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1. Introduction 

Let W be the Weyl group of a finite dimensional complex simple Lie algebra. The 
structure of W is quite well-known ; see [2, 3] for instance. In particular, W is finite 
and W/O2(W) is isomorphic to a symmetric group or an orthogonal or symplectic 
group over the field of two elements. 

It is natural to consider certain infinite analogues W(p,q,r) of such Weyl 
groups and inquire about  their structure. These are reflection groups defined by 
diagrams T(p, q, r) of the form 

Such groups come up in the theory of Kac-Moody  Lie algebras [10, 13], the 
theory of Cremona transformations [7] and in the theory of singularities [11]. 
Associated to each such diagram is a W(p, q, r)-invariant Z-lattice L = L(p, q, r) of 
rank p + q + r - 2  with an invariant bilinear form. Fixing a prime number l, we let 
I7V be the image of W(p, q, r) in GL(L/lL). We give the structure of all such ITv. 

The special case 2 = r <p ,  q = l =  2 was solved by Coble [5]. These are numer- 
ous interesting connections with algebraic geometry. See [-4, 7]. 

* Research supported by N.S.F. Grant MCS 80-03027, a grant from the University of Michigan and 
by the John Simon Guggenheim Memorial Foundation 
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We should make it clear that our results must not be interpreted as full 
description of the family of normal subgroups of finite index. There are easy 
examples of W with normal subgroups not of the form k e r ( W ~  I710. Unpublished 
work of Bernd Fischer gives strong evidence that there is an epimorphism of 
W(5,5,4) onto F 1 (the Friendly Giant), a finite simple group of order 
246320597611213317 �9 19.23.29" 31 "41.47.59'  71. It would be interesting to have 
an algebraic geometry interpretation of the kernel of this epimorphism. 

It is pleasant that our main results are derived so easily from some existing 
classification results for finite linear groups. The early result of Coble mentioned 
above required quite a bit of work. We thank Igor Dolgachev for calling our 
attention to this problem and providing the above background remarks about 
algebraic geometry. Reflection groups defined by other diagrams beg to have 
similar results proven for them. It appears that suitable induction arguments may 
be tricky to formulate for less familiar classes of diagrams. 

2. Notation and Definitions 

We give notation which will be used throughout the paper. We let T = T(p, q, r) be 
the diagram 

i 

with n : = p + q + r -  2 nodes, p, q, r all positive. Let cb = q~(p, q, r) be the vertex set, 
L=L(p ,q , r )  the lattice with basis ~b and symmetric bilinear form ( cq c0 =-2 ,  
(~,/~)=1 or 0 as c~,/?eq~ are connected or not, r , : L ~ L  the reflection x ~ x  
- (2(x, c0/(~, ~))~ = x + (x, ~)c~ at ~ and W = W r = W(p, q, r) the associated reflection 
9roup (r~]~E~). Let A = A r : = d e t L .  A deletion of T shall be a connected 
subdiagram of T with n -  1 nodes. 

Unless T has type A,, D, or E,, W is infinite (see [2]). We aim to determine the 
quotients 17V of W by its "congruence subgroups". 

More precisely, we fix a prime number, I. Set/7,:= L/IL and ITv equal to the 
image of W in GL(L). Set F=IF  v We use the bar convention for images in/~ or I7V. 
Since GL(L) is finite, so is 17V. If I is odd, I7V is generated by the reflections ~ ,  which 
are - 1  on F~ and 1 on ~• (L -- F~@~J-). When l=2,  a different notation is 
required, that of a transvection (by definition, a nonidentity invertible linear 
transformation which is trivial on a hyperplane of a vector space and on the 
associated quotient space). 

Let R(L) be the radical of the form induced on L, d : =  dimv(R(L)), n ' : =  n - d ,  
K : = ker(W~GL(s  G = W/K. 
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For groups A, B, we let A.B denote a group with normal subgroups A and 
quotient B. The image of B in Out(A) shall be understood from the context, 
although the extension type (i.e. split or nonsplit) of A. B may not be. 

Group theoretic notations not explained here may be found in [9]. 

3. Preliminary Results 

Lemma 3.1. Every proper submodule of [, is trivial. All proper submodules 9eaerate 
R(L). As a FV-module, L/Rad(L) is irreducible and nontrivial. 

Proof. Let M < L be a nontrivial proper submodule. Then some generator r = r~ of 
W is nontrivial on M, whence A4(1- r) 4= 0. But fi~(1-r)=F~, so that ~ ~'/. Then 

= M, since two adjacent/~, 7~ �9 are in a single W-orbit by virtue of the equation 
[~(r~r~) = (fl + 7)r, = - ]~ + (~ + fl) = ~. Since ~ spans L, L_-< M, a contradiction which 
proves the first assertion. 

Now let M < L  be a submodule and take x~A4. If (x,~)4=0 for some a~O, xr~ 
=x+(x ,~)~  so that ~eM. As above, this is false. So, A4=< Rad(L). 

Finally, note that Rad(L)<L  since (~,j~)= 1 when ~ , ] ~  are adjacent. 
d' 

Corollary 3.2. K is an elementary abelian 1-group, isomorphic to @(L/R(L) )  as 
t 

FV-modules, where d' is an integer satisfying 0 <-d'<_ d. 

Proof. For k~K,  we have a linear transformation T~e Hom~(L/R(L), R(L)) given 
by Tk_:X+R(L)~-~x(1--k ). Using Lemma 3.1, we get Tk +Tk =Tk~k~ and k~-~T k 
is a W-map. 

Trivially, the map is injective. So, {Tklk~K} is a ITV-submodule of 

d d 
Hom~(L/R(L), R(L)) -~ Hom~(L/RIL), F ~) = @ Hom(~/n(L), r) ~ @ L/R(~), 

1 1 

the last isomorphism coming from the self-duality of L/R(L) as a 17V-module. Since 
d 

L/R(L) is a semisimple module, the corollary follows. 
l 

Dolgachev has called my attention to the following two results. 

Lemma 3.3. For any prime I, A = p q r - p q -  q r - rp .  

Proof. Induction. 

Lemma 3.4. Let I be arbitrary. Suppose that Ar=0(modl  ) and Ar , -0 (mod l  ) 
for every deletion T' of T. Then p - q = - r - O ( m o d l ) .  In particular, p ,q,r> l. 

Proof. Use Lemma 3.3. 

Corollary 3.5. (i) d>= 1 if and only if A =0(modl). 
(ii) I f  d>=2, d = 2 ;  d = 2  if and only if p,q,r=-O(modl). 

Prop/'. (i) is obvious. 
(ii) Suppose d >  1; we show that d =2  and p,q,r-O(modl) .  If d >  1, R(Lr,)=g0 

for every deletion T', whence p, q, r =-0(modl), by Lemma 3.4. Again by Lemma 3.4, 
there is a deletion T" of T'= T ( p - 1 , q , r )  with Ar,~0(modl).  Thus, O=R(Lr,,) 
>-_R(L)~Lr,, giving d < 2  and finally d=2. 
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Suppose d =  1. We argue that not all of p,q, r are in lZ. Suppose otherwise. 
Remove the "middle node" fl of T to get nonempty diagrams of types 
Ap_ r Aq_ r At-~" Let L r L2, L 3 be the corresponding lattices. Write ~]1), ~,tl) " ' "  ~p-- 1 

p--1 

for the vertices, in order, of the "p-branch" and set z I = ~ k~  ~). Then (z 1, c~] 1)) 
k = l  

= - 2 + 2 - 1 = 0 ,  ( z ~ , ~ ) ) = k - l - 2 k + k + l = O  for k~{2 ... . .  p - 2 }  and (z 1, (~) ~p-- 1) 
= p-- 2 - 2(p - 1) = - p =O(mod 1). In other words, ~ lies in radical of/~1. In similar 

q--1 r--1 

notation, we get z2-- Z and = Z k4 for the other branches. Since 
k = l  k = l  

I---~O :=  L1 ( ~ L 2 ( ~ L 3  (orthogonal direct sum) has codimension 1 and R(L0) contains 
the independent set {F~, F2, F3}, we get d > dim(R(L0)c~/~ l) > 2, a contradiction. So, 
l fails to divide one of p, q, r, proving (ii). 

Remark 3.6. A bit more work shows that, when d=  2, R(L) is spanned by z I - z  2 
and Z 2 - -  Z 3. 

In order to state the following classification result, we need some definitions. 
A reflection means a diagonalizable element of some GL(n,F), charF:#2,  with 
eigenvalues - t  (once), 1 ( n - 1  times). For G<GL(n,F), the prefix "P "  shall 
indicate the image of G in PGL(n, F). In the case of a reflection in an orthogonal 

2(x, y) 
group, given by the formula r : x ~ x -  (y, y - ~ y  for some vector y, the class of (y, y) 

in F • F • } indicates the conjugacy class of the reflection in the orthogonal 
group. Thus ROO(V) indicates the subgroup of O(V) generated by reflections which 
correspond to f ieF • Also RU(V), RL(V) denotes the subgroup of GL(V), GU(V) 
generated by reflections. The superscript "g' in O'(n,F) indicates the type of 
quadratic form, as in [1, p. 210]. A wreath productXY means a semidirect product 
o fX x ... •  with Y, where Y permutes the factors regularly (or "freely"). Finally, 
27L(3, 4) means SL(3, 4) extended by a field automorphism of order 2. 

Proposition 3.7 (Wagner [15], Sere~kin and Zalesskil [14]). Let F be a field, 
l = c h a r F  4: 2, V a finite dimensional vector space over F, n = dim V, G an irreducible 
subgroup of GL(V) generated by reflections. Then G, the image of G in PGL(V), is 
one of the following: 

(i) PRL(V'), where F' is a subfield of F, V' an F'-subspace of V with 
dimv, (V') = n. 

(ii) PR U(V'), V' as above; 
(iii) PZL(3, 4), n = 4, 1 = 3 ; here G < PG U(4, 3); 
(iv) PR~O(V'), V' as above; 

(v) AsZ 2, n=4,  145; G<PO+(4,Ft(]//5)); 
(vi) PWo, or PWn. ; 

(vii) 2 4. 276 (nonsplit) ; n = 4 and ~ 1 ~ F ; 

(viii) 2 4. Z 5 (split) ; n = 4 and ~ 1 ~ F ; 

(ix) Pf2(5,3), n=5 ,  14:3, ?,/16F; 

(x) PR-O-(6,3) ,  n = 6 ,  14:3, ( f l e F ;  
(xi) PO+(4,3), n=4 ,  1=3; 

(xii) eo(5, 3) ; 
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(xiii) Sp(6, 2), n : 7 ; 
(xiv) O + (8, 2), n = 8 ; 
(xv) Z + I ,  I/~n+ 1 ; 

(xvi) S,,+ 2, lln+ 2, n>4.  

Proposition 3.8 (McLaughlin [12]). Let G< GL(n, 2) be an irreducible subgroup 
generated by transvections. Then G ~- O~(n, 2) (n even, e=  +,  - ,  (n, e)=l:(4, 2)) ; 
Sp(n, 2 ) ~ O ( n -  1,2) (n even) ; or 22~ for m = n +  1 or n+2,  n even. 

Also, the conjugacy class of elements of G acting as transvections in some 
representation is unique, except for G ~226 in which there are two such classes. 

4. The Case ! odd 

We identify 17V, making use of results in Sect. 3. All the "hard work" is contained in 
Proposition 3.7, with which many possibilities in our situation may be eliminated. 

Proposition 4.1. L e t  l =i = 2 .  

(i) I f  T has type A,, D, or E,, ~V'~W. Also, d ' = l  for A 2 and I=3;  d ' = 0  
otherwise. 

(ii) I f  T has type E,, 1, C'g~-Tll- 1. Wr,, split extensio~ where T' is a deletion of 
T of type E,_ j, respectively. Also d = d' unless T has type E 6 and l = 3, in which case 
d ' = l ,  d=2.  

(iii) I f  T is not "classical" (as in (i) or (ii)), ('V_~7/~ 'd. G, split extension, and 
G _~ O~(n ', 2) is an orthogonal group. 

Remark 4.2. The invariant e may be easily computed from A r, and n', where T' is a 
subdiagram of T with n' nodes and (AT,,I)= 1; namely, e=  + if and only if 
AT, ( -  1)"' is a square in F (see [1, p. 210]). 

Proof. (i) The first statement follows since the kernel of W--* I7V must be a normal 
/-subgroup of the finite group W and Oz(W)= 1 for such T unless l = 3  and T has 
type A 2. In the latter case, the result may be checked directly. 

(ii) Let T o be the normal "translation subgroup" of IV. By Corollary 3.5, d = 1 
or n = 6, 1 = 3, d = 2. We must argue here that 7,0 ~ l_However, if 7" 0 = 1, ITv acts like 
17Vr,, for an appropriate deletion T'. But then, [L, W] = [L, Wr.] has rank at most 
n - 1 ,  in contrast with Lemma 3.1. Since A=0,  the only way for d '<d to occur is 
when d = 2, i.e. type/~6. There, it is clear that d' = 1. 

(iii) Since T is not classical, n~8 .  Without loss, p > q > r > 2  and p>4 .  
We claim that G is an orthogonal group. We argue by induction on n. 
I f n = 8 , p = 4  and q = r = 3  since Tis  nonclassical. Here, A = 3 6 -  1 2 -  1 2 - 9 = 3 .  

If 14:3, Proposition 3.7 applies to show that ITV~ W~8 , 229, L'10 or an orthogonal 
group. Since ITv> I7V(3, 3, 3)~ 716. WE~, the first three possibilities are out. I f / =  3, 
d =  1 and a similar argument with W(2, 3 ,4)~ W~, shows that G ~  W~7 or an 
orthogonal group. The shape of T(4, 3, 3) implies that G contains a reflection group 
of shape 7/2 x Wa. So, W~7 is out and the claim follows. 
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Suppose n > 9 .  If T has a nonclassical deletion T', we may use induction, 
Proposi t ion  3.7 and the fact that  WE8 and Z,+ 2 do not  involve a copy of  the 
or thogonal  group GT,. N o w  suppose that  T has no such deletion. 

If  r_-> 3, q = 3 and p = 4, against n > 9. So r = 2. 
Since r = 2, A = 2pq- pq-  2p-  2q = pq-  2(p + q). We have q > 3, or else T is 

classical (type D,). Suppose  that q = 3. Then p = n -  q -  r + 2 > 6 and even p > 7 or 
else T has type E a. Since every deletion is classical, p = 7  and n = 1 0 .  Then 
A = 7 - 3 . 2 - 7 . 3 - 7 . 2 - 3 - 2 = 1 ,  so that I7V is irreducible on L and d i m L > 8 .  By 
Proposi t ion 3.7 either W-~ S 11 or Z 12 (impossible, since WE8 is not  embeddable in 
2;12 ) or it is an or thogonal  group, as required. So, q > 4 .  Since every deletion is 
classical but  T is not,  p = 5, q = 4 and r = 2. Then A = 5 .4-  2 -  5 . 4 -  5 . 2 -  4 . 2  = 2, 
and I7V operates irreducibly in dimension n = 9. As above, Proposi t ion 3.7 gives the 
result. 

Ou r  claim that G is an or thogonal  group is now verified. 
We now claim that  d'=d. Without  loss, A =0(mod/) .  Suppose that T' is a 

deletion with Gr~-Gr,. Since [L, Wr, ] has dimension n - 1 ,  I7VT> 17VT,, and d ' > 0 .  
So, we may suppose further that  d =  2. By definition of  "K", [L  r ,  Kr , ]  = R(Lr,). 
Also, R(Lr,)<R(Lr) for any deletion T', since d = 2 .  

If  T' # T" are deletions and K r =t= Kr,,, we are done, as d' > 2 and d' = 2 follow. 
So, we may  assume that R(Lr,)=R(Lr,,). Then, in L*=L/Lr,~Lr,,, the three 
nontrivial subspaces are the images of Lr,, Lr", and R(/[). IfX~{Lr,,Lr,,},a 
reflection from X in its action on L* preserves the images of X and R(L), hence of  
the third space as welt. Therefore, [L*, W] = 0, which conflicts with L = [L, W]. 

To complete the proof  that d ' = d ,  we need to consider the case that  every 
deletion T' satisfies GT~ GT,. Then every T' is classical, whence n < 11. If  n = 8, 
p = 4, and q = r = 3 = I. Let T' and T" be the two deletions of type E v and let z', z" be 
the involutions in Z(Wr,), Z(Wr,,), respectively. Both z', z" are - 1 on L/R(L), hence 
map  to generators of  Z(G). If d ' = 0 ,  z'=z"EZ(W), which is certainly false since 
L=L(1-z')@L(I+z') is a submodule  decomposi t ion incompatible with 
L e m m a  3.1. So, we may  assume that  n > 9 .  Then r = 2  and (A,/)= 1 (see an earlier 
paragraph),  which is incompatible with d' >0.  

Finally, we show that I ~ K ~ V V ~ G ~ I  is always split. Wi thout  loss, 
A - 0 ( m o d / ) .  If there is a deletion T' with G r, ~ G T, we use induction. If  there is 
none, every deletion is classical and the analysis of the last paragraph  shows that 
r # 2. Therefore, n = 8, p = 4, q = r = 3 = l, and G ~ WET. Let z be an involution of  I7V 
mapping  to the element of  order 2 in Z(G). Then C~(z)~-G complements  K. The 
arguments  for (iii) are now complete. 

5. The Case 1=2 

The analysis here, in spirit, resembles that of  Sect. 4. We use Proposi t ion  3.8 here 
instead of Proposi t ion 3.7. The pleasantness of  having a relatively short  list of 
groups in the conclusion of  Proposi t ion  3.8 is balanced by the increased com- 
plexity involved in determining G and d'. 

In characteristic 2, we need the not ion of  a quadrat ic  form as well as that  of  the 
bilinear form induced on/Z by the one on L. The relevant quadratic form on L is 
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Q(x)=�89 It induces a well defined map Q:L---~F=IF 2 with (,)  as its 
associated bilinear form. See [6] for a discussion of generalities. 

Besides the earlier definition of the radical R(L), we set 

RO(s = { ~  R(L)IQ(~) = 0}. 

In general, dimR(L)/Ro(L)=O or 1. 
The main results of this section have lengthy statements and are embodied in 

Lemmas 5.4, 5.5, and 5.6. Notice that d '=  d is "typical" for I odd, but certainly not 
so for l=  2. 

Lemma 5.1. Let L be the lattice for T= T(p, q, 1), i.e. type Am, m = p + q - 1 .  Let 

Z= ~ k~k, where ~1 ... . .  ct m is the "natural" order of the roots, i.e. oq and a t are 
k = l  

connected if and only if i - j =  +_1. Then, if m + 1 - 0 ( m o d l ) ,  ~ spans R(L). Also, 
(z, z) = - (m + 1), whatever the congruence of m modulo l. 

Proof If k6{2 ... . .  m -  1}, (~k,Z)= k -  1 - 2 k + k +  1 =0. Also 

( ~ p z ) = - 2 + 2 = 0  and (am, z ) = m - l - 2 m = - l - m = - O ( m o d l ) .  

So,-i~R(L), d>=l. Since A(p ,q -1 ,  1)=m~0(mod2) ,  d = l .  
We have 

m--1  

(z,z)= ~ k2(~k, ak)+2 ~ k(k+ 1)(ak, ak+ 1)= --2 re(m+ 1)(2m+ 1) 
k = l  k = l  6 

6 + = - 2m2 + m = - m(m + 1). 

Lemma 5.2. (i) I f  T has type A,, d = 0  or 1 and d=  n(mod2), all n, and d' = 0  unless 
n = 3 in which case d'= 1. 

(ii) I f  T has type Dn. n>=4, then d ' = l ,  d = l  or 2 and d - n ( m o d 2 ) ;  also, 
L/[L, K] is isometric to L T, where T' is a deletion of  T of type A,_ r 

Proof (i) The statement about d follows from Lemma 5.1. Obviously, d ' = 0  if 
O2(W_a,)=_l, which is the case for n~e 1,3. For  n = l ,  17V=I. For  n=3 ,  d'@0 since 
dim (L/R(L)) = 2, [GL(2, 2)[ = 6, and [WA3[= 24. 

(ii) We may take r = q = 2 .  Then A = 4 p - 2 p - 2 p - 4 = - 4  and we use 
Corollary 3.5 to get the statements about d. We get d' > 0  by a simple calculation, 
e.g. with [2, p. 256]. So, d '=  1 if d =  1. Suppose that d=2.  If d':4:1, d '=2 ,  and 
U=O2(Wo, ) has order exceeding 2 n-1 and lies in K. So, n = 4  and U~21+4+ is 
extraspecial. But K is abelian, by 3.2, a contradiction. 

To prove the second statement, we notice that [L ,K]<Ro(L) ;  for if g 6 K  
and y~ L, x = y + y ~ then 

Q(y) = Q(yO) = Q(x + y) = Q(x) + Q(y) + (x, y) = Q(x) + O.(y) 

and Q(x)= 0, as required. Thus, a quadratic form is well-defined on L/[L, K] by 
taking coset representatives from /~'r', a complement to [L, K] (L T, is a comple- 
ment: K is generated by elements which change coordinate signs at two places in 
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the usual description of L as in [2],: in that notation, [L, K] = 2L + 2% and our 
assertion is now clear). 

By virtue of Lemma 5.2, we may and do assume p > q > r > 2 and q > 3 from 
now through Lemma 5.6. 

L e m m a  5.3.  G ~ GL(n', 2), 2;,,. 

Proof Since G lies in an orthogonal group on L/R(L), G ;k GL(n', 2) (as n' > 2). We 

show G ;~ 2;m' If SO a subset of the transvections in 2;,. s a t i s f i e s ~ a g a i n s t  

WE~ +2;v, contradiction. 

Lemma  5.4.  If (A, 2) = 1, G ~ O((~). 

Proof Since G "+O((~), we apply McLaughlin's Theorem, 3.8, and Lemma 5.3. 

Lemma  5.5. Suppose that A = 0(mod 2) and d = 1. Then n is odd and one or three of 
p, q, r are odd. 

I f  p, q, r are odd, 

~ S p ( n - l , 2 )  for n - l ( m o d 4 ) ,  
17V~- [2"-  1. O~(n_ 1, 2) .for n = 3(mod4). 

I f  {p ,q , r}={pl ,q i , r l }  where Px,ql are even and r i is odd, 

~ S p ( n - l , 2 )  for pl+ql -=Z(mod4)  
I7V~ [2"- 1.0~(n-  1,2) for Pl +ql=O(m~ 

In all cases, I7V is a split extension. 

Proof The assertions about n, p, q, r are clear from Lemmas 3.3 and 3.4. 
Since d = l ,  there is a deletion T 1 of T with A 1 = A(T1)$0(mod2 ). We may 

arrange for T 1 = T(ppql ,  rl) to not have type A n_ l (easy). Note that T i does not 
have type D,_ 1 since A 1 is odd. Without loss, Pl >q l  _->3. If L 1 and W 1 are the 
corres_ponding_ lattice and _group, Wl~-O~(n-l ,2) ,  by Lemma5.4. Also, 
L = [ L , W ] ,  L I=[L1 ,  W1]=[L, W1], irreducible action of W 1 on L 1 and 
Proposition 3.8 imply that 17V~ S p ( n -  1, 2), 2"- 1. S p ( n -  1, 2) or 2"- 1. O~(n_ 1, 2). 

The parities of n, p, q, and r imply that there is an extension S of T by one node 
so that A(S)~g0(mod2). Thus, W(S)~-O~(n+I,2) and the embedding (zV~W(S) 
imply that 17V~ S p ( n -  1, 2) or 2"- 1. O~(n_ 1, 2), according to whether I7V stabilizes a 
nonsingular or singular vector of L(S). (Also, e = e' in the latter case). Visibly, the 
extensions are split. 

Case 1. p, q, r odd. Let @1 be the nodes of T along the union of the p and 
p + q + l  

q-branches and let zl = ~. kct k be a sum taken in a natural way along ~1 (in 
k = !  

either direction). Let @2 be the r - 2  outermost roots along the r-branch (r_-> 3 
r - -2  

here) and let z 2 = ~, kflk be a sum taken along @2. Let L1, L 2 be the corresponding 
k = l  

lattices. Then zi spans R(L~), i= 1,2, by Lemma 5.1. Let {6} = @ - @ 1 -  @2. Then 
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( Z 1 ,  6) ~- ( Z 2 ,  I~) ~ l(mod2), whence R(L) = F(31 + 32). Also, 

(z 1 + z2,z  1 + z 2 ) = ( z p z l ) + ( Z z ,  Z 2 ) = - p + q + r  - l - n +  l (mod4),  

using Lemma 5.1 and the fact that p + q  and r - 1  are even. So, in L(S), z 1 + z  2 
represents a singular, nonsingular vector as n+  1 - 0 ,  2(mod4), respectively. Since 
I711 stabilizes z I + z2, we get I7V-~2 "-1- O'(n - 1, 2) or S p ( n - 1 ,  2), accordingly. 

Case 2. r 1 is odd and Pl, q~ are even. We copy the argument for Case 1, except that 
we let 4 2 be the r 1 -  1 outermost roots of the rl-branch. We do not have 
( L t , L 2 ) = O ,  though (31,/~2)=0 since Pl -=ql -- 0(mod2). Thus, 31 spans R a d L  We 
have (Zl ,Zl)=-pl  +ql(mod4),  and we finish as before. 

Lemma 5,6. Suppose d = 2. Then  n is even and so are p, q, r. We have 

d ' = 2 ,  C/V~-(2"-z )z .O~(n-2 ,2)  i f  p = q = - r ( m o d 4 ) ;  

d' = 1, ITv~ 2"- z. S p ( n -  2, 2) otherwise .  

These extensions are all split. 

P r o o f  By Lemma 3.4, all of p, q, r are even. Without loss, p > q > r. Let T1, 7;, T 3 be 
the three deletions of T(at the p, q, and r branches, respectively, and let T~j = T~n Tj, 
AI=A(Ti) . . . . .  Then Aij is odd. Let L, W, G, L~, W~, G~, etc. have the obvious 
meanings. 

Note that there is an enlargement S of T by two nodes (along different 
branches) so that A(S) is odd. Thus, ITV maps into the stabilizer H in 
W(S)  ~- O~(n + 2, 2) of a 2-dimensional subspace R(L), which is singular with respect 
to the bilinear form on L(S). Consequently, by Lemma 5.4, G ~-O'(n, 2) or Sp(n, 2), 
as R~(L) has codimension 0 or 1 in R(L), respectively. 

Suppose RQ(L)= R(i). As in Case 2 of Lemma 5.5, ()(~i)=0 and 

(Zi, Zi) = Pi -t- qi = 0(mod 4), 

for all i. Thus, p=-q=-r (mod4)  and we have ( 4 ~ i ~ - 2 " - 2 . 0 " ( n - 2 , 2 )  and (3i> 
=[Li,  O2(I7V1) ], for at least two i, since p > q > 4  (but r>2 ,  only). Let i a n d j  be two 
such indices. If 3~, 3j are linearly independent, we get d '=  2, as required. This is 
proven by an argument like the one for d ' = d  in Proposition 4.1 (iii). 

Suppose R~(L)# R(L). We claim that the even integers p, q, r are not pairwise 
congruent modulo 4. Suppose otherwise. Let ~,") ~,~) be the roots along the p, q, ~ 1  ~ ~ 2  ' " ' "  
and r branches for i=  1,2,3, respectively, listed in the inward direction and 

t i - -  1 

excluding the node fl of valency 3. Set z~= ~ k ~  ~ t I =p,  t 2 =~, t~=r. Then (z~,z~) 
k = l  

= -- ti(t i - 1) and (zi, c~ J~) = 0(rood 2) for all i,j, k. Since (z i, fl)--- 1 (mod 2) for all i, 
R(L) is spanned by the z~-zj. Since 

(z i -  z~, z i - z j) =-- t i + tj =- 0(mod4), 

we get dimR0(/S)>2, against our assumption for this paragraph. Now arrange 
notation so that {p ,q ,r}  = {px ,q l , r l } ,  Pl ~ q l  = rl(m~ If r>2 ,  p > q > r > 4 ,  and 
we argue as follows: By Lemma 5.5, 

W ( p p q l , r l - l ) _ ~ S p ( n - 2 , 2  ), W ( p l - l ,  q p r l ) ~ - 2 " - 2 . 0 " ( n - 2 , 2 ) .  
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Since G -~ S p ( n -  2, 2), this forces d ' =  1, O2(I71/) ~ 2"- 2, [L, O 2(W)] = RadQ (L) and 
we have the required split extension. N o w  suppose that r = 2. Then n > 8. If  r = p~, 
then 

W(pl, q~ - 1, rl) ~_ W(pl, ql, rl - 1) ~ Sp(n - 2, 2) --- G 

(see the second paragraph of  the proof), corcing d' + 0, whence d' = 1 and we have 
split extension. So, we may  assume that r + P r  Without  loss, r = q r  Then 
r a - 2 ( m o d 4 )  implies r a >6 ,  and so n > 2 + 4 + 6 - 2 = 1 0 .  The argument  for r > 2  
now works. The proof  is now complete. 

If  L is nonsingular  with respect to the form, the type of the quadrat ic  form is 
= _ ,  as the Witt  index is maximal  of  nonmaximal ;  see [6]. We say that  the 

geometry on L has type s = + if R( f )  = R~(f)  and the type of  (L/R(L), Q) is ~, and 
we say that the type is e = 0  if R(L)+Ro(L).  During the previous arguments  for 
l = 2 ,  the need to know s (when e =  + )  was avoided. Here, we give a simple 
inductive procedure for determining e (see Corol lary  5.9). 

Lemma 5.7. I f  L is the A4-root lattice (A2-root lattice), A = - 5(A = - 3) and L/2L 
has type e = - .  

Proof Easily, A = - 5 (respectively, - 3). Also, O + (4, 2) ~ z~37~ 2 (order 2 3. 3 2) and 
O -  (4, 2) ~- X s [3, 9]. Since W(A4) ~- N 5 acts faithfully on the lattice modulo  2, e -- - .  
Since O+(2,2)_-_;r and O-(2,2)~_N 3 [3,9] ,  similar remarks get e =  - in this case. 
An alternate a rgument  is to compute  the relevant invariant  in the Clifford algebra 
[6]. 

Lemma5 .8 .  Suppose p>5. Let ~tl,cr 2 . . . .  be the roots on the p-branch listed 
4 5 

b e g i n n i n g  with  the o u t e r m o s t  one. L e t  L 1 = E 7Z~ f l =  E k~ L2=TZfl+ E z0~, 
i = 1 k = 1 c t~  1 

where 

q'l = , t , -  { ~ ,  ~2, ~3, ~4, as}.  

Then (L1 ,L2)=0 ,  L=LI~)[_,2, a n d  f~2 is isometric to the lattice for T ( p - 4 ,  q,r) 
taken modulo 2. 

Proof We have (ct 1, fl) = - 2 + 2 = 0, (ct i, fl) = i -  1 - 2i + i + 1 = 0 for 1 < i < 5, so that 
(La, L2)=0 .  Also 3 e c t s + L x + 2 L ,  whence L = L I + L  2 and dimension conside- 
rat ions give L = L 1 0 L  2. Finally, note that  if ctE~ 1, (ct, fl)--(ct, es) (mod2)  and 
(f l ,3)= - 5 . 6  so that  Q(/~)= 1=Q(~5);  see Lemma 5.1. 

Corollary 5.9. I f  p > 5, e = - e', where e' is the type of the geometry for L(p - 4, q, r) 
modulo 2. 

Proof The function "g '  is multiplicative over or thogonal  direct sums of non- 
singular quadrat ic  spaces over IF 2. 

We now complete our  description of  the procedure by discussing the "small 
cases", i.e. p, q, r all less than 5. They are checked with easy calculations. 
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r = 1 : n = p + q + 1 - 2 = p + q - 1, L is just the A,-lattice, and A = n + 1 = p + q. Since 
we may  as well take q = 1 here, we may  assume that  n = p  <4 .  The situation is: 

n = l  e = 0  

2 

3 

4 --. 

r = 2 :  n = p + q + 2 - 2 = p + q ,  2<=q<=p<4. For  q = 2 ,  the lattice is the D,-lattice, 
and the sitaution is the following, according to Lemma 5.2 (ii), Corol lary  5.9, and 
the discussion for r = 1 " 

n = 4  

5 - 

6 0 

When q = 3, we get the E6-1attice and e = - for p = 3 (use E~6 ~ O - ( 6 ,  2 )~  O +(6, 2) 
[3,9]), the ET-lattice and e = 0  for p = 4  (use We -~Sp(6,2)x7/z  [3]). When 
q = 4 = p, we get the "extended Ev"-lattice and e = 0 by noting, as in I .emma 5.2 (ii), 
that  [ L , K ]  <Rc)(L) and [L, K]  is complemented by Lr ,  where 7" has type E 7. 

In the remaining case r = 3 and 4, we get e by observing that  when (A, 2) = 1, the 
stabilizer in the or thogonal  group O~(n, 2) of a singular vector looks like 2 "-2  
�9 O ~ ( n -  2, 2). 

r = 3 :  n = p + q + 3 - 2 = p + q +  1, 3 < q < p < 4 .  The situation is 

(q, p) = (3, 3) ~ = - ("extended E6"-lattice ) 

(3,4) e = -  

(4,4) e = - .  

The case (3, 4) may be handled as follows. Here, A = 3 and the p-deletion lends to 
the group 26. WE = 2 6 - O - ( 6 , 2 )  and then e = - ,  using the observation�9 The case 
(4, 4) leads to e = - via a q-deletion, the case for (3, 4) and the observation. 

r = 4: q = p  = 4. A p-deletion and the observat ion gives ~ = - .  
This concludes the discussion for l =  2. 

Summary of the Structure of fl/ 

p>=q>=r>=l . 

d = 0 ,  1 or 2 (see 3.5) ; e may be computed usin 9 4.2 for I+-2 and 5.9 f o r /=2 .  

/4 :2 :  (see 4.1) 

1 = 2 :  r = l ,  d = 0  or 1, d - n + l ( m o d 2 ) ,  d ' = / ~  

r = 2 ,  q = 2 :  d=-n(mod2),  d ' = l ,  W~FV~-WD., 

n:#- 3 W_~ ~V~ WA. ' 
n_.~ 3' 

r = 2 ,  q > 2  or r > 2 "  A-= l(mod2),  d = 0 ,  I7r 2). 
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JSp ( n -  1, 2), 
A-0 (mod2) ,  d = l ,  p,q, rodd ,  I7V~ [2,_ 1.O~(n_ 1,2), 

exactly two of p,q,r, say Px and ql, are even, 

17Vg ~Sp(n-  1,2), Pl +q l  =2(mod4),  
(2 "-1.0~(n - 1,2), Pl +q l  -=0(mod4). 

d = 2, p, q, r even, 

p - q -  r(mod4), d ' = 2 ,  
otherwise d'= 1, 

ITv~ (2"- 2 ) 2 .  O.~(?1 - -  2, 2), 
- -  n - - 9  W ~ 2  - . S p ( n - 2 , 2 ) .  

R. L. Griess, Jr. 

n = l(mod4), 
n = 3(mod4); 
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