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1. Introduction and the main result 

We denote by D the open unit disc in C:  D = {( E C: I(1 < 1}. A domain 
12 C C n is said to be Runge in C n if every holomorphic function in f2 can be 
approximated, uniformly on compacts in f2, by restrictions to f2 of  holomorphic 
polynomials on C n. We refer the reader to HSrmander [12] for general results 
concerning pseudoconvex Runge domains. Our main result is 

Theorem. Given a connected pseudoconvex Runye domain 12 C C # (n > 2) 
and a discrete subset Z = {zj: j E Z+} C ~2, there exists a proper holomorphic 
embedding f :  D --~ f2 o f  the disc into I2 whose image f ( D )  contains Z. 

The most interesting case is n = 2. For n > 3 this was proved by a different 
method in [16] for f~ = C n and in [9] for all convex domains O C C n. In 
the case when f2 = C" (n > 3) one can in addition prescribe a discrete set 
{~/} C C and require that f ( ~ j ) = z j  for all j [16]. 

For n = 2 the methods of  [9] and [16] only give proper holomorphic im- 
mersions of  the disc through a given discrete set in 12. The main problem 
of  course is that, in dimension two, one cannot remove self-intersections o f  
complex curves by small deformations. 

We do not know whether our Theorem holds for non-Runge pseudocon- 
vex domains in cn; our methods do not seem to extend to this case. In this 
direction it was proved in [6] that for every finite subset Z in an arbitrary con- 
nected pseudoconvex domain f2 C C n (n > 1) there exist proper holomorphic 
mappings f :  D ~ D o f  the disc into 12 such that Z c f ( D ) .  It is likely that 
a refinement of  the construction in [6] gives proper holomorphic immersions 
f :  D ~ f2 whose image contains a given discrete subset of  12. An example 
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in [6] shows that the Theorem does not extend to arbitrary non-pseudoconvex 
domains. 

In this paper we develop an essentially new approach which works in every 
dimension n > 2. Our methods were inspired in part by the earlier work of 
two of the authors [10]. The main idea is to construct a sequence of proper 
holomorphic embeddings fk:  C--~ C n such that the points z0 . . . .  ,zk are con- 
tained in the same connected component of  f k ( C ) N  O. The next map fk+l 
is of  the form fk+l = ~k o fk ,  where ~k is a suitably chosen holomorphic 
automorphism of C ~ which is very close to the identity on a prescribed poly- 
nomially convex set Kk CC O, it fixes the points z0,...,zk, and it moves the 
image variety outside Kk so that f k + l ( C )  contains the next point zk+~ E Z as 
well. 

A similar but technically simpler construction was used in [7] to construct 
proper holomorphic embeddings f :  C ---, C z of  the complex line into C 2 whose 
image f ( C )  contains a given discrete set Z C C 2. The additional difficulty 
in the present paper is to keep the points Zo,...,zk in the same connected 
component of  f k ( C )  N 0 at each step. To achieve this we need the following 
tool which, we hope, will be of independent interest. It is an extension of 
some earlier results of Rosay and one of the authors [8] (and whose proof is 
based in part on the ground breaking work by And6rsen [3] and Anders6n and 
Lempert [4]). 

Proposition (Combing hair by holomorphic automorphisms). Let K Cc C n 
(n > 2) be a compact polynomiatly convex set and let C C C n be a smooth 
embedded arc o f  class C', r >= 3, (a diffeomorphic image o f  [0, 1 ] C R)  which 
is attached to K in a single point o f  K. Given a homeomorphism F: K t_J 
C ---, K t.J C' C C n such that F is the identity on (K t3 C) n U Jbr some open 
neighborhood U C C n o f  K, there exists Jot each ~ > 0 a global holomorphic 
automorphism �9 oJ" C ~ satisfying [~(z) - F(z)  I < ~ for z ~ K U C. Moreover, 
for  each pair o f  finite subsets A C C, B C C~\C, there is a �9 as above such 
that ~IA = FIA and �9 f ixes B pointwise. 

Remarks. 1. The same result holds for any finite number of disjoint hair at- 
tached to K. In other words, one can comb hair on a polynomially convex 
head in C n (n >= 2) approximately by global holomorphic automorphisms 

of C". 

2. Similar results for arcs without the presence of the polynomially convex set 
K have been proved by Rosay [14] and Forstneric [5]. Our proof of  the propo- 
sition can easily be refined to show that, if F as above is a C r diffeomorphism 
on C and r ~ 3, then an approximating sequence ~j E AutC n can be chosen 
such that ~j[c  converges to FIc in Cr-3(C). This result is not sharp, the loss 
of  derivatives being due to the fact that we are using H6rmander's L2-method 
for solving a ~ equation in certain thin tubes. By using a more precise method 
such as the one in [5] or in [13] one expects no loss of derivatives as soon as 
r ~ 2 .  
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The proposition is proved in Sect. 2. Granted the proposition we shall now 
prove the Theorem. We will need the following Lemma (which is not original). 

Lemma. If't2 C C n is a pseudoconvex Runge domain and if f :  C --+ C n is a 
proper holomorphic embedding, then each connected component of  f ( C)  A 0 
is simpty connected and hence biholomorphic either to the disc or to C. 

Proof Set A = f ( C ) .  Let A be a connected component of A N f2 and let U = 
{~ E C: f ( ( )  E A}. We must show that U is simply connected. If  not, choose 
a point (0 in a bounded component of C\U. Define a holomorphic function 
F:A --+ C by F ( f ( ( ) )  = 1/(( - ~0). By Cartan's theorem A [12] F extends to 
a holomorphic function in I2. Since f2 is Rnnge in C ", F can be approximated 
by holomorphic polynomials Pj. Then Pj o f is a sequence of entire functions 
on C which converges to the function ( ~ 1/(( - (0) uniformly on compacts 
in U. Clearly this is a contradiction. [] 

Proof of the Theorem. We shall first consider the case f2+C n. Choose a 
smooth plurisubharmonic exhaustion function p: f2 ~ R such that Plz is one 
to one. We shall repeatedly use the fact that for each R E R the set 

~(R) = {z E a: p(z) __< R} 

is polynomially convex in C n (see H6rmander [12]). By reordering the points 
in Z we may assume p(zj) < p(zj+l ) for each j E Z+. Choose numbers Ri 
(j  = o, 1,2, . . .)  such that 

p(z~) < Rj < p(zj+l) 

and set Kj = I2(Rj). Then {Kj} is an increasing sequence of compact poly- 
nomially convex sets such that Uo~_j<ooKj = f2. We also have K j n Z =  
{Zo, Zl,...,zj} and (Kj+I\Kj) r'l Z = { z j + l } .  

The initial step. Fix a point a E Cn\(2. Let (o = 0 E C. Choose a proper 
holomorphic embedding f0: C ~ C n such that f ( 0 )  = z0, f ( 1 )  = a, and A0 = 
f o (C)  does not contain the point zl. Set L- l  = O,  A-I  = O,  and V-l = ~ .  

The inductive step. Let k E Z+. Suppose we already have a proper holo- 
morphic embedding fk:  C ~ C n with image Ak = fk (C) ,  a set of points 
{(0,(1 . . . . .  [k) C C\{1},  a number Mk-i,  and a smoothly bounded, simply 
connected domain Ak-i CC C \ { 1 )  such that 

(i) f k ( ( j )  = z j  for 0 < j < k, 
(ii) fk (1)  = a, 

(iii) Zk+l q~ Ak, and 
(iv) the set {(o,(1 . . . . .  (k) U Ak-l is contained in one connected component 
U~ of the set 

uk = {~ ~ c :  fk (O  ~ ~}. 
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Note that p o fk  is an exhaustion function on U,. Choose a number 

Mk > max(Rk,Mk- l )+  1 (1) 

which is a regular value of p of\Iv, and such that {(0, (l, - . ., (k} U Ak-l is 
contained in one connected component Ak of the set 

vk = ( (  e Uk:p o f , ( ~ )  < Mk} CC Uk. (2) 
o 1 V\ consists of finitely many smoothly bounded components Ak = A k, Ak,. . . ,  

A~* which are simply connected and have disjoint closures. 
Set 

Z\ = K, U (At~ 71 I2(M, )) = Kk tO f k(V, ). 

We claim that Lk is polynomially convex. Suppose that a point z E C"\Lk 
belongs to the polynomial hull /~k. Then z 6 0 ( M k )  since the set f2(Mk) is 
polynomially convex and it contains L k. Thus z ~ Ak tO Kk. By Cartan's theo- 
rem A [12] there exists a holomorphic function 9 on C" such that 9(z )= 1 
and cj = 0 o n  A k. Since K\ is polynomially convex, there exists another holo- 
morphic function h on C" such that h(z) = 1 and supK k Ihl < 1. The holo- 

morphic function G = 9h u for sufficiently large N > 0 satisfies G(z) = 1 and 
supL k IGI < 1. This contradiction shows that Lk = ilk as claimed. 

We now choose a smooth arc 2, C U~ which is attached to Ak in a 

single point and which does not intersect any other set A~ for 1 < j < jx. 
Denote the other endpoint of  2, by ~k+l. Hence Ck = fk(2~) is an arc in 
Ak 7192 with one endpoint fk(~k+l) which is attached to f ( A k ) C  Lk in the 
other endpoint. 

By the Proposition, applied to the polynomially convex set Lx U Ck, we can 
find for any given ek > 0 a holomorphic automorphism ~k of C" satisfying 
(a) [~k(z) - z[ < ek for z ELk, 
(b) ~k (fk(~,~+l)) = zk+l, 
(c) ~k(zj) = z i for 0 < j < k and ~k(a) = a, 
( d )  ~k(Ck)  C ~,  and 
(e) 4,k(ak) does not contain zk+2. 

Set 

fk+l = ~k o f , :  C -~ C", ak+l = fk+l(C). 
Clearly fk+~ is a proper holomorphic embedding of C into C" which satisfies 
the properties (i)-(iv) above, with k replaced by k + 1. 

Remark. It is important to observe that the point zk+t belongs to the same con- 
nected component of Ak+ i 71 ~ as the points zo,... ,zk since the automorphism 
~k maps the arc C, (connecting fk((k+l)  to fk(Ak))  into f2. If  I2 = C ~, we do 
not have to worry about this, and consequently one can replace our Proposition 
with a much simpler result to the effect that, given a polynomially convex set 
K CC C", one can move a point p ~ C" \K  to a point q ~ Cn\K by an auto- 
morphism of C ~ which is arbitrary close to the identity on K. This approach 
was used in [7] to construct proper holomorphic embeddings of  the complex 
line C into C 2 passing through a given discrete set Z c C 2. 
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Completion of the proof Set 

v =  U vk, U ak, 
0~k<oo 0~k<~ 

where Vk is given by (2) and Ak = A ~ is the connected component of Vk as 
above. Then {( i : j  E Z+} C A C V C C\{1}. By property (a) of #k we have 

I f k + l - f k l  < ek on Vk. (3) 

In each step of the construction we choose the number t;k > 0 so that the 
following hold: 
1.) ~.k < ~:k-1/2 for each k > 1, 
2.) 2ek < d(Lk, Cn\f~(Mk + 1)), 
3.) 2ek < d(Kk-~,Cn\Kk). 

Here d(K,L) denote the Euclidean distance between the sets K and L. Since 
Mk+l > M~ + 1 by (1), properties 1.) and 2.) of the sequence ek insure that 

Vk CC Vk+l, k e Z+, (4) 

and the sequence fk:  C ~ C n converges to a limit map 

f =  lim f k : V ~ C  '~ 
k ---','oo 

m 

uniformly on compacts V~ CC V. On Vk we have 

o o  o o  

I f - f k [  < Y]lf j+ , -  f j[ < ~ j  < 2~,. 
./=k l=k 

Hence f(Vk) C f2 and therefore f ( V )  C ~. 
Since fk:  C ~ C n is an embedding for each k, we can insure by choosing 

~:k > 0 sufficiently small that any holomorphic map 9: C ~ C" satisfying [fk - 
y[ < 2ek on Vk is an embedding on the smaller set Vk-i CC Vk. Thus the limit 
map f :  V ~ f2 is an injective immersion into I2. 

We claim that f :  V ~ D is also proper. Since [~k(z) - z [  < ~k for z E Kk 
according to (a), the conditions 1.) and 3.) on ~:k imply that no point from 
C~\Kk will enter the smaller set Kk-i after k-th step of the construction. Since 
fk(C\Vk) C C~\Kk, it follows that 

f(V\Vk) C O\Kk_L, k E Z+, 

and hence f is proper as claimed. 
To summarize, we have constructed a proper holomorphic embedding 

f :  V ~ g2. Since Ak is a connected component of V~ for each k, (4) im- 
plies that A is a connected component of V. Hence the restriction f :  d ---r D 
is a proper holomorphic embedding of d into D. Property (c) of ~k implies 
f ( ( k )  = fk((k)  = zk for each k E Z,  and hence f(A) contains the given dis- 
crete set Z. Since A is an increasing union of connected and simply connected 
domains Ak C C\{1}, d is itself a simply connected domain in C\{1} and 



564 F. Forstneric et al. 

hence biholomorphic to the unit disc D. Thus the map f :  A ~ I2 satisfies our 
Theorem. 

This proves the Theorem when f2 is a proper subdomain in C ". In the 
remaining case f2 = C" we can either apply the previous proof to a Fatou- 
Bieberbach Runge domain I2 C C" (which is biholomorphically equivalent to 
Cn), or else we construct the sequence fk  as above such that fk(1)  diverges 
to infinity (so 1 ~ V). 

2. Combing hair by holomorphic automorphisms 

In this section we prove the Proposition stated in Sect. 1. The last requirement 
concerning the behavior of  4~ on a finite set is a trivial addition since one 
can move a finite set of points for a small distance in any direction by a 
finite composition of shear automorphisms which are close to the identity on 
a chosen compact subset (see [15]). Hence it suffices to prove the first part of  
the proposition. 

By approximation we may (and shall) assume that F: C ~ C ~ is a C r 
diffeomorphism onto another embedded C r arc, and F is the identity near 
K. Shrinking the neighborhood U of K if necessary we may assume that 
C N U = C'  fq U. We extend F as the identity on U. Choose a one parameter 
family of  C r diffeomorphisms Ft: U IJ C ~ U U Ct C C ' ,  smooth with respect 
to 0 < t < 1, such that the t-derivative dFt/dt  is also of class C r and the 
following hold: 

(i) F0 is the identity on U U C, 
(ii) FI = F, and 

(iii) Ft]V is the identity for each 0 _< t < 1. 
Let Ct = F~(C). Observe that Ct n U = C n U for all t E [0, 1]. Let Xt: U U 

Ct ---* C" be the velocity vector field of  Ft, defined by the equation 

d 
7 F t ( z )  = Xt(Ft(z ) ) ,  z E U U C, 0 ~ t <_ 1. 
d r ' "  

Then Xt is of  class C r in both variables (z , t )  and Xtlu = 0 for each t. Thus 
Ft(z)  (z E U U C) is the flow of the time dependent vector field )ft. 

To simplify the analysis we include the parameter t as an additional com- 
plex variable. Define the following subsets in cn+l: 

S =  U c t x { t } ,  L 0 = K x [ 0 , 1 ] ,  L = L o U S .  
o ~ t < l  

Since the set K U Ct C C" is polynomially convex for each t E [0, 1] (Stolzen- 
berg [17] and Alexander [2]), the sets L0 and L are polynomially convex in 
C.+1. 

Let U'  CC C be a neighborhood of  the segment [0,1] C R C C, and let 
Uo = U • U'  CC C n+l be the corresponding neighborhood of L0. We define a 
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mapping X:  Uo t3 S --~ C n by 

X ( z , t ) = X t ( z ) ,  z E C t ,  0 < t -<  1, 

and X[u0 = 0. 
Note that S C C "+~ is a totally real submanifold of  class U .  Since X is of  

class, C r on S and zero on Uo, X extends to a map X: C "+l ~ C ~ o f  class 
C r, with compact support, such that 

-&(~) = o ( d ( ~ , s )  ~-~) 

(see Lemma 4.3 in [1 1]). Here, ~ is taken with respect to the variables ( =  
(z , t )  E C ~+l, and d(~ ,S)  denotes the Euclidean distance from ( to S. 

For each compact set K C R '~ we denote K(e)  = {z C Rr~:d(z ,K) < s}. 
The Proposition follows immediatelly from the following three lemmas. 

Lemma 1. (Notation as above) Assume r > 3. There is an So > 0 and a 
continuous f imction q: R+ --~ R+, rl(t) > O Jbr t > O, 11(0)= O, such that Jbr 
each 0 < e <_<_ So there exists an entire holomorphic mapping Y~: C "+1 ~ C n 
satisfying 

IIX- Y~,IILo~L~)~ =< tl(~),:. (5)  

(The  Junction II depends on the dimension n, on the set L, and on the vector 
.field X .  ) 

Recall [1] that each Lipschitz time dependent vector field Xt on R" has a 
local flow q~t satisfying 

~t~,(x) =x~(4~t(x)), S0(x) = x. 

Lemma 2. Let  Xt and Yt (0 < t < 1) be time dependent Lipschitz vector 
fields on R ~ with local f lows ~t resp. ~t.  Assume that the .flow dPt(x) is 
def ined]or all x E K CC R n and 0 < t <_ 1. Set Kt = dpt(K), and let 

A(~) = sup{lXe(x) - ~ (x) l :x  ~ Kt(e), 0 < t < 1}, 

B = sup{IXe(x) - X t ( y ) l : x , y  c Kt(1), 0 < t < 1}. 

I f  A(s)e  B < s < 1, then the f low ~kt(x) of" Yt is defined for  all x E K and 
0 < t < 1, and 

I~ , (x)  - q, , (x)  I __< A(~)e  ~', x ~ K, 0 _< t < I. 

In particular we have ~ t (x )  E Kt(~) J'or x E K and 0 < t < 1. 

Lemma 3. Let  Yt be an entire vector f ieM on C" Jbr each 0 < t < 1, o f  
class C 1 in (z, t) c C n x [0, 1]. Let  ~2 be an open subset of" C n. Assume that 
the differential equation dR/dt  = Yt(R(t)) can be integrated fo r  0 < t <- 1 
with arbitrary initial condition R(O) = z E E2. Set Gt(z) = R(t)  as above. Then 
Gt (0 <_ t < 1) is a biholomorphic map f r o m  f2 into C n that can be ap- 
proximated,  uniformly on compact sets in s by holomorphic automorphisms 
o]" C". 
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Lemma 3 is proved in [8] (Lemma 1.4), using results of  Anderstn [3] and 
Anderstn and Lempert [4]. Although it is stated there only for time independent 
fields, the proof applies to time dependent entire fields as well. Lemmas 1 and 
2 are proved below. 

Granted these lemmas we can complete the proof of the Proposition as 
follows. Fix an e > 0 for which Lemma 1 holds. Using Lemma 1 we approxi- 
mate X by an entire map Y: C ~+1 --* C n such that the estimate (5) is satisfied. 
If  e is sufficiently small, Lemma 2 shows that the flow Gt(z) (z E K U C)  of 
the time dependent holomorphic vector field Yt = Y( ' ,  t): C" ---* C ~ exists and 
remains in the e-neighborhood Kt(e) of Kt = K U Ct C C ~ for all 0 < t < 1, 
and we have 

IF, (z )  - G t ( z )  I < e, z e K u C, 0 _< t < 1. 

Applying Lemma 3 for t = 1 we get a �9 E AutC" such that I1~ - G~IILo~KuC) 
< t;. Hence I [ a ~ - F I I t ~ < x u c )  < 2e. []  

P r o o f  o f  L e m m a  1. This is essentially proved in the paper by Htrmander and 
Wermer [11] (proof of  Theorem 4.1, pp. 15-16), except that the solution is 
obtained only in a small neighborhood of L (since L is only assumed to be 
holomorphically convex). We shall indicate the necessary modifications to get 
a globally defined solution when L is polynomially convex, with estimates near 
L. We need the following lemma which should be compared with Theorem 3.1 
in [11]. We denote the variables on C "+1 by z. 

l_emma 4. (Notation as above) There exists a continuous plurisubharmonic 
exhaustiny funct ion p >= 0 on C "+1 such that 
(a)  p - l (O)  = L = Lo US,  
(b)  p ( z )  < d(z, L)  2 Jbr z near L, and 
(c)  p(z )  = d ( z ,S )  z f o r  z near S\Uo. 

We postpone the proof of  Lemma 4 for a moment and continue with the 
proof of  Lemma 1. We adopt the notation of [11]. For e > 0 set 

0,8 = {z ~ C"+~: p(z) < ~2}. 

Choose e~ > 0 such that oot0 C L~ o U U0 and Lemma 4 holds for z E ~ot 0. For 
0 < e <- ~0 we then have 

z,(e) c ,o~ c L(e)  u Uo, o~,\Uo = Z,(~)\Uo = S(e)\Uo. 

Recall that f = dX satisfies the estimate, 

I f (z ) [  = o(d(z,L ) "-t ) 

and f t v o  = 0. Let v = d i m S (=  2 in our case). We get an estimate 

f tflZdV = o( ta t r - l ) )O(e2")  = o(e 2~'+"-1)) (6)  
r-o3n 
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as ~ ~ 0, the extra term O(~ 2n) coming from the volume of  the tube S(3~). Fix 
an e, 0 < e < e0/3. Let qS, = he o p, where h~: R ~ R+ is a convex increasing 
function such that h~,(t) = 0 for t < 2~, and h, is increasing so fast on t > 2~ 
that fc,,+l\,o3,lf[2e-r is no larger than the integral in (6). Thus 

f IflZe-4~'dV = o(i;2(r+n-l)). 
cn+l  

According to Theorem 4.4.2 in [12] there is a solution o f  the equation ~w~ = f 
defined on all of  C n+l such that 

f iw~,12e_~ ' dV = o(e2(~+,_l)). 
c ,+ '  (1 + Izl2) 2 

Since ~b,: = 0 on the set o.)2~: C C  C n+l , we get 

I[w~ll:<,o~.) = o ( : + " - 1 )  �9 

Since L(2e) C o92~, the Cauchy estimates (see Lemma 4.4 in [11]) allow us to 
pass from the L 2 estimate on o92~ to a sup norm estimate on L(e): 

t lw~l Itoo(t(~)) = o ( :  r  +" -  1 ) - -  o(~ r-2). 

The mapping Y~ = X - w~: C "+1 -*  C n is holomorphic on all o f  C n+l and 
it satisfies Lemma 1 for sufficiently small e > O, provided that r >_- 3. This 
proves Lemma 1, granted that Lemma 4 holds. [] 

Proof o f  Lemma 4. Since L is polynomially convex, there exists a smooth 
plurisubharmonic exhaustion function Pl => 0 on C n+L such that p~- l (0 )=  L 
and Pl is strongly plurisubharmonic outside L [12]. Since Pl vanishes to sec- 
ond order on L, we may assume (replacing p~ by cpl for a small c > 0 if 
necessary) that pl(z)  <= d(z,L) 2. Thus (a) and (b) hold for PI. 

We now modify Pl near S\Uo in order to satisfy (c) there. The function 
p2(z) = d(z ,S)  2 is strongly plurisubharmonic on a sufficiently small tubular 
neighborhood V C C "+~ of  S\Uo. Choose a smooth real function Z, with com- 
pact support contained in U0 N V, and such that Xlbvns > 0. I f  6 > 0 is suf- 
ficiently small, the function p~ = P2 - fix is still strongly plurisubharmonic in 
V, and p~ = P2 near S\Uo. Near the set S N bV CC Uo we have p~ < 0 < Pl. 
Hence the function 

P3 = max(pl,  p~) 

is well defined, continuous and plurisubharmonic in a smaller neighbor- 
hood W C U0 t3 V of  L. We have p 3 = P l  near L0, p3=P2 in W\Uo, and 
p3~(o) =L. 

It remains to extend P3 to an exhausting plurisubharmonic function p 
on C "+1 such that p =/93 near L. This can be achieved by taking p = 
max{p3, C(pl - q)} for a suitably large constant C > 0 and a small constant 
t/ > 0. This proves Lemma 4. [] 
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Proof  oJ 'Lemma 2. Fix x r K and set f ( t )  = [~bt(x) - ~kt(x)l. This function 
is defined for 0 < t < to for some to > 0. We have 

! (&(4,~(x)) - rM,~(x)))  ds f ( t )  

<= f (x,(4~s(x)) -x~(O.~.(x))) + ~.(x)) - Y~(0s(x))) ds 

t 

<= Bf f(s)ds + A(Q. 
o 

The Gronwal l ' s  inequality [1, p. 63] implies 

f ( t )  <= a(~)e 3, 

for all 0 < t < 1 where the flow tpt(x) is defined. Since A(e)e B < e by 
hypothesis,  the above inequality shows that $ ~ ( x ) r  Kt(~;) where it is de- 
fined. Hence ~gt(x) is defined for all x r K and all 0 _< t _< 1. This proves 

Lemma 2. []  
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