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Let M be a smooth projective curve of genus g > 0. Let J be the Jacobian of  M and 
let M ") be the i th symmetric product. Fix a base point P e M  and define a map 
~bi: M ") ~ J by Oi(D)  = D - iP.  Mattuck [6, 7] has shown that, if i > 2g - 1, then 0i 
is a Ipi-g-bundle. The most interesting case occurs when i = 2g - 1, since in [1 ] the 
bundles for larger i are determined by this one, 

The inversion of  abelian integrals problem asks: What  is an explicit description 
of the transition functions of the bundle 0~ ? For  an excellent introduction to the 
problem, see Kempf 's  article [5]. Until now, the only complete answer was given in 
genus 1 by the Abel Inversion Theorem, the Riemann-Roch Theorem, and 
Riemann's approach through theta functions. Even without the transition 
functions, Gunning [1, 2] and Kempf  [3,4] were able to extract a great deal of  
information about  M from the bundles 0,. 

In this paper, we present a solution to the inversion of  abelian integrals problem 
in the cases 

(i) curves of  genus 2 
(ii) non-hyperelliptic curves o f  genus 3. 
The techniques we use are very geometric but essentially elementary. We 

strongly emphasize the role played by effective divisors and by the Riemann-Roch 
Theorem. To build sections, we use the commutative diagram 

M(g ) +Oo ~ M(2g- 1) 

j + n o - ( g - l ) e  ~ j 

where D O is a fixed effective divisor of  degree g - 1. The Jacobi Inversion Theorem 
says that 4~ is a birational surjection; hence, it has an inverse on an open set. It is 
then necessary to choose enough different D0's to trivialize the bundle. The 
geometry first enters when we must describe the open set over which a given 
collection of  Do, s determines a trivialization. We then use explicit knowledge of  the 
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canonical embedding of  M to describe the transition functions. For precise 
statements, see Theorems B and C, 

Remarks. (i) Based on our results, it seems reasonable to expect that a trivializing 
atlas of q520_ 1 : M~2~ 1) ._. j can be obtained using g + 1 Zariski open sets, each of 
which has complement equal to a union of  translates of the theta divisor. It should 
be of particular interest to interpret the geometry of  such an explicit trivialization in 
terms of  theta functions. 

(ii) All our results apply equally well to the linearized inversion of abelian 
integrals problem [5]. It is only necessary to supply the correct technical means for 
translating the section Do + ~b0-1 ( ) into a section of the linearized bundle. 

(iii) The critical geometric fact in the genus 3 case is the isomorphism between 
the space F(M,  s of  quadratic differentials and the space F(IW, ~ (2)] of 
conics. For curves of  higher genus, there is merely a surjection 

F (IP 0-1, (9 (2)) ~ F (M, Z# (2K)). 

More care will therefore be needed to exploit this geometry. It is intriguing to note 
that 

dimF(IP 0-1, (3 (2)) -- g2 q_g _ dim d o 
2 

dim F(M, s (2K)) = 3g - 3 = dim ~'g 

where a/9 is the moduli space of principally polarized abelian varieties of  dimension 
g and J/t'g is the moduli space of  curves of  genus g. One might hope that an explicit 
description from this point of view would provide further insight into the Schottky 
problem. 

1. Geometric Preliminaries 

We begin with a brief review of the problem, emphasizing divisors rather than line 
bundles. Let M be a smooth projective curve of  positive genus. A divisor on M is a 
finite collection D --- ~; niP i of points Pi ~ M with multiplicities n i ~ Z. The degree of 
D is deg(D)- -Zn  i. If  all ni > 0, then D is called effective. 

To each divisor D is associated a locally free sheaf s162 (D) of  rank one on M. On 
small open sets q/i, D r~ 0//~ is the divisor of  zeros and poles of  some rational function 
f~ on q/~. The transition functions of  5e (D) are given by multiplication by f / f j ,  which 
is invertible on q/i c~q/j. We will write d (D)= dim F (M, ~ (D)). 

Two divisors are called linearly equivalent, written D -,~ D', provided there exists 
a rational function f on M with divisor ( f )  = D - D'. If  s ~ F (M, 5r (D)), then its 
divisor of zeros (S)o determines s up to a constant. So, the projectivization 
IP(D) := IP(F (M, s (D))) is the space of effective divisors on M which are linearly 
equivalent to D. 

Let Jdenote  the Jacobian of M, which parametrizes linear equivalence classes of 
divisors of  degree zero. Let M ~i) be the i th symmetric product. A point D ~ M ti) is an 
effective divisor of  degree i. Choose a base point P e M  and define 

d~i:Mfi)~ J d o i ( D ) = D - i P .  
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Moreover, let Wg denote q5 i (M "1) in J. Mattuck [6] showed that, i f i  > 2g - 1, then 
b~ is a projective bundle whose fiber over R ~ Jis  IP i- g = IP(R + iP). The problem of  
inverting abelian integrals on M asks: 

What  is an explicit description of  the transition functions of q5 i ? 

Gunning [1, Theorem 1 1 ] reduces the problem to the case i = 2g - 1. F rom now 
on, we restrict our attention to this case. 

We approach the problem from a very geometric point of  view. Firstly, recall 
the following fundamental facts. 

Theorem (Riemann-Roch). Let K be the canonical divisor on M. Let D be any divisor. 
Then 

(O) = f (K - D) + deg (O) + 1 - g. 

Theorem (Jacobi Inversion). The map q)g:M~g~--~ J is a surjective birational 
equivalence. 

If deg (D) > 2g - 1, then • (K - D) = 0. The Riemann-Roch Theorem gives a 
computation of  ~ (D) that depends only on the degree; this is the first indication that 
~b i should be a bundle. I f0  < deg (D) < 2g - 1 and f ( K -  D) > 0, then we say tha tD  
is special. Most divisors are non-special; the Jacobi Inversion Theorem reflects this 
fact for divisors of  degree g. Write B ~  J f o r  the closed set on whose complement ~bg 
is an isomorphism. 

We now describe our  basic technique to get a section of  ~b2g_ 1 over a 
comprehensible open subset of  J. 

Proposition 1. Fix an effective divisor D O on M o f  degree g - 1 .  Let B o be the 
translate in J o f  B by D O - ( g -  1)P. Then D O determines a section 

go. j _  Bo ~ M~2g- 1~ 

~ 9-1, which is characterized by the fac t  that the divisor go (R) - D  o is effective. 

Proof. There is a commutative diagram 

j +Oo-~-l)v -~ J 

The compositefo, by the Jacobi Inversion Theorem, has an inverse on J - Bo. Take 

a o (R) =fo-- 1 (R) + D 0 . 

It is clear that ao (R) - Do is effective of degree g, and must be the unique effective 
representative of  its divisor class when R ~ J -  Bo. [] 

An explicit description o f  the transition function still requires two steps. Firstly, 
describe how to choose a collection D~01~, . . . ,  D~o a + ~ o f  effective divisors o f  degree 
g - 1  in such a way that the corresponding sections trivialize M tz~-l~ on a 
describable open set. Secondly, give an explicit description of  how the sections 
Change when the collection of  effective divisors is changed. 
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We illustrate the usefulness of  emphasizing divisors with the following result, 
which we will need later. Define f :  M -~ J by f ( X )  = X +  K -  (2g - 1)P. Notice 
that f is the translation of  the usual embedding q61 by the degree zero divisor class 
K -  ( 2 g -  2)P; that is, f ( M )  = W1 + K -  ( 2 g -  2)P. 

Theorem A. The pullback f *  (q52~_ 1) is a trivial bundle on M, with fibre naturally 
isomorphic to IP(K). 

Proof Let X E M. The fibre over X is given by projectivizing 

F (M, 5~ ( f ( X )  + (2g - 1) P)) = F (M, .~o (K + X)).  

But t (K + X) = • (K) = g and there is a natural inclusion 

F (M, L,e (K)) ~ F (M, s (K + X)). 

By dimension counting, this inclusion is an isomorphism. The fibre is therefore 
independent of  the point X and the pullback bundle is trivial. [] 

2. Curves of Genus Two 

Let M be a curve of  genus 2. In this section we study the IPl-bundle q5 3 : M <3) ~ J. As 
in Proposition 1, the choice of a single point Qo ~ M determines a section a 0 of  ~b 3, 
which is characterized by the fact that 

ao (R) = Eo (R) + Qo 

where E o (R) is the unique effective divisor linearly equivalent to R + 3 P - Qo. The 
section is defined on an open set J -  B o for a translate B o of B, the image under ~b2 
of  the locus of  special divisors of  degree 2. 

Lemma 2. B o is a single point o f  J; namely, B o = [ K +  Qo - 3P].  

Proof The canonical class is the unique special divisor class of  degree 2 on the 
hyperelliptic curve M. [] 

Now let Q = {Qo, Q1, Qoo} be an ordered triple of  points of  M which lie in distinct 
fibres of  the canonical hyperelliptic map of  M to IP 1, and which are also not 
ramification points of  this map. There are three corresponding sections of ~b3 on 
some open set of  J. A trivialization of  q~ 3 is determined over the open set where these 
sections take on distinct values. 

Proposition 3. Let ql be the maximal open set where the sections corresponding to Q 
trivialize d?3. Then J - Yi consists of  the union of  three translates of  the theta divisor; 
namely, 

W x + [ O o + O l  - 2 P ]  

W1 + [Qo + Q~ - 2P] 

W1 + [01 + a ~  - 2P] .  

Proof By symmetry, it is enough to determine the locus where ao(R)= a~(R). 
These sections are equal if and only if there is an equality of  divisors 

Eo(R) + Oo = E, (R) + Q,. 
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Since Qo ~ Q1, the latter equality implies 

E o (R) = a x + X 

E~ (g) = Qo + X 

for some X ~ M .  Hence the dependency locus is 

{ R e J : R ~ Q o + Q I + X - 3 P  forsome X e M } = W I + [ Q o + Q ~ - 2 P  ]. [] 

Proposition 4. Let Q and Q be two triples of points which determine trivializations of  
?73 on open sets Yg and ~#. Assume all 6 points of  Q w Q  have canonically distinct 
images. Then J -  (Yg w E )  consists of  exactly 18 points. 

Proof. This is a special case of the Poincar6 relation. It suffices to check that 

I =  W 1 + [Qo + Q1 - 2P]c~ W 1 + [Qo + ~?l - 2P] 

contains exactly 2 points. If  R � 9  then there exist X, Y e M such that 

R +  3 P ~ X +  Qo+ Q1 ~ Y +  Qo+ Q_l. 

Write * for the hyperelliptic involution on M. Then 

X +  Y* ~ (Y+ ~)o + Q1) - (Qo + Q,) + Y* 

,,, K +  (Qo + Q1 - Qo - Q1). 

By the assumption on Q and Q, the latter is a nontrivial translate of  the canonical 
class, hence nonspecial. So, it has a unique effective representative S + T. Thus, the 
only 2 points of I occur when 

(i) X = S Y = T* 

(ii) X =  T Y = S* . [] 

Proposition 5. There exist 3 triples Q, Q, ~ such that the union of  the corresponding 
trivializing neighborhoods is 

ql u~l U~----- J. 

Proof. Let Q and Q be any 2 triples as in Proposition 4. It suffices to choose Q so 
that the translates of  the theta divisor by pairs of  points in ~9 miss the 18 points of  
the complement of q /u f f .  This is an open condition. [] 

Finally, we address the question of how to describe the transition functions. Fix 
a model of M of  the form 

M : y 2 = h(x) 

where h(x) is a monic polynomial of degree 6 with distinct zeroes. Fix a triple Q. A 
general point R e J determines a unique pair X, Y e M with 

X +  Y , , ~ R + 3 P - Q o .  

Functions on J will be described by symmetric functions in X and Y. 

Lemma 6. Suppose X, Y, Qo and Q* lie in distinct fibres of  the canonical map. Then 
there is a unique cubic C of the form 

C:y = f ( x )  

such that C passes through all 4 points. 
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P r o o f .  I f  all 4 points lie in the affine (x, y)-plane, the result is clear. The potential 
difficulties arise if one of  the points lies over the singularity at infinity in the planar 
model. Homogenize the equations of  M and C in the standard way and pass to the 
affine y = 1 where 

6 

M :  z 4 = 1-[ ( x  - a~z)  
i = 1  

3 

C : 2  2 = d  l-I ( x - b i z ) .  
i = 1  

The successive blow-ups which desingularize both curves can be summarized by the 
substitutions 

z = t u  3 x = t u  2 

whence 

M: 1 = t 21--1 (1 - a l u )  

c:  1 = dt H ( 1  - biu). 

The exceptional points over oo occur where u = 0. Thus, M meets C at a point over 
oo if and only if d = + 1. Since this imposes exactly one condition on C, the result 
follows. [] 

The curves M and C intersect in points which are determined by the zeroes of 

h ( x )  - f ( x )  2 = O. 

This is a sextic equation, with four zeroes given by the x-coordinates o f  X, Y, Qo, 
and Q*.  Factor  these out and let q ( x )  denote the monic residual quadratic. Define a 
rational function in M by 

7 = VQ, R(x,Y) = (Y  - f ( x ) ) / ( x  - x o o ) q ( x ) ,  

where Qoo = (xoo,yo~). For  fixed Q and R, 7Q, R is a degree 3 map to IP 1 such that 

(Tq, R)o = X +  Y +  Qo = ao (R) 

(TQ, R)oo = a~  (R). 

In order to normalize this function correctly, let 

CQ, R= Ve, R(Q1) �9 

If  R e ~//is a point where the hypotheses of  Lemma 6 hold, then cQ, R is a non-zero 
constant. Define 

I[]O, R ~- 7Q, R/CQ, R. 

So, ~Q,R determines an isomorphism 

W(F(M, ~e (R + 3/'))) ~ .n  ~1 . 

As R varies, the trivialization of  4)3 made explicit by ~ agrees with the one defined 
abstractly as corresponding to Q. 

Unfortunately, the definition of ~ does not  make sense for all R e6#. The 
difficulty occurs when 2 of  the 4 points X, Y, Q0, Q* lie in the same canonical fibre. 
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If 2 such points are equal, then there is no problem since one has merely specified the 
tangent direction to C at a point. If  X =  Y*, then the point 

R = [X+ Y + Q0 - 3P] = [K+ Oo - 3P] ~ / ,  

so there is again no problem. Finally, what happens when X =  Q* ? Then 
R + 3P ,,, K +  Y(R)  for uniquely determined Y(R)  and the appropriate definitions 
are 

~' Q,R = ( x  - -  Xo ) / ( x  - -  x ~ )  

%,R = 7Q, R/~Q,~(Q~). 

In any case, let ~ ,  ~ (z) also denote the divisor naturally defined by the fibre of ~o, R 
at z e IP 1. For  most R e q/, ~ ,  ~ (z) has degree 3 and is linearly equivalent to R + 3 P. 
When it does not, it has degree 2; and this case was described above. So explicitly a 
trivialization on q / i s  given as follows: 

i#-1 : q / x p 1  ._., q531 (og) 

is defined by 

- 1  ~-1 (R,z)--- )'~r if ~ is a degree 3 map to IP 1 
- 1  ~ IgQ, R(Z) + Y(R)  otherwise. 

One can check, essentially by l 'H6pital 's Rule, that - 1 ~Q,R varies continuously with 
R e ~/. By construction, ~ is the trivialization determined by Q. 

Theorem B. Let Q and Q be two triples o f  points o f  M which determine trivializations 
of d? a on open sets ~ll and ~g. Then the transition function z = ~ o ~-1  is completely 
determined by 

(0) = v, (C)o). 
T ( I )  = I ] / ( 0 1 ) .  

~(~)  = ~ , ( ~ ) .  

Proof. The equations hold by construction. Since t is an automorphism of a l P  ~- 
bundle, it is determined by its values on the three points O, 1, and m.  [] 

3. Non-Hyperelliptic Curves of Genus Three 

Let M be a non-hyperelliptic curve of genus 3. The canonical model of M is a degree 
4 plane curve; a canonical divisor is a 4-tuple of collinear points. Fix a base point 
P e M  to define the lp2-bundle q~5 : Mrs) ~ J. In order to describe sections, we need 
to understand special divisors. 

Lemma 7. Every special divisor of  degree 3 on M is linearly equivalent to K - X for 
SOme X e M. 

Proof. If  D is special, then Y ( K - D ) >  0. Since deg ( K - D ) =  1 and M is not a 
rational curve, an effective representative of K -  D is a uniquely determined point 
X e M. Hence D ,,, K -  X. [] 
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In the notation of  Sect. 1, the lemma says that 

B = - W~ + [ K -  4P] .  

Let D o be an effective divisor of  degree 2 on M. By Proposition 1, Do determines a 
section 

a o (R) = D O + E o (R) 

where Eo (R) is the unique effective representative of  the class R + 5P  - Do. The 
section ao is defined on the open set J -  B o where 

B 0=  B +  [D o -  2 P ] =  - W  1 + [ K + D  o -  6P] .  

To trivialize ~bs, it will be necessary to specify four independent sections. 
Let Q =  {Qo,. . . ,  Q3) be an ordered 4-tuple of  points of  M, no 3 o f  which are 
collinear. View the subscripts as elements of  the cyclic group 71/4. Now define four 
sections of  ~b 5 by 

0" i (R) = ai  + 0i  + 1 + E1 (R). 

Also, define A i = W 2 + [Qi + Qi+ l + Q i +  2 - 3P]. 

Proposition 8. Let q/ be the maximal open set in J over which the collection of 
sections {ai} trivializes 05. Then 

3 
J - ~ =  UAI.  

/ = 0  

Proof Fix R ~ J. Write S i = 0- i (R) 6 IP (R + 5 P). I f  no 3 o f  the S i are collinear, then 
there is a unique isomorphism FR: I P ( R + 5 P ) ~  ]p2 such that 

F~(So) = (1:0:0) 
F~(S~)=(0:I  :0) 

r ,  ($2) = (0:0:  1) 

FR(S3) = (1:1 : 1). 

So, it is enough to determine when 3 of  the Si are collinear. By symmetry under the 
action o f  the cyclic group, it suffices to determine this for $1, $2, $3. 

If St = Sz, then there is an equality of  divisors 

Q1 + Q2 -1- El (R) = Q2 + Qa + E2 (R).  

Cancel the common term Q2. Since Q1 + Q3, this equality forces Qa to lie in the 
support of  E x (R). Therefore 

R ,-, QI + Q2 + El (R)  - 5P ,,~ Qt + Q2 + Qa + x +  Y -  5 P  

for some x,  Y ~ M. So, $1 = $2 if and only if R ~ A 1. 
Suppose S~ 4= $2. The line spanned by these two points in IP(R + 5P) is just 

L = I P ( R + 5 P - Q 2 ) .  So, S 3 e L  if and only if S a -Q2 is effective. Since the 
Qi are distinct, this can only occur if E 3 (R) - Q2 is effective. But then 

R,~ Qo + Q3 + E 3 ( R ) -  SP.,. Qo + Q3 + Qz + X +  Y -  s p  

and R ~A 2. So $1, $2, $3 are coUinear if and only if R cA ~ wA2. The result now 
follows by symmetry. [] 
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Proposition9. Let Q J = { Q i  o . . . . .  Q~} be a 4-tuple on M which determines a 
trivialization o f  q5 5 on a maximal open set ~l J. ,4 complete trivializing atlas for q5 s can 
be obtained by choosing 4 such general collections QJ. 

Proof Choose Q1 arbitrarily. Define 

yj  = j _  a# l _ ... _ oll j " 

Assume inductively that the firstj - 1 collections have been chosen so that y i -  t has 
codimension j -  1 in J. Write 

y j -  1 = (,3 Zs 
S 

as a union of irreducible components. For  each s, pick a point R, ~ Z~. 
Choose Q~, Q~ to be points general enough and not lying in an earlier collection 

so that R~ + 5 P - Q~ - Q~ has a unique effective representative, which is denoted 
A s. Then A = U  supp(A,) is finite. Choose Q~ ~ M \ A  general enough so that 

s 

R ~ + 5 P - Q J i - Q ~  has a unique effective representative B~(i=0,1). Also let 
Bi= U supp (B~) for i = 0, 1. Let C =  A wB  ~ wB  x . Then C is also finite. Choose 

S 

Q~ ~ M - C. By construction, R~ e q/J for each s. Therefore, 

codim ( YJ, J) = j .  

Since J is 3-dimensional, Y* = 0. [] 

In order to describe the transition functions, we must first develop a better 
geometric interpretation of the fibre IP(R + 5 P) of ~b s over R ~ J. Let D (R) be an 
effective representative of  the class 2 K -  R - 5P. By Proposition 1, D(R) exists and 
is generically unique. Non-uniqueness occurs when D(R) is special; i.e., when 

2 K - R - 5 P , , , K - X  R , , ~ K + X - 5 P .  

Let M o = W 1 + [K - 4P], V o = J - M o. So D(R) is uniquely determined if and only 
i f R E V  o. 

Proposition 10. I f  R e Vo, then 1" (M, .W (R + 5P)) is naturally isomorphic to the 
vector space ~ (D(R) )  o f  all conics in ]p2 through the points D(R). 

Proof As usual, multiple points of D(R)  should be thought of  as infinitely near 
points corresponding to the tangent directions of  M. Since R e V0, the points of  
D(R) are non-collinear and the vector space cg (D(R)) has the correct dimension. 

Since M is canonically embedded, the space F(M,  5r is naturally 
identified with the space of  all conics in IP 2. Under this identification, the subspace 
~(D(R)) of conics with specified base points D(R) is the image of 

F (M, s (R + 5 P)) = F (M, L~' (2 K -  D (R))) ~ 1" (M, s (2 K)). [] 

This interpretation can be extended over all of J. By Theorem A, ~b s restricts to 
the trivial bundle on M with fibre ]P(K) = space of  lines in IP 2. For  R e M o , D ( R  ) 
Consists of  three points on a fixed line L x through X,,~ K - D ( R ) .  So, C#(D(R)) 
COnsists of  the reducible conics L .  L x for varying L. 

Corollary 11. The lPZ-bundle r s : M ~s) --. J is isomorphic to the bundle whose fibre 
over R e J  is P(Cg(D(R))). 
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Let Q be a 4-tuple on M defining a trivialization of  4, 5 on the open set q/. The 
conic Ci ~ IP (c~ (D (R))) which corresponds to the section ai (R) is the unique conic 
through the five points 

Q i +  Qi+~ + D ( R ) .  

Pick arbitrary equations 7~ e Cg(D(R)) whose locus of  zeroes is Ci. These equations 
need to be normalized correctly. For  each R ~ q/, we have 

C o 
i 

C2 

0 o 

The common unlabelled intersection points form the support o l d  (R). The point S 
is defined to be the unique fourth intersection point of  C O and C2. Write 

= (70 : 7x : 72). Then 7 is a quadratic transformation of  IP 2 which, when restricted, 
determines a morphism 7M : M ~ IP 2 . 

7 ( Q 1 ) =  ( 0 : 0 : 1 )  

~, ( s )  = (o:  1 :o) 

7(Q2) = ( 1 : 0 : 0 ) .  

Normalize the choice of  the 71 so that 

vi (Qo) = -I ~o (Q~) = -I. 
72 71 

Then the normalized 7 is completely determined by the fixed 4-tuple Q and the 
variable R e q/. 

Proposition 12. Let Q be a 4-tuple o f  points of  M determining a trivializing 
neighborhood ~l for d~5. Let R eYl and FR: IP(R + 5P) --~ IP 2 be the isomorphism 
described abstractly in Proposition 8. Then F~ is induced by the quadratic 
transformation 7 given above. 

Proof. Let ~ : ~ )2  ---9. ]p2  be a minimal resolution of  the indeterminacy ofT. So, rt is a 
regular birational map and there exists a regular map ~7: I P 2 ~  Ip 2 yielding a 
commutative diagram 

)2 

/ \  
]I)2 )' :- ]I)2 . 
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Let E be the exceptional divisor in IP 2. For  any divisor D in IP 2, let /~ denote its 
proper transform. Notice that 

Ci " M =  Ci " M -  D(R) .  

Take coordinates (x o : x 1 : x 2 ) in IP 2. Let H i be the hyperplane x i = 0 and let H be the 
hyperplane x o -t- x l  + x 2 = O. Then 7" (xi) = ~i for i = 0, 1, 2. So 

~ * ( H , ) = e , .  

Therefore 

for i =  0,1,2.  
isomorphism 

?~(H,)  = Ci" M = C," M -  D(R)  = ai(R) 

In particular, ?* (~,2(1)= s  5P)  and hence ~'M induces an 

(y . )  - 1 : IP (R+  5P) ~ IP 2 = IP(F (IP 2, (.9 ( 1 ) ) ) .  

The previous computat ion shows that F R and (y*)-1 agree on the three points 
Co, C1, C2. But, because of  the normalization, 

h- -  y*(Xo § Xl-}- x2).-- 70 § 71§  y 2 

is such that h (Qo)= h ( Q 3 ) =  0. Thus 

i* ( g )  = (73 

and 

Therefore, F R = ( y ~ ) - l .  []  

y* (H) = a 3 (R). 

T h e o r e m  C. Let  Q, Q be two 4-tuples on M which define trivializations o f  cks on 
ql, ~#, respectively. Let r = Fo i f -1  be the transition function. Then z is completely 
determined by 

"~ (0:0 : 1) = ~](Q1 ) 

�9 (1 : o : o ) = ~ ( ~ )  

~ ( l :  - 1  : 0) = ~ , (~3)  

~(0:1: - 1 ) =  ~(~o). 

Proof. The equalities hold by the construction o f  y and by Proposition 12. The 4 
specified points of  IP 2 are in general position. An automorphism of  IP 2 is 
determined by its action on 4 points in general position. []  
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