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1. Introduction 

In this article we give proofs of the theorems announced in [7] on the algebraic 
independence of values of elliptic functions, Let ~(z) be a Weierstrass elliptic 
function with algebraic invariants g2, g3. If go(z) has complex multiplication we 
write k for the associated quadratic field; otherwise, if go(z) has no complex 
multiplication, then k denotes the rational field ~ .  For an integer n > 1 let ul . . . . .  u, 
be complex numbers linearly independent over k, and for an integer m > 1 let 
vl . . . . .  vm be complex numbers linearly independent over Q. Our  results are as 
follows. 

Theorem 1. I f  mn > 2m + 4n then at least two of the numbers 

go(uivj) (1 < i < n ,  1 =<j<m) 

are defined and are aloebraically independent over ~ .  

Theorem 2. I f  mn > 2m + 2n then at least two of the numbers 

ui, go(uivj) ( l < i < n ,  l < j < m )  

are defined and are alaebraically independent over 1~. 

Theorem 3. I f  mn> m + 4n then at least two of  the numbers 

vj, go(u,vi) (l < i < n ,  l < j < m )  

are defined and are algebraically independent over ~ .  

Theorem 4. I f  mn > m + 2n then at least two of  the numbers 

ui, vj, go(uiv~) (l < i < n ,  l < j < m )  

are defined and are algebraically independent over ~ .  

Theorem 5. Suppose that m = 4, n = 2 and that the numbers 

go(u~v.i ) (1 <=j<m) 
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are defined and are algebraic over ff~. Then at least two of the numbers 

u~,vj, go(u~vj) (l ~_i<n, l < j < m )  

are defined and are algebraically independent over ff~. 

Some numerically weaker results of the same form, but relating to more general 
functions, were obtained by the second author in [17]; for example, they imply our 
Theorem 2 with m = 16, n = 3 (instead ofm = 6, n = 3), See also the related work [11, 
12] of Smelev, and the earlier results [3] of Brownawell and Kubota on 
transcendence types. 

We leave it to the reader to deduce the usual corollaries from our theorems by 
suitably specializing the u's and v's. But in the case of complex multiplication two 
of these are sufficiently interesting to be recorded here. 

Corollary 1. Suppose go(z) has complex multiplication over k:t:ff~. Then if u is a 
complex number such that go(u) is defined and is algebraic over if), and fl is cubic over 
k, the numbers go([3u), ~o(fl2u) are defined and are algebraically independent over Q. 

Corollary 2. Suppose ~a(z) has complex multiplication over k 4:if). Then at least one 
of  the numbers go(go(l)), go((go(1)) 2) is defined and is transcendental over Q. 

Our results are the natural elliptic analogues of theorems of Gelfond [6], 
Brownawell [1,2], Smelev [10], Tijdeman [14], Waldschmidt 1-15, 16], and 
Wallisser for the exponential function. In particular Corollary 1 may be compared 
with Gelfond's result on the algebraic independence of ~P, ~a2 for algebraic ~ 4= 0,1 
and cubic ft. And Corollary 2 may be compared with the theorem of Brownawell 
and Waldschmidt to the effect that at least one of e e, e ~2 is transcendental. 

An essential component in our proofs consists of some algebraic zero estimates 
for polynomials in elliptic functions. These replace the fundamental analytic 
estimates [13] of Tijdeman for the exponential case. They will be proved in Sect. 2 
as a consequence of our recent work [9]. Then in Sect. 3 we prove Theorems 1, 3, 
and 4. Here we shall be comparatively brief in our exposition, since this part of the 
proof closely follows the exponential analogue, apart from the (by now routine) use 
of the trick known as the Baker-Coates argument. Then in Sect. 4 we prove 
Theorems 2 and 5. Here we shall be even briefer, and we shall leave to the reader 
the detailed checking of the zero estimates required. 

We end this introduction by deducing Corollaries 1 and 2. Choose z such that 
k=ff~(z)4:~.  Corollary 1 can be proved in two ways. We put m=6,  n=3.  Then 
either we apply Theorem 2 with u, = 1, u2 = fl, u3 = f12 and 

v =u, vs= Zu, v4= u, vr=  2u, 

or we apply Theorem 3 with u, = u, u2 = ~u, u3 = ~2u and 

v l= l ,  v2=#, v3=# z, v4= , vs=T , 2. 

For Corollary 2 we can apply Theorem 5 with ul = go(l), u2 = 1 and 

v 1 = 1 ,  v2= go(l), v 3 = z ,  va=rgo(1), 

since it is well-known that go(l) is not in k (and is even transcendental). 
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2. A Zero Estimate 

Let ~o(z) and k be defined as in Sect. 1, let Ae be the period lattice of ~o(z), and let 
~o = ~ |  be the set ofaU xo9 for x in I~ and 09 in :T. Then ~o is a vector space 
over k. For integers m > ], n > ] let ul . . . . .  un and vl . . . . .  vm be complex numbers 
linearly independent over k and Q respectively. Let U be the vector space over k 
generated by u ~ .. . . .  u,, and let V be the vector space over ~ generated by vt, ..., vm. 
We define integers mr=mr(U, V) (1 < r < n )  as follows. For an integer r with 
1 < r < n let m, be the maximum dimension over ~ of any subspace V' of V for 
which there exists a subspace U' of U, of dimension r over k, such that u'v" lies in 2'o 
for all u' in U' and all v' in V'. Finally let Zo be a complex number such that for all v 
in V none of the numbers z o + uiv (1 < i < n) lies in Le. 

Proposition 1. There is a constant c depending only on m and n with the following 
property. Let  S>O be a real number and let D >  1, L>= 1, T >  1 be integers satisfying 

TS  m > cL D" ,  S ~ > c L D  "-2 (1) 

and 

Tsm-m,>=cD r ' S ~ - ~ r > c D  , -  1 (l < r < n ) .  (2) 

Suppose P = P(xo, x l  . . . . .  Xn) is a polynomial, o f  degree at most L in Xo and of degree 
at most D in each of  x l , . . . ,  x , ,  such that the function 

~(z) = P(z, so(Zo + u i z ) , . . ,  SO(Zo + uoz)) 

satisfies 

~p")(s~v~ + ... + S~Vm) = 0 

for all integers t, st ,  ..., s m with 

O<__t<T, O<S~,...,Sm<=S. 

Then P is identically zero. 

Proof. This is a straightforward deduction from one of the main results of[9] for a 
product of k group varieties. For the convenience of the reader we reproduce this 
result here in the case k = 2, which happens to suffice for our applications. 

Accordingly let H and K be commutative group varieties defined over the 
complex field ~ and embedded in projective spaces FM and PN for integers M __> 1 
and N > 1 respectively. Then G = H • K is embedded in ~ u  • PN, whose points can 
be described in the usual way in terms of biprojective coordinates x0 . . . .  , xM and 
Y0 .. . . .  YN. Since G is a smooth variety, it has the natural structure of a complex 
manifold. Let �9 be an analytic map from C to G that is a homomorphism of 
additive groups, and denote also by r the image ~(C) in G. Assume �9 does not 
reduce to the origin of G. 

For an element g of G and a bihomogeneous polynomial P in 
I~lXo, ..., XM, Y0 .. . . .  Y~] we define the order of vanishing of P at g along �9 as 
follows. It is well-known that the map Tg from G to G representing translation by g 
is analytic. Hence the composition ~(z) = Tg(~(z)) is an analytic map from �9 to G. 
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In particular, there exist functions 

~0(z)  . . . . .  ~ ,~(z) ,  ,to(Z) . . . . .  ,TN(z), (3) 

analytic near z = O, such that for all z sufficiently small their values arc biprojective 
coordinates of ~P(z). If now the function 

f (z)  = P(~o(Z), ..., ~u(z), tl0(z) . . . .  , ~/N(z)) 

is identically zero we write ordgP= oo, this symbol being subject to the usual 
conventions. Otherwise we define ordgP as the order of zero of f (z)  at z = 0. It is 
easily seen that this definition is independent of the choice of functions (3) that 
represent ~V(z). 

Next we assume that H and K are disjoint in the sense described in [9]. 
Namely, we assume that every connected algebraic subgroup C of G has the form 
C = A x B for algebraic subgroups A of H and B of K. Let X be a finite subset of G 
containing the origin. Suppose the dimensions of H and K are p ~ 1 and q ~ 1 
respectively. For integers r, s with 

O < r < p ,  O<_s<q, r+s>=l 

we define quantities Q,s(X) as follows. Firstly, ff either H has no algebraic 
subgroups ofcodimension r or K has no algebraic subgroups of codimension s we 

put Qr~ (X) = IXl 

the cardinality of X. Otherwise for each subgroup C of G write tX/C[ for the 
maximum number of elements of X that are distinct modulo C. Then we put 

Q,s(X) = min IX/C[ 
c 

as C runs over all connected algebraic subgroups of G of the form C = A • B with A 
a connected algebraic subgroup of H of codimension r and B a connected algebraic 
subgroup of K of codimension s. Finally for an integer k > 1 let X ok) denote the set 
of all sums x I + ... +Xk for xl,  ..., Xk in X. 

Now the Main Theorem (disjoint version) of [9] states the existence of a 
constant c' depending only on H and K with the following property. Suppose 
for integers L > I ,  D ~ I  and T > I  there is a polynomial P' in 
~[Xo,  .... X u ,  Yo . . . . .  Y~], homogeneous of degree at most L in X o . . . . .  X M and 
homogeneous of degree at most D in u . . . . .  YN, that vanishes at each point of 
X ~v+~ to order at least T along ~. As in [9], we say that a group variety embedded 
in projective space is linear if its addition laws can be given by bilinear forms. Let 
T O be any integer with T O < Lif  H is not a linear group variety and To < D if K is not 
a linear group variety. Suppose that 

TQ,~(X)>__c'L~D ~ (O<r~p,  O<s<q,  r + s ~ l )  (4) 

and 

ToQ,s(X)>__c'L'LP (O~_r<p, O~s<q,  1 < r + s < p + q ) .  (5) 

Suppose further that either 

ToQw(X) ~_ c'LPD q 
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or  

IX/Gtor, I = IXl, (6) 

where Gtors is the torsion part of G. Then P'  vanishes on all ofg + �9 for some 0 in G. 
We can now deduce our Proposition 1. Let a(z) be the Weierstrass sigma 

function associated with go(z), and denote by lp(z) the point in P2 with projective 
coordinates 

(Zo + z) (~(Zo + z))3, go,(zo + z) (~(z o + z))3, (a(zo + z)) 3. 

As in [8, p. 511] denote by E the elliptic curve such that ~p is a group 
homomorphism from 112 to E. Thus E is embedded in P2, and K = E "  can then be 
embedded in ~N by means of the standard Segre map )~ from IP~ to FN, where 
N = 3 " -  1. Also the additive group H =~E can be embedded in F1 as a linear group, 
and we put G = H x K. From part (i) of Lemma 7 of [9] it is clear that H and E are 
disjoint, since the only relevant subquotients are H and ElF respectively, where F 
is a finite subgroup of E. These cannot be isomorphic, as one is complete and the 
other is not. Hence by repeated use of part (ii) of Lemma 7 of[9]  we see that H and 
K = E "  are also disjoint. 

We define the map �9 from ~ to G = H x K by 

(/J(Z) = (Z, ,~(~p(u 1 Z), . . . ,  ~(UnZ))),  

and the points gt, ...,0,, of G by 

0j=  ~(vj) (1 __<j__< m). 

Let X be the set of all combinations s191 +.. .  +Smgm for integers st . . . . .  sm with 

O<=s 1, ...,sm<__S/(n+ l).  

Thus any 9 in X t"+l) has the form g=s~o~ + ... +smgm for integers s~, ...,sin with 
O<--_Sl,...,S,~<--_S. If V=StVl+...+SmVm then g=~(v)  and so the map ~P(z) 
= Ta(~(z)) is given by 

~'(z) = ~(z  + v) = (z + v, ~(~,(u,(z + v)) . . . . .  ~,(u.(z + v)))). 

Since by hypothesis the function 

,p(z + v) = P(z + v, ~(Zo + u d z  + v)) . . . . .  ~a(Zo + u.(z + v))) 

has a zero of order at least T at z =0, it follows without difficulty that the 
polynomial P of Proposition 1 gives rise to a bihomogeneous polynomial P'  
vanishing on X {" + t} to order at least T along ~. Because H is a linear group variety, 
we may choose To=D. We now verify that the conditions {1), (2) imply the 
conditions (4)--(6). In fact (6) is clear at once, as G,o,~=0 x Kto,, and vt, ..., v,, are 
linearly independent over ~ .  To verify (4) and (5) we have to estimate the quantities 
Q,~(X) from below. 

To start with, we note that 

Q t,(X) = IX[ __> (S/(n + 1))" (0 < s < n), 

since the subgroup C of G now has the form 0 x B. Next, we claim that 

Qo~(X) ~ (S/(n + 1))"- ' '  (1 < s < n). (7) 
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This is clear if m, = m. So assume ms < m. The subgroup C of G now has the form 
H x B for some algebraic subgroup B of K of codimension s. If O is the 
endomorphism ring of the lattice ~ ,  it follows from Lemma 11 (p. 512) of [8] that 
we can find s elements (ql .... , q.) (1 < i < s) of O", linearly independent over k, such 
that for any 0P(Z0 ... . .  ~p(z.)) in B we have 

w( t , z~+  ... +t~,z,)=O (1 <__i<s); 

that is, t~Zx +. . .  + t~,z. lies in ,~e (1 < i <s). Thus the elements 

u~=tilUl + ... q-tinU n (I ~i__<S) 

of U generate a subspace U" of U of dimension s over k. Let V" be the subspace of all 
v' in V such that u'v" lies in Ae o for all u' in U'. By the definition ofm~, the dimension 
of V' over @ is at most m~. We may therefore find l= m - m ~  elements among 
v~ .. . . .  v,, that are linearly independent over ~ modulo V'; and without loss of 
generality we can suppose these to be v~ .. . . .  v~. 

Now we observe that the elements of X given by 

s~o~ + ... +szo~ (O<s~,...,sz<-_S/(n+ 1)) 

are distinct modulo C = H x B. For if not, we could find integers s] . . . .  , s~, not all 
zero, such that 0"= s'~ol +. . .  + s~g~ lies in C. Thus if v '= s]vl +. . .  + s~vt the element 
(v2(ulv'),..., lp(u,v')) lies in B, and this would imply that tilUlV'+... + ti,u,v' lies in 
At' (1 <i<s) .  Thus u'v' lies in Le for all u' in U'. Hence v' lies in V'; however, this 
contradicts the linear independence of Vl . . . . .  v~ modulo V'. It follows that IX~C[ 
>(S / (n+ 1))"-"' ,  and then taking the minimum over all C gives (7). 

It is now easy to verify that if we define c in terms ofc '  by c = O'(n + i)"  then the 
conditions (1), (2) imply (4), (5). Accordingly our bihomogeneous polynomial P'  
vanishes on y + �9 for some O in G. To deduce that the original polynomial P is 
identically zero it suffices to prove that �9 is Zariski-dense in G. But the Zariski- 
closure is an algebraic subgroup of G; let C be its connected component through 
the origin. By disjointness C = A x B for algebraic subgroups A of H and B of K, 
and clearly from the form of ~(z) we must have A = H. But also B = K, otherwise by 
L e m m a l l  of [8] there would exist a non-zero ( tx , . . . , t , )  in d~" such that 
taulz + ... + tnu,z lies in L~ ~ for all complex z, which is obviously impossible as 
taul +. . .  + t,u, +- O. Thus C = G, and q, is indeed Zariski-dense in G. This completes 
the proof of Proposition 1. 

Actually the calculations of [9] show that c' can be taken as 4 3"+ 1. Hence 
Proposition 1 holds with c = 4 3" § ~(n + 1)". 

To apply the proposition we need upper bounds for the numbers mt . . . . .  m,. 
We record these in the following simple lemma. 

Lenuna 1. We have m1<2;  also if n > 2  then m2<=l; and if n>__3 then m,=O 
whenever 3 < r <= n. 

Proof. First suppose on the contrary that m I _>_-3. Then there exist elements 
v~, v~, v~ of V, linearly independent over ~ ,  and a non-zero dement ul of U, such 
that u'~v'~, u'~v'2, u'tv'3 all lie in ~0. Since ~ o  is a vector space over ~ of dimension 2, 
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there are rationals xl, xz, x3, not all zero, such that 

0 = x l u l v l  + x~u'~v'2 + x~ulv; = u'~(xlvl + x~v'2 + x3v;) �9 

This is clearly impossible under the hypotheses given, and hence indeed rn a < 2. 
Next suppose n > 2 and m2 > 2. Then there exist elements v~, v[ of V, linearly 

independent over Q, and elements u~, u[ of U, linearly independent over k, such 
that u'lv'l, u'lv'2, u'2v'l, u'2v'2 all lie in ~o.  If V' is the vector space over ~ generated by 

t v t / t ,"  , "  r" v~, v:, it follows that Aao = u~ V = us V. Thus uz/ut is an endomorphism of Aa o, so it 
must lie in k, which is not possible. Hence indeed m 2 =< 1. 

Finally suppose n__> 3 and m, __> 1 for some r with 3 _< r < n. Then there exists a 
t / ~ * 

non-zero v] of V, and elements ul , . . . ,  u, of U hnearly independent over k such that 
u'lv'l . . . . .  u~v't lie in ~o- In particular u~, u[, u~ are linearly independent over Q, and 
now the argument of the first part applies mutatis mutandis. This completes the 
proof of Lemma 1. 

It is clear that these upper bounds can be improved in the case k 4= ~ of complex 
multiplication; in fact one then has mt < 1 and m, = 0 for r__> 2. But we will not need 
these improvements except for a very special case of Theorem 5. 

3. Proof of Theorems 1, 3, 4 

We shall describe in turn the proofs of Theorems l, 3, and 4. Now that 
Proposition 1 is available, no new principles are involved, and we can be 
relatively concise. 

Suppose 0 is transcendental over Q. Then any non-zero 2 in Z[0]  can be 
written uniquely as P(9) for some non-zero polynomial P(x)  in Zl-x]. Recall that 
the (logarithmic) type of 2 is defined as max(d, log H), where d is the degree of P and 
H is the maximum of the absolute values of its coefficients. It is convenient also to 
define the type of the zero element as - ~ .  

The first step in all the proofs is to find a complex number Zo such that ~(zo) is 
algebraic and such that for any integers Sl,..., sm none of the numbers 

Zo + u~(slvl + ... + s , ,v ,)  (1 < i____ n) 

lie in the period lattice LP of go(z). This is clearly possible. 
Now assume Theorem I is false for some integers m > 1, n > 1 satisfying 

mn > 2m + 4n. (8) 

It follows easily that the numbers 

g2, g3, ~(Zo), go'(Zo), ~(Zo+UiV),  ~'(Zo+UiVj) (1 < i < n ,  1 < j < m )  

lie in a field K of transcendence degree at most 1 over •. We can therefore find 
complex numbers ~,01 such that K is contained in ~(~,01), where ~ is 
transcendental over Q, and 01 is algebraic over I~(~). We fix a suitably large 
constant C depending only on these quantities, and we choose any large integer D. 
We define 

S = CD "/" , So = C -  2S. 

We use c 1, c 2 .... for positive constants independent of D. 
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From Siegel's version of the Box Principle we can construct a non-zero 
polynomial P ( x l  . . . . .  x ,) ,  of degree at most D in each variable, with the following 
properties. Firstly, the coefficients of P are elements of Z[~] with types at most 
c l D S  2, and secondly, the function 

q~(z) = P ( ~ ( z  o + u~z) . . . . .  go(z o + u,z))  

satisfies 

~o(slvl + ... + stay,,) = 0 

for all integers st , . . . ,  s~, with 

0_-<sl .....  sin<So �9 

Next, by applying the maximum modulus principle on circles of radius CS and 
CD~S for suitably small e > 0 we see that 

log[q~(stv I + ... + SmVm) [ < -- czS'  ~ logD 

for all integers Sl . . . . .  s= with 

O < s l  . . . . .  s , , < S .  

We now apply Proposition 1 with L = T = 1 to deduce that at least one of these 
numbers r = q~(slvt + . . .  + S,,Vm) is non-zero. By Lemma 1, it suffices to check the 
conditions 

S m > cO",  S m- 1 > cD 2 ' S m- 2 > cD.  

But these follow from the definition of S and the inequality (8,). 
Finally, by clearing denominators and taking norms of ~ in the usual way we 

end up with a non-zero element n = no of Z[O],  of type at most c3/)S 2, such that 

log Ino{ < - c4S~ logD. 

Since 

(DS2)2 < csDr + 4,)/m, S~ logD _>-- c6D" log D, 

the inequality (8) shows that we can apply the well-known criterion of Gelfond to 
the sequence of elements no to obtain a final contradiction. This proves 
Theorem 1. We note that the critical pairs (m, n) satisfying (8) are (5, 10), (6, 6), (7, 5), 
(8, 4), and (12, 3). 

Next assume Theorem 3 is false for some integers rn__> 1, n__> 1 satisfying 

m n  ~_ m + 4 n .  (9) 

We note that this implies m > 5. This time the numbers 

02, g3,~(Zo),~'(Zo),Vj,~(Zo+U~V~),go'(Zo+UtVj) (1 < i < n ,  l < j < - m )  

lie in a field ~(~,01) as before. For C , D  as above we define 

S=CD~"+a) /~ ' -2) ( logD)-X/~ ' -2) ,  S o = C - 2 S  

and 
L = [ D  (m + 2n)l(m - 2)(logD) -,nt(m - 2)]. 
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We construct a non-zero polynomial P(xo, x 1 . . . . .  x,), of degree at most  Lin Xo and 
of degree at most  D in each of x~ . . . .  , x,, whose coefficients are in Z [8 ]  of types at 

most cl(L log D + DS2o) < c2DS 2 , 

such that the function 

satisfies 

f ( z )  = P(z ,  ~(Zo + u~z),..., ~(Zo + u,z)) 

r -1- . . .  " ~ S m l ) m ) = 0  

for all integers s l , . . . ,  s" with 

O ~ S  1 . . . . .  s"'r . 

The maximum modulus principle on the circles of radius CS and CD'S then gives 

loglcP(SlVl + ... +s"vm)[ < -c3S"dlogD 

for all integers s l , . . . ,  Sm with 

O<sl . . . . .  s , ,<S .  

We apply Proposit ion 1 with T =  1 to deduce that at least one of these numbers 
~0(SlV 1 + . . .  + s,,v,,) is non-zero. By Lemma 1, it suffices to check the conditions 

Sm>cLD ", S ' - I > c D  2 ' S " - 2 > c D .  

These follow from the definitions and the inequality (9). 
So we get a non-zero element ~t = nD of 7Z[8], of type at most caDS 2, such that 

log Ircol < - csS"d logD.  

Since 

(DS2)Z < c6D(g~n+ r 2)(1ogD)- 4/(,*- 2), 

S~' log D >= C7 D(rnn + "~f(rn - 2)(log D) - 2/(,.- 2), 

we see again from (9) that Gelfond's criterion applies and gives our contradiction. 
This proves Theorem 3. The critical values of  (m, n) are (5, 5), (6, 3), and (8, 2). 

Finally assume Theorem 4 is false for some integers m ~  1, n >  1 satisfying 

m n > m +  2n. (10) 

Then m > 3, and the numbers  

g2, ga,~(ZO),~'OJ'(ZO),Ui, Oj,~O(ZO'~LUiVj),~Ot(ZO'~-Uil)j) ( l < i < n ,  l<=j<m) 

tie in ~ (8 ,  81). We put 

1 = min(m + 2n-- 1,2m) (11) 

and we define 

S = CD "/m , So = C-2S  

L =  T = ED'tm]. 
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We construct a non-zero polynomial P(xo, x~ . . . . .  x~), of degree at most Lin Xo and 
of degree at most D in each of x~ .. . . .  x,, whose coefficients are in Z[0] of types at 
most 

such that the function 

c l (T logD + LlogD + DSg) ~ c2DS 2 , 

satisfies 

~(z) = P(z, So(zo + ulz) . . . . .  ~(Zo + u,z)) 

~t~ + ... + storm) = 0 

for all integers t, sl, ..., sm with 

O<=t<T, O<=sl . . . . .  sm<=So. 

We should emphasize here that in order to avoid quantities of order TS~ appearing 
in the estimates for the types, the Baker-Coates trick should be used (see for 
example [4, p. 208]). The maximum modulus principle on circles of radius CS and 
CD~S then gives 

logl~p~~ + ... + S,Vm)I < - c a  TS~o logD 

for all integers t, sl, ..., sm with 

O < t < T ,  O<sl  . . . . .  sm<S.  

We apply Proposition 1 to deduce that at least one of these numbers 
cp~~ + ... +storm) is non-zero. By Lemma 1, it suffices to check the conditions 

TSm>=cLD n, T s m - I > c D  2 , T S m - 2 > c D  

and 

S'~>cLD n-z  , Sm>cD , Sm-~>cD= , sm-2~---C__ . (12) 

Using (10) and (11), we easily verify all of these. Thus we obtain a non-zero element 
=nD of Z['~], of type at most c4DS 2, such that 

log IrcD[ < -- c 5 TS'~ logD. 

This time we have 

(DS2)2<c~DtZm+4nJ/'*, TS~logD>cTD(t+m~/r~logD, 

and it can be verified from (10) and (11) that 

l + m n >  2m+4n  

provided m>4.  Now the critical solutions of (10) are given by (m, n) = (3, 4), (4, 3), 
and (5, 2). Hence we deduce Theorem 4 in all these cases except the first. It remains 
thus to consider (m, n) = (3, 4). 

But if k = ~ we see by interchanging the u's and v's that Theorem 4 with 
(m, n) = (3, 4) is equivalent to the same theorem with (m, n) = (4, 3), and is therefore 
also proved. Next suppose k =ll~(z) 4= ~ .  Consider the vector space generated over 
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k by v~, v2, Vs. This is also a vector space over Q whose dimension d is even with 
d > 3 .  Hence d > 4 ,  and without loss of generality we can assume that v4=zv~ 
together with v~, vz, vs are linearly independent over Q. Now since ~o(uiv4) is 
algebraic over ff~(go(uiv~)) (1 < i < 4 ) ,  we are in the situation of Theorem 4 with 
(m, n) = (4, 4). But such a result is covered by the case (m, n) = (4, 3)just established. 
This completes the proof  of Theorem 4 in general. 

4. Proof of Theorems 2, 5 

For  Theorem 2 we shall need the following simpler version of Proposi t ion I when 
the polynomial P(xo, xl . . . . .  x,) is independent of xo. We keep the same notation 
for ul . . . . .  u,, Vl . . . . .  v,,, z o and the integers m~ . . . . .  m,. 

Proposition 2. There is a constant c depending only on m and n with the following 
property. Let S>_O be a real number and let D> 1, T >  1 be integers satisfying 

TSm-mr~cD ' (1 < r < n )  

and (if n>=2) 

sra-m'>cD "-1 ( l < r < n ) .  

Suppose P =P(x~,  ..., x,) is a polynomial, of  degree at most D in each of x a . . . . .  x n, 
such that the function 

qo(z) = P(go(z o + ulz) . . . . .  go(z o + u,z)) 

satisfies 

q~t)(slv~ + ... + storm) = 0 

for all integers t, sl, ..., sm with 

0 < t < T ,  O<sl , . . . , sm<S .  

Then P is identically zero. 

Proof. This can be deduced from either Main Theorem of 19] just  as we proved 
Proposit ion 1. But it is simpler to appeal directly to Theorem A (p. 514) of [8] (see 
[-9, Sect. 8]), as there is then no need to check the condition (6) above. We leave the 
details to the reader. 

N o w  assume Theorem 2 is false for some integers m > 1, n > 1 satisfying 

mn > 2m + 2n. (13) 

Then m > 3, n __> 3, and, choosing Zo as in Sect. 3, we see that the numbers  

g2, gs,~O(Zo),go'(Zo),Ui, gO(Zo+UiVj),go'(Zo+U~V~) (1 < i < n ,  l < j < m )  

lie in a field Q(#, ~ )  as before. For  C, D as in Sect. 3 we define 

S=CDtn-1)/(m+2)(logD)l/~m+2) ' S o = C - 2 S  

T = [ D  (m + 2n)/(m + 2)(logD)- mitre + 2)]. 
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Using the Baker-Coates argument, we construct a non-zero polynomial 
P ( x t  . . . . .  xO, of degree at most D in each variable, whose coefficients are in Z[,9] of 
types at most 

such that the function 

c 1 (TlogD + DS2o) < c 2 D S  2 , 

satisfies 

~(z) = P(~(Zo + u~z), . . . ,  ~(Zo + u,z)) 

~oC~ + ... + storm) = 0 

for all integers t, st . . . . .  sm with 

0 < t < T ,  0 ~ S  1 . . . . .  s m s  O . 

Next the maximum modulus principle on circles of radius CS and CD*S gives 

log [rf}(st Vl + ... + s~v~)[ < - c3 TS~  logD 

for all integers t, st, ..., sm with 

O < t < T ,  0 s  

We apply Proposition 2 to deduce that at least one of these numbers 
9"}(s lv l  + . . .  + s~v=) is non-zero. By Lemma 1, it suffices to check the conditions 

T S  ~ > cD ~ ' TS  m- 1 >= c D  2 , T S  m - 2 _>- cD 

a s  well as 

S = > c D  n -2 ,  S ~ ' - l > c D ,  S m - 2 > c .  (14) 

Using (13) we easily verify all of these except the first of (14), which needs the 
additional inequality m_>-2n-4. We therefore temporarily assume this. Then we 
obtain a non-zero element ~z = zr D of 7Z[~], of type at most c4DS 2, such that 

log [real < -- cs TS'~ logD. 

This time we have 

(DS2) 2 < c 6D <2m +*n}/{m + 2}(log D) */tm + 2}, 

TS'~ logD _-> cTD ~ logD, 

and so Gelfond's criterion applies using (13). Now the critical solutions of (13) are 
given by (m, n )=  (3, 6), (4, 4), and (6, 3). Since we have assumed m > 2 n - 4 ,  we 
deduce Theorem 2 in all these cases except the first. But we can deal with the 
remaining case much as in the proof of Theorem 4. Namely, ff k = ~ we see on 
interchanging the u's and v's that Theorem 2 with (m, n)=(3, 6) is equivalent to 
Theorem 3 with (re, n)=(6,  3), and is therefore also proved. If k 4 : ~  we can adjoin 
v4 as before, and this puts us in the situation of Theorem 2 with (m, n) = (4, 6). But 
such a result is covered by the case (m, n) = (4, 4) of Theorem 2 just established. 
This completes the proof of Theorem 2 in general. 



Algebraic Independence 13 

For Theorem 5 we shall need the following zero estimate, again in the notation 
of Sect. 2. 

Proposition 3. There is a constant c depending only on m and n with the following 
property. Let S> 0 be a real number and let Do . . . . .  D,, T >  1 be integers with 

Do>D1 > ... > D , > I  

and satisfying 

TS m > cDoD 1 ... D, 

Tsm-m'>=cDo...D,_I, DnSm-mr>=cDo...Dr_l (1 <r=<n). 

Suppose P=P(xo ,  xl ,  . . . ,x , )  is a polynomial, of degree at most D, in x, (O < r < n), 
such that the function 

qg(z) = P(z, go(z o + ulz ) . . . .  , go(z o + u,z)) 

satisfies 

~9(It)(Sl/)l "~- . . .  "JI- Storm) = 0 

for all integers t, sl, ..., Sm with 

O<__t<T, 0~Sl ... . .  sm~S.  

Then P is identically zero. 

Proof. This can be deduced from the Main Theorem (disjoint version) of I-9,1 just as 
we proved Propositions 1 and 2, using disjointness only to observe that in the 
notation of [9,1 we have 

Q~(X)=min(Qos(X),Ql,~_l(x))  (1 <s<n)  

and 

Q, +1 (X) = Q x,(X) 

for any finite subset X of C x E". Alternatively we can appeal to Theorem ABC 
(p. 515) of 1,8'1. We leave the details to the reader. 

We shall also need the following special algebraic independence result for a 
Weierstrass elliptic function with algebraic invariants. 

Lemma 2. Suppose go(z) has no complex multiplication, let 091, co 2 be periods of go(z) 
linearly independent over Q, and suppose Xl,X2, Z3 are complex numbers with 1, 
Xl, Z2, X3 linearly independent over ~ .  Then at least two of the numbers 

( .Ol/f ,02, go((.Oi)~j ) (i~--- 1, 2; j = 1,2, 3) 

are defined and are aloebraically independent over ff~. 

Proof. We only give a very rapid sketch, since the result could have been proved by 
classical methods without the aid of zero estimates on group varieties (see 
Theorem 4.2 (p. 314) of Chudnovsky [5] for a similar result). For zo, ~, ~1, C, D as 
before define 

S = CD 3/14, So = C -  2S, T =  [D19/14"1, 
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and construct a non-zero polynomial P(Xl, x2), of degree at most D in each 
variable, whose coefficients are in Z[0]  of types at most clDS~ <__ C lD 10/7, such that 

q~(z) = P(~(Zo + colz), #a( Zo + co2z)) 

satisfies 

~0(t)(SlZ 1 -~ S2)~2 "~- S3~3) = 0 

for all integers t, sl, s2, sa with 

O ~ t < T ,  O<-sl,sE, s3<_So . 

Put 

R =D 13/14 ; 

then by periodicity we have 

~o~t)(sG1 + s2x2 + s3z3 + s4) = 0 

for all integers t, s,, s2, s3, s4 with 

0_<t<T,  O<=sl,s2,sa~S o, O~s4 <=R. 

The maximum modulus principle on circles of radius CR and C2R yields 

log [~ptt)(s~ Z1 + $2Z2 "4- S3Z3) [ < - -  C 2 TS3o R 

for all integers t, Sl, s2, s3 with 

O<-_t<T, 0 ~ 8 1 , $ 2 ,  $3 m-S. 

A routine application of Theorem A of [8] shows that at least one of these values is 
non-zero, and this gives rise to a non-zero ~rD in Z[/~] with type at most c3D 1~ and 

log[rtD[ < -- c4 TSAR. 

Since TS~)R >_ csD 4~:14, Gelfond's criterion now supplies the contradiction which 
proves Lemma 2. 

Alternatively we can avoid the appeal to [8] by using Theorem 1 (p. 200) of [4]. 
Denoting by X the vector space generated over Q by Zl, X2, ;C3, the distinctness 
condition in this result applied to ~0((z- zo)/co 1) shows that there exists X + 0 in X 
with coax in ~ .  It is not possible to deduce a contradiction instantly; however, we 
observe that the content of Lemma 2 is not altered by replacing in its statement the 
periods col,co 2 by any two periods co',co" linearly independent over Q. In 
particular, taking co~ = COl +jco2 and suitable co~' (1 < j  N 4), we see that there exists 
Z.~ 4:0 in X with 

CO~z~ = a/ol + b:o2 (I 5) 

for rational a~, b~ (1 __<j__<4). Since the dimension of X is 3, we can find rationals 
4 

x~, x~, x3, x4, not all zero, with Y xjz)=0. Hence z = coi/co2 satisfies the equation 

R ( z )  = 0 ,  where ~= 1 

4 
R(t) = ~, x j (a /+ bg/(t + j). 

./=1 
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But because there is no complex multiplication we know from Schneider's theorem 
that z is transcendental; hence R(t) must be identically zero. It follows easily on 
considering the possible poles of R(t) that we havejaj  = bj for some j with 1 ~j__< 4. 
In this case (15) shows that Z j#0  is rational, which contradicts the linear 
independence over Q of 1, Z~, Z2, Za. 

Now suppose Theorem 5 is false. By Lemma 1, the corresponding integer m2 is 
either 0 or 1. We assume for the moment that m2 = 0. Choosing Zo in the usual way, 
we find that 

g2, ga,~(gO),~Z(ZO),bli, Vj,~d(gO-l-Uil)j),~O'(Zo-l-UiVj) ( l < i < n ,  l < j < m )  

lie in Q(0, 01). For C, D as before define 

S = CD1/2(logD) 3/16 , So = C -  Zs,  T =  [OZ(logD)- lj4] 

Do = [D2(logD)- 1/8], D 1 = [D(logD)5/8], 0 2 ~-- O .  

We construct a non-zero polynomial P(x0, xl, x2), of degree at most D r in x r 
(r = 0, 1,2), with coefficients in Z[0],  such that the function 

q~(z) = P(z, ~(Zo + ulz), ~(Zo + u2z)) 

satisfies 

~o(t)(slvl + ... + s4v4) = 0 

for all integers t, sl, ..., s+ with 

0 < t < T ,  O < s l , . . . , s 4 < S o  �9 

These coefficients are polynomials in 0 with integer coefficients of logarithmic 
absolute values at most 

cl(D 0 logD + TlogD + D1S~) < c2 Dz logD, 

but because the numbers p(u~vj) (1 < j < 4 )  are algebraic by hypothesis, the 
degrees in 0 are only at most 

c3(D o + T + D2S~) <= c4D2(logD) 3/s . 

The maximum modulus principle gives 

log Itp(t)(sl v 1 + -.. + $4/34)1  < - -  s TSg logD 

for all integers t, sl . . . . .  s4 with 

O < t < T ,  O<sl  . . . . .  s 4 < S .  

We use Proposition 3 to see that at least one of these values is non-zero. By 
Lemma 1 and our assumption m2 = 0, it suffices to check the conditions 

TS4>cDoD1D2,  TSZ>cDo,  

DzS4>cDoD1, D2S2>-cDo . 

So we end up with na # 0 in 2[[0] satisfying 

logl~ol < - c6 TS4o logO, 
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and the coefficients of no have logarithmic absolute values at most c7 D2 logD, 
while its degree in ~ is at most csD2(logD) 3Is. Since TS'~ logD > cgD4(logD) 3/z, the 
sharpened Gelfond criterion due to Brownawell [2] and Waldschmidt [-16] yields 
the final contradiction. This proves Theorem 5 in the case m2 = 0. 

I t  remains  to consider  the case m2 = 1. But  then  the remarks  at  the end of  Sect. 2 
show tha t  go(z) has  no  complex  mult ipl icat ion.  Fur the rmore ,  we can wi thou t  loss 
o f  general i ty  a s sume  tha t  u l v ~  = ~o~, u 2 v 4  = o92 are per iods  o f  ~ .  N o w  T h e o r e m  5 is 
a weak  consequence  o f  L e m m a  2 appl ied to the rat ios Xj = v j v , ~  (1 < j <  3). This  
comple tes  the p r o o f  o f  T h e o r e m  5 in general. 

Note added in ~oof. It has kindly been pointed out to us by R. Tubbs that the applications of the 
maximum modulus principle on pages 8-10, 12, 14, and 15 may fail if the appropriate power of 
s o m e  

(r  ... +s,,v,,))) 2 (1 < i<n)  

is too small. But in this case it is not too difficult to deduce that the same power of 
~O(Zo+U,.(slv ~ + ...  + s,,,v,,,)) is correspondingly large, and that a suitable denominator of this in 
~1~,9, ,91) will then yield the desired element ~r o for use in Gelfond's criterion. 
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