Mathematische Zeitschrift © Springer-Verlag 1988

Smooth Plurisubharmonic Functions Without Subextension

Eric Bedford¹ and B.A. Taylor²

¹ Department of Mathematics, Indiana University, Bloomington, IN47405, USA

² Department of Mathematics, University of Michigan, Ann Arbor, MI48109, USA

§1. Introduction

In this paper we will establish the following result on p arisubharmonic (psh) functions.

Theorem. Let $\Omega \Subset \mathbb{C}^n$ be a smoothly bounded domain. The gree exists smooth, psh function ψ on Ω such that for any domain $\tilde{\Omega}$ with $\Omega \cap \partial \Omega \neq \phi$, there is no function $\tilde{\psi}$ psh on $\tilde{\Omega}$ such that $\tilde{\psi} \leq \psi$ on $\tilde{\Omega} \cap \Omega$.

It is evident, in particular, that ψ cannot be extended to be psh in any larger domain, and thus we recover the known fact that Ω is a domain of existence for psh functions (see [1, 2]). However, since psh functions arise in complex analysis through their use in inequalities, the problem of subextension seems more appropriate than the problem of extension. Fornaess and Sibony [3] showed that there is a psh function on the ring domain $\{z \in \mathbb{C}^n : 1 < |z| < R\}$ which cannot be subextended to the ball $\{|z| < R\}$. The function given in the Theorem improves this example by showing the function can be taken to be smooth and by showing that the failure of subextension is actually a local phenomenon.

The construction in the Theorem is based on Lemma 1 which shows that Lelong number can be both created and "propagated" by certain kinds of decrease. For example, if $\psi(z, w)$ is psh in a ball containing (0, 0) and if

$$\psi(z, w) \leq \log(||w||^2 + e^{-\frac{1}{|z|^{1/4}}})$$

holds for Re $z \ge 0$, then $\psi(z, w)$ must have positive Lelong number on the variety $\{w=0\}$. The impossibility of subextension then arises from the Theorem of Siu which shows that the set where the Lelong number is $\ge \varepsilon$ is a (global) variety.

Let us remark also that the Theorem gives a result on super-extension of (1, 1) currents. As was noted in [3], if ψ is the function given in Theorem 1, then the (1, 1)-form $S = d d^c \psi$ has the property:

if $\tilde{\Omega}$ is any domain with $\tilde{\Omega} \cap \partial \Omega \neq \phi$, then there is no positive, closed (1, 1)-current \tilde{S} on $\tilde{\Omega}$ with $\tilde{S} \ge S$ on $\Omega \cap \tilde{\Omega}$.

Acknowledgement. This work was carried out while the authors were visiting Université de Provence at Marseille, and they wish to thank the Mathematics Department for its hospitality.

§ 2. Propagation of Lelong Number

We will let $z = z_1 \in \mathbb{C}$ and $w = (z_2, ..., z_n)$ denote the coordinates of $(z, w) \in \mathbb{C}^n$. By ||w||, we mean the Euclidean norm, $||w||^2 = |z_2|^2 + ... + |z_n|^2$. Our basic tool is the following.

Lemma 1. Let $\varphi(z, w)$ be psh, $\varphi < 0$, on a ball

$$B = \{(z, w): |z|^2 + ||w||^2 < 1\}.$$

Suppose there is an open cone $C_{\gamma} = \{(z, w) : ||w|| < \gamma \text{ Re } z\}$ about the positive Re z-axis such that

$$\varphi(z, w) \leq \frac{1}{2} \log(\|w\|^2 + r(z)^2), \quad (z, w) \in C_{\gamma},$$
(1)

where r(z)=r(|z|) is a monotone function such that $\frac{r(z)}{|z|^m} \to 0$ as $|z| \to 0$ for each m > 0. Then there exist constants $A, \eta > 0$ such that

$$\varphi(z, w) \leq \eta \log ||w|| + A$$
 for all $|z|^2 + ||w||^2 < \eta^2$.

Proof. We first show the hypotheses imply there is an estimate of the same form as (1),

$$\varphi(z, w) \leq \frac{\eta}{2} \log(\|w\|^2 + \tilde{r}(z)^2)$$
 (2)

which holds for all (z, w) in a smaller ball $|z|^2 + ||w||^2 < \eta^2$. We consider two cases. First, suppose ||w|| > |z|. The point (||w||, 0) lies in the cone C_{γ} . Consider the circle with center (z, w) and boundary passing through (||w||, 0),

$$(\zeta, \tau) = (z, w) + (||w|| - z, -w) e^{i\theta}, \quad -\pi \le \theta \le \pi.$$

Then

$$\|\tau\| = \|w\| |1 - e^{i\theta}| = 2 \|w\| \left| \sin \frac{\theta}{2} \right| \le \|w\| |\theta|$$

and

$$\operatorname{Re} \zeta = \operatorname{Re}(z(1-e^{i\theta})) + ||w|| \cos \theta$$
$$\geq ||w|| \cos \theta - |z| \theta \geq ||w|| (\cos \theta - \theta).$$

Hence, so long as

$$\gamma(\cos\theta - |\theta|) \ge |\theta|$$

or

$$\cos\theta \ge |\theta| + \frac{1}{\gamma} |\theta|$$

the points $(\zeta(\theta), \tau(\theta))$ lie in the cone C_{γ} . In particular, this happens on an interval $(-\theta_0, \theta_0)$, where θ_0 depends only on γ . Thus,

$$\varphi(z, w) \leq \frac{1}{2\pi} \int_{-\pi}^{\pi} \varphi(\zeta(\theta), \tau(\theta)) d\theta$$
$$\leq \frac{1}{2\pi} \int_{-\theta_0}^{\theta_0} \varphi(\zeta(\theta), \tau(\theta)) d\theta$$
$$\leq \frac{\theta_0}{2\pi} \max_{\|\theta\| \leq \theta_0} \log((\tilde{r}(|\zeta(\theta)|)^2 + \|\tau(\theta)\|^2)$$

But, $|\zeta(\theta)| \leq 2|z| + ||w|| \leq 3 ||w||$, so $\tilde{r}(\zeta(\theta))^2 \leq ||w||^2$ for sufficiently small ||w||. Also, $||\tau(\theta)|| \leq 2 ||w||$, so we conclude $\varphi(z, w) \leq \frac{\theta_0}{2\pi} \log(5 ||w||^2)$, which implies (2) in this case.

In the other case, $||w|| \leq |z|$, we can select λ such that $\lambda \geq 2 + 2/\gamma$, and note that on the circle $(z + \lambda |z| e^{i\theta}, w)$, we have

$$\gamma \operatorname{Re}(z+\lambda |z| e^{i\theta}) \geq \gamma |z| (\lambda \cos \theta - 1) = \gamma |z| [(\lambda - 2) \cos \theta + (2 \cos \theta - 1)] \geq ||w||$$

whenever $\cos\theta \ge 1/2$, or $|\theta| \le \pi/3$. Thus, all the points on this circle lie inside C_y when $|\theta| \le \pi/3$, so that

$$\varphi(z, w) \leq \frac{1}{2\pi} \int_{-\pi}^{\pi} \varphi(z + \lambda |z| e^{i\theta}, w) d\theta$$
$$\leq \frac{1}{2\pi} \int_{-\pi/3}^{\pi/3} \frac{1}{2} \log(||w||^2 + r((1 + \lambda) |z|)^2) d\theta$$
$$= \frac{1}{6} \log(||w||^2 + r((1 + \lambda) |z|)^2)$$

which is an estimate of the form (2). Consequently, (2) holds for (z, w) near (0, 0).

Let $m(\rho_1, \rho_2) = \sup \{\varphi(z, w) : |z| = \rho_1, ||w|| = \rho_2\}$, and $f(x, y) = \frac{1}{\eta} m(e^x, e^y)$. Then f(x, y) is a convex function of (x, y) defined for large negative x and

y, since m is psh. The inequality (2) for φ means that

$$f(x, y) \leq \frac{1}{2} \log(e^{2h(x)} + e^{2y}) = F(x, y)$$

where h(x) is a function such that $\frac{h(x)}{x} \to +\infty$ as $x \to -\infty$.

Suppose that an affine function A x + B y + C satisfies

$$A x + B y + C \leq F(x, y) \tag{3}$$

for all $x \leq x_0$, $y \leq y_0$. Then we claim $B \geq 1$. To see this, note that

$$A x + C \leq \psi(x) \coloneqq \inf_{\substack{y \leq y_0}} F(x, y) - B y.$$
(4)

We must have $B \ge 0$, since if B < 0, then $\psi(x) = -\infty$ for some finite x. If B = 0, then $\psi(x) = h(x) \ge Ax + C$, contrary to the assumption that $\frac{h(x)}{x} \to +\infty$ as $x \to -\infty$. The function $y \to F(x, y) - By$ is convex. If B > 0, then $y \to F(x, y) - By$ tends to $+\infty$ as $y \to -\infty$. Thus the minimum of the function either occurs at $y = y_0$, or at the point $y < y_0$ where $\frac{\partial F}{\partial y}(x, y) = B$. A short calculation shows that at this point, we must have

$$e^{2y} = \frac{B}{1-B} e^{2h(x)}.$$
 (5)

Hence, if 0 < B < 1 and x is very large and negative, the minimum will occur at the point y for which (5) holds, so the infimum in (4) is equal to

$$h(x) - \frac{1}{2}\log(1-B)$$

But, this is impossible, for then

$$Ax + C \leq h(x) + O(1)$$
 as $x \to -\infty$

contrary to our hypothesis that $\frac{h(x)}{x} \rightarrow +\infty$. Thus, we have $B \ge 1$.

We can rewrite the affine function in (3) in the form $A(x-x_0)+B(y-y_0)+C$. Noting that when $B \ge 1$, the minimum in (4) occurs for $y=y_0$, we have $A(x-x_0)+C \le F(x, y_0)$. Hence, the upper envelope of all affine functions satisfying (3) is at most $(y-y_0)+F(x, y_0)$. Since the convex function f(x, y) is an upper envelope of affine functions satisfying (3), the last estimate of the lemma follows.

§ 3. A Smooth Function without Subextension

We first construct a continuous example and then modify it to give a smooth example.

For $0 < \alpha < 1/2$, let

$$v(z) = v_{\alpha}(z) = \operatorname{Re} - \frac{1}{z^{\alpha}} = -r^{-\alpha} \cos \alpha \,\theta, \quad z = r e^{i\theta}, \quad -\pi \leq \theta \leq \pi, \ r > 0$$
$$r(z) = e^{v(z)}.$$

and

The function
$$v(z)$$
 is harmonic in $\mathbb{C}\setminus\mathbb{R}^-$, the complex plane with the negative real axis and 0 removed. It is continuous on $\mathbb{C}\setminus\{0\}$ and negative there, since $\alpha < 1/2$. However, $v(z)$ is not subharmonic on the negative real axis. In fact, it is superharmonic there as locally it is the minimum of the two harmonic functions corresponding to different branches of z^{α} . The function $r(z)$ is continuous, nonnegative, and vanishes to infinite order at $z=0$, since

$$0 \leq r(z) \leq \exp\left(-\frac{\cos\alpha \pi}{|z|^{\alpha}}\right).$$

Next, let \mathscr{U} be a neighborhood of 0 and $g: \mathscr{U} \to \mathbb{C}^{n-1}$ a function analytic for $z \in \mathscr{U}$ such that

$$g(0) = 0, \quad ||g'(z)|| \le 1/4, \quad z \in \mathcal{U}.$$

Consider the function u defined by

$$u(z, w) = u(z, w, \alpha, g) = \max\{v_{\alpha}(z), \log \|w - g(z)\|\}.$$
 (6)

The following proposition lists several properties of u(z, w).

Proposition 2. The function u of (6) satisfies

(i) u is psh for $(z, w) \in [(\mathbb{C} \setminus \mathbb{R}^{-}) \cap \mathcal{U}] \times \mathbb{C}^{n-1}$ and on the open set

 $\{(z, w) \in \mathscr{U} \times \mathbb{C}^{n-1} \colon \|w - g(z)\| > r(z)\}.$

- (ii) $u(z, w) \leq \frac{1}{2} \log(||w g(z)||^2 + r(z)^2).$
- (iii) u is continuous on $\mathbb{C}^n \setminus (0, 0)$, and $u(z, w) \to -\infty$ as $(z, w) \to (0, 0)$.

Proof. For $z \in \mathcal{U}$, z not on the negative real axis or z = 0, u(z, w) is clearly psh as the maximum of psh functions. The definition of u(z, w) shows

$$u(z, w) = \begin{cases} \log \|w - g(z)\| & \text{if } \|w - g(z)\| > r(z) \\ \log r(z) & \text{if } \|w - g(z)\| \le r(z) \end{cases}$$
(7)

Thus, on the open set ||w-g(z)|| > r(z), *u* is also psh because it is equal to $\log ||w-g(z)||$, a psh function. The inequality of (ii) is also clear, since

$$u(z, w) = \max\left\{\frac{1}{2}\log r(z)^2, \frac{1}{2}\log ||w - g(z)||^2\right\}$$

$$\leq \frac{1}{2}\log(r(z)^2 + ||w - g(z)||^2).$$

The third assertion is clear.

The function u(z, w) is essentially psh on the complement of the ball of radius 1 with center at (-1, 0). The only problem is that u is only defined for z near 0. To get a globally defined function on a ring domain

$$\Omega_{R} = \{(z, w): 1 < |z+1|^{2} + ||w||^{2} < (1+R)^{2}\},\$$

we want to take the function u(z, w) for (z, w) near 0, and then modify it by some smooth function away from (0, 0). Precisely, we have the following.

Proposition 3. For any $\delta > 0$, there exist constants C_1 , $C_2 > 0$ such that the function U(z, w) defined by

is psh on Ω_R .

Now we note that the function U(z, w) constructed on Ω_R is not smooth. However one may check that the singularities are locally of the form

$$U(z, w) = \max \{S(z, w), h(z, w)\}$$

= h(z, w) + max {0, S(z, w) - h(z, w)}

i.e., they are locally the maximum of a smooth psh function S(z, w) and a pluriharmonic function h(z, w). In other words, at a singular point

$$U(z, w) = h(z, w) + \chi(S(z, w) - h(z, w))$$

where $\chi(t) = \max(0, t)$. If we replace χ by a C^{∞} convex and increasing function $\tilde{\chi}$ with $\tilde{\chi}(t) = 0$ for $t \leq -\varepsilon$ and $\tilde{\chi}(t) = t$ for $t \geq \varepsilon$, then the resulting function \tilde{U} will be C^{∞} and psh, and $|\tilde{U} - U| \leq 2\varepsilon$. Further, the function is changed only on the set $\{-\varepsilon < S - h < \varepsilon\}$ so that if ε is taken to be small, $\tilde{U} = U$ holds near any other singularity.

We will now select a particular curve g(z) so that the function \tilde{U} constructed above does not subextend. Choose real numbers $(\beta_2, \ldots, \beta_n)$ such that the curve

$$c(t) = (e^{it}, e^{2\pi i\beta_2 t}, \dots, e^{2\pi i\beta_n t}), \qquad -\infty < t < +\infty,$$

is dense in the *n*-torus. Then, for ε a small positive number, let g(z) be the analytic curve defined for |z| < 1 by $g(z) = (g_2(z), \dots, g_n(z))$, where

$$g_i(z) = \varepsilon (1+z)^{\beta_i} - \varepsilon (1+z)$$

(and the principle branch of $(1+z)^{\beta_i}$ is used). The conditions g(0)=0, $||g'(z)|| \leq \frac{1}{4}$ are satisfied on $\{\operatorname{Re} z \geq -2\delta, |z| < R\}$ if $\delta > 0$ is sufficiently small. Thus, we obtain the function \tilde{U} as above.

Proposition 3. The function \tilde{U} constructed as above is smooth and psh on the domain Ω_R , and for every $\gamma > 0$, there is no psh function ϕ on $\{|z|^2 + ||w||^2 < (1+\gamma)^2\}$ such that $\phi(z, w) \leq \tilde{U}(z, w)$ holds on the set

$$\tilde{C}_{\gamma} = \{(z, w): \operatorname{Re} z > 0, \|w\| < \gamma, |z|^2 + \|w\|^2 < (1+\gamma)^2 \}.$$

Proof. We have already seen that \tilde{U} is smooth and psh on Ω_R . If ϕ exists, then we have the estimate

$$\phi(z, w) \leq \tilde{U}(z, w) \leq \frac{1}{2} \log[||w - g(z)||^2 + r(z)^2]$$

on \tilde{C}_{γ} . If we make the local biholomorphic change of coordinates z' = z, w' = w - g(z), we have

$$\phi(z', w') \leq \frac{1}{2} \log[|w'|^2 + r(z)^2]$$

for all the points (z', w') in a cone C_{γ} about the Re z' axis in some small ball about (0, 0). Then, by Lemma 1, there exists $\eta > 0$ such that

$$\varphi(z, w) \leq \eta \log \|w - g(z)\| + \mathcal{O}(1)$$

for all (z, w) in a neighbourhood of (0, 0). Thus, the Lelong number of φ is at least η at every point of the variety w = g(z) near to (0, 0).

Smooth Plurisubharmonic Functions

By Siu's theorem [4], the set of points in $\{|z|^2 + ||w||^2 < (1+\gamma)^2\}$ where the Lelong number is $\ge \eta$ is an analytic variety, V. Since it contains the part of the curve w = g(z) near (0, 0), it also contains all the points (z, w) one can connect to (0, 0) by analytic continuation along curves in the set

$$S = \{w = g(z)\} \cap \{|z|^2 + ||w||^2 < (1+\gamma)^2\}.$$

However, we claim that this set is contained in no (proper) analytic variety. For, we can clearly follow a path in S to a small neighborhood of the branch point z = -1, w = 0. Then for small ρ , analytic continuation on the path with $z(t) = -1 + \rho e^{it}$, $-\infty < t < +\infty$, shows that V contains all the points (z(t), w(t)) where

$$w(t) = -\varepsilon \rho e^{it}(1, ..., 1) + \varepsilon [\rho^{\beta_2} e^{2\pi i \beta_2 t}, ..., \rho^{\beta_n} e^{2\pi i \beta_n t}].$$

This set is not contained in any (proper) variety in a neighborhood of (-1, 0), since under the biholomorphic map z' = (1+z), $w' = w + \varepsilon(1+z) = w + \varepsilon z'$ its image is a dense subset of the distinguished boundary of the polydisk with center at (0, 0) and polyradius $(\rho, \varepsilon \rho^{\beta_2}, \dots, \varepsilon \rho^{\beta_n})$. This is a contradiction so no such function ϕ can exist.

We remark that in the proof one could use instead of Siu's theorem a weaker version due to Skoda [5], which asserts that this set is contained in a variety.

Proof of the Theorem. We use the notation

$$A((z_0, w_0), r_1, r_2) = \{(z, w) \in \mathbb{C}^2 : r_1^2 < |z - z_0|^2 + ||w - w_0||^2 < r_2^2\}.$$

If Ω is smoothly bounded, then there is a sequence of domains

$$A_{i} = A((z_{0}^{j}, w_{0}^{j}), r_{1}^{j}, r_{2}^{j})$$

such that $\Omega \subset \cap A_j$ and there is a point $p_j \in \partial \Omega \cap \partial A_j$. Clearly we can choose the A_j such that the set $\{p_j\}$ is dense in $\partial \Omega$. By Proposition 3 there exists ψ_j which is psh and smooth and cannot be locally subextended over p_j . Without loss of generality, we may assume $\psi_j < 0$. If we choose $\varepsilon_j > 0$ such that $\psi = \sum \varepsilon_j \psi_j$ converges in $C^{\infty}(\Omega)$, then ψ cannot be subextended over any neighborhood of $\partial \Omega$. For if $\tilde{\Omega}$ and $\tilde{\psi}$ are given, then there exists $p_j \in \tilde{\Omega} \cap \partial \Omega$, but $\tilde{\psi} \leq \varepsilon_j \psi$ holds on $\tilde{\Omega} \cap \partial \Omega$, which is a contradiction.

References

- 1. Bedford, E., Burns, D.: Domains of existence of plurisubharmonic functions. Math. Ann. 238, 67-69 (1978)
- Cegrell, U.: Removable singularities for plurisubharmonic functions and related problems. Proc. Lond. Math. Soc., III. Ser. 36, 310–336 (1978)
- 3. Fornaess, J.E., Sibony, N.: Plurisubharmonic functions on ring domains. Preprint
- 4. Siu, Y.T.: Analyticity of sets associated to Lelong numbers and the extension of closed positive currents. Invent. Math. 27, 53-156 (1974)
- 5. Skoda, H.: Sous-ensembles analytiques d'ordre fini ou infini dans Cⁿ. Bull. Soc. Math. France 100, 353-408 (1972)