed recursively.
This can be done quite simply using a result due to Doléans-Dade [4] on the
solution of stochastic integrals equations involving semimartingaies. These

regursive equations are most useful in applications as they give a way of



implementing the computation of the likelihood ratio continuously in time.

2. PRELIMINARIES. Let (2, %’, P) be a complete probability space.
By (Xt) we denote a real valued stochastic process defined on IR+, the posi-

tive real line and by a Counting Process (CP) we mean |

Definition 2.1: A CP is a stochastic process having sample paths

which are zero at the tine origin and consisting of right-continuous step

functions with positive jumps of size one.

The time of nth jump Jn of a CP (Nt) is the stopping time defined by
inf {t: Nt >n}

oo if the above set is empty.
Let (% t) be a right-continuous increasing family of ¢-subalgebras of % with

%0 containing all the P negligible sets, and suppose (N )is a CP, adapted

t
to %t’ with the sole assumption that ENt is finite for each t. Then, as a

consequence of the Doob-Meyer decomposition for supermartingales we can

associate to (Nt) a unique natural increasing process (At), dependent on the
family (%t)’ which makes the process (Mt éNt - At) a martingale (see [11]).
This decomposition (Nt =M, + At) is intuitively a decomposition into the

part (Mt) which is not predictable and (At) which can be perfectly predicted.

This unique process (At) is called the Integrated Conditional Rate (ICR) of
(Nt) with respect to (4 t) ("'the (%t) ICR of (Nt')”) and has been studied in [5].

The terminology ICR is motivated by the fact that when (Nt) satisfies some



t
sufficiency conditions its ICR takes on the form (f )\sds) where ()\t) is a

nonnegative process called the conditional rate (wi?h respect to (ﬁt)) satis-
fying )\t = hlirr:a E[h™ 1 t+h ‘% , Section 2.5). The existeﬁce of
CP's possessing a bounded conditional rate with respect to the family of

o -algebras generated by the process itself has been first shown in [2] and

in [5]. Sufficiency conditions for the existence of a conditional rate have been
given in [5]. By a change of time we can show similar results (i.e., exis-
tence (see [5], Corollary 3.1.3) and sufficiency conditions) for (@ ) ICR's

of the form f A dm ) where (A ) is a locally bounded predictable process
and m, .2 determ1mst1c increasing right-continuous function with m, = 0.
Denote by 4;/ ) the class of all locally bounded predictable (with respect
to (\’;7/t)) processes (see [3], p. 98). For example, processes adapted to ((ﬁc)

and having left-continuous sample paths belong to %(%t).
t

Remark 2.2: Let the ICR (At) be of the form (f )\sdrns) and denote
0

by A the union of all intervals of IR+ on which the function m, is constant,
Observe that the ICR (At) is not affected by a chapge of values of (\{) for
t € A and we may well have )\t =oo forte A, To a;/oid problems due to
this indeterminacy we adopt the following convention: for t € A we set
)\t equal to unity.

We assume here that modern martingale theory ((11], [3]) is known.
Recall that a semimartingale (Xt) is a process which can be written as a

sum (X, = X +Lt+At) where X

¢ 0 %o-measurable, (Lt) is a (%t)

Ois
)

local martingale and (At) is a right-continuous process adapted to (-%t



having sample paths of bounded variation on every finite interval and with

Ao =0 a.s. (see [3]). A result basic to this study and due to Doléans-Dade [4]

is the following: the stochastic integral equation

1]

Z

t
RS fo Z_ &x_

where (Xt) is a semimartingale has a unique solution, which is a semimartin-

gale given byT

Z, = exp(X --1-<Xc>) I (1+AX )exp(-AX )
t t 2 t s< t ] ]

where the product in the right hand side converges a. s. for each t. Here we
define (<Xc>t)vas the unique natural increasing process (see [3]) associated
to the continuous part of the local martingale (Lt); (<Xc>t) is identically
zero when (Xt) is a semimartingale with sample paths of bounded variation

on every finite interval (see [3]).

3. THE DETECTION PROBLEM. Let PO and Pl be two measures
carried on (R, % ). Suppose that (Nt) is a CP defined on (Q,%) and denote
by 7Zt the minimal ¢ -algebra generated by (Nt) up to and at time t. The

. notation Ei(-) for i=0, 1 is intended for the expectation operator with respect

to the measure Pi’

Definition 3. 1: For a (ﬁ‘t) stopping time R (possibly infinite) de-
note by 1512 for i=0, 1 the restriction of the measure Pi to the o-algebra

o

T

When ft is a right-continuous function with left-hand limits Aft denotes the

jump ft-- ftf- .



We have the inclusion ﬂR c 7 so thatif P, <<P 1T then P% << f%
R

] is well defined. We examine

and the Radon-Nikodym derivative df’%/dl-D
now the meaning of this Radon-Nikodym derivative. In the case where the
stopping time R is equal to a constant a then Aﬁ/R = ‘ﬂ‘a = 0'(Nu, 0<uc<a)
so that dﬁg/di’al' is the likelihood ratio for testing the two hypotheses Hi for
i=0, 1: P1 is the probability measure on (, %), by observations on the CP

(Nt) for t <a. The detection scheme then consists in selecting HO or Hl’

a

1 is above or below a given threshoid. Now in the case

according as dﬁg/dﬁ’

where R is a stopping time which is not a constant we know that

is (70 )

R R

measurable by Theorem 49-1IV of [11]) but the reverse inclusion is not

¢ > 0 (N

< .
R ur R’ 0 <u) (this follows from the fact that Nu/\

necessarily true. For this reason dﬁ%/df’% is not the likelihood ratio for

our detection problem when the time of observation is the stochastic inter-

R

val [0, R], as one could have conjectured. But one can interpret dls%/dﬁl

as a likelihood ratio if we assume that the information accessible to the

observer is YCR and not simply ¢ (N 0 <u). For i=0, 1 with the meas-

uaR’

t .
ure Pi carried on (2,4 ) suppose that the CP (Nt) has the process (f klsdms)
0

for (4711;) ICR, where (%1) is a family of o¢-algebras with gt: %t’

t

i i, . ‘L. . . . e es
(A t) € %/(7/1:) 1s a positive process, and m_is an increasing deterministic

t

function with m0 =0,
It is known that we can make a change of measure under which (Nt)

is a CP of independent increments with mean m, = ENt under the new meas-

ure P (Theorem 2.6.1 of [5]). Using this fact and the three-step technique

T Po << P means that the measure P0 is absolutely continuous with respect

to P while P0 ~ P indicates that the two measures are equivalent.



of Duncan and Kailath (see Introduction) the likelihood ratio for detecting

CP's has been obtained according to

THEOREM 3.2 (Theorem 3, 4.4 of [5]): For i=0, 1 let (Nt) be,

under the measure Pi, the CP described above. Assume

(a) P0 < Pand P~ P1 and define for i=0, 1 the (P, ﬁt) martingale
e
L = E(— |);

(b) For i=0, 1, the stopping times T" are such that there exists in-

creasing sequences of stopping times(T;) for which T' = lim T; a.s. and

i 2 1 0 n
E(ln L i) <o for eachn, LetT =T AT ;
T
n t ;
(c) Fori=0,1 E [ \ldms < .
Then 00
(1) apiaT 5 ¢ AT
0 n Al AO
ST II e exp[f ()\s - )\S)dms]
dp " J <tAT| \ 0 '
1 n
Al 1 )
where x; 2 Ei(,\ti?’Z, J) for i=0, 1 and J_is the time of o jump of (N.). By

convention the product II(- ) = 1 for J1 >t aAT.

Remark 3.3: (a) The stopping time T' which is the first time

after which the martingale (Lz) can behave badly may take the value + oco.
It is in fact desirable for T" to be as large as possible.

(b) By our convention (Remark 2. 2) condition (c) above insures that

the process (ﬁ t) is well defined.



4. RECURSIVE INTEGRAL EQUATIONS FOR LIKELIHOOD RATIOS

We show here that the likelihood ratio (1) of our detection problem can
be obtained as the unique solution of a stochastic integral equation., This stochas-
tic integral equation caﬁ be mechanized by a feedback scheme tantamount to a
recursive filter, as shown in Figure 1.

-tAT

THEOREM 4. 1: The likelihood ratio dB ptaT

/dP1 of Theorem 3.2
is the unique solution of the following stochastic integral equation:

t

= +
(2) Z, 1 fo z, dX_ .
where
- A0

tf | A t

: s 1 20
(3) X, =[5 |- pan + [ & -R)dm_

o | X, 0

Proof: By assumption ()\t), i=0, 1, is positive a. s. finite for all t
(by condition (c) of Theorem 3.2 and Remark 2.2), The process (Nt) has

a finite number of jumps in any finite interval so that the process

tAT

;:O Ql . -

(f L( S’/ s)-l]st) has sample paths of bounded variation on any finite

0 tAT

Al A
interval; and so does the process (f (X:-)\g)dms) by assumption (c) of
0

Theorem 3.2, Hence (X,  ,.,)is a semimartingale with sample paths of

tAT
bounded variation on any finite interval so that (<Xc> = 0) (see the

tAT
remark, on p. 90, following proposition 3 of [3]). Then by Theorem 1 of

[4] the unique solution of (2) is given by

(4) Z, = exp(X

+ -
¢ (1 AXSAT)exp( AX

gor) I s AT

s<t



Now AX ((QO//)QI) - 1)AN and hence the product in (4) becomes
sAT s s sAT

QO

0 _
I (-) I [1+]=-1]| AN, . Jexp[ 2 -[—E-IAN ]

A ; A T
s<t s<t Xl saT A SA

[/, I

8

a0 _
QJ tAT /)12
= I rln exp| - f N 1 st
<
Jn_tAT Jn 0 )\s N

Substituting the above relation and expression (3) in (4) gives the desired

result (compare with (1))

a0
ﬁJ (AT aptrT
_ n ﬁl A0 _ 0
Zt = I —~ | exp f ( S-)\s)dms =TT
T <tAT| & 0 dp
n— Jn 1

Observe that if under the measure Pl the CP (Nt) is a process of

independent increments with mean m, then P = Pl’ 7\1 = 1 and Eq. (3)

becomes

t
0
(5) X = fo (QS - AN - m )

The process (Mt eNt - mt) is a (P, 7’Lt) martingale. Hence (5) shows that

the process is a local martingale. In turn, (2) then implies that

X, )

the process (Zt) is a local martingale. In this case we in fact have

Zt = El[(dpgo/dp(;o)l ﬂt T]’ i.e. the likelihood function is a uniformly
A

integrable martingale,
In applications, Eqs. (2) and (3) give a way of implementing the com-

putation of the likelihood ratio continuously in time. They represent recursive



. . . . Ay .
equations if one also obtains the best estimates (Xt) in a recursive manner.

The block diagram of this implementation is given in Figure 1.
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Recursive Scheme for Obtaining the Likelihood Function Zt'

Figure 1
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