Math. Ann. 301, 813-820 (1995) Mathematische

© Springer-Verlag 1995

Classification of recurrent domains
for some holomorphic maps

John Erik Fornass, Nessim Sibony

! Department of Mathematics, University of Michigan, Ann Arbor, M1 48109-1003, USA
2 Mathématiques, Université de Paris-Sud, Bitiment 425, F-91405 Orsay Cedex, France

Received: 5 April 1994

Mathematics Subject Classification (1991): 32A99, 58F12

0 Introduction

Let f: P? - P? be a holomorphic map of degree d = 2 on the two dimen-
sional projective space. Then f is given in homogeneous coordinates by
[ fo:f1:f2] where each f; is a homogeneous polynomial of degree d and the f;
have no common zero except the origin. Observe that fis a d* to one map. We
denote by H, the family of such self maps. In analogy with the one variable
theory the Fatou set of f is the maximal open set where the family (f") is
equicontinuous. A Fatou component is a connected component of the Fatou
set. The higher dimensional analog of the Fatou Julia theory has been studied
in [FS1] [FS2]. We will always assume that d = 2.

Our purpose in this paper is to study periodic Fatou components Q for f,
so f*(Q) = Q for some k = 1. Without lack of generality we can assume that
f(Q) = Q replacing f by an iterate if necessary.

Definition 0.1. A Fatou component S is recurrent if for some po €  the w-limit
set of po intersects Q. More precisely there exists po € £ such that f™(po) is
relatively compact in Q for some subsequence n;.

In P, the recurrent Fatou components are attractive basins, Siegel discs
and Herman rings. For the one variable theory we refer to [CG] or [Be].

We describe in Theorem 1.2 the analogous components for holomorphic
maps in P2,

In a second paragraph we study the recurrent Fatou components for
Hénon mappings in IP?. Compare with [BS].

Hénon mappings are holomorphic polynomial automorphisms of €2, they
are the dynamically interesting ones, see [FM], and they do not extend as
holomorphic maps from P? to IP2.
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1 Holomorphic maps in IP?

Let f:1P? — IP? be a holomorphic map, f € H;. Assume Q = f($)is a recurrent
Fatou component. It is a priori possible that there exists p, € 2 such that the
orbit f"(po) clusters both at some interior point and at some boundary point
of . In P! this cannot happen, we will show that this does not happen in IP?
either. This is a trivial consequence of the classification of recurrent domains
in Theorem 1.2.

If fis a rational map in IP* there are only finitely many recurrent domains.
A recent theorem by E. Gavosto [G] shows that holomorphic maps on P? can
have infinitely many recurrent domains.

It is shown in [FS1] that any Fatou component is a domain of holo-
morphy. A recent result of Ueda [U] shows that every Fatou component is
Kobayashi hyperbolic.

Definition 1.1. A Fatou component Q is a Siegel domain if there exists a sub-
sequence ( f™) converging uniformly on compact sets of Q to identity.

We have the following result.

Theorem 1.2. Let fe Hy, d = 2. Let Q be a recurrent Fatou component such
that f(Q) = Q. Then one of the following happens:

(i) There is a fixed attractive point p € Q, the eigenvalues A, A, of f' at
psatisfy |A | < 1, |4, < L.

(ii) There exists a Riemann surface £ which is a closed complex submanifold
of Q and f|£ - £ is an automorphism, moreover d(f™(K), £) — 0 for any
compact set K in Q. The Riemann surface £ is biholomorphic to a disc,
a punctured disc or an annulus and f| % is conjugate to a rotation. The limit h of
any convergent subsequence, f™, has the same image. Any two limits h,, h, differ
only by a rotation in £.

(i) The domain Q is a Siegel domain. Any limit of a convergent subsequence
of (f™) is an automorphism of Q.

Proof. Since  is recurrent, there exists po € Q and n; » oo such thatf"(py)is
relatively compact in Q. In this case we prove that we are in one of the
situations described in 1), ii), iii).

Assume f"(po) - p,ni4+y —n; — oo. Taking a subsequence {i =i(j)}
and recalling that we are in the Fatou set, we can suppose that the sequence
{f™+1~"},; converges uniformly on compact sets in 2 to a holomorphic map
h:Q - Q. Let p;=f"(po). Then f"*7"(p;)=f"*(po)=pi+1. Hence
S TM(p) = p;y1 + O(|p; — pl) so converges to p. Therefore, necessarily
h(p) = p.

Consider all maps h: Q — Q, with h(p) = p for some pe Q and h = lim f*
for some subsequence k;.

Let Fix(h) denote the collection of fixed points of h. Since 4 commutes with
/, it follows that f maps Fix(h) to itself.

If, for some h the rank of h is 0, then h(Q2) = p and necessarily f{(p) = p,
hence p is also a fixed point for f. Also both eigenvalues of f* at p must have
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modulus strictly less than one since some iterates of f converge to the constant
map. Hence this leads to case i).

Assume for some h the rank of h is two. Then for some sequence f*i** 7%
— Id and hence Q is a Siegel domain. The restriction of f to Q2 is clearly an
automorphism of 2. We are then in case (iii). We want to show that if (/™)
converge to a map g then g is an automorphism of Q.

Let Aut(€2) denote the holomorphic automorphisms of Q. We know
from Ueda’s, [U], result that Q is Kobayashi hyperbolic, so Aut(2) has the
structure of a Lie group [Ko]. Let G:= closed subgroup generated in Aut(Q)
by . Since G is a closed subgroup of a Lie group it is a Lie group. Let G° be
the connected component of Id in G, it is also a Lie group. Since (f™)
converges to identity, then G° is not reduced to identity. But G° is clearly
commutative, hence it is isomorphic to T x IR". Let @ denote the isomorphism
from T* x R' to G°. For some (a, b) € T* x R}, we have ®(a, b) = f. If b + 0 we
cannot have (™) converging to Id. So b = 0 and hence G° is isomorphic to
T*, consequently G° is compact. It follows that each convergent subsequence
of (f") tend to an element of Aut(Q).

We now assume that for all h, the maximal rank of h is one. Fix an h
and let Z:=h(Q). Then £ < (. For pef, there is an irreducible
piece of a Riemann surface with singularities Z, < @ and a neighborhood
U(p) so that h(U(p)) = 2,. We define an abstract Riemann surface R
as the union | JZ,, for a covering U(p;) of @, with the identifications at
ge 2, NnZ,, if the two pieces agree as germs. Then R is Hausdorff by the
identity theorem.

The map h:Q — X factors naturally as a map h = noh where h:Q — R
and 7:R +— Z.

We show first that fis a surjective self map of 2.

If x € 2 then x = h(y) for some y e Q and f(x) = f(h(y)) = h(f(y))e Z. So
f(Z) = £. We show next that the restriction of fto Z is surjective on X.

Let x=h(y),yeR. Choose y_e€Q such that f(y_)=y. Define
x- =h(y-). Then x_ e X and f(x_) =f(h(y-)) = hf (y-) = h(y) = x.

Define 2°%:= XN Q. Since f(Q) = Q, then f(Z°) = X°. Since fis an open
map ([FS1]), f maps the boundary of € to itself and hence f(Z°) = Z°.

We first show that h is not constant on the irreducible component Z, of
Z N which contains p. Assume not. Since h{p) = p, then h|Z, = pe X, But
f* - p so we are in case i).

Since f*+! ~*(f*) = f*+* we can assume, using a diagonal process, that for
a subsequence m;, (f™) converges to a new map h and h = Id on Z,. Since
floh =hof" it follows that h = Id on each f(X,),/ > 1. We use this new
h from now on.

We want to show that U@O fUZ,) is closed in Q. We know that
Uizof'(Z,) = S:= {4:q € 2, h(q) = q}. Since Id — I has at least rank one,
S is a countable union of disjoint irreducible components each of which is
a point or a smooth complex curve. It follows that X, is a component of § and
since f'is a proper self map of @, ( Jiz0/'(Z,) is a closed countable union of
irreducible curves in S.
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Suppose Z is a torus. Thenf: 2 — Zisan{to 1 map,! 2 2 by Proposition
7.5 ([FS1]). Hence repelling points for f]Z are dense in X, which contradicts
normality in Q.

We next show that if Z is a P!, C or C* then f|Z is an automorphism.
Suppose not, then fis an [ to 1 surjective map f: X — X with [ 2 2. From the
Fatou-Julia theory in one variable repelling periodic points for /|2 are dense
in the Julia set of f| X. Choose q a repelling periodic point for f| X say f*(q) = g
and h(zo) = q with z, € Q. Recall that h = lim f™. We can assume h'(zo) + 0in
some direction.

Fix 0 < d« 1. For each I € choose r; > 0 such that f**(B(q, r;)) < B(g, 6).
Choose m;, such that f™(zo) € B(g, r;). Then f**™®(z,) € B(g, 6). The se-
quence (f**™®), is equicontinuous, hence we can even assume that in a ball
B, containing z,, we have f**™®(B,) c B(q,§). We can always increase
m;qy so that f+™o is as close as we wish to f**<h. Then the derivative of
f's+mo at z, is not bounded in all directions, a contradiction. Hence we have
shown that if 2 is a P!, € or €* then f|Z is an automorphism. As a conse-
quence Z cannot be a P! since by Theorem 7.5 in [FS1] f|Z cannot be an
automorphism.

So if Z is a € or €*, since f™ |z, — Id, and | ) f}(Z,) is closed, then
necessarily f (or f2) is conjugate to an irrational rotation. This proves our
claim.

If X is hyperbolic, we use the classification of holomorphic mapsg:Z — £
in Theorem 3.3 [M]. Since f™ — Id on the open set X, of Z, we know that not
all orbits converge to an attracting fixed point, nor do all orbits diverge to
infinity. From Proposition 7.5 in [FS1], we know also that f is not of finite
order, hence Theorem 3.3 in [M] implies that X is isomorphic to the unit disc
D, D* or an annulus and f is conjugate to an irrational rotation.

We want to prove next that X is independent of h.

Assume f™ — k uniformly on compact sets of Q. Let 2’ = k(2). We have
f™12° - k| Z° but since fis conjugate to a rotation on £°%, k(Z°) = X%and ¥’
is an extension of X° and one can prove similarly that f is conjugate to
rotation on X', Similarly £° is an extension of 2’ n £, 50 2'nQ = X° Let £ be
the maximal extension of Z in € such that fis conjugate to a rotation on £. We
then get that (/") converges u.c.c.on Qto £,ie. d(f", £) - 0. We would like
to show next that £ = X’. Pick a point p in Z° Then we can find a holomor-
phic coordinate system in a neighborhood of p such that in that neighborhood
Z={w=0;a<|z| <b}and

fz, w) = (2 + wg, (2, ), wa; (2) + w?k(z, w)) .
Then
"z, w)= (e"“’z + O(w), w "1:[1 a,(ez) + 0(w2)) .
j=0

Write a,(z2) = I‘[;;é a,(e'?z). Since we are in a Fatou component, the
functions a,(z) are necessarily uniformly bounded on any smaller set
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a <]zl <b,a<da,b <b We must even have that a, — 0 uniformly, since
all limits have rank 1. It follows that a neighborhood of X° is attracted to Z°.

An easy estimate gives that if we start with small enough w, and consider
tangent vectors v = (1, ) based at (z, w), |a| small enough, then (f")'(v) =
ca(1, &), oy = 0, ||c,| — 1] as small as we want.

For each n, let &, be the “vertical” foliation consisting of leaves L with
f"(L) = {z = const}. We show next that #, — &, a foliation with leaves of
the form z = g(w).

The above observation shows that in order to compute the horizontal
distance between leaves of &, and corresponding leaves of &#,,. ,, it is enough
to compute the distance after applying f”. If one considers the leaves of %, as
almost vertical discs of radius C then after applying the map f, »n times, the
discs have radius at most ¢Cr" for some r < 1.

Since the discs of &, = f"(#,+ 1) and (z; = constant) = f"(F,) start at the
same point, they can be at most at ¢Cr" away from each other. So the
horizontal distance between %, and &, ., is at most Cr", so &, converge to
a foliation # with leaves of the form z = g(w).

Moreover f maps leaves of # to leaves of #. It follows that these leaves
are in level sets of h. In particular, in a neighborhood of 2N Q, the level sets of
h are independent of h.

Next, pick any two limits hy, b, say h;(Q) = Z;. By connectivity reasons
one must contain the other, say ¥, = Z,. Let A; denote rotation by 8 in Z,.
Then near one component of X €2, there must exist a § so that h; = A4 h;.
But then this must hold everywhere. So 2| = Z,. In particular, the level sets of
h, and h, are the same (even globally) and f maps level sets to level sets
(globally). It follows that if p, € Q, then either { f"(po)} converges to the
boundary or is a relatively compact set in .

Note that using the local coordinates above, it follows from the maximum
principle that £ Q cannot have more than one component. Indeed, let 4 be
a subannulus of ~ whose boundary with respect to X is in Q. Assume
A intersects €. Then A has a Stein neighborhood isomorphic to A4 x disc, and
we can apply the maximum principle there. Since (f") converges towards
~ near the boundary of 4 we still have convergence in a neighborhood of 4, so
Ac Q.

Next we prove that actually X is a closed complex manifold of 2. Namely,
let us assume not. We consider a circle in X' so that one side is in  and the
other side is in the boundary. We then choose a local coordinate system as
above. Consider the coefficient a;(z). For each radius r let A(r) denote the
average of log|a, (z)| over the circle of radius r. Similarly let 4,(r) denote the
average of log|a,(z)|. Then A4,(r) and A(r) have the same sign always and they
are continuous and monotonic. Also note that the rotation by 8 on the circle is

1 . .
ergodic. Hence it follows that - log|a,(z)] = A(r) in L? on the circle |z| =r.

1 . .
Note that the functions — log|a,| are equicontinuous so they converge uni-
n

formly to A(r) except near circles where a, has a zero.
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In particular it follows that if A(r) < 0, then the circle with radius r is in the
Fatou component. Since A(|z|) is subharmonic, it follows that A(r) > 0 on the
side which belongs to the boundary. But then it follows from ergodicity that
for large n, ]a,(z)| > 1 uniformly, on circles |z| = r. But this implies that these
points repell points from 2. Hence there can be no points in 2 converging to
them. So 2 =3° < Q.

From Ueda’s Theorem ([U]) @ is Kobayashi hyperbolic so 2 which is
contained in € cannot be € or C*. This finishes the proof.

We describe more precisely the structure of the closure of iterates in the
case of a Siegel domain.

Proposition 1.3. Let f: P2 —» P2, f € H;. Let Q = f(Q) be a Fatou component
which is a Siegel domain. Let G denote the closure of (f"),3 o in the topology of
uniform convergence on compact sets. Then G is a sub-Lie group of Aut(Q) and
G is isomorphic to T* x F where F is a finite group and k = 1 or 2.

Proof. We have shown in the proof of Theorem 1.2 that G:= {closed sub-
group generated by f } n AutQ is a compact Lie group which is isomorphic to
T* x F where F is a finite group.

Since Q is Kobayashi hyperbolic and of complex dimension two, it follows
from a theorem of Kruzhilin [Kr]j that the maximal real dimension of
a commutative group in Aut(Q) is two. Indeed Kruzhilin shows that, fields
that commute in the Lie algebra are real linearly independent iff they are
complex linearly independent; so 0 < k £ 2. We cannot have k = 0 since an
iterate of f cannot be the identity, see [FFS1]. Assume k = 2. Then we have an
effective T? action on . It follows from a theorem of Barrett, Bedford, Dadok
[BBD] that there exists a hyperbolic Reinhardt domain U in C€? and a bi-
holomorphic map ®:Q — U, such that for some [, ®of'= Rod where
R{z, w) = (¢"*z,€%z). So f is conjugate to R,(z, w) = (e’/'z,e*'w), hence
G=T?xFand also G =G.

When k = 1, then G ~ T x F where A is a finite group, it is also clear in
that case that G = G.

Examples.

1. Let f[z:w:t] = [Azt + z%: APwt + w?:t*] where A = e?™, peZ” and 0 is
a diophantine number. Then f has a Siegel component @ with [0:0:1]e .
Since in a neighborhood of (0, 0) in €2, (z, w) — (Az + z2, APw + w?) is conju-
gate to (Az, A*w), G is isomorphic to T, which can be seen as the subgroup in
T2 generated by (4, A?).

2. Letg[z:w:t] = [Azt + z%:uwt + w2 2] with 4 = €2, 4 = e?™ with A, u
satisfying the Brjuno condition, see [H], in order that f be linearizable near
[0:0:1] then G is isomorphic to T2

2 Henon mappings

In this paragraph we want to study recurrent periodic domains for Hénon
mappings.
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Recall that f: €? — €2 is a Hénon map if it is a finite composition of maps
of the following type

fj(zs W) = (P;(z) — aw, Z)

where p; is a polynomial of degree d; = 2. Hénon mappings are the dynam-
ically interesting polynomial automorphisms of €2, see [FM], [BS], [FS3].
The article [FS4] is a survey.

We just recall the following facts. Let K™ = {(z, w),/"(z, w),n 2 0, is
bounded}, K~ = {(z, w)\ f ""(z, w),n 2 0 is bounded} and K = K*nK".
Then U™* := €2\ K™ is the basin of attraction of infinity, more precisely if we
identify € with the open set ¢ & 0 in P2, then points in U* < IP? converge
towards p* := [1:0:0] in P2, The sets K* and K~ are closed. The sequence
(f™) converge uniformly on compact sets of K™ towards K, which is compact.

We describe the Fatou components in the interior of K™ which are
recurrent. The question was considered in [BS] and [FS3]. We however want
to give more details for the case ii) in the following theorem.

Theorem 2.1. Let fC2: — €2 be a Hénon mapping. Let Q be a recurrent Fatou
component in the interior of K*. Assume f(Q) = Q. Then Q is of one of the
Jollowing types:
(i) There is a fixed attracting point p € Q and Q is biholomorphic to C2.

(ii) There exists a Riemann surface £ which is a closed complex submanifold
in Q such that d(f"(X), £) — 0 for any compact X in Q. The Riemann surface
5 is biholomorphic to a disc, a punctured disc or an annulus and f| £ is conjugate
to an irrational rotation.

(i} The domain Q is a Siegel domain and all convergent subsequence of (f")
converge to an automorphism of Q.

Proof. Since Q is recurrent, there is po € 2 and {n;) such that f™(po) — po.
Taking a subsequence of f™+'™™, we can assume that f™**™™ ucc. to
a holomorphic map h:Q — Q. We have that h(p) =p. If for some h,
rank h = 0, then h(2) = p and f(p) = p. Consequently p should be attracting
and we are in case i). The last assertion is classical, see [RR] for example.

Assume, for some h, the rank of h is two. Then if a denotes the constant,
jacobian determinant of f, we necessarily have |al = 1 and so f is volume
preserving. Let G = {f"},.z Where the closure is taken for the topology of
u.c.c.. It follows from results of Cartan, see [N], that G is a compact Lie group,
isomorphic to T2 x F or T x F where F is a finite commutative group. The
argument is even simpler than the one given in the first paragraph since we
have the information that fis volume preserving.

We can assume that all limits h have rank one and consequently |a| < 1.
Let £ =h(Q). We have £ = @nK, so X is a Riemann surface which is
hyperbolic and f:Z — Z is an automorphism. Let Z, be the irreducible
component of N € containing p. The difficulty here, as in Theorem 1.2, in
order to say that f is conjugate to a rotation on I is that possibly other
components of 2 N might cluster on Z,. So the fact that say (/™) converge
to identity on X, does not imply the convergence on X, considered as an
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abstract Riemann surface. As in Theorem 1.2 we show first that f is not
constant on any component f'(Z,),! 2 0. Hence we can assume using a
diagonal process that for a subsequence (f™),f™ — h and h=1Id on
Uizof(Z,) = {q€ Q; h(g) = q}. Consequently | )i>0f'(Z,) is closed in Q.
Since f™ — Id on X, and since f is not of finite order, see [FM], then f is
conjugate to an irrational rotation on the Riemann surface . We then show
as in Theorem 2.3 of [FS3] that X is contained in 2, so X is closed in Q. The
rest of the argument is as in Theorem 1.2 or as in [FS3] Theorem 2.3.
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