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0. Introduction

An Enriques surface over an algebraically closed field k of characteristic +£2 is a
non-singular projective surface S with H(S, O5)= H%(S, 05) =0 and 2K;=0. The
unramified double cover defined by K is a K3 surface R, a non-singular projective
surface with H*(R, 0g)=0, Kz =0.

Iltusie has shown, [I], that the group of divisors modulo numerical equivalence
is isomorphic to the Enriques lattice U Eg(—1) where U and Eg(— 1) denote,
respectively, the unique even unimodular lattices of index of inertia (1, 1) and (0, 8).

The purpose of this note is to use this isomorphism to study the Picard group of
S. We prove the existence of certain configurations of irreducible curves of
arithmetic genus 0 or 1 and deduce from them the existence of certain projective
models for S and R. For example, we prove the following results:

Theorem 1. Every Enriques surface admits a morphism of degree one onto a surface
of degree 10 in IP° with isolated rational double points.

Theorem 2. Ever y K3 surface which is the étale double cover of an Enriques surface
admits a morphism of degree one onto a surface of degree 8 in IP° with isolated
rational double points and which is the intersection of three quadric hypersurfaces.

Theorem 3. Every Enriques surface contains three elliptic pencils |2E,|, |2E,|, and
2E;| such that E,E,=E,E,=E,E,=1.

Theorem 2 is not new, [Co 1, V]. We include it because of the simplicity of the

proof given in this paper. Theorem 3 leads to a strong version of the Enriques-
Artin theorem, [L].
. AnEnriques surface is said to be nodal if it contains a nodal curve, i.e. a smooth
irreducible rational curve. It is known that the generic Enriques surface is not
nodal. This is proved in [L, B-P] via the global Torelli theorem for K3 surfaces.
Algebraic properties of the Enriques lattice allow to extend this result to all
characteristics and prove the following:
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Theorem 4. The following properties are equivalent:
i) S contains a nodal curve.
ii) S contains an elliptic pencil |P| and a nodal curve R such that PR=2,
iii) S contains an elliptic pencil with a reducible fiber.
iv) S admits a morphism of degree two onto a cubic surface in IP>.

1. The Enriques Lattice
We define the Enriques lattice to be the lattice
E=U®E4(-1),

where U and Eg4(— 1) denote, respectively, the even unimodular lattices of index of
inertia (1, 1) and (0, 8).

This section describes some elementary properties of E. We will start by
introducing some notations [Ma, Chap. IV].

(1.1) We let (N, k,(-,-)) be the triple where
10
N=Z''= (PZI; for a chosen basis [,
i=0

k=(-3,1,..,1)eN,
(+,) is a bilinear form N xN-Z given by the formulae
B=1, B=-1 if ixl, [L-};=0 if i%j.

Then (N, (-, -)) is a unimodular lattice of index of inertia (1, 10) and k? = — 1. The
orthogonal complement k* of k in N is a lattice of index of inertia (1, 9). It is even
and unimodular hence isomorphic to the Enriques lattice, [S]. We let

R={eN; - k=0, k?= -2},
I={leN;l k=k*=—1},
P={leN; I k=1=0}.

An element of R is called a root. The map I—k+1 defines a bijection of [ to P-
Finally, we introduce the following vectors of k*:

eg=—k+l, for ixl,
d=10l,—30+ ... +110),
ri=L—1l,,=¢—e¢.,, for 1<ig9,
ro=lp—li—l—l3=d—e,—€,—e;,

e, ;=d—e;—e; and i+j and ijz1.

(1.2) The vectors {r;} form a basis of k* such that r?=—2 and r;-7;=0 O 1
according to whether r; is joined to r; in the diagram

r,0+I—o—o+O—O—0’s

To
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This diagram, usually denoted by T, 5 ,, defines a lattice Q, 3 ,, [Do 2], which is
isomorphic to the Enriques lattice. The sublattice of Q, ; ; generated by
{rg, ---» T's} i isomorphic to Eg(— 1). Its orthogonal complement is generated by s,
and s, where

§1=3rg+2r; +4r,+6r;+5r, +4rs+3rs+2r, +rg,

52=58;+Try,

sf=s§=0, 5p-5,=1.
We will identify k* and E by means of this orthogonal decomposition of Q, 5 -.
(1.3) The following properties are immediately checked:

=0, e¢-¢=1 for i%j, ij2lI,

d*=10, 3d=e,+...+e,, d-g=3 for i1,

e-e;=e-¢;=2, e-¢;=1 for ijkzl, i%j, k+ij.

For all i=1, (d,ey, ..., é;,...,€10) is a basis of E. For all i,j,k=1, i+j, k+i,j,
(€155 €, ..-» €10, €;, ;) 1s & basis of E.
The dual basis {b;} of {r;} is given by

by=d=e;+e,+e ,,
by=d—e;=e,+e, ,,
b,=2d—e,—e,=e,+e,+2e, ,,
bj=e; 1 +...+e, for iz23.

(1.4) The linear map s,: E—E defined by s(x) = x + (xr)r for each r € E induces an
orthogonal transformation of O(E) which is called the ref lection about r. The Weyl
group of E is the subgroup W(E) of O(E) generated by the reflections about r,. The
Enriques lattice has the two following properties:

O(E)=W(E)x {11},
R is the set of s-translates of the r’s (s€ W(E)).
The fundamental chamber C of E is the subset of L=E®,R defined by
C={xeL;x-r;>0forall i}.

Tv}le 1closure C of Cin L is the convex polyhedral cone spanned by the vectors {b;}.
e let

H={xeL; x*>0}.
Then H is the disjoint union of two components H, and H,= — H, where H, is the

Component which contains the fundamental chamber.
The following result can be found in [Bo].



580 F. R. Cossec

Lemma 1.4.1. C is a fundamental domain for the action of W on H,.
As a corollary of this lemma and (1.3), we have

Lemma 1.4.2. Everyelementhe E| canbe writtenasasuma, f5+ ... +ayof10 where
the a;’s are positive real numbers and the fs satisfy:

2=0, fi-fi=f-fs=2, fi-fi=1 for {ij}+{1,3},{2,3} and i+j.
A simple computation based on (1.3) and Lemma 1.4.1 leads also to:

Lemma 1.4.3. Any primitive vector of E of length2n,0=<n<5, is O(E)-equivalent to
one of the following vectors.

n=0:by; n=1:bg; n=2:by,bg+by,

n=3:b,,bg+2by; n=4:bg+3by; n=>5:by,b;+by,bg+4by.
(1.5) For any he H,nE, we define

¢(h)=Min|e-h|.

Lemma 1.5. 2¢(h) <h>.

Proof. By Lemma 1.4.1, we can assume that h=nyb,+ ... +neb, for some positive
integers n;. Then

h*=h-(ny(e, +e;+e, ) +ni(e;+ey )+ ... +ngerq)
=Bno+2n,+4n,+Tny+6n,+ ... +ng)d(h).
In particular, h* <2¢(h) only if h=bo¢ H,.

Remark. For every xe CnE with x><10, ¢(x)=1 or 2 but for d in which case

$(d)=3.

(1.6) A sequence (fj,...,f,) of elements f,e P (respectively I) is said to be
exceptional if f;- f;=1 (respectively 0) for every i=j. Note that p<10.

Lemma 1.6.1. O(E) acts transitively on the set of exceptional sequences of vectorsof
P of length p=9. If p=9, there are two orbits: the orbits of (e,, ...,eg, e) and the
orbit of (e, ...,eg,€; 5).

Proof. The map (fy, ..., f,)=(—k+fy, ..., —k+ f,) defines a 1-1 correspondence
between exceptional sequences of vectors of P and exceptional sequences of
vectors of I, of the same length p. Since all primitive vectors of P hence all vectors of
1,are O(E)-equivalent by Lemma 1.4.3, the same proof as in [De, II, Proposition 4]
applies to our case.

}gm;}lla 1.6.2. Let (fy, ..., f10) be an exceptional sequence of vectors of P of length
. Then

1) There exists d E such that 3d=f, + ... +-f1o.
ii) For any i,j,i%j, there exists e jE€P such that e;-e, ;=e;-¢; ;=2 and
ek‘ei'j=1f0r k#i,]. '

Proof. This follows exactly from (1.3) and Lemmas 1.4.3 and 1.6.1.
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2. Linear Systems on Enriques Surfaces

This section describes some basic properties of linear systems on Enriques
surfaces. Proofs when omitted can be found in [Co1].

S will always denote an Enriques surface over an algebraically closed field of
characteristic #2. If L is an invertible sheaf or a divisor on S, |L}| will denote its
associated complete linear system.

(2.1) Genus Formula. The arithmetic genus p,(C) of an irreducible curve C on S is
given by o
=1+ —=.
PO)=1+
In particular, C2 > —2 and C is a nodal curve, i.e. a smooth irreducible rational
curve, if and only if C2 = —2. An Enriques surface which contains a nodal curve is
said to be nodal, unnodal otherwise.

(2.2) Bertini’s Theorem [Co 1, Theorem 1.5.1]. Let L be an invertible sheaf on S
such that |L| is not empty and without fixed components. Then either:

i) L?> 0 and there exists an irreducible curve C such that L~ 04(C) and dim|L|
=p(C)—1, or

ii) L2=0 and there exist an elliptic pencil |P| and an integer k such that
L~0Og(kP) and dim|L|=k.

Remarks. i) Every elliptic pencil |P| on S has exactly two multiple fibres. These are
double fibres, 2E, and 2E,, such that K~E, —E, where “~” denotes linear
equivalence. Moreover, E, and E, are smooth elliptic curves, rational curves with
a node or divisors of type A,. We refer to [Mu] for the notion of divisor of
canonical type and adopt Rudakov-Safarevic’s convention of denoting an
indecomposable divisor of canonical type by the corresponding Dynkin diagram,
whenever possible.

ii) Conversely, for every indecomposable divisor of canonical type E on S,
dim|E|=1 or dim[2E|=1.

Lemma 2.3 [Co 1, Proposition 1.5.2]. Let L be an invertible sheaf on S such that
L?>0. Then the general member of |L| is irreducible.

Proposition 2.4. Let D be an effective divisor on S such that D* >0 and DC =0 for
every irreducible curve C. Then |D| has no fixed components unless |D|=|P + R| for
an elliptic pencil |P| and a nodal curve R such that PR=2.

,P roof. Let |D|=|M|+ Z be the decomposition of |D| into its moving part [M]| and
1ts fixed part Z. Since D?> 0, Riemann-Roch implies |M| =+ ¢.
Assume M2 (. Then (2.2) and Riemann-Roch gives

MZ . . D2

= = >,

3 dim|M|=dim|D| = 3

Since D? =DM+ DZ=M?+MZ+DZ, MZ20, DZ 20 it follows that
MZ=DZ=0 hence Z%=0.

Hence Z =0 by the Hodge index theorem, as wanted.
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Assume M?=0. By Lemma 2.3 and Riemann-Roch, |M| is an elliptic pencil |P|
and D*=2. We can choose a component R of Z such that PR=2. Then
2=D?*=D(P+Z)=RP+(Z—R)P+DZ
gives
P(Z—R)=DZ=DR=0, PR=D(P+R)=2.
By the Hodge index theorem
2QPR+RY)=(P+R)’D*S((P+R)D)*=
hence
R?=-2, |D|=|P+R].
The reducibility of |P+ R| is proved in the next lemma.

Lemma 2.5. Let |P| be an elliptic pencil and R a nodal curve on S such that PR=2.
Then

i) R is the fixed part of |P+R|.

ii) {P+ R+ Kl is irreducible.

Proof. We first prove i). Consider the decomposition |P+ R|=|M|+Z of |P+R|
into its moving part |M|+¢ and its fixed part Z.
Assume M2 +0. Then

M?<SM(M+Z)=M(P+R)<(P+R)?=2

shows that M? =2: this is absurd since dim|P|=dim|M| = 1 would imply |P|=|M|.
Assume M?=0. Then by Lemma 2.3 and Bertini’s theorem, | M| is an elliptic
pencil |Q| and

2=P(P+R)=P(Q+Z)2PQ

implies |P|=1|0Q|, R=Z as wanted.

Let us now show that [P+ R+ K] is irreducible. By Proposition 2.4, we can .
assume, ab absurdo, that there exists elliptic pencil [Q] and a nodal curve S, such
that 0S¢=2 and [P+ R+ K|=|Q}|+S,. Then

2=P(P+R)=P(Q+S,)=PQ

implies |P|=]Q] and R+ K~ S, in contradiction with |R + Ks|=¢ by Riemann-
Roch.

Remark. An Enriques surface S with an elliptic pencil |P| and a nodal curve R such
that PR =2 s classically called an Enriques surface of special type. It will be shown
in Sect. 4, that this notion coincides with the notion of nodal Enriques surface.

Theorem 2.6. Let D be an effective divisor on § such that D* >0and DC 20 for every
irreducible curve C. Then

H'(S,05(— D))= H\(S, 04«(D))=0.

Proof. I.f D is an effective divisor such that D?>>0, Riemann-Roch implies that
there exists an effective divisor 4 such that 4 €|D + K. Since K is numerically
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trivial, DC =20 implies AC =0 for every irreducible curve C. By Serre duality,
H'(S,0s(—4))~H'(S, 05(D)) .

Therefore, it is enough to prove the vanishing of H'(S, Os(— D)).
If the generic member of |D + K| is irreducible, we can conclude by (2.2)i). If the
generic member of |D + K is reducible, we can conclude by Proposition 2.4.

Remark. In characteristic 0, this theorem follows from the vanishing theorem of
Zariski-Kawamata.

The following lemma is also an easy consequence of Proposition 2.4 and
Lemma 2.5.

Lemma 2.7. Let |2E| be an elliptic pencil and R a nodal curve on S such that
ER=nz=2. Then the generic member of |\E+R| (or |E+R+ K| if n=2) is
irreducible.

(2.8) Pic(S), NS(S), and Num(S) will denote, respectively, the Picard group, the
Neron-Severi group and the group of divisors modulo numerical equivalence. It is

well-known that
NS(S)~Pic(S),

Num(S) ~NS(S)/Torsion.

Moreover, the class of the canonical divisor is the only non-trivial torsion
element of NS(S).
A fundamental result for this paper is the following theorem, [1].

Theorem 2.8. Num(S) is isomorphic to the Enriques lattice.

(29) The elements of Num(S) which are represented by nodal curves are called
nodal roots. The set of nodal roots is denoted by R”. It lies naturally in NS(S). We
let W be the Weyl group of Num(S) and W"C W the subgroup corresponding to
R" The actions of W and W” on Num(S) naturally extend to actions on NS(S). We
let:

H,={xeNS(S); x>0, x*20},

C'={xeH,; x-r=0 for every re R"} .

Lemma 2.9. For every e e NS(S) such that >0, e*=0, there exists a divisor of
canonical type E such that e—E is a sum of nodal curve, with non-negative integral
coefficients.

Proof. Fix an ample divisor H on S. Note that eH = 1 imply that e is an irreducible
curve of arithmetic genus one, hence a divisor of canonical type. Assume now that
eH > 1 and that eis not of canonical type. We can choose a nodal curve R such that
€R <0 and let e; =e+(eR)R. Then ¢} =0 and —e, is not effective. Therefore, by
Riemann-Roch, e , is effective and e, H < eH. One concludes by induction on eH.

Corollary 29. S is an elliptic surface.
We will also need the following result of [Do 2]:

Lemma 2.10. ¢ is a fundamental domain for the action of W" on H ..
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(2.11) Given an irreducible curve C on § with C*>>0, we define ¢(C) and ¢(/C|) to
be equal to ¢([ C]) where [C] denotes the class of C in Num(S) and ¢ is the function
defined in (1.5). It is clear that

#C)= l\%in {EC; |2E] is an elliptic pencil}.

(2.12) Hyperelliptic Systems. If C is an irreducible curve on § such that C? >0 and
#(C)=1, we say that |C] is hyperelliptic. This notion is discussed in [Co1]. We
recall the following results:
i) The generic member of a hyperelliptic system is a smooth hyperelliptic

curve.

ii) |C} is hyperelliptic if and only if |C| has base-points.

iii) |C| is hyperelliptic if C>=2.

iv) |C| is hyperelliptic if and only if it is of one of the following types:

a) Non-special: |C|=|pE + F| where pis a positive integer and |2E} {2F| are two
elliptic pencils with EF=1.

b) Special: |C|=|(p+1E+R| or |(p+1)E+R+Kg| where p is a positive
integer, |2E| an elliptic pencil and R a nodal curve with ER=1. (p=+1 in the first
case.)

3. The Picard Group of S

This section is devoted to some existence theorems of certain linear systems
on S.

We first note that the following result of Enriques is an immediate consequence
of Lemmas 14.2 and 2.9.

Theorem 3.1. Pic(S) is generated by the class of nodal curves and irreducible curves
of arithmetic genus one.

Theorem 3.2. Let S be an unnodal Enriques siuface. Then there exist
i) Ten indecomposable divisors of canonical type E, such thatE,E;=1 for i%].

ii) An irreducible curve A such that 34~ 3 E;+Kj.

iii) Forty-five divisors of canonical type E, ; for any {i,j} with i=j such that
El'Ei,j=EjEi,j=2’ EkEi,j= 1 for k#i,j and A ~Ei+Ei+Ei,j'

Proof. This follows directly from Lemmas 2.9, 1.6.2, and Proposition 2.4 applied to
any exceptional sequence of isotropic vectors of Num(S) of length 10.

Remark. In the notations of Theorem 3.2, ¢(4) =3 and {4,E,, ..., E o} isa basis of
Pic(S).
Theorem 3.2i) is generalized to the nodal case by the following result:

Theorem 3.3. Let e, ..., e, be some effective divisors on S such that e? =0, ¢,;= | Jor
i+j. (If p=1, we assume that e, defines a primitive vector of Num(S).) Then there
exists a unique set of divisors

El’ ..‘,Eq, Rl,l’ ey Rl,i(l)! ---,Rq' fysees Rq’i(q),
where q and i(j) are some integers such that 1 <gq<p, 0<i(j) for any 15j54 and

q
j‘_‘_",l (1 +i(j))=p, where |2E | are some elliptic pencils and R, ; some nodal curves
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such that
w(e, )~ E,,

w(e,)~E +R,, orE,if i(1)=0,

w(ep)qu"'Rq,l + e +Rq,i(q) or Eq lf i(q)=0

(13

for some we W" (““x” denotes numerical equivalence).

The following obvious lemma will be used in the proof of Theorem 3.3:

Lemma 3.3.1. Let ey, e,, e; be three effective divisors on S such that |2e,| is an elliptic
pencil, &3 =0, e;e;=1. Then e e, =0 implies |2¢,| =2e,).

(3.3.2) Proof of Theorem 3.3. (We will write “D, =D,” instead of “D; & D,”): The
proof will be by induction on p and based essentially on Lemma 2.10.

Let us first explain the case p= 1. By Lemma 2.10, there exists a unique effective
divisor E; and w € W" such that w(e,) = E,. Since e? = E2 =0 and E,;R 20 for every
nodal curve R, E, is a divisor of canonical type. Since the class of E, in Num(S) is
primitive, |2E,| is necessarily an elliptic pencil.

Assume that the theorem holds for p2 1 and let ey, ..., €, , be some effective
divisors such that e?=0, e;e;=1 for i+j. By induction, we can assume that
w(e,), ..., w(ep)is as described in Theorem 3.3 for some w e W". Changinge, .. , into
w(e,, 1), we can assume w to be the identity.

Ife,,, is of canonical type, one simply lets E,, ; =e¢,. ;.

Ife, , , is not of canonical type, we choose a nodal curve R such thate, ; R<0
and define

Solep+1)=¢€,41+(ep  R)R.
Then

Ejsole,+1)=1+(E;R)(e,+ R)=1
unless
E;R=1, e,,;=E;+R (by Lemma 3.3.1)
in which case i(j) %0, since otherwise
O=e,4,R; ;=1+R; ;R+0.

glherefore, iffor somej, E;so(e,+ ) + 1, we can assume, after a change of indexation,
at j=q and

e1=E1, 32=E1+R1'1,‘..,ep=E ep+1=Eq+R.

q b
_ We now assume that Eso(e,,,)=1 for all j=1,...,q and we fix an ample
divisor .

Assume RR;, =0 for all j, k. Then the vectors e, ..., e,, Soe,+1) satisfy the
Same hypothesis as e, ..., €,4; and Hsy(e,+;)<He, . By induction on He,, ,,
We are reduced to the already considered case when e,+1 is of canonical type.

Assume RR; =0 for some j, k. We can assume j=g. Then we claim that

RR, p=1 and RR, ;=0 for j<i(q).
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To see this, let m be the integer such that

RR, ,+0 but RR,,=0 for n<m.

Then
R, mSo(€;+1)=(ep+  R)(RR, ,)<0.
Define
$1(€p+1)=50(¢p+ 1)+ (So(€p+ )R mRy,m -
If

m>1 Sl(ep+ I)Rq,m— 1 =SO(ep+ 1)Rq,m <0
hence we can define s{e,.,) for i=0,...,m in such a way that
S — l(ep+ 1)Rq, 1= .. =SO(ep+ I)Rq,m <0 s
Eqsm— l(ep+ 1)= .o =Eqso(ep+ 1)= 1
and
Eqsm(ep+ l) = Eqsm- l(ep+ 1) + (EqRq, 1)(sm— l(ep+ I)Rq, 1) é 0 .
Then, by Lemma 3.3.1,
sm~1(ep+1)=Eq+Rq,l’ Sm—l(ep+1)Rq,1= -1
After m such steps, one finds
e,+1=E,+R, 1+ ...+R, », RR,,+0.
Finally, m=i(q), otherwise
0=ep+ 1Rq,m+1 =1 +R.Rq,m+1 +0.
As wanted, we have proved that
ep+1 =E4+Rq,1 +... +Rq,i(q)+R .
The unicity of the E;’s and R; ;’s follows from Lemma 2.10.

Remarks. i) It follows from Theorem 3.3, that Theorem 3.2i) holds when Sis no@ of
special type. However, we recall that the notion of nodal Enriques surface coincide
with the notion of Enriques surface of special type. .

ii) Animmediate corollary of Theorem 3.3 is that an Enriques surface which s
not of special type contains two elliptic pencils [2E| and |2F| such that EF =1. This
is well-known, [Co 1, L].

Proposition 3.4. For every elliptic pencil |2E| on S, there exists an elliptic pencil |2F|
such that EF=1.

Proof. Since all primitive isotropic vectors of the Enriques lattice are equivalent
under its orthogonal group, we can choose an exceptional sequence of isotropt
vectors of NS(S) of length 10, say (e, ...,e,,) such that E=e,. By applying
Theorem 3.3 to this sequence, we can assume that there exists chain of nodal curve
R, + ... + Rysuchthat ER, =0and ER,=0fori> 1. Let f be the fibre of |2E| which
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contains R, + ... + R,. Using the fact that rank (Num(S)) = 10, it is easy to see that
fisof type Eg, 244 O Ag. In all cases, we denote by R the component of f which is
distinct from R,, ..., Rq.

Assume f is of type E4: we obtain the following graph

O—O0—0—0 O—O0—0—0
E Ry R, Rq

R
Then g=2R+ R, +2R;+3R;+4R,+3R5+ 2R+ R, is a divisor of type E, such
that Eg = 1. This is absurd since |g| is an elliptic pencil hence gE must be even [see
remarks following (2.2)].
Assume f is of type 244: we obtain the following graph

Then g=2R; +4R, +3R;+2R,+ Rs+3R+2R4+ Ry is a divisor of type E, such
that gR, =1, a contradiction.
Finally, if f is of type A5, we obtain the following graph

E R\ /Ry Rq

Then F=R+ R, + R, defines an elliptic pencil [2F| such that EF =1 as wanted.

Remark. A similar proof would show that given an elliptic pencil |2E| and a nodal
curve R on S such that ER = 1, there exists an elliptic pencil |2F| such that EF =1
and FR=0,

&

Theorem 3.5. Given an elliptic pencil |2E,| on S, there exists two elliptic pencils|2E,|,
l2E3' Such that E1E2 =E2E3 =E3E1 = 1.

Proof. Given an elliptic pencil |2E,| on S, Proposition 3.4 implies that we can
choose an elliptic pencil |2E,| such that E,E,=1. By Lemma 1.6.1 there exist an
exceptional sequence of isotropic vectors (ey, ..., €;,) such that e, =E,, e, =E,.
Applying Theorem 3.3 to this sequence, we see that we can assume the existence of
two chains of nodal curves R, + ... +R,, R,y +...+Rg with 0<p<8 and
intersection graph

E, R
We will prove the theorem when p=0. The patient reader could easily supply
the details for the other cases.
Solet p= 0. By Lemma 1.6.2, there exists an effective divisor G such that G2 =0
and defining the following graph:
El E2 R&




588 F. R Cossec

If G is of canonical type there is nothing to prove. So let R be a nodal curve such
that GR<0.
Assume RE, +0. Then G=R + E,, E; R=1 (as in the proof of Theorem 3.3) and
we have the following graph:
El EZ R! R&

R
The fibre g of |2E,| which contains R+ R, + ... + Rg is necessarily of type Dy, We

let R, be the component of g distinct from R, R, ..., Rg. We obtain the following
diagram

Then E; =Ry + R, + R, + R, defines an elliptic pencil |2E;| such that E, E, =E,E,
=E,E, =1 as wanted.
Assume RE, =0. As in the proof of Theorem 3.2, one of the following holds

i) RE,=RR,=...=RR;=RR,=RRg=0, RRs=1 and G=E,+R,
+...+Rs+Ror
i) RRy=...=RR¢=RE,=0.

Incasei), g=3R+2R3+4R;+6Rs+5Rs+4R,+3R;+2R,+ R, is a divisor
of type E, with gE, =1, a contradiction.

In case ii) we claim that RR, = RRg =0. Otherwise, consider the fibre g of 2|
which contains R+ R, +... + Rg. Then g has at least 10 components bence
rank (Num(S)) = 11, a contradiction. Therefore, RE, = RE, = RR;=0fori>1and
changing G into G +(GR)R, we can conclude by induction on the degree of G with
respect to a fix ample divisor on S.

Definition 3.5. A sequence of length p of elliptic pencils (|2E,], ..., |2E,|) of S is said
to be exceptional if E;E;=1 for i+j.

Remark. Defining A(S) to be the maximum length of exceptional sequence of
elliptic pencils on S, A(S)<10 follows trivially from rank (Num(S))=10 anfi
A(S)=3 follows from Theorem 3.5. Theorem 3.2 implies that A(S)=10 if § i
unnodal. It is also proved in [Co 2] that A(S) =10 for the generic nodal Enriques
surface S.

Proposition 3.6. S contains a non-hyperelliptic system of arithmetic genus 3.

Proof. With the notation of (1.3), b, is a vector of length 4 with #(by)=2
Therefore, S contains an effective divisor D with D> =4 and $(D)=2. By Lemmd
1.4.1, Proposition 2.4 and Bertini’s theorem, the intersection of the W"-orbit of |D}
with C" is an irreducible system with the required properties.

Proposition 3.7. S contains a non-hyperelliptic system |M| of arithmetic genus 6and
$(IM))=3.

Proof. Same proof as in Proposition 3.6: one considers b, instead of b;.
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4, Nodal Enriques Surfaces
This section is devoted to the proof of the following:

Theorem 4.1. The following statements are equivalent:
i) § contains a nodal curve.
ii) S contains an elliptic pencil |2E| and a nodal curve R with ER=1.
iii) S contains two elliptic pencils, |2E| and |2F|, and a nodal curve R such that EF
=ER=1, FR=0.

Before giving the proof of Theorem 4.1, let us define #(R) for every nodal curve
Ron S by

#(R)= MEin {ER; |2E] is an elliptic pencil}.

Lemma 4.1.1. §(R)=0 for every nodal curve R on S.

Proof. Let R be a nodal curve on S. Assume ¢(R)=2 and let |2E]| be an elliptic
pencil with ER = ¢(R). By Lemma 2.7, we can assume |E + R| to be without fixed
components. Since (E+ R)>=2(¢(R)—1), Lemma 1.5 and (2.11) show that there
exists an elliptical pencil |2F| with

F(E+R)<@¢(R)—1 hence FR<@HR)—2

contradicting the definition of ¢(R).
In particular, ¢(R) <2 so that we can assume ¢(R)=1. We conclude by using
the Remark following Proposition 3.4.

(4.12) Proof of Theorem 4.1. iii) — i) and iii) — ii) are obvious. ii) — iii) follows
from the Remark following Proposition 3.4 hence we only need to prove that
i) - ii) that is every nodal Enriques surface is of special type. Ab absurdo, we
assume S to be nodal but not of special type. We fix a nodal curve R on S. By
Lemma 4.1.1, we can choose an elliptic pencil |2E| with ER =0. By Proposition 3.4,
there exists an elliptic pencil |2F| such that EF =1. Consider the fibre f of |2E]
which contains R, since S is not of special type, it is clear that f contains a nodal
curve R’ (not necessarily equal to R) such that FR’=2. The classification of
hyperelliptic systems [see iii) and iv) of (2.12)] implies that there exist two elliptic
pencils 2, | and |2E,| with E,E,=1and |F+R’|=|E, +E,). Then FE, =FE, =1
hence, by the Remark following Theorem 3.3, there exists an elliptic pencil [2E,]
such that E;F = E,E, =E,E, =1 hence E;R’=1 contradicting our assumption.

5. Projective Models

This section proves the existence of certain projective models for Enriques surfaces
or their associated K3 surfaces using the existence theorems of certain linear
Systems of Sect. 3.

(5.1) Notations. C will be an irreducible curve on 5. The map associated to |C| will
denoted by Jic) or simply f if there is no ambiguity:

£:8-f(S)CPHO(S, O4(C))* ~ P
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with n=p,(C)— 1. We denote by N the set of nodal curves R on S such that CR=0
and let p:S—S; be the map contracting the fundamental cycles of N onto a
normal surface S; with isolated rational double points, [A].

(5.2) Genus Two

(5.2.1) Non-Special Case. |M| will denote a non-special pencil of genus 2 on §,
There exist two elliptic pencils |2E,| and |2E,| such that EE,=1 and
M| =|E, + E,| (2.12). Itis well-known, [Co 1, Do 3], that |2M| defines a morphism
S of degree 2

S—Q,cP*
onto a 4-nodal quadric Q, in P4, intersection of the two quadrics of equation
x3+x34+x2=0, x2+xi+x2=0.

0, has four singular points of type 4,. The branch locus of f is composed of the
singular locus of Q, and a curve Be |0, (2)| which does not intersect the singular
locus of @, and which has admissible singularities, i.e. singularities of type a,, d,., e,..

Conversely, the minimal desingularization of Q, branched along the singular
locus of @, and a curve B as described above is an Enriques surface S together with
two elliptic pencils [2E,| and |2E,| such that E,E, =1 and such that [2E; +2E,|
defines the covering map S—(Q,.

By Corollary 2.9 and Proposition 3.4, this construction yields all Enriques
surfaces.

(5.22) Special Case. |M| will now denote a special pencil of genus 2 on S. We Jet
|2E| to be the elliptic pencil and R the nodal curve such that ER=1 and
IM|=|2E + R + K§|. Then |2M| defines a mqrphism f of degree 2 onto a degenerate
4-nodal quartic Q,, [Co 1, Do 3]:

f 'S “’Q 2 C ]P4
which is the intersection of the two quadrics of equation
x2+x2+x2=0, xox,+x3=0

Q, has one singular point of type A5 and two singular points of type A,. The
branch locus of f is composed of the singular locus of @, and a curve B € |0,(2)l
which does not intersect the singular locus of Q, and has admissible singularities.

Conversely, the minimal desingularization of a double cover of Q, branched
along the singular locus of Q, and a curve B as described above is an Enriques
surface S together with an elliptic pencil |2E} and a nodal curve R such that ER=1
and such that |2(2E + R)| defines the covering map S—Q,.

This construction yields all Enriques surfaces of special type.

(5.3) Genus Three

Theorem 5.3 [Co 1, V]. Every K3 surface which is the étale double cover of "
Enriques surface is birationally equivalent to a complete intersection of three quadric
hypersurfaces in P° which isolated rational double points.
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Proof. Let p:R—S be the étale double cover of an Enriques surface S. By
Proposition 3.6, S contains a non-hyperelliptic system |M| of arithmetic genus 3.
Then [p*(M))| defines the required morphism R—P?>, see [Co 1, Sect. 8].

(5.3) Genus Four (I)

(5.3.1) |C] will denote a non-hyperelliptic system of arithmetic genus 4 on S. By
Lemma 1.4.3, there exist three effective divisors e;, e,, 5 such that e} =0, ee;=1
for i=j and |C|=le, + e, +e;|. Using Lemma 2.10 and Theorem 3.3, |C] is easily
seen to be of one of the following types:

1) |E; + E, + E;| for three elliptic pencils [2E;| with E;E;=1 for i=j].

2) |2E\+ E,+R| for two elliptic pencils |2E,| and |2E,| and a nodal curve R
such that E,E,=E,R=1, E,R=0.

3) 3E;+2R; + R,| for an elliptic pencil |2E,| and two nodal curves R;, R,
such that E,R, =R,R, =1, E;R,=0.

Definition 5.3.1. |C| is said to be special if one of the following holds
i) |C|is of type 1) and E, + E, — E, is effective for some elliptic pencils |2E,|,
[2E,|, |2E;] such that |C|=|E, + E, + E,|.
ii) |C| is of type 2) and E, —R is effective (notation as above).
iti) |C| is of type 3) and E, — R, is effective (notation as above).

(5.3.2) We recall the following resuits, [Co 1, Sect. 7]:
1) fic| is of degree one if and only if |C| is not special.
2) |C| and |C + K| are not simultaneously special.

Proof of 2). The type of |C} is defined by the number of elliptic pencils |2E| such
that EC =2. In particular, |C| and |C + K] are of the same type. Since type 1) and
type 2) are considered in [Co 1, (7.8)], we will consider only the case when |C{ and
|C+ K| are of type 3). Ab absurdo, let us assume that they are special. Let |2E,|, R,,
R, (respectively |2F |, S|, S,) be an elliptic pencil and some nodal curves such that

‘C|=|3E1+2R1+R2|9 E1R1=R1R2=1, EI—R2>0,
|C+KS|=[3F1+2S1+S2|) F1S1=S1S2=1, F1—82>0.
Since |2E, | (respectively |2F,|) is the only elliptic pencil |2E| such that EC=2
(respectively E(C+Kg)=2), it follows that |2E,|=|2F,| hence E,=F, or

El =F1 + Ks.

Assume E, =F,. Then 2R, +R,~2S, +S,— K hence

R1(2S1 +S2 +Ks)=R1(2R1 +R2)= “"3 .

This is possible only if R, =S, hence R, ~ S, + K in contradiction with Riemann-
Roch,
. Assume E, =F, + K. Then 2R, + R, ~2S, +5, and as before R, =S, R, =S5,
In which case E; — R, >0and F, — S, =E, + Kg— R, >0 which is absurd since E,
and E, + K do not intersect.

Theorem 5.3.2, Let S be an Enriques surface and y, ...,y; some homogeneous
coordinate in P3. Then
i) S is birationally equivalent to a sextic surface in P* of the form:

: 2,22 2.2,2 _
YoX1%,X3q(¥) + @, yaxix3 +a,x3x3x3 + a;x3x3y5 + a4x3y6%1 =0.
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ii) Sisnodalif and onlyif S is birationally equivalent to a sextic surface in P* of
the form:
Yox2%34(y) +a1y8x3 + 2633 + asyox 1 X3x3 + a4 xx3x3 =0

for some linear forms x,, x,, X5, some quadratic form q(y) and some a;ck.

Proof. To prove i) (respectively the first part of ii)), one applies Enriques-Artin

theorem (see [L, Sect. 3]) to a non-special non-hyperelliptic system of arithmetic

genus 4 on § of type 1) (respectively 2)). Such a system exists by Corollary 2.9,

Theorem 3.5 (respectively the Remark following Proposition 3.4 and (5.3.2)).
The converse part of ii) follows from [L, Sect. 3].

(5.4) Genus Four (11)

(5.4.1) We let € be a projection of @ =Q, or @, from one of its smooth points. It is
a cubic surface in P? projectively equivalent to one of the following cubics:

Gyt X1X3X3+ X3X3X0+ X3XgX 1 + XXX, =0,
gz: x1x§+xe§+x1x2xO=0,
%3: x§+x%x2 +x2)C3x0=0.

The cubic surface €, are characterized (among cubic surfaces) by their singular
loci:

%, has four singular points of type A4,.

%, has one singular point of type 4, and two singular points of type A4,.

% has one singular point of type 4, and one singular point of type 4s.

€ =%, (respectively €,,%;) will be called a non-degenerate (respectively
degenerate) 4-nodal cubic.

Lemma 5.4.2. A non-hyperelliptic system |C| of arithmetic genus 4 on § is special if
and only if |Cl=2M —A| for some irreducible pencil |M| of genus 2 and a
fundamental cycle A of Ny, excluding the case where (M|, A) is of the form
(RE+ R+ K|, R) for an elliptic pencil 12E| and a nodal curve R such that ER=1.

Proof. a) We will first prove that |[2M — 4| is a special non-hyperelliptic system of
arithmetic genus 4 for every pencil |M| of genus 2 and every fundamental cycle 4
of Ny,.

Let |2M — 4| =|N|+ Z be the decomposition of |2M — 4| into its moving part
|N| and its fixed part Z. Then

@M—4)* _

3 3

4=dim|2M|>dim|2M — 4|2

implies
N2
3=dim|2M — 4| =dim|N|= 5
Then
MQRM—-A)=M(N+2Z)=4 hence MNZ4.
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By the Hodge index theorem
M2N2<(MN)? hence MN=4, MZ=0.
Then
8=NC2CM)=N(N+4+Z) gives N(A+Z)=2
and
(N+4+Z)*=8 gives (4+Z)*=-2.

Since M(4+ Z)=0 and since 4 is a fundamental cycle of N,,, this implies that
Z=0: |2M — A| has no fixed component.

Assume that [2M — 4| is a non-special hyperelliptic system of genus 4 so that
there exist two elliptic pencils |2E| and |2F] such that

EF=1 and [|2M—A|=|3E+F|.
Then
4=MQ2M)=M(E+ F)+2ME+MA

and the Hodge index theorem implies that | M| is numerically equivalent to |E + F]
hence

IM|=PBE+F—-M—A|=|2E+ 4|

which contradicts the irreducibility of |M} and |M + K|
Assume that |2M — 4] is a special hyperelliptic system of genus 4 so that there
exist an elliptic pencil |2E| and a nodal curve R with

ER=1, ]2M-—4|=|4E+R].

As before one proves that |[M|=|2E+ R+ K|, 4=R.

This last case being excluded, we can now prove that |[C|=|2M — 4| is a special
non-hyperelliptic system of genus 4. We will consider only the case when |M| is
non-special and leave the special case to the reader. So we let |2E;| and |2E,| be two
elliptic pencils such that

E1E2=1 and 'M|=}E1 +E2|.

Since [2M — A| is not hyperelliptic
E(2M—A)=2—-EA<L2 implies E(2M—A)=2 for i=1,2.

By (5.3.1), |C] is one of the following types:

i) IC|=|E, + E,+ E;|=|M + E | where [2E ] is an elliptic pencil with E;M =2.
£ Iii) |C|=|2E, + E, +R|=|M +E, +R| for a nodal curve R such that E;R=1,

2R=0.

In case i), QM—A4)=|M+E,| hence E;+E,—E;~4>0. In case ii),
(@M —4)=|M+E, +R| hence E,=R+ 4. In both cases, |C] is special

b) Conversely, let |C|=|E, + E, + E,| be a special non-hyperelliptic system of
genus 4 with |M|=|E, + E,|=|E, + 4| for an effective divisor 4. We only need to
che_ck that 4 is a fundamental cycle of N,. Let 4, be the fundamental cycle of N,
which contains the support of 4. Then AR = — RE; S0 for any R € N, implies that
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Z=4-4, is effective since 4, is minimal among all effective cycles D with
D?>= —2, DRZO for every ReN,,. Now (Z,+4,)*=—2 and M(Z,+4,)=0
implies Z, =0 since 4, is maximal among all cycles D such that D*= —2, DM =),

Finally, if |C|=|2E, + E, + R| (respectively [3E+2R, + R;|) is a special non-
hyperelliptic system of type 2) (respectively 3)) with E,=R+A4 (respectively
E;=R,+4) for some effective divisor 4, one shows as before that 4 is a
fundamental cycle of N,, where (M}=|E, + E,| (respectively |2E, + R+ Kg|) and
|2M — A|=|C]. This concludes the proof.

(5.4.3) Welet(]M, 4) be a pencil |[M} of genus 2 together with a fundamental cycle 4
of Ny, on S.

We assume that (|M|, 4) is not of the form (|2E+ R+ K|, R) for an elliptic
pencil |2E| and a nodal curve R with ER=1. We obtain a commutative diagram

a
\\ i

where §—Q is the map defined by [2M|, S—% is the map defined by |2M — 4] and
@€ is the projection from the contracted image of 4 on Q.

The branch locus of S —+¥ is composed of the singular locus of € and a curve
Be|04(2)| which does not intersect the singular locus of ¥ and which has
admissible singularities.

Conversely, the minimal desingularization of the double cover of a cubic
surface & =¥, branched along the singular locus of €, and a curve B as described
above is an Enriques surface S together with a special non-hyperelliptic system of

type i whose associated morphism is the covering map S—% ([Co 1, Sect. 7]).
We obtain a new characterization of nodal Enriques surfaces.

S

Theorem 5.4.3. An Enrigues surface is a nodal if and only if it admits a morphism of
degree two onto a cubic surface in P3. :

Proof. Assume that S is an Enriques surface together with a morphism f: S—% of
degree two onto a cubic surface. Then f is the map associated to a special non-
hyperelliptic system of genus 4, [Co 1], hence § is nodal.

Conversely, assume that § is a nodal surface. In view of the preceding
discussion it is enough to show that S contains a pencil |M| of genus 2 and a nodal
curve R, Ny, such that (M|, R,) is not of the form (]2E + R, + Kgl, R,) for an
elliptic pencil |2E| with ER,=1.

By Theorem 4.1, we can choose an elliptic pencil [2E] and a nodal curve R such
that ER = 1. The Remark following Proposition 3.4 allows us to choose another
elliptic pencil [2F| with EF =1, FR=0. Using Theorem 3.3, we see that one of the
following holds:

i) There exists an elliptic pencil |2G| such that GE=GF =1, GR=0.

ii) There exist two chains of nodal curves R, +...+R,, R, 1+ .- +Rs
(12 p<8) with R,=R and intersection graph:



Picard Group of Enriques Surfaces 595

Incase i), we take (M|, R,) to be equal to (|F + G|, R). In case ii), we take (M|, Ry) to
be equal to (I2E+R,+Kg|,R,)if p=3 and (2E+R,+ K|, R, ,) if p<2.

(5.4.4) Theorem 5.4.3 suggests to introduce a notion of %;-marking similar to the
notion of U-marking introduced by Dolgachev, [Do 2].

Definition 54.4. i) A ¥rmarked Enriques surface is a pair (S,|C|) of an
Enriques surface S and a special non-hyperelliptic system |C} of genus 4 of
type i).

’ ii) An isomorphism between two ¥-marked Enriques surfaces (S,|C]) and
(5, 1C) is an isomorphism f:S—S’ such that f*0s(C)=04(C).

We let U, be the open set of |0y (2)] of curves with admissibles singularities
which do not intersect the singular locus of ;. Then U, lies in the set of stable
points for the natural action of the automorphism group Aut%; of €; on [O¢ (2)|.

Welet Z;= U /Aut¥,. Then 2, =(respectively #,, #,) is an algebraic variety of
dimension 9 (respectively 8, 7). The generic point of &, corresponds to a smooth
curve of genus 4 together with a non-trivial point of order 2 whose associated
symmetric cubic is isomorphic to €; (see [Ca] for the construction of the
symmetric cubic associated to a point of order 2 on a smooth curve of genus 4).

%, parametrizes the set of isomorphism classes of €;-marked Enriques surfaces.

Assume #=C and let D/I' be the period space for Enriques surfaces
constructed by Horikawa [Ho]. There is a forgetful map which to a ¢-marked
Enriques surface (S, |C|) associates the period of S.

Theorem 5.4.5. The forgetful map R=R 1 #,11 R,-D/I" is a quasi-finite
morphism of algebraic varieties whose image is the irreducible variety of dimension 9
which parametrizes the periods of nodal Enriques surfaces.

Proof. The map P : #— D/T is shown to be quasi-finite as in [Do 2, Theorem 2.3].
Since an Enriques surface admits a ¢-marking if and only if it is of special type, the
image of P is the irreducible variety of dimension 9 parametrizing the periods of
En?iques surfaces of special type {or equivalently the periods of nodal Enriques
surfaces).

Remark. The structure of the map #—D/I" is related to the structure of the
automorphism groups of nodal Enriques surfaces. We hope to come back to this
question in a paper with 1. Dolgachev.

(5.5) Genus Six
The main result of this section is the following:

Theorem 5.5, Every Enriques surface S admits a morphism of degree one onto a
surface of 10 in IP® with isolated rational double points.

This will follow from Proposition 3.7 and

Theorem 5.5bis. Let C be an irreducible curve on S with C2 =10 and #(C)=3. Then
its associated map f =fiel

f:8>f(S)CPHO(S, 05(C))’ ~P°

'S @ morphism of degree one onto a surface with isolated rational double points.
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It was proved in [Co 1, Sect. 6] that f is a morphism of degree one onto 3
surface of degree 10 in IP5. So we only need to check that f(S) is normal. The
normality of f(S) implies that f factors through S and Zariski’s main theorem
implies that S is isomorphic to f(S).

The idea of the proof will be to combine the following two lemmas:

Lemma 5.5.1 [Co 1, Sect. 8). Let |M]| be a non-hyperelliptic system of genus 3 on S.
Then fiuy % fim+ x| is @ morphism of degree one onto a surface with isolated rational
double points.

Lemma 5.5.2. Let C be an irreducible curve on S with C> =10 and ¢(C)=3. Let |2
be an elliptic pencil with EC=3. Let |M| be the moving part of |C—E|. Then

i) |M| is a non-hyperelliptic system of genus 3.

ii) [C|=IM+E] or |C|=|M+E+R, +... +R,| where R, + ... + R, is a chain
of nodal curves with intersection graph

M

E R, Ry
Proof. Let |C— E|=|M|+F be the decomposition of |C— E} into its moving part
|M| and its fixed part F. By Riemann-Roch,

M? . (C—E)*
2

By the Hodge index theorem
40 M?>C2<(MC)%. hence MC27.

Since EC =3, we get MC =7, FC =0, M? = 4. Assume that [M| is hyperelliptic and
let e,, e, be two effective divisors such that e,e, =1, €2 =0, €3 =0, M| =|2¢, +e¢,|.
Then

10=C22 C(2e, + ¢, +E) 244(C)=12

is absurd. Therefore, [M| is not hyperelliptic and EC =3 implies that EM =2 or 3.
Assume EM =3. Then |C|=|E + M| by Riemann-Roch. This is case i).
Assume EM =2. Then EF =1, MF=1, F*= -2, and FC=0. Choose som¢

nodal curves R; and R, of F such that ER, = MR,=1. There is a chain of nodal

curves of F, say R,+ . +R,, connecting R, to R, Riemann-Roch theorem
implies that

&im|E+R,+... +R,+M|=5 hence F=R,+..+R, andweareincascii).

(5.5.3) Proof of Theorem 5.5

Step 1 (keeping the notations of 5.5.2). i) Let D be an effective divisor with p*=-2
DM =0. Then DCZL2.

ii) Let R be a nodal curve such that RC =2. Then f restricted to R is of degre?
one onto a conic.
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Proof. i) By the Hodge index theorem
20=(M~D)2C*<(M - D)C?

hence (M —D)C 2 5. Since C~E+Z+ D +(M —D), C*=10 and EC =3, it follows

that DC<2.
ii) Assume that f(R) is not a conic. Then f(R) is a line and

dim|C—R|=dim|C|—2=3.

Let |C— R|=|N|+ F be the decomposition of |C— R| into its moving part |N]| and
its fixed part F. Then N?>=6 and CN <8. By the Hodge index theorem

60=N2C:<(NC)*<64

hence NC=8, N(R+ F)=2, (R+F)?*=0, C(R+ F)=2 contradicting ¢(C)=3.
We let f=¢ - 8 be the factorization of f through S

752 5.5 f(S)cps.
Step 2. ¢ is injective.

Proof. It is immediate to check that H'(S, O5(C — E)) =0. This gives a short exact
sequence

HO(S, 05(C))—HO(E, 05(C))—0.

Since EC =3, it follows that ¢ restricted to 6(E) is an isomorphism onto a plane
cubic.

Assume that x and y are too distinct closed points of § not on a same
fundamental cycle of N and such that f(x)=f(y). By an argument similar to the
one given in Lemma 5.2.3 of [Co 1], we can assume that x, y do not lie on any nodal
curve of N. Since |M| has no base-points and |C|=|E + F + M|, x € E if and only if
Y€ E. Since we have just proved that ¢ restricted to to A(E) is injective, it is clear
that we can also assume that x and y do not belong to E+E’.

Since the curves of [M| and |[M + K| separate the points of S,,, by Lemma 5.5.1,
there exists a chain of nodal curves D=R, + ... + R, such that xe R,, ye R,, and
MD=0. By Step 1, DC=0, 1 or 2. Since x, y do not belong to any nodal curve of
Ne, DC=1or 2.

Assume that DC=2 and n>2. Then CR,=CR,=1 and f restricted to R,
(respectively R,) is a morphism of degree one onto a line I, (respectively [,) and
hol,=fR,+ ... +R,_,). Clearly ¢ restricted to 6(D) is injective, contradicting
Our assumption.

The other cases DC=1 and DC=2, n<2 is handled similarly.

Step 3. Let p be a closed point of S such that there exists a curve R € N, such that

l} FS;{ but there exists no curve R’ € N with pe R. Then f(p) is a smooth point of

Proof. By Step 1, ther;a is a nodal curve R with pe R, RM =0, and CR=1 or 2.

. Assgme that CR=1. Let |C— R|=|N| + F be the decomposition of |C — R| into

gls moving part |N| and its fixed part F. By Step 2, N2> =6 and by the Hodge index
corem

60=N2C2<(NC)?.
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Since NCZ9, this implies NC=8 or 9. Assume NC=8, then N(R+F)=2,
(R+F)*=0, and C(R+F)=2 contradicting #(C)=3. Therefore, NC=9
N(R+F)=3,(R+F)*= -2, C(R+F)=—1. Since CF =0 and p does not belong
to a nodal curve of N, p¢ F and p is a smooth point of R+ F. One easily checks
that |N| is not hyperelliptic. Since f restricted to R is an isomorphism onto a line
and since p is not a base-point of [N + F|, |C|=|R+(N + F)| clearly implies that
f(p) is a smooth point of f(S).

Assume CR=2. Let |C—R|=|N|+F as before. Then N>=4 by Step I and
NC=17 or 8 by the Hodge index theorem. Assume NC =8, then N(R+F)=4,
(R+F)*=—~2, C(R+F)=2. Since CF=0, p¢F. One checks that |N| is not
hyperelliptic and concludes as before. Assume NC=7, then N(R+F)=3,
(R+F)?=0, C(R+ F)=3, and |N| is not hyperelliptic. Let |2E| be an elliptic pencil
and Z an effective divisor such that R+ F=E + Z. Since [N} is not hyperelliptic,
NE22and |C|=|E + N}, Z=0by Riemann-Roch. Therefore, 2= CR = RN implies
that |R + N} is a non-hyperelliptic system. If p¢ F, p is a smooth point of R and not
a base-point of |F + N|. If pe F, p is a smooth point of F and not a base-point of F
and not a base-point of |R + N|. Then |C| =|F + R + N clearly implies that f(p)isa
smooth point of f(S).

Step 4. Let p be a closed point of S which does not belong to any curve of N.
Assume that f(p) is a singular point of f(S). Then the generic member of |C —p| is
smooth.

Proof. By Lemma 5.5.1 and Step 3, we can assume that pe E+ E’, say p< E. Since
|M| has no base-points, the multiplicity of f(S) at f(p) is the multiplicity of f(E)at
f(p). Since f(E) is a plane cubic image of a divisor of type A,, this multiplicity is
equal to 2. Clearly f(S) will be smooth in codimension one. It follows that the
generic member of |C — p| is smooth outside p. Otherwise, a generic 2-dimensional
linear system of hyperplane through f(p) would define an inseparable cover of P
of degree deg f(X)—2=8, contradicting char(k)=+2. .

Let us check that the generic member of |C — p| is smooth at p. Since p¢ E'+F,
it is enough to check that the generic member of |M + K3 — p| is smooth at p. I the
generic member of [M + K¢ — p|is irreducible this is clear since EM =2 or 3and Eis
singular at p. So we can assume that the generic member of |M +Kg—p| is
reducible. Since dim|M + Kg|=2 the moving part of |M + Kg—p| is a complete
system of dimension 1. So let

IM+Ks—p|=Z+|N]|

for an effective divisor Z>0 and a pencil |N| of genus 1 or 2. )
Assume first that |N] is an elliptic pencil. Then CM =7 and CN 26 implies
CN =6 and CZ = 1. Since |N| has no base-point, p € Z. Since p does not belong t0
any curve of N, p is a smooth point of Z hence a smooth point of the gener
member of Z +|N]. _
Assume that | N|is a pencil of genus 2. As before, we see that pis a smooth point
of the generic member of Z + |N| unless p € Z and pis a base-point of |[N|. If [N +E
is not hyperelliptic, we are done since F+Z+|N +E'| is a subsystem of [C -l
where p is a smooth point of F +Z and {N + E’| has no base-point. Therefore, W

1
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can assume that |N + E’| is hyperelliptic or equivalently EN=1.If F+0, ER, =1,
and (F~R;)+Z+IN+E+R,] is a subsystem of |C—p| which is smooth at p
because p is a smooth point of (F—R;)+Z and |N + E’+ R,| has no base-point.
Therefore, we can assume that F=0 hence EM=3. It is easy to check that
|M|=IN + Z| is of one of the following types:

a) IM|=|E+G+S§,+ ... +85, where [2G]| is an elliptic pencil and §,, s Sy
some nodal curves with intersection graph

S

E G

b) IM|=|2E+ R, + R, + K| where R, and R, are nodal curves with intersec-
tion graph

In both cases EM =+ 3, contradiction.
Step 5. ¢ is an isomorphism.

Proof. One proves as in Lemma 5.3.5 of [Co 1] that f(Z) is a rational double
point of f(S) for every fundamental cycle Z of N. So it will be sufficient to check
that f(p) does not belong to the singular locus of f(S) for every closed point p
which does not belong to any curve of N.. Ab absurdo, let p be a point which does
not belong to any curve of N and such that f(p) is a singular point of f(S). By
Step 4, the generic member of |C — p| is smooth. We can assume that the restriction
gof f to y is injective and that g(y) is smooth outside f(p). By assumption, the tan-
gent map to g is not injective at p hence

H'(y, 0(C—2p))~H'(y,0,(2p+ Ky)#+0.

Le.t 41,4, € be such that ¢, + g, €|0,(2p + K;)|. The fact that |0,(C)| has no base-
points implies that g, +p, q, + p. The injectivity of g implies g, =¢,. Then

Hl(y, 0(C~2g))~H"(y, 0,(2p+ K)) *0

implies that g(y) is singular at f (9 +f(p) a contradiction. This concludes the
proof of Theorem 5.5 bis.
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