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Abstract. We consider surfaces Z homeomorphic to the plane with complete, possibly singular
Riemannian metrics. If we have

∫
Z

K+ < 2π − ε for the positive and
∫
Z

K− < C for the neg-
ative part of the integral curvature, then Z is L-bi-Lipschitz equivalent to R

2 with L depending
only on ε > 0 and C > 0. This result implies a conjecture by J. Fu.

1. Introduction

Suppose (X, dX) and (Y, dY ) are metric spaces. A map f : X → Y is called
bi-Lipschitz if there exists a constant L ≥ 1 (a bi-Lipschitz constant for f )
such that

1

L
dX(x, y) ≤ dY (f (x), f (y)) ≤ LdX(x, y) for x, y ∈ X.

If there exists a bi-Lipschitz homeomorphism between two metric spaces X and Y

with bi-Lipschitz constant L, then the spaces are called L-bi-Lipschitz equivalent
or just bi-Lipschitz equivalent, if the constant does not matter. It is an important
problem to characterize the Euclidean spaces R

n up to bi-Lipschitz equivalence
(see [Se3] for related information). This is easy for n = 1, but already for n = 2
this seems to be an exceedingly hard problem. In [To1,To2,MS] the question
was studied when the graph of a function on R

n is bi-Lipschitz equivalent to R
n

(see also [Se1]). For n = 2 these results were strengthened by J. Fu. He consid-
ered complete smooth Riemannian surfaces Z homeomorphic to the plane with
Gaussian curvature K and showed that if the absolute integral curvature of Z

satisfies
∫
Z

|K| ≤ ε0, where ε0 is a (small) positive numerical constant, then Z is
bi-Lipschitz equivalent to R

2 [Fu, Theorem D].
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Fu conjectured that this statement remains true under the weaker assumption∫
Z

K+ < 2π and
∫
Z

K− < ∞. In the present paper we establish Fu’s conjecture
by proving the following more general theorem.

Theorem 1.1. Suppose Z is a complete Aleksandrov surface homeomorphic to
the plane. If

∫
Z

K+ < 2π and
∫
Z

K− < ∞, then Z is L-bi-Lipschitz equivalent
to R

2 with

L =
(

2π + ∫
Z

K−

2π − ∫
Z

K+

)1/2

.

Here an Aleksandrov surface is a singular surface with locally bounded total vari-
ation of the integral curvature (see below for a precise definition). The class of
Aleksandrov surfaces contains all smooth Riemannian surfaces and all polyhedral
surfaces, for example. Roughly speaking, Aleksandrov surfaces form the largest
class of surfaces on which a notion of integral curvature can be defined as a signed
Borel measure µ on the surface. In the smooth case the integral curvature µ(E)

of a Borel subset E is just the integral
∫
E

K of the pointwise defined Gaussian
curvature K over the set E. Here integration is with respect to the Riemannian
area on the surface. In the statement of Theorem 1.1,

∫
Z

K+ and
∫
Z

K− stand for
µ+(Z) and µ−(Z), respectively, where µ = µ+−µ− is the Jordan decomposition
of µ.

Even if we only want to guarantee that the surface Z in Theorem 1.1 is bi-Lip-
schitz equivalent to R

2 without precise control of the bi-Lipschitz constant, then
the bound 2π for the positive integral curvature is best possible. To see this let Z

be a one-sided infinite cylinder whose finite end is closed off by a hemisphere.
To be specific, let

Z = {(x, y, z) ∈ R
3 : x2 + y2 = 1, z > 0 or x2 + y2 + z2 = 1, z ≤ 0}.

Then Z is an Aleksandrov surface with µ+(Z) = 2π and µ−(Z) = 0. On the
other hand, Z is not bi-Lipschitz equivalent to R

2. For if this were the case, then
the area of a disk of radius R (in the intrinsic metric) on Z would grow as R2 for
R → ∞. But this is obviously not true for the disks on Z.

Theorem 1.1 can be formulated in the following weaker form: Suppose Z is
a complete Aleksandrov surface homeomorphic to the plane. If µ+(Z) ≤ 2π − ε

and µ−(Z) ≤ C, then Z is L-bi-Lipschitz equivalent to R
2 with L depending only

on ε > 0 and C > 0. The dependence of the bi-Lipschitz constant on ε and C

is unavoidable in this statement. This can be seen by considering the Euclidean
cone Cλ over a circle of length λ > 0. Its integral curvature is a Dirac measure of
total mass 2π − λ located at the vertex of Cλ. The cone Cλ is L(λ)-bi-Lipschitz
equivalent to R

2, but we necessarily have L(λ) → ∞ as λ → 0 or λ → ∞. To
see this, assume first that 0 < λ ≤ 2π and let � be the unit circle in Cλ centered
at the vertex of Cλ. The curve � has length λ. Under an L-bi-Lipschitz equiva-
lence onto R

2, the curve � is mapped onto a Jordan curve �′ which contains a
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Euclidean disk of radius 1/L in its interior region. Hence the length of �′ is at
least 2π/L. On the other hand, the length of �′ is bounded by λL. This shows
L ≥ (2π/λ)1/2 → ∞ as λ → 0. Similarly, let λ ≥ 2π and assume that we have
an L-bi-Lipschitz equivalence of Cλ onto R

2. Then the vertex o of Cλ is mapped
to a point p0 ∈ R

2. The unit circle �′ in R
2 centered at p0 is the image of a Jordan

curve � containing a disk of radius 1/L centered at o in its interior. Hence the
length of � is at least λ/L. On the other hand, this length is bounded by 2πL.
This shows L ≥ (λ/(2π))1/2 → ∞ as λ → ∞.

In view of these examples the bi-Lipschitz constant L given in Theorem 1.1 is
optimal (for given values of

∫
Z

K+ or
∫
Z

K−) if the surface Z is non-negatively
or non-positively curved in addition. It seems that this is not true in the general
case. For related results on optimal bi-Lipschitz constants see [Mi].

The proof of Theorem 1.1 can be outlined as follows. By an approximation
argument the general case of Aleksandrov surfaces can be reduced to the case
of polyhedral surfaces, that is, surfaces which are everywhere flat except at fi-
nitely many vertices, where the surface locally looks like the neighborhood of
the vertex in a cone Cλ. The idea is now to find pairwise disjoint flat sectors on
the polyhedral surface X whose set of vertices agrees with the set of vertices of
the surface. In general, there will be several sectors for each vertex on the surface.
Using a bi-Lipschitz deformation of these sectors, the total angle at each vertex
is adjusted, so that it becomes 2π . The new surface obtained in this way is flat
everywhere. Hence it must be isometric to R

2 and we get the desired bi-Lipschitz
equivalence of X and R

2. The main difficulty lies in the choice of the sectors, in
particular, if one wants to keep precise control over the bi-Lipschitz constant. As
a model case for this type of argument we included Lemma 5.1. It is actually not
needed for the proof, but it serves to illustrate the main point.

The paper is organized as follows. In Section 2 we set up notation, formulate
basic definitions and cite facts from the theory of Aleksandrov surfaces. In Sec-
tion 3 we show that a complete Aleksandrov surface Z which is homeomorphic
to the plane and satisfies µ+(Z) < 2π admits exhaustions by convex polygons.
This result is later needed for the approximation argument. In Section 4 we fix
some terminology related to polyhedral surfaces. Proposition 5.2 in Section 5 is
one of the core results for the proof of Theorem 1.1. Here we construct the sectors
mentioned above if the surface is a polyhedral halfplane. To apply this result to
polyhedral planes we have to consider splittings of such surfaces into appropriate
polyhedral halfplanes. This is discussed in Section 6. The desired splittings are
rather easy to construct in the smooth case (cf. Proposition 6.1), but additional
complications arise in the polyhedral case. These are overcome in Proposition 6.2
and we obtain the polyhedral plane version (cf. Proposition 6.3) of Proposition 5.2.
We note that the considerations in Section 6 could have been somewhat simplified
at the cost of a worse bi-Lipschitz constant in our main theorem. The second core
result for the proof of Theorem 1.1 is Theorem 7.1 in Section 7. This statement
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may be of independent interest as it provides a polyhedral halfplane version of
our main result. Its proof illustrates the technique of curvature elimination by bi-
Lipschitz deformations of the sectors that were found in Section 5. This theorem
and the splitting results of Section 6 easily lead to the polyhedral version of our
main result (Theorem 7.2). It remains to run an approximation argument to get
a proof in the general case. This is done in Section 8. The final Section 9 is for
concluding remarks.

At first reading the reader is advised to skim through Section 4 for notation and
terminology for polyhedral surfaces and then proceed to the core arguments pro-
vided in the proofs of Proposition 5.2 and Theorem 7.1. Lemma 5.1 will provide
some guidance for understanding the technicalities in the proof of Proposition 5.2.

2. Aleksandrov surfaces

In this section we set up notation and briefly review some facts from the theory
of Aleksandrov surfaces or surfaces of bounded curvature as they were called by
A.D. Aleksandrov and his school. See [Re] for an extended survey and [AZ] for
a detailed account. This class should not be confused with the class of surfaces
(or more general spaces) with curvature bounded above or below which were also
studied by Aleksandrov.

Suppose X is a metric space with metric d = dX. Let I ⊂ R be an interval.
We denote the length of a rectifiable curve γ : I → X by L(γ ). We assume the
metric d to be intrinsic, i.e., the distance of any two points equals the infimum
of the lengths of curves connecting these points. If M is a subset of X with the
property that any two points in M can be connected by some rectifiable curve in
M , then the induced intrinsic metric dM on M is defined by

dM(x, y) = inf
γ

L(γ ) for x, y ∈ M ,

where the infimum is taken over all rectifiable curves in M with endpoints x and
y. We denote the distance between two sets M, N ⊂ X by

dist(M, N) = inf{d(x, y) : x ∈ M , y ∈ N}.
The open ball and the closed ball of radius r > 0 centered at x ∈ X are denoted
B(x, r) and B̄(x, r), respectively. A metric space is proper if its closed balls are
compact. If M ⊂ X is a set, then cl(M) is the closure and int(M) the interior
of M . For a function h : X → R, spt(h) = cl({x ∈ X : h(x) 	= 0}) denotes its
support.

A curve γ : I → X defined on a compact interval I = [a, b] is called a
minimizing geodesic segment if L(γ ) = d(γ (a), γ (b)) and if γ is parameterized
with constant speed. The image im(γ ) of a minimizing geodesic segment γ with
endpoints x and y is a simple (possibly degenerate) arc. We denote any such arc
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by [x, y] and refer to it as a shortest arc. The notation is ambiguous as [x, y] need
not be uniquely determined by its endpoints. A metric space is called geodesic if
every two points can be connected by a shortest arc. Every complete and locally
compact intrinsic metric space is geodesic and proper. A subset M ⊂ X is called
convex if for all points x, y ∈ M , there exists a shortest arc [x, y] contained in M .
In this case the induced intrinsic metric dM agrees with the induced metric, i.e.,
the restriction of the ambient metric dX to M . Suppose I ⊂ R is a closed interval,
and γ : I → X is a locally rectifiable curve in constant speed parameterization.
If for every point t ∈ I there exists a compact interval J ⊂ I containing t in its
relative interior such that γ |J is a minimizing geodesic segment, then γ is called
a geodesic. If I is a compact interval, I = [0, ∞), or I = R, the geodesic will
be called a geodesic segment, a geodesic ray, or a geodesic line. We use the same
terms also for the respective images.

Suppose α and β are simple arcs in X with a common endpoint o. Let x ∈ α,
y ∈ β, x, y 	= o, and consider a Euclidean triangle with sides of lengths d(o, x),
d(o, y), d(x, y). Let γ (x, y) ∈ [0, π ] be the angle opposite the side whose length
is d(x, y). The upper angle between α and β is defined as

∠̄o(α, β) = lim sup
x,y→o

γ (x, y) ∈ [0, π ].

Here the points x ∈ α and y ∈ β tend to o along α and β, respectively.
A surface is a connected topological 2-manifold with (possibly empty) bound-

ary. A metric d on a surface is a metric whose induced topology agrees with the
topology of the surface. In the following Z stands for a surface without boundary
with an intrinsic metric d = dZ. Since it is enough for our purpose and since
it simplifies some of the more technical aspects of the theory of Aleksandrov
surfaces, we will in addition assume that Z is homeomorphic to the plane and that
(Z, d) is a complete metric space.

A polygonal line in Z is a curve of the form [x1, x2]∪[x2, x3]∪· · ·∪[xn−1, xn].
A simple arc or a Jordan curve J is a polygonal line, if and only if every point in
J has a neighborhood in J consisting of one or two shortest arcs. A closed Jordan
region is a compact subset of Z homeomorphic to a closed disk. A Jordan polygon
is a closed Jordan region P whose boundary ∂P is a polygonal line. If the closed
Jordan region P has rectifiable boundary ∂P , then it is called convex relative to
its boundary if no arc α which lies outside P except its endpoints x, y ∈ ∂P is
shorter than the corresponding arc β on ∂P with the same endpoints. Here the arc
β corresponding to α is the unique subarc of ∂P with endpoints x and y such that
β is contained in the closed Jordan region bounded by α ∪ (∂P \ β). If P is a
Jordan polygon which is convex relative to its boundary, then it is also convex.

A simple triangle	 is a Jordan polygon which is convex relative to its boundary
and whose boundary can be written as a union of three distinguished non-over-
lapping non-degenerate shortest arcs α1 = [x2, x3], α2 = [x3, x1], α3 = [x1, x2].
Here we say that two subsets of a metric space are non-overlapping, if they do not
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have interior points in common. Note that the arcs αi are considered as subsets of
the space ∂	. The points xi are the vertices, the arcs αi the edges of the triangle
	. The upper excess δ̄(	) of the simple triangle 	 is defined as

δ̄(	) = ∠̄x1(α2, α3) + ∠̄x2(α3, α1) + ∠̄x3(α1, α2) − π.

A surface Z with intrinsic metric is called an Aleksandrov surface if for every
point in Z there exists a neighborhood U , homeomorphic to an open disk, and
a constant C(U) < ∞ such that for any system T1, . . . , Tn of non-overlapping
simple triangles contained in U we have the inequality

n∑

i=1

δ̄(Ti) ≤ C(U).

Starting from this geometric definition one can build up a theory of surfaces
with features that correspond to those from the differential geometry of smooth
surfaces. In particular, one can define a notion of integral curvature as a signed
measure µZ on an Aleksandrov surface Z. The subscript Z will be dropped, if the
surface is understood.

According to work by Reshetnyak (see [Re, Section 7]) and A. Huber [Hu1],
the geometric definition of Aleksandrov surfaces is equivalent to the follow-
ing analytic definition. A topological surface Z with an intrinsic metric is an
Aleksandrov surface if and only if there exists an atlas of complex charts on
Z such that the metric can locally be defined by a length element of the form

eu(z)|dz|, (1)

where z is a complex local coordinate and u is a difference of two subharmonic
functions such that exp u is locally integrable on analytic curves in the z-plane.
The generalized Laplacian −	u is a signed Borel measure µ on the surface,
which represents the integral curvature. The density exp u is locally integrable on
analytic curves if and only if every atom of µ has mass less than 2π . In this paper
we will not adopt this analytic point of view, but we will work in a geometric
framework. See Section 9 for additional discussion.

We will utilize a version of the Gauss–Bonnet theorem on our Aleksandrov
surface Z. If P ⊂ Z is a Jordan polygon, then one can associate a notion of turn
or rotation of the boundary considered as a measure on ∂P . We have two signed
Borel measures τin and τout (the “inner” and the “outer” turn) which describe the
rotation of Borel subsets of ∂P depending on whether we consider the rotation
from inside or outside the Jordan region P (see [AZ, Chapters VI and IX] for
a discussion and precise definitions). In the smooth Riemannian case, τin corre-
sponds to the geodesic curvature of subsets of ∂P and we have τout = −τin. For
general Aleksandrov surfaces, we have the equality

τin(E) + τout(E) = µ(E) for all Borel subsets E ⊂ ∂P .
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A version of the Gauss–Bonnet theorem [AZ, Chapter VI, Theorem 5] can be
stated as

µ(int(P )) + τin(∂P ) = 2π.

It is useful to have a more explicit representation of the measures τin and τout.
For this purpose we represent ∂P as a union

∂P = γ1 ∪ γ2 ∪ · · · ∪ γn,

where γi = [xi−1, xi] are non-overlapping shortest arcs with γi ∩ γi+1 = {xi} for
i = 1, . . . , n (here γn+1 = γ1 and xn = x0). The points xi are called the vertices
of this representation of ∂P . The measures τin and τout can be decomposed into
a sum of measures τi and τ ′

i supported on the interior of the shortest arc γi and
atoms supported in the vertices xi . The measures τi and τ ′

i correspond to the turn
of subsets of interior points of γi as considered from inside or outside P . The
total turn of every shortest arc is non-positive; this is independent of whether we
consider the turn from the “left" or “right" (see [AZ, Chapter VI, Theorem 6]).
Since a measure on an open interval is non-positive if and only if the measure of
every subinterval is non-positive, we conclude τi ≤ 0 and τ ′

i ≤ 0. The subarcs γi

and γi+1 of ∂P which have the common endpoint xi decompose each sufficiently
small neighborhood of xi in Z which is homeomorphic to a disk into two com-
plementary closed sectors Si and S ′

i with vertex xi . One of these sectors, say Si ,
will be contained in P and the other one, S ′

i , in Z \ int(P ). To a sector one can
associate a sector angle (see [AZ, Chapter II, Section 5 and Chapter IV, Section 4]
for a discussion of sectors and for the precise definition of sector angles). Let
λi and λ′

i be the angles of the sectors Si and S ′
i , respectively. If we denote by δz

the Dirac measure of mass 1 at the point z, then we have (this is essentially [AZ,
Chapter VI, Theorem 4])

τin =
n∑

i=1

τi +
n∑

i=1

(π − λi)δxi

and

τout =
n∑

i=1

τ ′
i +

n∑

i=1

(π − λ′
i )δxi

.

If the Jordan polygon P is convex relative to its boundary, then we have λ′
i ≥ π

([AZ, pp. 120–121, Theorem 6]). It follows that τout ≤ 0.

3. Convex exhaustions of Aleksandrov surfaces

Let Z be a complete Aleksandrov surface homeomorphic to the plane. A curve
γ : [a, b] → Z is called a loop if γ (a) = γ (b). Fix an orientation of Z and let
Q ⊂ Z be a closed Jordan region. We say that a loop γ : [0, 1] → Z surrounds
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Q if im(γ ) ∩ int(Q) = ∅ and if the winding number of γ with respect to the
points in int(Q) is non-zero. Note that the winding number of γ with respect to
a point in int(Q) is independent of the point. The property that loops surround
a fixed Jordan region Q is stable under limits and under small perturbations of
loops in Z \ int(Q). If J is a Jordan curve (given in some parameterization), then
J surrounds Q if and only if int(Q) is contained in the Jordan region determined
by J .

Lemma 3.1. Suppose Z is a complete Aleksandrov surface homeomorphic to the
plane. If µ+(Z) < 2π , then for every closed Jordan region Q ⊂ Z there exists
a Jordan curve J ′ that surrounds Q and has minimal length among all loops
surrounding Q.

The basic idea of the proof of the lemma goes back to Cohn-Vossen [CV].

Proof. For n ∈ N consider the class Cn of all rectifiable loops γ : [0, 1] → Z

with dist(Q, im(γ )) ≤ n that surround Q. Since γ (0) = γ (1) we can consider
γ as a 1-periodic function on R. Among the loops in Cn there exists a loop γn of
minimal length. We want to show that im(γn) ∩ Q 	= ∅ for n ∈ N.

Suppose that we have im(γn) ∩ Q = ∅ for some n ∈ N. Set γ := γn for
simplicity, and assume that γ is given in constant speed parameterization. We
now consider two cases:

Case I. There is no interval [a, b] ⊂ R with b − a < 1 such that γ |[a, b] is a
loop surrounding Q. Then J = im(γ ) is a Jordan curve. For otherwise, there
would exist numbers c and d such that 0 ≤ c < d < 1 with γ (c) = γ (d). By
the additivity of winding numbers under compositions of loops, it follows that
one of the loops γ |[c, d] or γ |[d, c + 1] surrounds Q, which is impossible by the
assumption in this case.

There exist points x0 ∈ J and p0 ∈ Q such that d(x0, p0) = dist(J, Q) ≤ n.
We may assume γ (0) = γ (1) = x0. If x ∈ J is a point with x 	= x0, then each
sufficiently small subarc of J containing x is a shortest arc. Otherwise, we could
replace this subarc by a shortest arc with the same endpoints and obtain a loop in
Cn shorter than γ . Similarly, every sufficiently small subarc of J having x0 as one
of its endpoints is a shortest arc. It follows that γ is a geodesic loop (i.e., a loop
which is a geodesic segment) and the two sector angles determined by J and the
vertex x0 exist. Let λ be the sector angle corresponding to the sector S at x0 con-
tained in the closed Jordan region P with boundary ∂P = J . The Gauss–Bonnet
formula shows

µ(int(P )) + τin(J \ {x0}) + (π − λ) = 2π. (2)

Since γ is a geodesic loop, we have τin(J \ {x0}) ≤ 0. Let [p0, x0] be a shortest
arc. By definition of p0 and x0, we have [p0, x0] ∩ J = {x0}, and so travelling
from p0 along [p0, x0], we approach x0 through the sector S. If we had λ < π ,
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then we could replace a small arc β of J containing x0 in its interior by a shortest
arc β ′ cutting across the sector S with the same endpoints as β, but of strictly
smaller length (see [BE, p. 67, Proposition 2] for more details). Then β ′ would
meet [p0, x0] and so dist(β ′, Q) ≤ n. In this way we could obtain a loop con-
sisting of β ′ and J \ β which surrounds Q and is shorter than γ . Since this is
impossible we conclude λ ≥ π . By using (2) we arrive at

µ+(Z) ≥ µ+(int(P )) = π + λ − τin(J \ {x0}) + µ−(int(P )) ≥ 2π.

This contradicts our hypothesis µ+(Z) < 2π .

Case II. There is an interval I = [a, b] ⊂ R with b − a < 1 such that γ |[a, b] is
a loop surrounding Q. Using Zorn’s lemma one may assume that [a, b] is mini-
mal among such intervals. We claim that γ |[a, b) is injective, i.e., J = γ ([a, b])
is a Jordan curve. For otherwise, there would exist numbers c and d such that
a ≤ c < d < b with γ (c) = γ (d). Since γ |[c, d] is a loop and [c, d] is strictly
contained in I , this loop cannot surround Q by definition of I . By the additivity of
winding numbers under compositions of loops, it follows that the loop γ |[d, c+1]
surrounds Q. But then dist(Q, γ ([d, c + 1])) > n, for otherwise γ |[d, c + 1] is
a loop in Cn which is shorter than γ . Since dist(Q, im(γ )) ≤ n, this implies

dist(Q, γ ([a, b])) ≤ dist(Q, γ ([c, d])) ≤ n

and so γ |[a, b] ∈ Cn. But again this is impossible, since γ |[a, b] is shorter than
γ .

Let Q′ := {z ∈ Z : dist(z, Q) ≤ n}. Since γ |[a, b] is a loop surrounding Q

and γ has minimal length among the loops in Cn, we must have dist(Q′, J ) > 0.
Hence Q′ lies in the open Jordan region � bounded by J . Moreover, there exists
a point t ∈ (b, a + 1) such that γ (t) ∈ Q′. Since Q′ is compact, there exist
points p0 ∈ Q′ and x0 ∈ J such that d(p0, x0) = dist(Q′, J ) > 0. Let [p0, x0]
be a shortest arc. By definition of p0 and x0 we have [p0, x0] ∩ Q′ = {p0} and
[p0, x0] ∩ J = {x0}. In particular, [p0, x0] ∩ int(Q) = ∅. This implies that we
obtain a loop γ̃ in Cn if we start at p0, follow the arc [p0, x0] up to the endpoint
x0, go around J once, and then return to p0 along [p0, x0] travelling in opposite
direction. Note that

L(γ̃ ) = L(J ) + 2L([p0, x0])

≤ L(γ |[a, b]) + L(γ |[b, t]) + L(γ |[t, a + 1])

= L(γ ).

Since γ has minimal length among the loops in Cn, and γ̃ ∈ Cn, we must have
equality in this inequality. In particular, γ̃ has also minimal length among the
loops in Cn. Arguing as in the previous case, we see that if we consider x0 as
the initial point and the endpoint of J , then in arclength parameterization J is a
geodesic loop and the sector angle λ of the sector S ⊂ cl(�) at x0 is well defined.
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Again [p0, x0] approaches x0 through the sector S and using the fact that γ̃ ∈ Cn

has minimal length, we see that λ ≥ π . As in the previous case, this leads to a
contradiction by the Gauss–Bonnet formula.

Both cases exhaust all possibilities and lead to a contradiction. This means
that the initial assumption that im(γn) ∩ Q = ∅ for some n ∈ N is impossible.
Therefore, γn ∩Q 	= ∅ for all n ∈ N. Let C∞ be the class of all loops surrounding
Q. Then C∞ = ⋃

n∈N
Cn and so

inf
γ∈C∞

L(γ ) = inf
n∈N

L(γn).

Since γn ∩ Q 	= ∅ for all n ∈ N, the loops γn stay inside a compact subset of Z

and by extracting a sublimit of these loops we can find a loop γ∞ ∈ C∞ with

L(γ∞) = inf
γ∈C∞

L(γ ).

We may assume that γ∞ : [0, 1] → Z is given in constant speed parameterization.
Arguing as above, we see that γ∞|[0, 1) is injective, and so J ′ = γ∞([0, 1]) is a
Jordan curve. 
�
Lemma 3.2. Suppose Z is a complete Aleksandrov surface homeomorphic to the
plane. If µ+(Z) < 2π , then for every Jordan polygon Q ⊂ Z there exists a
Jordan polygon P containing Q which is convex relative to its boundary.

A related result for smooth Riemannian surfaces was proved in [Ba1, Proposi-
tion 2].

Proof. Let J ′ be the Jordan curve produced in the previous lemma. As in this
lemma, we denote by C∞ the set of loops surrounding Q. We will replace J ′

by a Jordan curve J ′′ in C∞ which is also length minimizing among the loops
surrounding Q and has the additional property that J ′′ is a polygonal line. Due
to the minimization property of J ′, each point in J ′ \ Q lies in the interior of a
subarc of J ′ which is a shortest arc; so the difficulties are caused by the points in
J ′ ∩ Q. To obtain J ′′ we will modify J ′ so that J ′′ intersects Q in a controlled
manner. Since J ′ ∩ int(Q) = ∅, the curve J ′ can only intersect the boundary of
Q.

Since ∂Q is a polygonal line, we can represent the boundary of Q as the union
of non-overlapping shortest arcs α1, . . . , αk. Let α be one of these arcs. Suppose
α∩J ′ consists of more than one point. Then there exists a smallest non-degenerate
subarc α′ ⊂ α containing α ∩ J ′. The endpoints x and y of α′ lie in J ′. We can
replace one of the two subarcs of J ′ with endpoints x and y by α′ to obtain a
new Jordan curve which still surrounds Q. Moreover, the length of this new curve
is not longer than J ′, since α′ is a shortest arc as a subarc of a shortest arc. By
successive replacements of this type, we obtain a Jordan curve J ′′ in C∞ which
has minimal length among the loops in C∞ and has the the additional property
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that J ′′ ∩αi is connected for i = 1, . . . , k (this is a particular instance of the tech-
nique of “removal of superfluous intersections”; see [AZ, p. 51] and [Re, p. 79]).
It follows that J ′′ ∩ ∂Q consists of finitely many disjoint connected components.
If J ′′ ∩ ∂Q = ∂Q, then J ′′ = ∂Q and J ′′ is a polygonal line. Otherwise, the
connected components of J ′′ ∩ ∂Q are either single points or simple arcs which
are polygonal lines and form subarcs of both J ′′ and ∂Q. Let β be one of these
components and z an endpoint of β (i.e., z = β if β is a point). Consider any
small subarc γ of J ′′ with endpoint z. We claim that if x ∈ γ \ {z} is sufficiently
close to z, then the subarc γ (x, z) of γ between x and z is a shortest arc. This
statement is obviously true if γ (x, z) is contained in the connected component of
J ′′ ∩∂Q which contains z. In the other case we have γ (x, z)∩∂Q = {z} assuming
d(x, z) is small enough. If γ (x, z) is not a shortest arc, then d(x, z) < L(γ (x, z)).
Consider a shortest arc [x, z]. Since x does not belong to Q, there is a first point
y ∈ [x, z] ∩ Q as we travel along [x, z] starting from x. Since ∂Q is a polygonal
line and y ∈ ∂Q, we may assume that x was chosen so close to z that there is a
(possibly degenerate) shortest arc [y, z] ⊂ ∂Q. Note that it is not necessarily true
that for this segment we have [y, z] ⊂ [x, z], but in any case

L([x, z]) = L([x, y]) + L([y, z]),

where [x, y] ⊂ [x, z]. Using this we obtain

L([x, y]) + L([y, z]) = d(x, z) < L(γ (x, z)).

If the arc γ (x, z) of J ′′ is replaced by [x, y]∪[y, z] we obtain a loop γ̃ which does
not meet int(Q). Since winding numbers are invariant under small perturbations
of loops, γ̃ will lie in C∞, assuming that x was chosen sufficiently close to z. This
is impossible, since γ̃ is shorter than J ′′. This shows that γ (x, z) is a shortest arc.

We conclude that there are finitely many shortest arcs on J ′′ covering an open
neighborhood of Q ∩ J ′′ in J ′′. On the other hand, the minimality property of
J ′′ implies that every point in J ′′ \ Q is contained in the interior of a subarc of
J ′′ which is a shortest arc. This and a simple covering argument implies that J ′′

is a polygonal line. The closure P of the interior region of J ′′ is a Jordan poly-
gon containing Q. Suppose α is an arc which lies outside P except its endpoints
x, y ∈ ∂P . If we replace the corresponding arc β of J ′′ by α, then we obtain a Jor-
dan curve surrounding Q. The minimization property of J ′′ implies L(β) ≤ L(α).
This shows that P is convex relative to its boundary. 
�
Lemma 3.3. Suppose Z is a complete Aleksandrov surface homeomorphic to the
plane. If µ+(Z) < 2π , then for n ∈ N there exist Jordan polygons Pn ⊂ Z

which are convex relative to their boundaries and form an exhaustion of Z, i.e.,
int(Pn) ⊂ Pn+1 for n ∈ N and

⋃∞
n=1 Pn = Z.

Proof. Every compact subset Q of Z lies in a Jordan polygon. This can be proved
by approximating a Jordan curve containing Q in its interior region by a polygonal
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line and then “removing superfluous intersections” (see [AZ, p. 51, Lemma 3] for
a related statement). The claim now follows from Lemma 3.2. 
�

4. Polyhedral surfaces

For λ > 0 we denote by C ′
λ the geodesic metric space induced by the pseudometric

space
(
[0, ∞) × [0, λ], d ′),

d ′((r, θ), (r ′, θ ′)
)2 = r2 + r ′2 − 2rr ′ cos

(
min{π, |θ − θ ′|}),

i.e., C ′
λ is the Euclidean cone over [0, λ], and C ′

π is isometric to a closed Euclidean
halfplane. Similarly, Cλ denotes the Euclidean cone over a circle of length λ, i.e.,
Cλ is induced by the pseudometric space

(
[0, ∞) × [0, λ], d

)
,

d
(
(r, θ), (r ′, θ ′)

)2 = r2 + r ′2 − 2rr ′ cos
(
min{π, |θ − θ ′|, λ − |θ − θ ′|}),

and C2π is isometric to the Euclidean plane. For ε > 0 let C ′
λ,ε := C ′

λ ∩ B̄(o, ε)

and Cλ,ε := Cλ ∩ B̄(o, ε), where B̄(o, ε) is the closed ball of radius ε around the
vertex o of the cone. By a polyhedral surface X we mean a complete geodesic
metric space with the property that for every x ∈ X there exist λ(x), ε(x) > 0
such that the closed ball B̄(x, ε(x)) is isometric to either Cλ(x),ε(x) or C ′

λ(x),ε(x)

so that x corresponds to the vertex of the cone. According to these two cases, x

belongs to the interior int(X) or to the boundary ∂X of X. The uniquely deter-
mined number λ(x) is the total angle or (length of the) link at x. A polyhedral
surface homeomorphic to a plane, a closed halfplane, or a closed disk will be
called a polyhedral plane, polyhedral halfplane, or polyhedral disk, respectively.
The integral curvature µ of a polyhedral surface X is the signed measure whose
support spt(µ) is a discrete subset of X and which satisfies

µ(x) =
{

2π − λ(x) if x ∈ int(X),

0 if x ∈ ∂X.

Here and throughout the paper µ(x) stands for µ({x}). Similarly, the turn τ of
∂X is the discretely supported signed measure on X satisfying

τ(x) =
{

π − λ(x) if x ∈ ∂X,

0 if x ∈ int(X).

It is convenient to combine µ and τ to a single measure

ν := µ + τ



Bi-Lipschitz parameterization of surfaces 147

which we refer to as the total measure of X. For a polyhedral disk X the Gauss–
Bonnet formula now simply reads

ν(X) = 2π.

Points in the support spt(ν) of ν = µ+τ are called (interior or boundary) vertices
of the polyhedral surface X. Note that, if X is a polyhedral plane and X = P ′ ∪P ′′

for two polyhedral halfplanes with P ′ ∩ P ′′ = ∂P ′ = ∂P ′′, each equipped with
its induced intrinsic metric, then the total measures of P ′ and P ′′ add up to the
integral curvature of X, i.e., νP ′ + νP ′′ = µ, where it is understood that νP ′ = 0
on X \ P ′ and νP ′′ = 0 on X \ P ′′.

Every polyhedral surface without boundary is an Aleksandrov surface as de-
fined in Section 2. Every polyhedral surface X with boundary ∂X 	= ∅ is isometric
to a closed polyhedral region P in some Aleksandrov surface Z; the integral cur-
vature µ of X agrees with the restriction of µZ to int(P ), and the turn τ of ∂X

agrees with the measure τin on ∂P as a subset of Z.

5. Choosing sectors

As mentioned in the introduction, the proof of our main result in the polyhedral
case relies on the choice of a suitable family of flat sectors on a given polyhedral
halfplane or plane. This is the content of Propositions 5.2 and 6.3. The idea of the
construction is best illustrated by the following lemma which is not needed in the
sequel but which motivated the whole approach.

By a convex polyhedron P ⊂ R
2 we mean the intersection of a finite number

of closed halfplanes, including the case P = R
2. Every such surface P , endowed

with the induced metric, is a polyhedral surface as defined in the previous section,
with integral curvature µ = 0. For a convex polyhedron P ⊂ R

2 homeomorphic
to a closed halfplane, the total boundary turn satisfies 0 ≤ τ(∂P ) ≤ π and agrees
with the sum of the bending angles of ∂P . A sector � ⊂ R

2 is the non-empty
intersection of two closed halfplanes whose union is distinct from R

2; in case �

is a halfplane, it comes with the choice of a vertex y ∈ ∂�. The angle β ∈ (0, π ]
of a sector � ⊂ R

2 is read off between the two rays in ∂� issuing from the vertex
of �.

Lemma 5.1. Let P ⊂ R
2 be either R

2 or a convex polyhedron homeomorphic
to a closed halfplane, and suppose α ≥ 0 is a measure on P with finite support
spt(α) and

0 < α(P ) ≤
{

π − τ(∂P ) if P 	= R
2,

2π if P = R
2.

Then there exist finitely many sectors �1, . . . , �k ⊂ P with vertices y1, . . . , yk ∈
spt(α) and angles β1, . . . , βk, respectively, such that int(�i) ∩ int(�j ) = ∅ for
i 	= j and

∑
yi=x βi = α(x) for every x ∈ spt(α).
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Proof. We first treat the case P 	= R
2. Let P1 := P and α1 := α. The sec-

tors �i ⊂ P are selected by repeating the following procedure consecutively for
i = 1, 2, . . . . Given Pi and αi with spt(αi) ⊂ Pi and 0 < αi(Pi) ≤ π − τ(∂Pi),
choose a closed halfspace Hi ⊂ R

2 such that ∂Hi is parallel to a ray in ∂Pi

(note that Pi has only finitely many vertices), spt(αi) ⊂ P̃i := Pi ∩ Hi , and
∂Hi ∩ spt(αi) 	= ∅. Possibly P̃i = Pi . Now there exists a ray ρi ⊂ ∂P̃i with vertex
yi such that ρi ∩ spt(αi) = {yi}. Let �i ⊂ P̃i be the sector with vertex yi and
ρi ⊂ ∂�i whose angle βi is maximal subject to the conditions βi ≤ αi(yi) and
int(�i) ∩ spt(αi) = ∅. Finally, define

Pi+1 := cl(P̃i \ �i) and αi+1 := αi − βiδyi
.

It is readily checked that spt(αi+1) ⊂ Pi+1 and 0 < αi+1(Pi+1) ≤ π − τ(∂Pi+1)

except in case αi+1 = 0 in which the process terminates, i.e., i = k. The sectors
�1, �2, . . . constructed by this iterative procedure have pairwise disjoint interi-
ors, and their vertices y1, y2, . . . belong to spt(α). If yi = yj for some i 	= j ,
then by construction there is a sector �k between �i and �j , i.e., contained in
the convex hull of �i ∪ �j . Hence, there are at most n := #(spt(α)) sectors with
the same vertex and at most n2 sectors in total. This shows that the procedure
indeed stops after finitely many iterations (a precise estimate is k ≤ 2n − 1).
The assertion

∑
yi=x βi = α(x) for every x ∈ spt(α) follows since βi ≤ αi(yi),

αi+1 = αi − βiδyi
, and αk+1 ≡ 0.

It remains to consider the case P = R
2. In this case it suffices to find a line

l ⊂ R
2 with α(U ′), α(U ′′) ≤ α(R2)/2 for the two open halfspaces U ′, U ′′ bound-

ed by l. Then there exist measures α′, α′′ ≥ 0 on R
2 with α′ + α′′ = α, spt(α′) ⊂

P ′ := cl(U ′), spt(α′′) ⊂ P ′′ := cl(U ′′), and α′(P ′) = α′′(P ′′) = α(R2)/2 ≤ π .
The result for (R2, α) now follows by applying the first part of the proof to both
(P ′, α′) and (P ′′, α′′). A line l as above exists through any given point in R

2, or
parallel to any given line, as is shown by simple continuity arguments. 
�

Now we proceed to the choice of sectors on polyhedral halfplanes.

Proposition 5.2. Let P be a polyhedral halfplane with boundary ∂P and only
finitely many interior and boundary vertices. Suppose that the total angle of every
interior vertex x of P satisfies λ(x) > π . Denote by ν = µ + τ the total measure
of P and suppose α ≥ 0 is a measure on P with finite support spt(α) such that

α ≥ ν− and 0 < α(P ) ≤ π − ν(P ).

Then there exist sectors �i = {(r cos(θ), r sin(θ)) : r ≥ 0, 0 ≤ θ ≤ βi} in R
2

and arcwise isometric embeddings σi : �i → P , for i = 1, 2, . . . up to some
finite index k, such that σi(0) ∈ spt(α), σi(int(�i)) ∩ σj (int(�j )) = ∅ for i 	= j ,
and

∑
σi(0)=x βi = α(x) for every x ∈ spt(α).
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Here we say that σi : �i → P is an arcwise isometric embedding if σi is a ho-
meomorphism onto its image with the property that it preserves the length of all
rectifiable curves, i.e. L(σi ◦ c) = L(c) for every such curve c in �i . This means
that σi is an isometric embedding with respect to the induced intrinsic metric on
σi(�i) ⊂ P . Note further that the assumptions of the proposition imply ν(P ) < π

and

ν+(P ) = ν(P ) + ν−(P ) ≤ ν(P ) + α(P ) ≤ π. (3)

Proof. The plan of the proof is as follows. Starting with P1 := P , ν1 := ν,
α1 := α we will construct a finite sequence

P1 ⊃ P̃1 ⊃ P2 ⊃ P̃2 ⊃ . . .

of polyhedral halfplanes with total measures ν1, ν̃1, ν2, ν̃2, . . . , respectively. For
each i = 1, 2, . . . we will define a measure 0 ≤ αi ≤ α, with support spt(αi) ⊂
P̃i ⊂ Pi , such that

αi ≥ ν−
i , 0 < αi(Pi) ≤ π − νi(Pi), (4)

αi ≥ ν̃−
i , 0 < αi(P̃i) ≤ π − ν̃i(P̃i). (5)

P̃i will be obtained from Pi by cutting off some flat strips along the boundary of
Pi . The image of the embedding σi : �i → P will be contained in P̃i , and the
procedure will terminate if αi+1 := αi − βiδσi(0) = 0. In the opposite case, Pi+1

will be defined as the closure of P̃i \ σi(�i). Throughout the proof ∂ and int refer
to the boundary and interior of polyhedral surfaces (rather than to the topological
boundary and interior). Moreover, in the proof we will denote by [x, y] a not
necessarily minimizing geodesic segment with endpoints x and y.

Part I. Suppose we are given Pi, νi, αi satisfying (4). We construct P̃i, ν̃i with
spt(αi) ⊂ P̃i ⊂ Pi ,

ν̃−
i ≤ ν−

i , ν̃i(P̃i) = νi(Pi), (6)

and the property that there exists a geodesic ray ρi ⊂ ∂P̃i with vertex yi and
ρi ∩ spt(ν̃i) ⊂ {yi} = ρi ∩ spt(αi). Clearly (4) and (6) imply (5).

P̃i will be obtained via a finite sequence

Pi ⊃ Pi0 ⊃ Pi1 ⊃ · · · ⊃ Pini
=: P̃i

of polyhedral halfplanes for some index ni ≥ 0. The corresponding total measures
will satisfy νi = νi0 and

ν−
i0 ≥ ν−

i1 ≥ . . . ≥ ν−
ini

, νi0(Pi0) = νi1(Pi1) = . . . = νini
(Pini

).

If ∂Pi ∩(spt(νi)∪spt(αi)) 	= ∅, then Pi0 := Pi . If ∂Pi ∩(spt(νi)∪spt(αi)) = ∅,
then there exists a closed set Fi0 ⊂ Pi with ∂Pi ⊂ Fi0 which, when equipped with
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its induced intrinsic metric, is isometric to a flat strip R × [0, bi0]; moreover, Fi0

is chosen so that

∅ 	= Fi0 ∩ (spt(νi) ∪ spt(αi)) ⊂ ∂Fi0.

The set Pi0 := cl(Pi \ Fi0), equipped with the metric induced from Pi , is a poly-
hedral halfplane. In either case νi0 = νi , spt(αi) ⊂ Pi0, and ∂Pi0 ∩ (spt(νi0) ∪
spt(αi)) 	= ∅.

Now suppose we are given, for some index j ≥ 0, a polyhedral halfplane
Pij ⊂ Pi with spt(αi) ⊂ Pij ,

ν−
ij ≤ ν−

i , νij (Pij ) = νi(Pi), (7)

and ∂Pij ∩ (spt(νij ) ∪ spt(αi)) 	= ∅. If there exists a geodesic ray ρi ⊂ ∂Pij with
vertex yi and ρi ∩ spt(νij ) ⊂ {yi} = ρi ∩ spt(αi), then we put P̃i := Pij , i.e.,
j = ni , and we are done with Part I of the proof. If there is no such ray, we construct
Pi,j+1 as follows. We have spt(νij )∩ ∂Pij 	= ∅. Moreover, since αi ≥ ν−

i ≥ ν−
ij , it

follows that there exists a geodesic ray ρij ⊂ ∂Pij with vertex yij such that ρij is
disjoint from spt(αi) ⊃ spt(ν−

ij ) and meets spt(ν+
ij ) exactly in yij . By symmetry

there is another such ray ρ ′
ij ⊂ ∂Pij with vertex y ′

ij ∈ spt(ν+
ij ); this fact will be

used below. The link of Pij at yij satisfies λPij
(yij ) = π −νij (yij ) < π . Then there

exist a nontrivial geodesic segment [yij , zij ] ⊂ ∂Pij with ρij ∩ [yij , zij ] = {yij }
and a closed set Fi,j+1 ⊂ Pij with ρij ∪ [yij , zij ] ⊂ Fi,j+1 which, when equipped
with its induced intrinsic metric, is isometric to the convex hull of two disjoint
parallel rays in R

2, [yij , zij ] being isometric to the compact edge of this convex
hull; moreover, Fi,j+1 is chosen so that

∅ 	= Fi,j+1 ∩ ((spt(νij ) \ {yij }) ∪ spt(αi)) ⊂ ∂Fi,j+1.

We put Pi,j+1 := cl(Pij \ Fi,j+1) and equip this set with the metric induced from
Pij . We need to show that Pi,j+1 is a polyhedral halfplane. The relations (7) and (4)
imply νij (Pij ) < π and ν+

ij (Pij ) ≤ π (compare (3)). Hence, Pi,j+1 	= ∅ for if
otherwise νij (Pij ) = π . Furthermore, the connected component of Fi,j+1 ∩ ∂Pij

containing ρij ∪ [yij , zij ] coincides with ρij ∪ [yij , zij ] for if otherwise ν+
ij (Pij ) ≥

ν+
ij (yij )+ ν+

ij (zij )+ ν+
ij (y

′
ij ) = π + ν+

ij (y
′
ij ) > π for the point y ′

ij ∈ spt(ν+
ij ) men-

tioned above. We claim that in fact Fi,j+1 ∩ ∂Pij = ρij ∪ [yij , zij ]. If not, then
Pi,j+1 contains a polyhedral disk D̄ with ∂D̄ ⊂ Fi,j+1 ∪ ∂Pij and D̄ ∩ Fi,j+1 =
[zij , z̄] for some z̄ 	= zij . The total measure ν̄ of D̄ satisfies ν̄(zij ) = νij (zij ) +
νij (yij ) and ν̄+(D̄ \ {z̄}) ≤ ν+

ij (Pij ) ≤ π , while ν̄(D̄) = 2π by the Gauss–Bon-
net formula. Hence, ν̄(z̄) ≥ π . This contradiction proves the claim. It follows
that Pi,j+1 is a polyhedral halfplane. We have νi,j+1 = νij + νij (yij )(δzij

− δyij
),

therefore

ν−
i,j+1 ≤ ν−

ij ≤ ν−
i and νi,j+1(Pi,j+1) = νij (Pij ) = νi(Pi)
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due to (7). By construction, spt(αi) ⊂ Pi,j+1. Since αi(zij ) ≥ ν−
ij (zij ), we see that

∂Pi,j+1 ∩ (spt(νi,j+1) ∪ spt(αi)) 	= ∅ as for Pij .
We need to show that this iterative process terminates, i.e. produces the de-

sired polyhedral halfplane Pini
= P̃i . Suppose Pi,j+1 is not yet the desired sur-

face. If zij ∈ spt(νij ), then #(spt(νi,j+1)) < #(spt(νij )) (the total number of
vertices) and #(spt(νi,j+1) ∩ int(Pi,j+1)) ≤ #(spt(νij ) ∩ int(Pij )) (the number
of interior vertices). If zij 	∈ spt(νij ), then #(spt(νi,j+1)) = #(spt(νij )) and
#(spt(νi,j+1) ∩ int(Pi,j+1)) < #(spt(νij ) ∩ int(Pij )). Since νi0 = νi it follows
that ni ≤ 2#(spt(νi)).

Part II. We are given P̃i, ν̃i , αi satisfying (5), and there exists a geodesic ray
ρi ⊂ ∂P̃i with vertex yi such that ρi ∩ spt(ν̃i) ⊂ {yi} = ρi ∩ spt(αi). We construct
σi : �i → P̃i and Pi+1, αi+1 as follows.

Let �i := {(r cos(θ), r sin(θ)) : r ≥ 0, 0 ≤ θ ≤ βi} be the sector in R
2 whose

angle βi ∈ (0, π ] is maximal subject to the following conditions: There exists
an arcwise isometric embedding σi : �i → P̃i with σi(0) = yi , σi({(r, 0) :
r ≥ 0}) = ρi , σi(int(�i)) ∩ spt(αi) = ∅, and βi ≤ αi(yi). (Such a maximal
embedded sector exists due to the properties of ρi and the fact that the link of
every interior vertex of P̃i ⊂ P is > π .) We put

Pi+1 := cl(P̃i \ σi(�i)), αi+1 := αi − βiδyi

and equip Pi+1 with the metric induced from P̃i . In case αi+1 = 0 all sectors are
selected and the process terminates, i.e., i = k. In case αi+1 	= 0 we need to show
that Pi+1 is a polyhedral halfplane, spt(αi+1) ⊂ Pi+1,

αi+1 ≥ ν−
i+1, and αi+1(Pi+1) ≤ π − νi+1(Pi+1). (8)

We consider the following two cases.

Case I. σi(�i)∩∂P̃i = ρi . Then Pi+1 is a polyhedral halfplane, spt(αi+1) ⊂ Pi+1,
and νi+1 = ν̃i + βiδyi

, as is easily checked. Together with (5) this gives

αi+1(Pi+1) = αi(P̃i) − βi ≤ π − ν̃i(P̃i) − βi = π − νi+1(Pi+1). (9)

If ν−
i+1(yi) > 0, then αi+1(yi) = αi(yi)−βi ≥ ν̃−

i (yi)−βi = ν−
i+1(yi). Hence, (8)

holds.

Case II. σi(�i) ∩ ∂P̃i = ρi ∪ [yi, zi] for some nontrivial segment [yi, zi] with
[yi, zi]∩ρi = {yi}. Again, Pi+1 is a polyhedral halfplane. However, we now have
yi 	∈ Pi+1 and it is not immediately clear that spt(αi+1) ⊂ Pi+1. Using (5) we
observe that
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αi(P̃i \ spt(ν̃−
i )) = αi(P̃i) − αi(spt(ν̃−

i ))

≤ αi(P̃i) − ν̃−
i (P̃i)

≤ π − ν̃+
i (P̃i)

≤ π − ν̃+
i (yi)

= λP̃i
(yi),

the link of P̃i at yi . Since λP̃i
(yi) = βi ≤ αi(yi) and spt(ν̃−

i ) ∩ [yi, zi] \ {zi} = ∅
it follows that αi |([yi, zi]\ {zi}) = βiδyi

, hence, spt(αi+1) ⊂ Pi+1. The total mea-
sure satisfies νi+1 = ν̃i − ν̃i(yi)δyi

+πδzi
, where ν̃i(yi) = π −λP̃i

(yi) = π −βi .
We get again (9). By (5), ν−

i+1(zi) ≤ ν̃−
i (zi) ≤ αi(zi) = αi+1(zi). Thus, (8) holds.

We show that these two cases cover all possibilities. If σi(�i) ∩ ∂P̃i = ∂P̃i ,
i.e. σi(�i) = P̃i , then by the same argument as in Case II we would get αi = βiδyi

,
hence αi+1 ≡ 0, in contradiction to αi+1 	≡ 0. It remains to consider the case
that σi(�i) ∩ ∂P̃i is disconnected. Then Pi+1 contains a polyhedral disk D̃ with
∂D̃ ⊂ σi(�i) ∪ ∂P̃i such that D̃ ∩ σi(�i) = [zi, z̃] is a nontrivial segment and
zi belongs to the component of σi(�i) ∩ ∂P̃i containing ρi . (Possibly zi = yi .)
Denote by ν̃ the total measure of D̃. Note that in Cases I and II above, we have
ν+

i+1(Pi+1) ≤ π due to (8). The same arguments show that ν̃+(D̃ \ {z̃}) ≤ π ,
while ν̃(D̃) = 2π by the Gauss–Bonnet formula. Hence, ν̃(z̃) ≥ π , which is
impossible. This concludes Part II of the proof.

It remains to show that the whole procedure terminates after finitely many
iterations. Let Ni := #((spt(αi) ∪ spt(νi)) ∩ int(Pi)). For i = 1, 2, . . . we have
αi+1 ≤ αi and Ni+1 ≤ Ni . In addition, at least one of the following assertions
holds: αi+1(Pi+1) = αi(Pi) − π (if βi = π ), or #(spt(αi+1)) < #(spt(αi)) (if
βi = αi(yi), in particular in Case II), or Ni+1 < Ni (if βi < αi(yi) and βi < π ).
It follows that αk+1 ≡ 0 for some finite index k. 
�

6. Splitting the surface

Our next goal is to prove an analog of Proposition 5.2 for polyhedral planes rather
than halfplanes. As in Lemma 5.1, the idea is to split the surface into two parts
and to apply the previous result to each of them. To obtain a suitable splitting
of polyhedral planes, we first prove a corresponding result in the smooth case
which may be of independent interest. In fact, the following statement is a partial
strengthening of Theorem 2 in [Ba2].

Proposition 6.1. Let X be a smooth complete Riemannian surface homeomor-
phic to the plane with Gaussian curvature K . Suppose that

∫
X

K+ < 2π . Let h

be a continuous non-negative function on X with
∫
X

h < ∞. Then there exists a
properly embedded, complete geodesic line l ⊂ X such that
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∫
U ′ K

+ = ∫
U ′′ K

+ = ∫
X

K+/2

and
∫
U ′ h = ∫

U ′′ h = ∫
X

h/2,

where U ′, U ′′ denote the connected components of X \ l. Moreover, if c : R → X

is a unit speed parameterization of l, then

d(c(r), c(s)) ≥ cos(
∫
X

K+/4)|r − s|
for all r, s ∈ R. In particular, c is a bi-Lipschitz embedding.

The constant cos(
∫
X

K+/4) > 0 is optimal for rotationally symmetric surfaces
of non-negative curvature.

Proof. For simplicity we prove this only in case spt(K+) ∪ spt(h) is compact;
this is all we need for the proof of Proposition 6.2. A straightforward modification
of our argument yields the general result.

We assume also that K+, h 	≡ 0. (In case K ≤ 0 one easily finds a min-
imizing geodesic line l with

∫
U ′ h = ∫

U ′′ h = ∫
X

h/2, in case K+ 	≡ 0 and
h ≡ 0 one can apply the following proof for h := K+.) We first observe that
there exists a compact topological disk D̃ ⊂ X such that its boundary ∂D̃ is C1,
spt(K+) ∪ spt(h) ⊂ D̃, and D̃ is totally convex: every geodesic segment in X

(minimizing or not) with endpoints in D̃ lies in D̃. For instance, the totally convex
hull of a closed metric ball containing spt(K+)∪spt(h) has this property (cf. [Ba1,
Section 2]). We note further that every non-constant geodesic c : R → X is proper
due to the assumption

∫
X

K+ < 2π and the Gauss–Bonnet formula. Moreover, in
case c is not injective, there exist uniquely determined numbers a < b such that
c|[a, b) is injective and c(a) = c(b), i.e., c([a, b]) is a simple geodesic loop. The
two rays c((−∞, a)) and c((b, ∞)) are embedded and disjoint from c([a, b]),
but they may intersect each other (see [Re, p. 149] or [Ba1, Corollary 2]).

We define two continuous functions k̃+, k̃− : SD̃ → [0, 1] on the unit sphere
bundle SD̃ of D̃ as follows. Given a unit vector v ∈ SyD̃ at y, consider the com-
plete geodesic line l(v) ⊂ X through y perpendicular to v. We select some con-
nected components of X \ l(v) such that their union U(v) satisfies ∂U(v) = l(v);
there are exactly two possible (complementary) selections. In case l(v) has no
self-intersections we choose U(v) so that v points to U(v). In the opposite case
we fix a unit speed parameterization cv of l(v) and a continuous unit normal vector
field nv along cv with nv(0) = v. Then we choose U(v) so that nv((av + bv)/2)

points to U(v) for the unique simple geodesic loop cv([av, bv]) of l(v). We define
k̃+, k̃− : SD̃ → [0, 1] by

k̃+(v) :=
∫
U(v)

K+
∫
X

K+ , k̃−(v) :=
∫
U(v)

h
∫
X

h
.

Clearly k̃±(v) + k̃±(−v) = 1 for all v ∈ SD̃. From the total convexity of D̃

it follows that k̃±(v) = 1 if y ∈ ∂D̃ and v ∈ SyD̃ is the uniquely determined
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inward normal. (If l(v) has self-intersections, then the unique simple geodesic
loop of l(v) must enclose D̃ since spt(K+) ⊂ D̃.) To obtain the desired splitting
of

∫
X

K+ and
∫
X

h it suffices to find a vector v0 ∈ SD̃ such that

k̃+(v0) = k̃−(v0) = 1/2.

We claim that whenever v0 is a vector with this property, then the corresponding
geodesic line l(v0) is embedded. Suppose it is not. Denote by B ⊂ X the open disk
bounded by the unique simple geodesic loop in l(v0) and by β > 0 the interior
angle at the vertex of the loop. By the Gauss–Bonnet formula,

∫
B

K = π + β.
On the other hand, we have either B ⊂ U(v0) or B ⊂ X \ U(v0) and therefore∫
B

K ≤ ∫
B

K+ ≤ ∫
X

K+/2 < π since k̃+(v0) = 1/2; a contradiction.
To find v0 we first choose a diffeomorphism ϕ : D → D̃ from the closed unit

disk D ⊂ R
2 onto D̃ with the property that dϕu(−u) is normal to ∂D̃ at ϕ(u). We

define two continuous functions k+, k− on the unit sphere bundle SD = D × S
1

of D by
k±(x, u) = k̃±(dϕx(u)/|dϕx(u)|);

then k±(u, −u) = 1 and k±(x, u) + k±(x, −u) = 1 for all u ∈ S
1 and x ∈ D.

Finally, we define a homotopy k : S
1 × [0, 1] → R

2 by

k(u, t) := (k+(tu, −u) − 1/2, k−(tu, −u) − 1/2).

We have k(u, 0) = −k(−u, 0) and k(u, 1) = (1/2, 1/2) for all u ∈ S
1. Then there

exists a point (u0, t0) ∈ S
1 × [0, 1] with k(u0, t0) = (0, 0), for if not, normalizing

k we would obtain a continuous map from S
1 to itself that carries antipodal points

to antipodal points and has zero mod2 degree, in contradiction to the Borsuk-
Ulam theorem for S

1 (cf. [GP, p. 93]). Now v0 := dϕt0u0(−u0)/|dϕt0u0(−u0)| is
the desired unit vector.

Let c : R → X be a unit speed parameterization of l. Denote by d ′, d ′′ the in-
duced intrinsic metrics on cl(U ′) and cl(U ′′), respectively. To prove the last asser-
tion of the proposition it suffices to show thatd ′(c(r), c(s)) ≥ cos(

∫
X

K+/4)|s−r|
for all r, s ∈ R. By symmetry the same estimate then holds for d ′′, and a simple
subdivision argument yields the general case. Put

w(r, s) := d ′(c(r), c(s))/(s − r)

for r < s. Note that w ≤ 1 and w(r, s) = 1 if c|[r, s] is minimizing in X. Let
R > 0. There exists a minimum (r0, s0) of w|{(r, s) ∈ R

2 : −R ≤ r < s ≤ R}.
Pick a shortest unit speed curve γ0 : [0, b0] → cl(U ′) from c(r0) to c(s0), i.e., b0 =
d ′(c(r0), c(s0)), γ0(0) = c(r0), and γ0(b0) = c(s0). Since c is a geodesic it fol-
lows that γ0([0, b0]) is a geodesic arc which either coincides with c([r0, s0]) or
intersects l exactly in {c(r0), c(s0)}. In the first case we have w(r0, s0) = 1 and
hence w(r, s) = 1 for −R ≤ r < s ≤ R. In the second case, denote by B0 ⊂ U ′
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the open disk bounded by c([r0, s0]) ∪ γ0([0, b0]) and by α, β ∈ (0, π) the two
interior angles at c(r0) and c(s0), respectively. The Gauss–Bonnet formula yields

α + β = ∫
B0

K ≤ ∫
B0

K+ ≤ ∫
U ′ K

+ = ∫
X

K+/2.

By symmetry we may assume that α ≤ β, hence α ≤ ∫
X

K+/4. Now consid-
er a smooth variation {γt}−ε<t<ε of γ0 in cl(U ′) with endpoints γt (0) = c(r0 +
t), γt (b0) = c(s0). Since L(γt )/(s0 − r0 − t) ≥ w(r0 + t, s0) ≥ w(r0, s0) =
L(γ0)/(s0 − r0) for t ≥ 0, we get

0 ≤ d

dt

∣
∣
∣
t=0

(
L(γt )

s0 − r0 − t

)

= − cos(α) + w(r0, s0)

s0 − r0

by the first variation formula. Hence,

w(r, s) ≥ w(r0, s0) ≥ cos(α) ≥ cos(
∫
X

K+/4)

whenever −R ≤ r < s ≤ R. As this holds for all R > 0, we conclude that
w ≥ cos(

∫
X

K+/4). 
�
Now we derive an analog of Proposition 6.1 for polyhedral planes X. Any prop-
erly embedded, complete polygonal line l ⊂ X gives rise to a splitting of X into
two polyhedral halfplanes P ′, P ′′, the closures of the connected components of
X \ l, endowed with their induced intrinsic metrics. As mentioned earlier, the
corresponding total measures satisfy νP ′ + νP ′′ = µ where µ denotes the integral
curvature of X. If, in addition, ν+

P ′ + ν+
P ′′ = µ+, hence also ν−

P ′ + ν−
P ′′ = µ−, then

l will be called a properly embedded, complete quasigeodesic line. This addition-
al assumption is equivalent to saying that l is everywhere geodesic, i.e. locally
distance minimizing, except at points where it hits spt(µ+); at such points it is
required that the turns of l = ∂P ′ = ∂P ′′ respective to both P ′, P ′′ are non-
negative.

Proposition 6.2. Let X be a polyhedral plane with only finitely many vertices and
µ+(X) < 2π . Let η ≥ 0 be a measure on X with finite support. Then there exist a
properly embedded, complete quasigeodesic line l ⊂ X and measures η′, η′′ ≥ 0
on X such that η′ + η′′ = η, spt(η′) ⊂ P ′, spt(η′′) ⊂ P ′′,

ν+
P ′(P

′) = ν+
P ′′(P

′′) = µ+(X)/2

and η′(P ′) = η′′(P ′′) = η(X)/2,

where P ′, P ′′ denote the closures of the connected components of X \ l, endowed
with their induced intrinsic metrics, and νP ′, νP ′′ denote the corresponding total
measures. Moreover, η′(x) = η(x)νP ′(x)/µ(x) and η′′(x) = η(x)νP ′′(x)/µ(x)

for each vertex x ∈ spt(µ). If c : R → X is a unit speed parameterization of l,
then

d(c(r), c(s)) ≥ cos(µ+(X)/4)|r − s|
for all r, s ∈ R. In particular, c is a bi-Lipschitz embedding.
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For instance, if η = µ−, then η′ = ν−
P ′ and η′′ = ν−

P ′′ (note that η(x) = 0 implies
η′(x) = η′′(x) = 0, and µ−(x) = 0 implies ν−

P ′(x) = ν−
P ′′(x) = 0).

Proof. The result follows from its smooth analog Proposition 6.1 by means of
approximation. We assume that spt(µ) 	= ∅ and spt(µ+) ∪ spt(η) 	= ∅. Let
ε1 > ε2 > · · · > 0 be a sequence converging to 0, such that d(x, x ′) > 2ε1 for
every pair of distinct points x, x ′ ∈ spt(µ) ∪ spt(η). On X \ spt(µ) we have a flat
Riemannian metric g whose induced distance function is the given metric d. We
choose a sequence of smooth Riemannian metrics g1, g2, . . . on X such that

(i) gi coincides with g on X \ ⋃
x∈spt(µ) B(x, εi),

(ii) for each x ∈ spt(µ), the Gaussian curvature of gi satisfies Ki |B(x, εi) ≥ 0
if µ(x) > 0 and Ki |B(x, εi) ≤ 0 if µ(x) < 0,

(iii) for each x ∈ spt(µ), the diameter of B(x, εi) in (X, gi) is ≤ 2εi .

Here B(x, εi) denotes the open ball with respect to d. By the Gauss–Bonnet
formula,

∫
B(x,εi )

Ki dAi = 2π − ∫
∂B(x,εi )

κ ds = 2π − λ(x) = µ(x) (10)

for all x ∈ spt(µ), where dAi is the area element with respect to gi , and the
geodesic curvature κ and line element ds of ∂B(x, εi) are the same for g and for
all gi . The distance functions di on X induced by the gi converge uniformly to
the given metric d as i → ∞. We choose continuous non-negative functions hi

on X such that hi vanishes on X \ ⋃
x∈spt(η) B(x, εi) and

∫
B(x,εi )

hi dAi = η(x) (11)

for each x ∈ spt(η). Specifically, for each x ∈ spt(µ) ∩ spt(η), we put hi :=
(η(x)/µ(x))Ki = (η(x)/|µ(x)|)/|Ki | on B(x, εi).

Applying Proposition 6.1 to (X, gi, hi) we obtain properly embedded geodesic
lines li ⊂ (X, gi) such that

∫
U ′

i
K+

i dAi = ∫
U ′′

i
K+

i dAi = ∫
X

K+
i dAi/2 = µ+(X)/2 (12)

and
∫
U ′

i
hi dAi = ∫

U ′′
i
hi dAi = ∫

X
hi dAi/2 = η(X)/2, (13)

where U ′
i , U

′′
i denote the connected components of X \ li . For each i we choose

a unit speed parameterization ci : R → (X, gi) of li such that ci(0) belongs to
some fixed compact set. Then

di(ci(r), ci(s)) ≥ cos(
∫
X

K+
i dAi/4)|r − s|

= cos(µ+(X)/4)|r − s|
for all i and for all r, s ∈ R. After passing to some subsequence, without changing
notation, we may assume that the ci converge uniformly on compact sets to some
curve c : R → (X, d) satisfying

cos(µ+(X)/4)|r − s| ≤ d(c(r), c(s)) ≤ |r − s|
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for all r, s ∈ R. Denote by l the trace of c and by U ′, U ′′ the two connected
components of X \ l. We may assume that on U ′ ∪ U ′′ = X \ l, the character-
istic functions of U ′

i and U ′′
i converge locally uniformly to those of U ′ and U ′′,

respectively. Finally, due to (10) and (11) we may assume that the four limits

lim
i→∞

∫
U ′

i∩B(x,εi )
Ki dAi, lim

i→∞
∫
U ′′

i ∩B(x,εi )
Ki dAi,

lim
i→∞

∫
U ′

i∩B(x,εi )
hi dAi, lim

i→∞
∫
U ′′

i ∩B(x,εi )
hi dAi

exist for all x ∈ X.
Since the ci are unit speed geodesics it follows that c is a unit speed geodesic

outside spt(µ), hence, c is a polygonal unit speed curve with vertices in spt(µ).
Denote by P ′, P ′′ the closures of U ′, U ′′, endowed with their induced intrinsic
metrics, and by νP ′, νP ′′ the corresponding total measures with νP ′ = 0 on U ′′,
νP ′′ = 0 on U ′. We have spt(νP ′), spt(νP ′′) ⊂ spt(µ). We claim that

νP ′(x) = lim
i→∞

∫
U ′

i∩B(x,εi )
Ki dAi, (14)

νP ′′(x) = lim
i→∞

∫
U ′′

i ∩B(x,εi )
Ki dAi (15)

for allx ∈ X.We prove (14). Ifx ∈ X\(spt(µ)∩P ′), thenU ′
i∩B(x, εi)∩spt(Ki) =

∅ for sufficiently large i and both sides in (14) are zero. If x ∈ spt(µ) ∩ U ′, then
B(x, εi) ⊂ U ′

i for sufficiently large i and both sides of (14) are equal to µ(x)

by (10). Now let x ∈ spt(µ) ∩ l. By enlarging the numbers εi if necessary, with-
out changing the metrics gi , we may assume that the geodesic line li intersects
B(x, εi) in a single arc for i sufficiently large. Denote by σ ′

i ∈ (0, π) the sum of
the two exterior angles of U ′

i ∩ B(x, εi) at the endpoints of this arc. Then

∫
U ′

i∩B(x,εi )
Ki dAi + ∫

U ′
i∩∂B(x,εi )

κ ds + σ ′
i = 2π.

It is not difficult to see that the expression
∫
U ′

i∩∂B(x,εi )
κ ds + σ ′

i − π converges to

the link λ′(x) of P ′ at x as i → ∞. Hence,

lim
i→∞

∫
U ′

i∩B(x,εi )
Ki dAi = π − λ′(x) = νP ′(x).

This proves (14), and (15) follows analogously. In particular, using condition (ii)
we conclude that νP ′(x), νP ′′(x) ≥ 0 if µ(x) ≥ 0 and νP ′(x), νP ′′(x) ≤ 0 if
µ(x) ≤ 0. Thus, l is a quasigeodesic line. By combining (14) and (15) with (12)
we obtain

ν+
P ′(P

′) = lim
i→∞

∫
U ′

i
K+

i dAi = µ+(X)/2,

ν+
P ′′(P

′′) = lim
i→∞

∫
U ′′

i
K+

i dAi = µ+(X)/2.
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Finally, we define

η′(x) := lim
i→∞

∫
U ′

i∩B(x,εi )
hi dAi,

η′′(x) := lim
i→∞

∫
U ′′

i ∩B(x,εi )
hi dAi

for all x ∈ X; then η′(x) + η′′(x) = limi→∞
∫
B(x,εi )

hi dAi = η(x) by (11). In
combination with (13) we get

η′(P ′) = lim
i→∞

∫
U ′

i
hi dAi = η(X)/2,

η′′(P ′′) = lim
i→∞

∫
U ′′

i
hi dAi = η(X)/2.

Note that for x ∈ spt(µ) ∩ spt(η) we have

η′(x) = (η(x)/µ(x)) lim
i→∞

∫
U ′

i∩B(x,εi )
Ki dAi = η(x)νP ′(x)/µ(x),

and similarly η′′(x) = η(x)νP ′′(x)/µ(x). 
�
By combining Propositions 5.2 and 6.2 we obtain an analog of Proposition 5.2
for polyhedral planes.

Proposition 6.3. Let X be a polyhedral plane with only finitely many vertices and
µ+(X) < 2π . Let α ≥ 0 be a measure on X with finite support spt(α) such that

α ≥ µ− and 0 < α(X) ≤ 2π − µ(X).

Then there exist sectors �i = {(r cos(θ), r sin(θ)) : r ≥ 0, 0 ≤ θ ≤ βi} in R
2

and arcwise isometric embeddings σi : �i → X, for i = 1, 2, . . . up to some
finite index k, such that σi(0) ∈ spt(α), σi(int(�i)) ∩ σj (int(�j )) = ∅ for i 	= j ,
and

∑
σi(0)=x βi = α(x) for every x ∈ spt(α).

Proof. We have η := α + µ = α + µ+ − µ− ≥ µ+ ≥ 0. According to Proposi-
tion 6.2 there exist a properly embedded, complete quasigeodesic line l ⊂ X and
measures η′, η′′ ≥ 0 on X such that η′ + η′′ = η, spt(η′) ⊂ P ′, spt(η′′) ⊂ P ′′,

ν+
P ′(P

′) = ν+
P ′′(P

′′) = µ+(X)/2 < π (16)

and η′(P ′) = η′′(P ′′) = η(X)/2,

where P ′, P ′′ denote the closures of the connected components of X \ l and
νP ′, νP ′′ the corresponding total measures. Moreover, η′(x) = η(x)νP ′(x)/µ(x)

and η′′(x) = η(x)νP ′′(x)/µ(x) for all x ∈ spt(µ). Since η ≥ µ+ it follows that
η′ ≥ ν+

P ′ (note that νP ′(x) > 0 implies µ(x) > 0). Thus, α′ := η′ − νP ′ ≥ ν−
P ′ ,

and similarly α′′ := η′′ − νP ′′ ≥ ν−
P ′′ . We have

α′(P ′) + νP ′(P ′) = η′(P ′) = η(X)/2 = (α(X) + µ(X))/2 ≤ π
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by assumption, hence α′(P ′) ≤ π − νP ′(P ′), and analogously α′′(P ′′) ≤
π − νP ′′(P ′′). (16) implies that the link of every interior vertex of P ′ or P ′′

is > π . The desired sectors and embeddings are now obtained by applying
Proposition 5.2 to both (P ′, α′) and (P ′′, α′′) (provided α′ 	= 0 or α′′ 	= 0,
respectively). The assertion

∑
σi(0)=x βi = α(x) for every x ∈ spt(α) follows

since α′ + α′′ = η′ + η′′ − νP ′ − νP ′′ = η − µ = α. 
�

7. Bi-Lipschitz parameterization

We first prove a bi-Lipschitz parameterization theorem for polyhedral halfplanes
which does not use the results of Section 6.

Theorem 7.1. Let (P, d) be a polyhedral halfplane with boundary ∂P and only
finitely many interior and boundary vertices. Denote by ν = µ + τ the total
measure of P , and suppose that ν+(P ) < π . Then there exists a homeomorphism
f : P → {(u, v) ∈ R

2 : v ≥ 0} satisfying

π

π + ν−(P )
d(x, y) ≤ |f (x) − f (y)| ≤ π

π − ν+(P )
d(x, y)

for all x, y ∈ P , with the property that f |∂P preserves arclength. In particular,
P is L-bi-Lipschitz equivalent to a closed Euclidean halfplane for

L =
(

π + ν−(P )

π − ν+(P )

)1/2

.

Proof. The required bi-Lipschitz equivalence is constructed in two steps. In the
first step we eliminate the positive part of ν. More precisely, we define a new
polyhedral metric d1 on P , bi-Lipschitz equivalent to d, such that the correspond-
ing total measure ν1 is non-positive. In the second step we eliminate the negative
part of the curvature by constructing a polyhedral metric d2 on P , bi-Lipschitz
equivalent to d1, such that (P, d2) is isometric to a closed Euclidean halfplane.

Step 1. Let

L1 := π

π − ν+(P )
.

If ν+(P ) = 0, put d1 := d. Now suppose ν+(P ) > 0. Define a measure α1 on P

by

α1 := π − ν+(P )

ν+(P )
ν+ + ν−.

Then we have α1 ≥ ν− and

0 < α1(P ) = π − ν+(P ) + ν−(P ) = π − ν(P ).

Since ν+(P ) < π , the link of every interior vertex of P is > π . Proposition 5.2
yields sectors �i = {(r cos(θ), r sin(θ)) : r ≥ 0, 0 ≤ θ ≤ βi} in R

2 and arcwise
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isometric embeddings σi : �i → (P, d), for i = 1, . . . , k, such that σi(0) ∈
spt(α1) = spt(ν), σi(int(�i)) ∩ σj (int(�j )) = ∅ for i 	= j , and �σi(0)=xβi =
α1(x) for every x ∈ spt(ν). Now d1 is defined as the intrinsic metric on P with the
following properties: Let c : [a, b] → P be a d-rectifiable curve, i.e. L(c) < ∞,
and denote by Ld1(c) its length with respect to d1. If im(c) ∩ σi(int(�i)) = ∅ for
all i with σi(0) ∈ spt(ν+), then Ld1(c) = L(c). If im(c) ⊂ σi(�i) for some i with
σi(0) ∈ spt(ν+), then Ld1(c) = L(φi ◦ σ−1

i ◦ c), where φi : �i → R
2 is defined

by
φi(r cos(θ), r sin(θ)) = (r cos(L1θ), r sin(L1θ))

for r ≥ 0, 0 ≤ θ ≤ βi . These properties determine, via subdivision, the d1-length
of every rectifiable curve in P and, hence, d1. Since L1 ≥ 1 it follows that

d(x, y) ≤ d1(x, y) ≤ L1d(x, y) (17)

for all x, y ∈ P . Moreover, d1 is a complete, geodesic, polyhedral metric on P

whose vertex set is contained in the vertex set of d. We claim that the total measure
ν1 of (P, d1) satisfies ν+

1 = 0 and ν−
1 = ν−. The latter assertion is clear since d1

agrees with d in a neighborhood of every element of spt(ν−). If x ∈ spt(ν+), then
the link of x with respect to d1 is

λ1(x) = λ(x) − α1(x) + L1α1(x)

= λ(x) + ν+(x)

=
{

2π if x ∈ int(P ),

π if x ∈ ∂P .

This shows that ν1(x) = 0.
Step 2. Let

L2 := π

π + ν−(P )
.

If ν−(P ) = 0, put d2 := d1. Now suppose ν−(P ) > 0. Define a measure α2 on P

by

α2 := π + ν−(P )

ν−(P )
ν−.

Then we have α2 ≥ ν− = ν−
1 and, since ν+

1 = 0,

0 < α2(P ) = π + ν−(P ) = π − ν1(P ).

Proposition 5.2 yields sectors �′
i = {(r cos(θ), r sin(θ)) : r ≥ 0, 0 ≤ θ ≤ β ′

i}
in R

2 and arcwise isometric embeddings σ ′
i : �′

i → (P, d1), for i = 1, . . . , k′,
such that σ ′

i (0) ∈ spt(α2) = spt(ν1), σ ′
i (int(�′

i )) ∩ σ ′
j (int(�′

j )) = ∅ for i 	= j ,
and �σ ′

i (0)=xβ
′
i = α2(x) for every x ∈ spt(ν1). Now d2 is defined as the intrinsic

metric on P determined by the following properties: Let c : [a, b] → P be a
d1-rectifiable curve. If im(c) ∩ σ ′

i (int(�′
i )) = ∅ for all i, then Ld2(c) = Ld1(c). If
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im(c) ⊂ σ ′
i (�

′
i ) for some i, then Ld2(c) = Ld1(φ

′
i ◦σ−1

i ◦c), where φ′
i : �′

i → R
2

is defined by

φ′
i (r cos(θ), r sin(θ)) = (r cos(L2θ), r sin(L2θ))

for r ≥ 0, 0 ≤ θ ≤ β ′
i . Since L2 ≤ 1 it follows that

L2d1(x, y) ≤ d2(x, y) ≤ d1(x, y) (18)

for all x, y ∈ P . Moreover, d2 is a complete, geodesic, polyhedral metric on P

whose vertex set is contained in the vertex set of d1. We claim that (P, d2) is
isometric to a closed Euclidean halfplane. If x ∈ spt(ν1), then the link of x with
respect to d2 is

λ2(x) = λ(x) − α2(x) + L2α2(x)

= λ(x) − ν−(x)

=
{

2π if x ∈ int(P ),

π if x ∈ ∂P .

This proves the claim. By combining (17) with (18) and identifying (P, d2) with
{(u, v) ∈ R

2 : v ≥ 0} we get the desired map f satisfying

L2d(x, y) ≤ |f (x) − f (y)| ≤ L1d(x, y)

for all x, y ∈ P . From the construction it is clear that f |∂P preserves arclength.
By rescaling f we obtain an L-bi-Lipschitz equivalence of P with a closed
Euclidean halfplane for L = (L1/L2)

1/2. 
�
Now we prove the polyhedral version of our main result.

Theorem 7.2. Let X be a polyhedral plane with only finitely many vertices and
µ+(X) < 2π . Then X is L-bi-Lipschitz equivalent to the Euclidean plane for

L =
(

2π + µ−(X)

2π − µ+(X)

)1/2

.

Proof. We use Proposition 6.2 to find a properly embedded, complete quasigeo-
desic line l in X such that

ν+
P ′(P

′) = ν+
P ′′(P

′′) = µ+(X)/2 < π

and ν−
P ′(P

′) = ν−
P ′′(P

′′) = µ−(X)/2,

where P ′, P ′′ denote the closures of the connected components of X \ l, endowed
with their induced intrinsic metrics, and νP ′, νP ′′ denote the corresponding total
measures. Applying Theorem 7.1 twice we produce a homeomorphism f : X →
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R
2 such that f |l preserves arclength and both f |P ′ : P ′ → {(u, v) ∈ R

2 : v ≥ 0}
and f |P ′′ : P ′′ → {(u, v) ∈ R

2 : v ≤ 0} satisfy

L2d(x, y) ≤ |f (x) − f (y)| ≤ L1d(x, y) (19)

for all x, y in the respective domain, where

L1 = π

π − ν+
P ′(P ′)

= π

π − ν+
P ′′(P ′′)

= 2π

2π − µ+(X)
,

L2 = π

π + ν−
P ′(P ′)

= π

π + ν−
P ′′(P ′′)

= 2π

2π + µ−(X)
.

It follows easily that f satisfies (19) for all x, y ∈ X. By rescaling f we obtain
the desired L-bi-Lipschitz equivalence of X with R

2 for L = (L1/L2)
1/2.

Another way to prove the theorem is to put

α1 := 2π − µ+(X)

µ+(X)
µ+ + µ−, α2 := 2π + µ−(X)

µ−(X)
µ−

(provided µ+(X) > 0 or µ−(X) > 0, respectively), and to proceed as in the proof
of Theorem 7.1, using Proposition 6.3 instead of Proposition 5.2. 
�

8. Proof of Theorem 1.1

In this section we will deduce Theorem 1.1 from Theorem 7.2 by an approxi-
mation argument. Aleksandrov surfaces are exactly those surfaces with intrinsic
metric that allow approximations by polyhedral surfaces in an appropriate local
sense (see [AZ, Chapter 4, Section 1] for more discussion). Moreover, these ap-
proximations can be arranged so that the positive and negative parts of the integral
curvatures of the approximating polyhedral surfaces converge locally weakly to
the positive and negative parts of the integral curvature of the surface being ap-
proximated ([AZ, p. 246, Theorem 7]). In view of this it seems “obvious" that
the general case of Theorem 1.1 follows from the case of polyhedral surfaces. A
closer look reveals that there are considerable subtleties that have to be addressed.
Since the weak convergence of the curvatures of an approximating sequence of
polyhedral surfaces is only local, one has to work in a fixed compact part P of the
given surface Z. In this way, one incurs additional boundary terms in the curvature
estimates (see inequalities (i) of Lemma 8.1). Moreover, on the compact part P

the polyhedral metrics approximate only the intrinsic metric dP on P which will
be different from the restriction of the ambient metric dZ to P . These problems
necessitate a careful choice of the compact sets P on which we approximate Z

by polyhedral surfaces. The intrinsic metric dP will agree with the restriction of
dZ to P if P is convex. Moreover, the boundary terms in the curvature estimates
will be manageable if P is a Jordan polygon which is convex with respect to its
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boundary. This is the reason why we proved Lemma 3.3 which provides a suitable
exhaustion of a surface Z satisfying the hypotheses of Theorem 1.1.

We now proceed to the details of the approximation argument.

Lemma 8.1. Suppose Z is a complete Aleksandrov surface homeomorphic to the
plane, P ⊂ Z a convex Jordan polygon, and ε > 0. Then there exist a polyhedral
disk P ′ and a homeomorphism f : P → P ′ such that

(i) µ+
P ′(int(P ′)) ≤ µ+

Z(int(P )) and

µ−
P ′(int(P ′)) + τ−(∂P ′) ≤ µ−

Z(int(P )) + τ−
in (∂P ),

(ii) dZ(x, y) − ε ≤ dP ′(f (x), f (y)) ≤ dZ(x, y) + ε for x, y ∈ P .

Proof. We consider a triangulation T of P by simple triangles (as defined in
Section 2) with small diameter. For general Aleksandrov surfaces, the term tri-
angulation has to be understood in a certain non-standard sense (see [AZ, p. 61,
Theorem 3] for a precise existence statement). From T we obtain a polyhedral
surface P ′ as follows. We replace each triangle in the triangulation T by a Eu-
clidean triangle with equal side lengths and glue the Euclidean triangles together
according to the combinatorial pattern of the triangulation T . In the gluing we
respect arclength on the parts of triangle edges which are identified. In this way we
also obtain a natural map f from the 1-skeleton of the triangulation T of P to the
1-skeleton of the induced triangulation T ′ of P ′. The map f can be extended to a
homeomorphism f : P → P ′ by mapping each triangle in T homeomorphically
to the corresponding triangle in T ′ in an arbitrary way under the restriction that we
respect the definition of f on the boundary of the triangle (see [AZ, Chapter III,
Sections 4 and 6]).

Since P is convex, the intrinsic metric dP agrees with the restriction of the
ambient metric d to P . This implies that if the maximal diameter of the triangles
in T is small enough, then (ii) will be valid (see [AZ, Chapter III, Section 6, and
in particular p. 79, Theorem 9 and p. 84, Theorem 10]).

The inequalities in (i) follow from the fact that a polyhedral approximation
as in the first part of the proof reduces both the positive and negative part of
the curvature if one takes boundary terms into proper account (see [AZ, p. 245,
Lemma 19; note the typographical error in the first inequality (35)]). 
�
Lemma 8.2. Suppose Z is a complete Aleksandrov surface homeomorphic to the
plane and P ⊂ Z a Jordan polygon which is convex relative to its bound-
ary. Then for all ε > 0 there exist a polyhedral plane Z′ with finitely many
vertices, a Jordan polygon P ′ ⊂ Z′ which is convex relative to its boundary
and a homeomorphism f : P → P ′ such that

(i) µ+
Z′(Z′) ≤ µ+

Z(Z) and µ−
Z′(Z′) ≤ µ−

Z(Z),
(ii) dZ(x, y) − ε ≤ dZ′(f (x), f (y)) ≤ dZ(x, y) + ε for all x, y ∈ P .
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Note in particular that if Z is non-negatively or non-positively curved, then Z′

enjoys the same property.

Proof. Let P ′ be as in the previous lemma. Then (ii) holds for dP ′ in place of dZ′ .
Along the boundary of P ′ we glue a polyhedral surface P ′′ homeomorphic to

the complement of an open disk so that Z′ = P ′ ∪ P ′′ is a complete polyhedral
surface homeomorphic to the plane with finitely many vertices, and P ′ ⊂ Z′ is
convex relative to its boundary (in the following all gluings will respect arclength).
To do this decompose ∂P ′ into non-overlapping shortest subarcs γ1, . . . , γn ar-
ranged in cyclic order, and denote by v1, . . . , vn = v0 the vertices of ∂P ′ in cyclic
order so that γi has the endpoints vi−1 and vi . Let si be the length of γi and αi be
the angle of the interior sector at vi . Now define

βi :=
{

2π − αi for 0 ≤ αi ≤ π ,

π for αi ≥ π ,

and β ′
i := βi − π ≥ 0. Consider half-strips Qi := {

(x, y) ∈ R
2 0 ≤ x ≤ si ,

y ≥ 0
}

of width si and (possibly degenerate) sectors �i := {(r cos(θ), r sin(θ)) :
r ≥ 0, 0 ≤ θ ≤ β ′

i}of opening angleβ ′
i . Glue them together in cyclic orderQ1, �1,

Q2, . . . , Qn, �n, Qn+1 = Q1 such that the ray {(si, y) : y ≥ 0} in Qi is identified
with the ray {(r, 0) : r ≥ 0} in �i , and the ray {(r cos(β ′

i ), r sin(β ′
i )) : r ≥ 0}

in �i is identified with the ray {(0, y) : y ≥ 0} in Qi+1. In this way we obtain
the polyhedral surface P ′′. The boundary ∂P ′′ consists of a Jordan curve which
is formed by geodesic segments corresponding to the segments [0, si] ⊂ Qi . We
identify [0, si] with αi so that 0 ∈ [0, si] corresponds to vi−1 and si ∈ [0, si] to vi .

As desired, the surface Z′ obtained from the gluing is complete and homeo-
morphic to the plane. Note that the angle at vi as seen from P ′′ is equal to βi

and hence at least π by the definition of βi . This implies that for any rectifiable
curve in P ′′ with endpoints in ∂P ′′ = ∂P ′ which meets the interior of P ′′ we can
find a homotopic curve in ∂P ′′ with the same endpoints which has strictly smaller
length. This shows that P ′ is convex relative to its boundary and in particular
convex. Hence dP ′ is equal to the restriction of the ambient metric dZ′ to P ′, and
so (ii) is true by our choice of P ′.

Every vertex of Z′ is contained in int(P ′) or equal to one of the vertices vi .
For the total angle at vi we have

λ(vi) = αi + βi ≥ 2π

and so µ+
Z′(vi) = 0. Hence by the choice of P ′ and by the first inequality in (i) of

Lemma 8.1 we get

µ+
Z′(Z

′) = µ+
P ′(int(P ′)) ≤ µ+

Z(int(P )) ≤ µ+
Z(Z).

This shows the first inequality in (i).
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For the second inequality in (i) note that for the turn τ(vi) of ∂P ′ at vi (as seen
from inside P ′) we have τ(vi) = π −αi . Since µZ′(vi) = 2π −αi −βi , it follows
from the definition of βi that µ−

Z′(vi) = τ−(vi). Hence by the second inequality
in (i) of Lemma 8.1 we get

µ−
Z′(Z

′) = µ−
P ′(int(P ′)) + τ−(∂P ′) ≤ µ−

Z(int(P )) + τ−
in (∂P ). (20)

Let τout be the turn on ∂P as seen from outside P considered as Borel measure on
∂P . Since P is convex relative to its boundary, we have τout ≤ 0. Let τin = τ+

in −τ−
in

and τout = τ+
out − τ−

out be the Jordan decompositions of τin and τout, respectively.
Then τ+

out = 0. Moreover, if E ⊂ ∂P is a Borel set, then

τin(E) + τout(E) = µZ(E)

and so
τ+

in (E) − τ−
in (E) = τ−

out(E) + µ+
Z(E) − µ−

Z(E).

Thus, by the minimality property of the Jordan decomposition we get

τ−
in (E) ≤ µ−

Z(E)

for every Borel set E ⊂ ∂P . This inequality for E = ∂P together with (20) implies
the second inequality in (i). 
�
We now prove Theorem 1.1 which we restate as follows.

Theorem 8.3. Suppose Z is a complete Aleksandrov surface homeomorphic to
the plane. If µ+(Z) < 2π and µ−(Z) < ∞, then Z is L-bi-Lipschitz equivalent
to R

2 with

L =
(

2π + µ−(Z)

2π − µ+(Z)

)1/2

.

Proof. Let Z be a surface satisfying our hypotheses, and let L ≥ 1 be the con-
stant as defined in the statement of the theorem. By Lemma 3.3 we can find Jordan
polygons Pn in Z for n ∈ N which are convex relative to their boundaries such
that Pn ⊂ int(Pn+1) and

⋃
n∈N

Pn = Z. According to Lemma 8.2 we can find
polyhedral planes Z′

n with finitely many vertices, Jordan polygons P ′
n ⊂ Z′

n which
are convex relative to their boundaries, and homeomorphisms fn : Pn → P ′

n such
that

µ+
Z′

n
(Z′

n) ≤ µ+
Z(Z) and µ−

Z′
n
(Z′

n) ≤ µ−
Z(Z) for n ∈ N

and
dZ(x, y) − 1/n ≤ dZ′

n
(fn(x), fn(y)) ≤ dZ(x, y) + 1/n

for all x, y ∈ Pn and n ∈ N. By Theorem 7.2 we can find L-bi-Lipschitz homeo-
morphisms gn : Z′

n → R
2. Let p0 ∈ P1 be a base point in Z. By composing gn



166 M. Bonk, U. Lang

with a translation of R
2 is necessary, we can assume that gn(fn(p0)) = 0. Define

hn := gn ◦ fn. Then hn : Pn → R
2 is a map satisfying hn(p0) = 0 and

1

L
dZ(x, y) − 1

nL
≤ |hn(x) − hn(y)| ≤ LdZ(x, y) + L

n
(21)

for x, y ∈ Pn, n ∈ N. Fix a countable dense subset D ⊂ Z. If x ∈ D, then x ∈ Pn

for sufficiently large n and so hn(x) is defined. Moreover, due to (21) and the
normalization, the points hn(x), n sufficiently large, form a bounded set in R

n.
By passing to successive subsequences of (hn) and choosing a final “diagonal”
subsequence, it follows that we may assume that the sequence (hn(x)) converges
for each x ∈ D. Define h : D → R

2 by setting h(x) := limn→∞ hn(x) for x ∈ D.
Passing to limits in (21) we conclude that

1

L
dZ(x, y) ≤ |h(x) − h(y)| ≤ LdZ(x, y) (22)

for x, y ∈ D. This implies that h has a unique extension to a map h : Z → R
2

satisfying (22) for all x, y ∈ Z. In particular, h is an L-bi-Lipschitz embedding of
Z into R

2. By the open mapping theorem, the image h(Z) is open. Moreover, the
set h(Z) is also closed, as the image of a complete space under a bi-Lipschitz em-
bedding. Thus, h(Z) = R

2 and h is the desired L-bi-Lipschitz homeomorphism
of Z onto R

2. 
�

9. Concluding remarks

(I) It is of independent interest to give a purely analytic version of our main result.
By a uniformization theorem due to Reshetnyak and A. Huber, every orientable
Aleksandrov surface Z carries a unique conformal structure. If Z is homeomor-
phic to the plane, then Z is conformally equivalent to the plane or an open disk.
According to these two possibilities one says that Z has parabolic or hyperbolic
type. If |µ|(Z) < ∞ as for the surfaces in Theorem 8.3, then Z is always of
parabolic type. In this case there exists a global parametrization of the surface by
a complex coordinate z ranging in the complex plane C so that the length element
has the representation as in (1).

More precisely, if Z is an Aleksandrov surface homeomorphic to the plane
with |µ|(Z) < ∞, then it is isometric to the complex plane C equipped with the
metric defined by

d(x, y) := inf
α

∫

α

exp(u(z)) |dz| for x, y ∈ C, (23)

where the infimum is taken over all analytic curves in C joining x and y, and
u is the difference of two subharmonic functions on C such that every atom of
the measure −	u has mass less than 2π . As we already remarked, the measure
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µ = −	u corresponds to the integral curvature of the surface. In particular, if
|µ|(C) < ∞, then the function u has the representation

u(z) = h(z) + 1

2π

∫

C

log

∣
∣
∣
∣
z0 − ζ

z − ζ

∣
∣
∣
∣ dµ(ζ ) for z ∈ C,

where h is a harmonic function in the plane and z0 ∈ C is an appropriately chosen
point. This choice has to be made so that the integral converges. This is true if the
Hardy-Littlewood maximal function of µ is finite for z0 (which holds for almost
every point).

According to a result by A. Huber [Hu2], the function h reduces to a constant
if the surface is complete in addition. Then Z is isometric to (C, d), where the
metric d is defined as in (23) for a function u that has the representation

u(z) = c + 1

2π

∫

C

log

∣
∣
∣
∣
z0 − ζ

z − ζ

∣
∣
∣
∣ dµ(ζ ). (24)

Here c ∈ R is a constant, and µ is a signed measure on C with finite total variation
such that all atoms of µ have mass less than 2π .

Conversely, if we define the metric d as in (23) by using a function u as in
(24), then (C, d) is a complete Aleksandrov surface. So our main theorem can be
stated as follows: Suppose µ is a signed measure on C with µ+(C) < 2π and
µ−(C) < ∞. If we define u as in (24) and the metric d as in (23), then (C, d) is
L-bi-Lipschitz equivalent to C with

L =
(

2π + µ−(C)

2π − µ+(C)

)1/2

.

(II) The so-called Jacobian problem for quasiconformal homeomorphisms f :
R

n → R
n asks for a characterization of their Jacobian determinants Jf up to

multiplicative constants (see [Se2,BHS]). It can be shown that if ρ is a reasonable
conformal density on C such that C equipped with the metric coming from the
length element ρ(z)|dz| is L-bi-Lipschitz to C, then there exists a K-quasicon-
formal map f : C → C and a constant C ≥ 1 such that

1

C
Jf (z) ≤ ρ(z)2 ≤ CJf (z) for a.e. z ∈ R

2.

The constants K and C will depend only on L. We can apply this fact in com-
bination with our main theorem as formulated in the previous remark. To avoid
technicalities we restrict ourselves to measures µ as in (24) which are supported in
finitely many points (this corresponds to the case of a polyhedral surface (Z, d)),
and obtain the following result:
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Theorem 9.1. Suppose z1, . . . , zn, w1, . . . , wm are distinct points in C, and sup-
pose α1, . . . , αn, β1, . . . , βm > 0 are positive numbers with α := α1 +· · ·+αn <

2. Set β := β1 + · · · + βm. Then there exist constants K, C ≥ 1 depending only
on α and β and a K-quasiconformal homeomorphism f : C → C such that

1

C
Jf (z) ≤

∏m
i=1 |z − wi |βi

∏n
j=1 |z − zj |αj

≤ CJf (z) (25)

for a.e. z ∈ C.

By considering maps that look like radial stretchings near the points wi and zj it is
not hard to construct a K-quasiconformal homeomorphism f : C → C satisfying
(25) with some constants K, C ≥ 1. The point of Theorem 9.1 is that f can be
chosen so that K and C depend only α and β. It would be very interesting to
obtain a purely analytic proof of Theorem 9.1 by studying the Beltrami equation
for example.
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