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Introduction 

A metric on a space S gives an order on S x S, or equivalently, a mapping 
of S • S onto a totally ordered set P. Conversely, under suitable conditions 
such an order induces a uniformity on S which is metrizable. This paper  is 
concerned with the more delicate geometric question of what conditions such 
an order must satisfy to induce a "canonical"  metric on S. By this we mean 
first that the order induced by the metric coincide with the original order, at 
least in the small. Second, the ternary relation (xyz) on a metric space (S, d), 
meaning that d(x, y)+d(y, z)=d(x, z), can be given a plausible formulation 
in terms of the order on S • S; we want (xyz) to hold in this formulation if 
and only if it does with respect to the induced metric. More generally, a (geod- 
esic) segment can be defined in terms of the relation (xyz), and we want such 
a set to be a geodesic segment in the usual sense relative to the induced metric. 

In terms of a mapping (x, y ) ~ x y  of S •  S onto P, the conditions we 
impose are: (1) this mapping induces a non-discrete Hausdorff  uniformity on 
S; (2) the mapping is continuous in each variable to the order topology of P;  
(3) S is complete; (4) any point of S can be reached f rom any other point in 
finitely many small steps; (5) a strong form of M-convexity holds. Precise 
formulation of these conditions is given in w 1 and w below. Under these con- 
ditions, a metric d which is canonical in the above sense exists and is essentially 
unique. Moreover, S is arc-wise connected, and (xyz) holds if and only if y 
lies on a curve f rom x to z having length d(x, z). 

Applications of these results to the characterization of G-spaces in the 
sense of BUSEMANN [3] by order relations are given in w 

Several authors have investigated the connections between mappings f rom 
S x S to an ordered set and uniformities on S, e.g. APPERT [1] and the references 
there, KALISCH [5], and COHEN and GOFFMAN [4]; the question of introducing 
geometric entities, such as geodesic segments, in terms of orderings is not 
considered, however. The present work is more in the spirit of the investiga- 
tions of the foundations of geometry, e.g. PIERI'S axioms for Euclidean ge- 
ometry (see [2]), which use only the concept " y  is equidistant f rom x and z" .  

* The preparation of this paper was supported in part by the Air Force Office of Scientific 
Research Grant AF-AFOSR-736-65 and the National Science Foundation Grant NSF GP 
5628. 
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The present results help to clarify the status of metric models in the be- 
havioral sciences. In many empirical contexts one may hope to establish such 
qualitative relationships as " x  is more similar to y than z is to w" in the absence 
of any quantitative measure of similarity (see the discussion in S~PHARD [8]). 
We can now state qualitative conditions implying the existence of an M-convex 
metric compatible with such ordinal data. Similar results have been obtained 
previously in cardinal utility theory, where S is one-dimensional, e.g. in SuPPEs 
and  WINET [9]. 

1. Order and Uniformity 

Let S be a non-empty set. Intuitively, a total order = on S x S should 
induce a uniformity on S in which x is at least as close to y as z is to w if and 
only if (~c, y)=< (z, w). Rather than work directly with the order on S x S, it is 
more convenient in what follows to work with a mapping f rom S • S to an 
ordered set P. The relations among orders, mappings, and non-discrete Haus- 
dorff uniformities are sketched in this section. 

We begin by making our terminology precise. An order on a set A is a 
reflexive, transitive relation which we always denote by __<. We say that A is 
strictly ordered if a < b and b__< a imply a = b. We say that A is totally ordered 
if for any a, b6A, either a<=b or b<=a. As usual we write b>=a if a<=b, and 
a<b if a<=b but not b<=a. 

If A is a set and U, V are subsets of A x A, we let U* = {(a, b) [ (b, a) ~ U}, 
and UV={(a, c)] for some b, (a, b)eU and (b, c)eV}. We say U is symmetric 
if U*=U. 

Let S be a non-empty set, and __< a total order on S x S. Suppose that this 
order satisfies 

01. For all x, y, zeS, (x, x)<=(y, z). 
02. If z # w  and xeS, then there is ay~:x with (x,y)<(z, w). 
03.  For all x, yeS, (x, y)<=(y, x). 
04. If x +y,  there are x ' ,  y '  with x '  #:y', such that if (u, v)<  (x', y ' )  and 

(v, w) < (x', y'), then (u, w) < (x, y). 

Define an equivalence relation on S x S by (x, y ) ~  (z, w) if (x, y ) <  (z, w) 
and (z, w)< (x, y). Denote the equivalence class of (x, y) by xy and the set of 
such classes by P. Then P is a strictly ordered, totally ordered set with minimal 
element 0, and the mapping (x, y) ~ xy satisfies 

P1. xy=O if and only if x=y. 
P2. If a > 0  and xeS, there is a y with O<xy<a. 
P3. xy=yx.  
P4. If b > 0, there is an a > 0 such that u v < a and v w < a imply u w < b. 

Next, suppose (P, < )  is a strictly ordered, totally ordered set with minimal 
element 0, and suppose (x, y)--+xy is a mapping f rom S x  S onto P which 
satisfies P1-P4. Given a > 0 ,  let U~={(x,y)[xy<a}. Then __U={U~} is a 
family of subsets of S x S which is totally ordered by inclusion and whose 
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union is S • S. Moreover, 

A U=A={(x,x)ixeS}. 
v_. 

Uz. Given x and U, there is a y + x  such that (x, y)eU. 
U3. If U~U, U= U*. 
U4. If Ue__U, there is a U'~U such that U' U'_~ U. 

These are precisely the conditions that such a collection consist of symmetric 
sets which are a base for a non-discrete Hausdorff uniformity on S. 

Suppose U is a family of subsets of S x S which is totally ordered by in- 
clusion, whose union is S•  S, and which satisfies U 1 -  U4. Given x, yeS, let 
U(x, y) be the intersection of all U~U such that (x, y)eU. Set (x, y)<(z, w) 
if (x, y)~ U(z, w). Then it i sno t  hard to see that < is a total order on S x  S and 
(SxS ,  <=) satisfies O t - O 4 .  For  example, to prove 04,  suppose x=i=y. By 
U1, there is a Ue U with (x, y) r U. Since __U is totally ordered, it follows that 
U ~_ U(x, y). Take U 1 ~_U such that U1 �9 U1 _c U. Then let x', y' be such that 
(x', y')e UI and x' +y ' .  

This gives a circle, order ~ mapping -~ totally ordered uniformity base 
order. It is clear that if we start from an order (mapping) and proceed, we 
recover the same order (mapping). If we start from U, we return to { U(x, y)}, 
so two uniformity bases _U and _V induce the same order if and only if U(x, y) = 
V(x, y), all x, yeS. Two such bases generate the same uniformity, for given 
Ue_U, take x=t=y, (x,y)sU. Take V such that (x,y)r Then V~_ V(x,y)= 
U(x, y) ~_ U. Conversely, given Ve_V there is a Ue__U with U _~ V. 

The following property will also be useful; we give it in terms of the 
mapping. 

Ps- If b<c, then there is an a > 0  such that xy<b, yz<a imply xz<c. 
Remarks. 1. Condition P4 follows from P2 and Ps. For  let b > 0; by P2, 

there is an a t with 0 < a l  <b. Choose a2>0  such that uv<al, vw<a2 imply 
uw<b. Then let a=min{a  1, a2}. 

2. Condition P5 is equivalent to the formally opposite property: if b < c 
then there is an a > 0  such that xy>c, zy<a imply xz>b. For choose a as 
in Ps.  Then if yz<a and xz<b, we have xy<c; thus if xy>c and yz<a, 
necessarily xz>b. A similar argument shows that this property implies Ps- 

Lemma 1.1. If  P1-Ps  hold, then for each xeS  the mapping y ~ x y  is 
continuous from the uniform topology of S to the order topology of P. 

This follows immediately from P5 and Remark 2. 

Note that conversely if Pt  - P 4  hold, if y --+xy is continuous, and P has no 
gaps, then P5 holds. 

2. Convexity and Segments 

We assume from now on that S is non-empty, P is a strictly ordered, totally 
ordered set with minimal element 0, and ( x , y ) ~ x y  is a mapping of S x S  
onto P satisfying P~ - Ps of w 1. Let S have the induced uniform topology and 

21 Math. Z., ~d. 101 
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P the order topology. We now introduce three more conditions, significantly 
stronger than P 1 -  Ps.  

P6. S is complete in the induced uniformity. 

PT. If x, zES and a > 0 ,  there are points Yo,Yl . . . . .  Yn in S with yo=x, 
y,=z, and yi_lyj<=a,j= 1, ..., n. 

(Note that P7 will necessarily be satisfied if S is connected.) 

The last condition, P8, is a statement in terms of order of a strong from 
of M-convexity. Recall that in a metric space (X, d) a ternary relation ( ) 
is defined by: (xyz) if x, y, z are distinct and d(x, y)+d(y, z)=d(x, z). The 
space X is said to be M-convex if for each x~z,  there is a y such that (xyz); 
[3]. For  S, we formulate these notions as follows. 

Definition. The ternary relation ( ) is defined in S by: (xyz)  if and only 
if x, y, z are distinct and 

O) xy' ~ x y  and xz'> xz imply y' z'> yz; 
(ii) If the conditions of (i) hold and y'z'=yz, then xy '=xy  and xz'=xz.  

Definition. The ternary relation ( ) is defined in S by: (xyz) if and only if 
(xyz )  and (zyx).  

Remarks. 1. The relation (xyz) for metric spaces was introduced by MEY- 
CER [7]. 

2. In the case of a metric space (X, d), let xy = d(x, y). Then if x, y, z are 
distinct, d(x, y)+d(y, z)=d(x, z) implies that (xyz) in the above sense. (The 
converse is false in general: consider the unit circle with the chordal metric.) 

The final assumption is 

Ps.  If O<xy'<xz, there is a yeS  with xy=xy '  and (xyz). 
We begin with some simple observations on the relation (xyz). 

Lemma 2.1. (a) If (xyz), then xy<xz  and yz<xz.  
(b) If (xyz) and xy'<xy,  xz'>_xz, and y'z'<yz, then xy '=xy,  xz '=xz,  

y' z'= yz. 
The proof is immediate. 

Corollary 2.2. If (xyz) and xy'<=xy, y 'z<yz,  then xy'=xy,  y 'z=yz,  and 
(xy'z). 

Proof. Taking z' = z in Lemma 2.1 (b), we get the desired equalities. Since 
(xyz) it follows from these equalities and the definition that also (xy'z). 

Lemma 2.3. If (xyz) and (xzw), then (yzw) and (xyw). 

Proof. By Lemma 2.1 (a), xy<xz<xw,  so y, z, w are distinct. Since (xyz) 
and xz<xw, yz<yw. Therefore there is a z' with yz '=yz and (yz'w). Then 
z'w<zw, so xz'>xz.  But then, since yz'=yz, we must have xz'=xz,  so 
z' w=zw. Then by Corollary 2.2, (yzw). 

To show (xyw) note that yw<xw, for otherwise (xzw) would imply 
yz~xz .  Thus there is a y '  with y'w=yw and (xy'w). By Corollary 2.2, it 
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suffices to show that x y < x y ' .  Now z w < y ' w ,  so choose z' with z ' w = z w  and 
(y ' z 'w) .  By the first part of this proof, (xy ' z ' ) .  But ( x z w )  and z ' w = z w ,  so 
x z < x z ' .  If x y '  < x y ,  then y z < y '  z'. But (y'  z' w), y ' w = y w ,  and z' w = z w ,  so 
y z = y ' z ' .  Thus x y ' ~ x y  and the proof is complete. 

It is convenient to introduce an n-ary relation: 

Definition. For n>3 ,  ( x l x 2 . . . x , )  if and only if for each l < i < j < k < n ,  
(xixjxk). 

Definition. Let x and z be distinct. A partial segment from x to z is a set 
~ S with the property that if g i s  a non-empty finite subset of ~ not containing 

x or z, then there is an enumeration Yl . . . . .  y,  of Y such that ( x y  1 ... y ,z) .  A 
segment is a maximal partial segment. 

By ZORN'S lemma: 

Proposition 2.4. A ny  partial segment f r o m  x to z is contained in a segment 
f r o m  x to z. 

The rest of this section is devoted to proving the following 

Theorem 1. Let  x and z be distinct points o f  S, and let ~ be a segment f r o m  
x to z. Then 

(a) ~ is closed. 

(b) The interval [O, x z ] = { a l a e P ,  O<_a<xz} is order complete, and f o r  
each a t [0 ,  xz] there is a unique y = y ( a )  in 7 such that x y = a .  

(c) The mapping a ~ y(a)  is a homeomorphism of  [0, xz] onto ~ with respect 
to the relative topology on 7. 

The proof depends on several lemmas. 

Lemma 2.5. I f  (Xl X 2 ... x ,)  and ( x j y x j +  O, then (x 1 ... x j y x j +  1 ... x,). 

Proof. Apply Lemma 2.3. 

Lemma 2.6. I f  a > 0  and x 4 z ,  there are Yo . . . .  , y ,  such that Yo =x ,  y , = z ,  
(Yo ... Y,), and y j_ 1YJ < a, j = 1, 2 . . . . .  n. 

Proof. By Pv there are u o . . . .  , Up with u o = x, up = z, and u j_ 1 uj < a, j =  
1, . . . ,p .  Let y o = u o = X .  If x z < x u l < a ,  take y l = z .  Otherwise take Yl such 
that (xyl z) and Yo Yl = Uo u 1. Then y i z < ul z. Inductively, suppose Yo . . . . .  Y,, 
have been selected with (Yo ... Y~ z), y j_  1Yj < a, and Ym Z < U~ Z for some k > m. 
If y , ,=z ,  we are done, and if ymz<a ,  let Ym+X =Z. Otherwise ymz>a>Up_ iZ ,  
and take the largest k with m < k < p  and y , , z<ukz .  Then UkUk+, < a < u k z ,  so 
there is a v with UkU~+t=U~V and (ukvz). Then VZ<Uk+~Z<ymZ, SO there is 
Ym+ 1 with y,,+ l z =  v z <  Uk+ , Z and (YmY,,+ 1 z). Then YmY,,+ 1 < ukv < UkUk+ 1 <a, 
and m + t _-<k+ 1. Clearly this process terminates eventually with y , = z ,  n < p .  

Let P*  denote the order completion of P. 

Lemma 2.7. Let  ~ be a partial segment f r o m  x to z and a * e P * .  I f  {y,} ___ T 
is a generalized sequence such that x y ,  --*a*, then {y,} is a Cauchy generalized 
sequence. 

21" 
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Proof. For all n, either y , = x  or y , = z  or (xy,  z). Therefore O < x y . < x z ,  
so 0_<a* <xz .  If a* =0 ,  then y, --+x. If a* =xz ,  then given a > 0 ,  choose y with 
y z < a  and (xyz);  (use P2 and Ps). Then x y < x z ,  so for n large, x y , > x y .  
But either y , = z  or (xy ,  z), so y , z < y z < a .  Thus y, ~ z .  

Finally, suppose O<a*<xz .  Given a > 0 ,  we can use P4 and Lemma 2.6 
to find Uo, ul . . . . .  Um such that uo=x,  u,,=z, (UoUl ... urn), and ui_~ui+l<a,  
j = l , . . . , m - 1 .  By Lemma2.1(a) ,  O = x u o < x u l < . . . < x u m = x z .  Therefore 
for some j,  x u j _ l < a * < x u j + : .  Then for n>no,  x u j _ : < x y , < x u j + ~ .  Then 
if n ,p>no,  either y ,=yp  or x y , ~ x y p .  Suppose x y , < x y p .  Then x u j _ : <  
x y , < x y p < x u j + l ,  and (xy,  yp), so y, yp<u j_ lu j+ l<a .  Thus {y,} is Cauchy. 

Lemma 2.8. I f  y, ~ y and (xy,  z), all n, then either y = x  or y = z  or (xyz).  

Proof. By Lemma 1.1, x y = l i m  xy , .  Since O < x y , < x z ,  all n, this implies 
O < x y < x z .  If xy=O, then y =  x. If x y = x z ,  the first part  of the preceding 
proof shows that y , ~ z ,  so y=z .  Suppose O < x y < x z .  Take w such that 
x w = x y  and (xwz).  For  a > 0 ,  choose ua such that (xu, w) and u , w < a  (we 
use P2 and Pa). Then x u , < x w = x y ,  so for n large, x u , < x y , .  Since (xy,  z), 
this implies uaz>y,z .  Taking the limit in n, we get uaz>yz.  As a ~ 0 ,  ua-~w, 
so w z > y z .  Then Corollary 2.2 implies that (xyz).  

Lemma 2.9. Suppose x • z. A set 7 ~- S is a partial segment f rom x to z if 
and only if 

(i) / fuEy  a n d u ~ x ,  u4=z, then (xuz);  

(ii) if u, re7  and u, v, x are distinct, then (xuv) or (xvu). 

Proof. Necessity is obvious. Suppose conditions (i) and (ii) are satisfied. 
If Y is a subset of ? disjoint from {x, z} and containing n elements, we want to 
show that there is an enumeration Yl, ..., Y, of Y such that (xyl  ... y,z).  If 
n = 1, this follows from (i). Suppose it is true for n < p - 1 .  Then by (ii), for 
u+v, u, veY,  either x u < x v  or x v < x u .  Number  the elements of Y with 
x y l < x y z < . . . < x y  p. Now then by the induction assumption and these 
inequalities, (xy  z, . . . ,yvz).  By (ii), (xylyz) .  Therefore, by Lemma 2.5, 
( x y :  ... y , z ) .  

Proof of Theorem 1. (a) We suppose 7 is a segment from x to z and {y,} is 
a generalized sequence in ? with y , -~y .  Since ? is maximal, to show y ~ ?  it 
suffices to show that ? u {y} is a partial segment. We may assume y +x ,  y +z,  
and we use the criterion of Lemma 2.9. Lemma 2.8 implies that (xyz),  so it 
remains to show that if u s7  and u,y, x, z are distinct, then (xuy) or (xyu). 
Now a simple modification of the argument in the first paragraph of the proof 
of Lemma 2.7 shows that if x u = x y ,  then u=y.  Suppose x u < x y .  For n large, 
x y , > x u ,  so (uy, z). By Lemma 2.8, then, (uyz). But also (xuz),  so (xuy). 
Similarly, if x u > x y  then (xyu). 

(b) Suppose a* is in the order completion of [0, xz]. We may assume 
O<a*<xz .  Let ?l={y~v[xy<=a*}, 72={yG?lxy>a*} .  Let a*=sup{xy[ 
y~?~}, in the order completion. Then there is a generalized sequence {y,,} c 7: 
such that xy , ,~a* .  By Lemma 2.7 and completeness, there is a u s e s  such 
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that yn-*ul. By Lemma 1.1, xul =a*, and by part  (a) of this theorem, u le7 .  
Similarly, if a* = inf{xy[y e 72}, there is a u2 e ~ such that x u2 = a2*. Thus either 
a*=a*=a* and a*eP, XUl=XU2=a*, or else a*<a*. In the latter case, 
choose u such that (uluu2). Then uu2<ulu2, so since (xulu2) we have xul < 
xu 2. Therefore u67. For  any ye~,, either xy<xu~ or xy>xu2 .  From this 
and Lemma 2.5 it follows easily that V u {u} is a partial segment. This contra- 
dicts maximality, so we must have ~ * - - * - ~ *  ~ 1 - -  - , , 2 ~ P ,  and XUl=XU2:a*.  
Uniqueness follows from Lemma 2.1 (a). 

(c) If a n n a  and yn=y(a~), y=y(a),  then x y , = a , ~ a ,  so {y~} is Cauchy. 
Since V is closed, u ~ x u  is continuous, S is complete and y(a) is unique, it 
fotlows that yn ~ y .  Conversely, if y~=y(an), y=y(a),  and y~->y, then an= 
xy,  ~ x y = a .  Thus a-~y(a) is a homeomorphism onto 7. 

Corollary 1. I f  7 is a segment from x to z and u, v~7, u:~v, then ~ contains 
a unique segment from u to v. 

Proof. Let 7 '={u,  v}u{y~7l(uyv)}.  This is a partial segment, so it is con- 
tained in a segment 7". We may suppose xu<xv .  Given Y~7", either y = u  or 
y=v  or (uyv). Also, either x = u  or (xuv). Therefore if (uyv) then (xyv), so 
there is a y'~;: with x y ' : x y .  Since (xy'v) also, we have y 'v=yv>uv ,  so 
(uy'v) and uy'=uy.  This shows that y'ev '  c_ ~", and it follows f rom uy '=uy  
that y '  =y .  Thus ~ ' =  ~" is a segment. Clearly any segment from u to v con- 
tained in 7 is contained in ~', hence is 7'. 

Corollary 2. P is connected. 

Proof. Since any interval [0, a] in P is order complete, P is order complete. 
Therefore it is connected if and only if for each a <  c, there is some b with 
a<b<c;  [6, p. 58]. Take x, z such that xz=c.  Let ~ be a segment f rom x to z. 
Take uev  such that xu=a. Now V contains a segment f rom u to z, by Corol- 
lary 1. By P2, there is an al with O<al<u2  , so there is a v s v  with (uvz) and 
uv=a 1. Then (xvz), so a = x u < x v < x z = c .  Take b=xv.  

Remarks. 1. Conditions P 1 - P ,  and P7 imply easily that S is metrizable. 

2. Conditions P 1 - P , ,  P7 and Ps imply that P is separable (use P ,  and 
Lemma 2.6). 

3. In view of the preceding remarks the arguments of this section could be 
carried out with ordinary sequences. 

3. Existence and Uniqueness of a Metric 

Let S, P, and the mapping (x, y ) ~ x y  satisfy conditions P 1 - P 8 .  There is 
an essentially unique metric Ix, Y l on S which induces the given order on 
S • S in the small, and such that distinct points x, y, z satisfy (xyz) if and only 
if ] x, y I + [Y, z I = I x, z [. With respect to this metric, a segment from x to z is 
the image of a curve of length Ix, zh and conversely. 

The plan of construction of this metric is the following. By " s i ze"  of a 
segment f rom x to z we mean the element xz~P. For  any positive integer n, 
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there is a unique decomposi t ion of a given segment into n subsegments of 
equal size. For  segments of size a not  too  large, the size of these subsegments 
depends only on a and n. These facts enable us to define an order isomorphism 
a ~ [ a[ of an interval [0, a) into the non-negative reals, with the proper ty  that  
(xyz)  and x z < a  imply ]xy[+[yz[=[xz l .  This mapping  and the finiteness 
condit ion P7 lead to a natural  construct ion of Ix, y[. 

Lemma 3.1. Let ? be a segment from x to z and let n be a positive integer. 
Then there are unique points Yo . . . .  , y ,  in ? such that Yo =x,  Yn =z, (YoYl ... Y,), 
and YoYl . . . . .  Y~- lY.. 

Proof. Given any ordered subset Y=(uo ,  .. . ,  u,) of ? with Uo=X, u l=z ,  
and (UoUl ... u~), let a(Y)=in f{u j_ lu j } .  Let a be the supremnm of a(Y)  for 
all such Y. Then 0 <_ a <_ xz.  Take Yo = x, and take Yl ~ 7 such that  YoYl = a. We 
can continue to choose yj~? with (YoYl ... Yp) and y j _ l y j = a  until either 
ypz<a  for  some p < n ,  or  y~_lz>a,  or  y , _ l z = a .  In the third case, let yn=Z. 
We want  to show the first two cases impossible. 

Suppose ypz<a,  with p<n.  Let wp+~=z, and choose w ,~?  such that  
(Yp-1 wpyp). By making Wpyp small, we may  assume wpz<a. Continuing, we 
choose wp_~ . . . . .  wl with w j _ l w j < a  and (y j_lwjyj) .  Let  wo=Yo=X. Let 
ao=sup{wj_lwj} .  Then ao<a. If  Y=(uo ,  .. . ,  u.) is as above and a(Y)>ao ,  
inductively it is easy to see that  x u 1 > x w 1, x u 2 > x w2, .. . ,  x up + ~ > x wp + 1 = x z, 
a contradiction. Thus sup a (Y) < ao < a, a contradiction. 

Suppose y , _ l z > a .  Then we choose u,=z,  Un_l~ ? such that  (yn_lU~_lZ) 
and U~_lz>a, and u~-2 . . . . .  u 1 such that  ( y j_ lu j_ l y j )  and uj_~uj>a. Let 
Uo=X and Y=(uo ,  ul, . . . ,  u~). Then a ( Y ) = i n f { u j _ l u j } > a ,  a contradiction. 
This completes the proof  of existence. Uniqueness follows by induct ion:  

y t  t P y j=  j and YjYj+I =Y~Y~+I imply Yj+I = Y j + I ,  since all Y2, YJ are in ?. 

Definition. Given a segment 7 f rom x to z and a positive integer n, choose 
Yo, ..., Y~ as above. Let YoY~ . . . . .  y ,_  ~ y ,  = a (?, n). 

I t  is easy to see that 

(1) a(7, n + l ) < a ( ? , n ) ,  all ?, n .  

Lemma 3.2. I f  ? is a segment x to z and a > 0, there is an n such that a (?, n) < a. 

This follows f rom Lemma 2.6. 

Lemma 3.3. Let ? be a segment x to z and ?' be a segment from x to z'. For 
any n, a(?,  n ) < a ( ? ' ,  n) if and only if x z < x z ' .  

Proof. Divide each segment into n equal parts and apply the definition of 
(x y z) repeatedly. 

In  view of Lemma 3.3, a(?, n) depends only on n and the endpoints x, z 
of ?. We can define a(x, z, n ) = a ( ? ,  n) for  any segment ? f rom x to z. Then 
a(x, z, n) <a(x,  z', n) if and only if x z  <xz ' .  Set a(x, x, n ) = 0 .  
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Let 
= sup {a (x, z, 6)} 

X~ZES 

if this set is bounded, and ~= + ~ ,  with + ~ >a ,  all aeP, otherwise. 

Lemma 3.4. Suppose x, y ~ S and a < ~. Then either a (x, y, 2)> a or there is 
a z~S with both a(x, z, 2 ) > a  anda(y, z, 2)>a .  

Proof. By definition of ~, there are Zo, z l ,  ..., z6 with (ZoZl ... z6) and 
ZoZ 1 . . . . .  ZsZ6>a. Let So={ulzou<ZoZ2} and S6={U]Z6U<Z6Z4}.  Then S O 
and $6 are disjoint. If xr then a(Zo, x, 2)>a(zo ,  z2, 2)=ZoZ 1 >a .  Similarly 
for y and for $6. Thus either the second alternative holds, or else one of x, y 
is in So and the other in $6. Assume x~So, yeS6. Take w such that (xwy), 
x w = w y = a ( x ,  y, 2). Either ZoW>=ZoZ 3 o r  w z 6 ~ z 3 z  6 . Thus either a(x, y, 2)= 
XW>=ZzZ3>a o r  a(x ,  y,  2)=wy>=z3z4>a. 

This lemma enables us to prove a uniform property of the relation (xyz). 
t t ~  Lemma 3.5. Suppose (xyz) and xz<~. I f  x y =xy  and x'z'>_xz, then 

y' z'>=yz. Moreover, if y' z '=yz,  then x' y '=xy ,  x' z '=xz,  and (x' y'z'). 

Proof. To prove the first statement, it suffices to consider the case x'y '= 
xy, x ' z '=xz .  Suppose first that a(x, x', 2)>x'z '=xz.  Let 7 be a segment 
from x to x'. We may assume that y, y' ,  z, z' lie on 7. Then using Lemma 2.1 
with respect to the midpoint of 7, we get y'z '=yz.  

Next, if a(x, x', 2 )<xz=xz '<~,  then there is a point u whose distance 
from x and x' is greater than twice xz. Taking segments from u to x and to 
x', and using the first part of the proof to reflect about the midpoints of these 
segments, we again reduce to Lemma 2.1. 

Finally, suppose x'y'<_xy, x'z'>_>_xz, and y'z '=yz.  Choose v such that 
v=z' or (x'vz') and x 'v=xz.  Choose u such that (x'uv) and x 'u=xy.  Then 
by the first part, uv>yz.  But yz=y 'z '>uv.  Thus y'z '=uv, so x 'u=x'y '  and 
x 'z '=xv.  But then v=z' and, by Corollary 2.2, (x'y'z'). 

As a consequence we have a significant extension of Lemma 3.3. 

Corollary 3.6. I f  x z < ~ and x' z' < ~, then a (x, z, n)< a(x', z', n) if and only 
i f  X Z ~  xt g t. 

Proof. Cf. Lemma 3.3. 

Definition. If 0<a<c~ and n is a positive integer, then (I/n) a is the unique 
element of P such that (l/n) a=a(x, y, n) when xy=a.  (Uniqueness follows 
from Corollary 3.6.) Let ( l / n ) 0 =  0. 

From this definition and Corollary 3.6 we get 

1(1) 
- -  a = a ~  

m mn 

(3) a < b  if and only if 1 1 - - a < - - b .  
n n 
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Eq. (1) implies 
1 1 

(4) n+----~ a < - a n  if a > 0 .  

We are now in a position to construct the desired metric. 

Theorem 2. There is a metric (x, y) -* r x, y l on S with the properties 

(i) For some f ixed fl>0, if x y < f l  and zw<fl ,  then Ix, yl<lz, wl if and 
only if x y < z w .  

(ii) I f  x, y, and z are distinct, then (xyz)  if and only if ix, Yt + ]Y, z] = Ix, z[. 

(iii) For any x, y, y', r x, y [ < [ x, y, r if and only if x y  < xy'.  The properties 
(i) and (ii) determine Ix, Y r uniquely, up to a multiplicative constant. Moreover, 
we may take fl = ~. 

Remark. A natural question is whether the restriction xy  < ~ in (i) can be 
removed. An example in w 5 shows that there may be x, y, z, w with xy  < z w 
but [x, y l > l z ,  wl. 

One way of achieving the conclusion xy  < z w if and only if r x, y I < I z, w I 
is suggested by Lemma 3.5, which is the key to the proof of (i). For distinct 
points x , y , z ,  define ((xyz)) if and only if: x ' y ' < x y  and x'z'>=xz imply 

t t ~  y z =yz ,  and moreover if y ' z ' = y z  then x ' y ' = x y  and x ' z ' = x z .  Define 
((xyz)) if and only if ((xyz)) and ((zyx)). Let P~ be condition P8 with ( ( ) )  
replacing ( ) .  Then the development in w is substantially the same, and Lemma 
3.5 is true without restriction on the size of xz. Thus P ~ - P 7  and P~ imply 
that x y  <= z w if and only if [ x, y I < r z, w r. 

Proof of Theorem 2. We begin with the last statement. Suppose Ix, y[ is a 
metric satisfying (ii) and with x y < f l  and zw<f l  implying Ix, yl<lz, wl if 
and only if x y < z w .  We may assume fl<~. Then we can define a mapping of 
[0, f l )={a l0<a<f l}  into the reals unambiguously by letting [a[=lx, yl if 
xy=a<f l .  Given any x, z, by Lemma 2.5 there are Yo, Yl . . . .  , y,  with Yo =x,  
y ,=z ,  yj_ayj<fl ,  and (YoY~ ...Y,). Then repeated application of (ii) gives 
Ix, zl=~lyj-1,  yjl =~IYj-aYil. Thus [x, z r is determined completely by the 
mapping a ~ l al defined on [0, fl). 

Note that (ii) implies that if a < fl, then 

~ a  -n---fal" 

Choose ao such that 0 < a o <  ~. We may assume that [aoJ=l .  Note that if 
a, be(0, e), then it follows from Lemma 3.2 that there is an m such that 

1 
- - a < b .  
m 

In particular, for each n and each a~[0, fl) there is a smallest m=m(a,  n) such 
that 

1 
- - a < 2 - "  ao. 
m 
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F o r  n large, re(a, n ) >  I. Then for  m=m(a, n ) >  1, (i) implies 

(5) m -11 a I ~ 2 - " ~  ( m - 1 )  -1 l a l .  

Fur thermore ,  (2) and (3) imply (2 m ) -  a a < 2 -  " -  1 a < (2 m - 2) - 1 a, so 

(6) 2re(a, n ) - l  <m(a, n+ l)<2m(a,  n). 

Let [al.=2-"m(a, n). Then (5) and (6) become 

(7) 

(8) 

l a l . - 2 - " ~ l a I ~ l a l . ,  

l a l , - 2 - " ~ l a l , + l ~ l a [ , .  

I t  follows f rom (7) tha t  I a 1, -~ a. Thus  a --* I a] is complete ly  determined by the 
condit ion I ao [ = 1, and the final s ta tement  is proved.  

To  prove  existence, take aoe(0,  c0. Given a~[0,  e), define m(a,n) and 
la l ,  as above.  By (8), {Ia[,} is a Cauchy sequence. Let  l a ] = l i m  la l , .  Given  
(xyz) and xz<e,  let 7 be a segment f rom x to z containing y. Note  tha t  
m(xy, n)=m if and  only if it takes m -  1 steps along 7 of " s i z e "  2 - " a o  to come 
within 2 - " a o  of y, starting at x. Therefore  

.(9) 

o r  

(lO) 
Thus  

(11) 

[m (x y, n ) -  1] + [ m  (y z, n) - 1] < m (x z, n) < m (x y, n) + m (x z, n) ,  

Ix y l ,+Iy  z l , - 2 - " ~ l x  z l , s  y l ,+ lx  zl, .  

I x y l + l y z [ = l x z l ,  i f ( x y z )  and x z < e .  

Given x, z, take Ix, zl = 0  if x=z.  Otherwise, let 7 be a segment  f rom x to z. 
By an admissible partition of 7 we mean  an ordered subset Y=(Yo,  Yl, . . . ,  Y,) 
of 7 such tha t  yo=x, y,=z,  (YoYl ... Y,) and yj_ly j<e.  There is always an 
admissible par t i t ion with n = 7 ,  y j_ l y i -a (7 ,  7). If  Y and Y'=(Y'o, ..., Y') are 
admissible part i t ions of Y with Y ~_ Y', it is easy to see that  repeated applica-  
tions of (11) imply tha t  ~ I Y j -  lYe[ = ~ I Y ) -  1 Y) [. Since any two part i t ions of 7 
are contained in a single part i t ion,  this sum is independent  of Y. By L e m m a  
2.3, it depends only on x and z. Set Ix, zl=~[y:-ly~l for  any such I7. In  
part icular ,  if xz  < e then Ix, z[ = I xz  [, and (i) is satisfied. Fur thermore ,  L e m m a  
3.3 implies tha t  (iii) is satisfied. 

I t  remains  to be proved tha t  I x, z[ is a metric  and that  it satisfies (ii). Suppose 
(xyz). Let  ? be a segment containing y (by Proposi t ion  2.4), and let Y be an 
admissible par t i t ion of 7 containing y. By Corol lary  1 of Theorem 1, 7 = 71 u 72 
with 71 a segment f rom x to y and 72 a segment  f r o m  y to z. Similarly Y =  
Y1 u Yz with Yi an admissible part i t ion of 7i. Then by definition of the metric  
we have ] x, y ] + l Y, z ] = [ x, z 1. This proves half of (ii). 

Finally, let x, y, z be any three points  of  S. If  x, y, z are not  distinct, or  if 
xy  > xz, then clearly ] x, y [ + [y, z [ > [ x, z [. Suppose  0 < xy < xz. Take  y '  such 
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that  (xy'z)  and xy'  =xy .  Then y ' z < y z ,  so by (iii), 

[x, z l= l x ,  y ' l + l y ' , z l < l x ,  y l + l y ,  z l .  

Moreover ,  equality implies y ' z = y z ,  which implies (xyz).  This proves that  
I x, Y l is a metric and that  the other  half of condit ion (ii) is satisfied, completing 
the proof  of Theorem 2. 

Theorem 3. I f  x and z are distinct points of S, and T is a segment from x to 
z, there is a curve ~p from x to z with image 7 and length Ix, z[;  q~ can be taken 
to be an isometry. Conversely, if  ~o is a curve from x to z with length Ix, z h then 
its image is a segment from x to z~ 

Proof. Let  7 be a segment f rom x to z. Let  a ~ y ( a )  be the mapping of 
[0, xz] onto  7 given in Theorem 1. Then  ~/: a ~ t x, y (a)  l is an order  preserving 
map of [0, xz] into [0, Ix, zl], hence is continuous.  Since P is connected,  so 
is [0, xz], and ~/(0)=0, q ( x z ) =  Ix, zl. Therefore  q is onto,  and a homeomor-  
phism. Thus q~: t ~ y ( q - l ( t ) )  is a homeomorph i sm of [0, Ix, zl] onto ?. Sup- 
pose O < s < t < l x ,  zl. Then Ix ,~o(s) l=s ,  Ix,~o(t)l=t, so (xq~(s)~o(t)) and 
[ r (s), ~0 (t) [ = [ x, q~ (t) [ - [ x, cp (s) [ = [ t -  s l. Thus q~ is an isometry, and its length 
is consequently Ix, z l. 

Conversely, suppose q~ is a curve f rom x to z with length Ix, z[. Let  [0, 1] 
be the domain  of q~. For  any part i t ion (to, . . . ,  t,) of [0, 1], we have 

Ix, z l>~l~o(t j_O,  ~o(tj)l>-_lx, zl �9 

It  follows f rom Theorem 2(ii) that  if the ~o (t~) are distinct, (~(to)~p(t~) ... ~0 (tn)). 
Thus the image 7 of ~o is a partial segment. Let  7' be a segment containing ? 
and r an isometry of 7' onto [0, I x, z 1] with ff (x) = 0, r (z) = I x, z 1. Then r ~o 
maps [0, I] cont inuously into [0, Ix, zl] with ~r  ~ o ( 1 ) = [ x ,  z[. There- 
fore  r ~o is onto,  so q~ = ~ -1  (~ ~o) is onto V', and 7 = 7'. 

4. On the Characterization of G-Spaces by Order Relations 

As defined by BUSEMANN [3], a G-space is a metric space (S, Ix, y I) in 
which dosed,  bounded  sets are compact  and which satisfies the three additional 
conditions 

A. If x=~z, there is a y with (xyz).  

B. Fo r  each u there is an a ( u ) > 0  such that  if x + y  and Ix, ul<a(u), 
tY, ul <a(u), then there is a z with (xyz).  

C. If (xyz) ,  (xyz ')  and lY, zl=lY, z'l, then z=z' .  

Here we take (xyz)  to mean x , y , z  are distinct and Ix, y l+ly ,  zl=lx, zl. 
We can easily translate the compactness condit ion and conditions B and C 

into terms of a mapping (x, y) ~ xy: 

Pg. For  a > 0  and xeS ,  the set {y[xy<a}  is compact  in the uniform 
topology.  
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Plo.  For  u s S  there is an a (u )>0  such that if xu<a(u) ,  yu<a(u) ,  and 
x +y,  then there is a z such that (xyz) .  

Pl l .  If (xyz) ,  (xyz ' ) ,  and y z = y z ' ,  then z=z ' .  

As before, let S be a non-empty set and (x, y ) ~ x y  a mapping of S x S 
onto an ordered set P with minimal element 0. 

Theorem 4. Let ( S, x y) satisfy conditions P 1 - P 5  and P 8 - P l l. Then there 
is a metric [ x, y I on S such that ( S, Ix, y [) is a G-space and such that conditions 
(i) and (ii) of Theorem 2 are satisfied for  some fl > O. This metric is unique up to 
multiplicative constant. 

Proof. Condition P9 clearly implies P6, completeness of S. Moreover 
P 1 -  Ps,  P8, P9 imply PT, the finiteness condition. For  take x, z s  S and a >  0. 
We may assume x z > a .  By P8, there is a Yl with x y  1 <a and (xy lz ) .  I f y l z < a  
we are through; otherwise take Yz such that xy~ =YaYz,  (YlY2Z), and so on. 
Note that Lemmas 2.1 and 2.3 do not depend on P6 and PT. Thus we get 
Yo =x ,  Y l ,  Y2, ... with ( x y l y  2 ... z) and YoYl=YlY2  . . . .  . If P7 did not 
hold, we would get an infinite sequence {y,}, with ymy,>=ymym+l =YoYl for 
n > m, and xyn < xz .  This contradicts P9. 

Thus P 1 -  P8 are all satisfied, and there is, up to a multiplicative constant, 
a unique metric [ x, y[ on S satisfying (i) and (ii) of Theorem 2. In view of (ii), 
the metric and order senses of (xyz )  coincide. Therefore (S, Ix, z I) satisfies 
A, B, C, by P8, Plo ,  P l l  respectively. Thus (S, [x, z[) is a G-space. 

Conversely, let (S, [x,y[)  be a G-space. Let e = { [ x , y [ }  and x y = [ x , y ] .  
Then clearly P ~ -  P5 are satisfied, as well as P9, P1 o, P~ 1. It follows from the 
general theory of G-spaces that P8 is also satisfied. These observations and the 
preceding Theorem give 

Corollary 1. I f  (S, [x, y[) is a metric space, then there is, up to a multi- 
plicative constant, at most one metric on S which induces the same order on 
S x S and with respect to which S is a G-space. 

5. Examples and Counter-Examples 
The following examples show that the conditions of completeness, fi- 

niteness, and convexity are independent, and that the order induced by the 
metric [ x, y[ may not coincide globally with that induced by xy.  

1. Let S be the rationals, P the non-negative rationals, and let the mapping 
be ( x , y ) ~ [ x - y ] .  Then conditions P ~ - P s ,  P7, and Ps are satisfied, but 
not P6. 

2. Let S be R x R (R the reals) with the lexicographic order: x = ( x l ,  x2)< 
Y = ( Y l , Y 2 )  if x l < y l  or x l = y  1 and x 2 < y z  . This is an ordered group with 
respect to addition. Let P be the positive semi-group together with 0, and let 
x y = y - x  if y - x > O ,  x y = x - y  otherwise. This satisfies P a - P s  except PT; 
topologically it is an uncountable union of disjoint copies of R. 

3. Let S be the unit circle in R x R, with an open arc of length less than n 
removed. Let P =  [0, 2] and let the mapping take a pair of points into their 
(plane) distance. This satisfies P 1 -  PT, but not Ps.  
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4. A more  instructive example than (3) is the following. Let S=R,  P the 
non-negative reals, and let the mapping  be (x, y)--*g(I x - y  I), where g is any 
function on P with t<g( t )<2t ,  all t > 0 .  Then P ~ - P 7  are satisfied. It  can be 
seen that  P8 is satisfied if and only if g is strictly increasing. If  so, then we can 
take Ix, Y l = l x - y [ .  

5. Let S = [ 0 , 2 ] ,  P = [ 0 , 3 ] .  Define g(x,r)  for  x, r e [ 0 , 2 ]  by g(x ,r )=r ,  
r <  1 and g(x, r) = 1 + � 8 9  1 ) ( r -  1), r >  1. For  x, y e s  and x<y,  define x .  y =  
y .  x=g(x ,  y - x ) .  We claim that  the mapping  ( x , y ) - * x . y  is a metric, and 
that  P ~ - P 8  are satisfied. The key point  is that  the function g(x, y - x )  strictly 
decreases in x for  O<x<y  and strictly increases in y for  x<=y<=2. To show P8, 
suppose for  example that  x < z  and 0 < a < x .  z. There is a unique y with 
x < y < z  and x . y = a .  Suppose x . y ' < x . y  and x .  z ' = x . z .  Because of  the 
proper ty  of g cited above, we may reduce to the case z ' < y ' < x  and x �9 y ' =  
x . y ,  x .  z ' = x .  z. If x .  z <  1, then all distances coincide with usual ones, 
so y ' . z ' = y . z .  But x . z > l  implies z - x > l  and, since x . z ' = x . z ,  also 
x - z ' >  1. Then z - z ' > 2 ,  a contradiction. Thus ( x y z ) ,  and similarly ( z y x ) .  

N o w  since S satisfies P ~ - P s  and since x . y = l y - x  I for  l y - x [ < l ,  it 
follows f rom Theorem 2 that  we can take Ix, Yl = l y - x l ,  all x, yeS.  It is easy 
to see that  there are points x ,y ,z ,  w with x . y < z .  w but  Ix-yl>lz-wl;  
e.g., take x = 0 ,  y = 3 ,  z=~, w = 2 .  

Remark. The example (5) is not  a G-space in the induced metric, since 
segments cannot  be prolonged past  the endpoints. I t  would be interesting to 
know whether P 1 - P s  and P s - P t ~  imply that  the original order and the 
induced order necessarily coincide globally. This is true in the non-compac t  
case, and is also true when the induced G-space turns out  to be an n-dimen- 
sional torus, for example. 
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