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1. Introduction 

It is well-known that if a complex manifold admits a Hermitian metric with 
holomorphic sectional curvature bounded above by a negative constant, then 
it is hyperbolic ([6, 8, 15]). The converse is still open. Some partial results 
are known: In [6], Grauert and Reckziegel constructed a Hermitian metric 
in a neighborhood of a fibre of an analytic family of compact Riemann surfaces 
of genus > 2 over a Riemann surface, such that the metric has negative holo- 
morphic sectional curvature in that neighborhood. Cowen [4] extended the 
result to n dimensions, but the metric still only exists locally in a neighborhood 
of a fibre. There has been no global result, except for related works by Des- 
champs-Martin [5] and Schneider [13], who proved that the Kodaira surfaces 
of general type [9] have negative tangent bundle in the sense of Grauert. The 
purpose of this note is to show that for some types of compact hyperbolic 
manifolds, we can construct a Hermitian metric on them with everywhere nega- 
tive holomorphic sectional curvature. In particular, Kodaira's surfaces of general 
type [9] and the example of Grauert and Reckziegel (mentioned above) are 
included as special cases. Still with Kodaira surfaces, we will show in the last 
section that they can in fact be given a K d h l e r  metric with negative holomorphic 
sectional curvature. In contrast with the proof of Theorem 1, the proof of the 
latter fact is by an explicit construction. 

This work is part of the author's Ph.D. thesis written under the supervision 
of Prof. H. Wu, to whom the author would like to express the deepest gratitude 
for all his help, support, encouragement and instruction. 

2. Definitions and Statement of Results 

Let to be a Hermitian metric on an n-dimensional complex manifold with 
= ~ gi j  d z i  d~J in local coordinates, then the coefficients of the curvature tensor 
are given by: 

(1) RijkT_ ~ gij E gqP ~gi~ t~gqj 
~ z k t? ~l F O z k O ~ l . 

* Research partially supported by National Science Foundation 
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The holomorphic sectional curvature at a point p in the direction (~1, ~2, - . . ,  ~n) 
is given by: 

(2) i,j,k,l=* 

g,3(P) gkT(P) r (k 
i , j , k , l = l  

Theorem 1. Let ~: X ~ Y  be a holomorphic map of a compact complex manifold 
X into a complex manifold Y which has a Hermitian metric of negative holomorphic 
sectional curvature. Assume also that ~c is of maximal rank everywhere and there 
exists a smooth family of Hermitian metrics on the fibres, which all have negative 
holomorphic sectional curvature. Then there exists a Hermitian metric on X with 
negative holomorphic sectional curvature everywhere. 

We note that the assumption of the theorem immediately imply that X is 
a hyperbolic manifold. In greater detail, since ~ is of maximal rank and X 
is compact, it is well-known that ~c must be onto and Y must be compact. 
Hence Y having a Hermitian metric of negative holomorphic sectional curvature, 
implies that Y is hyperbolic. Since each fibre X , = = - 1 ( 0  (tCY) is compact and 
since each X, is also assumed to have a Hermitian metric of negative holomorphic 
sectional curvature, each Xt is hyperbolic. Thus it follows that X is hyperbolic 
(Use Brody's Theorem [2], for example). For  a later reference, we should also 
explain the precise meaning of the existence of a smooth family of  Hermitian 
metrics on the fibres. For  each p~X, we can choose a neighborhood ~ of ~(p) 
so that if {t 1 . . . .  , t z} are complex coordinates on ~, then on ~-1(~')  we have 
complex coordinates {t~o~ . . . .  , tmo~,z ~ . . . . .  Z s} SO that the restrictions of 
{z ~ . . . .  , z s} to X ~ c ~ - ~ ( ~ )  for each t give local coordinates on the latter. By 
a common abuse of notation, we shall write t i in place of do =. Now let gt 
be a Hermitian metric on Xt for each tzY. We say {g,} is a smooth family 
if relative to the coordinates {t i, z ~} on each ~ -~(~)  as above, there exist cg~ 
functions g~(z, t) for ~, f l = l  . . . .  , s, z=(z  ~ . . . . .  z ~) and t = ( ? ,  . . . ,  t"), so that for 
each t, 

g t= ~ g~9(z, t) dz ~ de~(mod {dti}). 

This definition is easily seen to be equivalent to the usual one as used by 
Kodaira-Spencer [10]. 

The conclusion of Theorem 1 is optimal in the sense that if n:X--* Y is 
a holomorphic fibre bundle, then there are no Hermitian metrics on such an 
X with negative bisectional curvature. For  the proof  of this assertion, it suffices 
to adapt the argument of Yang in [17] to our present situation. More precisely, 
if v(y) denotes the volume of n-a(y), y e Y ,  then at the maximum point of v 
in Y (using the compactness of Y here), the argument on p. 132 of [17] would 
go through unchanged without Yang's K/ihler assumption. 

For  the first corollary, recall that if a compact complex manifold M has 
negative first Chern class, the theorem of Aubin and Yau says that M has 
a unique Einstein-K/ihler metric of Ricci curvature - 1. We call this the canonical 
Einstein-Kdhler metric of M. 
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Corollary 1. Let ~z: X ~ Y be a holomorphic map of a compact complex manifold 
X into a complex manifold Y which has a Hermitian metric of negative holomorphic 
sectional curvature. Assume also that rc is of maximal rank everywhere that each 
fiber has negative first Chern class and its canonical Kiihler-Einstein metric has 
negative holomorphic sectional curvature. Then there exists a Hermitian metric 
on X with negative holomorphic sectional curvature everywhere. 

The curvature assumptions on the fibres are not unnatural. They are satisfied 
for example, if each fibre is a Riemann surface with genus > 2, or less trivially, 
if each fibre is a Kfihler manifold of the homotopy type of a compact quotient 
of an irreducible Hermitian symmetric space of noncompact type of complex 
dimension > 2. The latter uses the strong rigidity theorem of Siu [14]. In fact, 
the fibres can even be any suitable compact quotient of a Hermitian symmetric 
space of noncompact type; this has to use the extension of Siu's theorem by 
Mok [12] and Jost-Yau [7]. In the case of co-dimension one fibres, this Corol- 
lary simplifies to: 

Corollary 2. Let ~z: X" ~ u 1 be a holomorphic map of a compact complex mani- 
fold X into a complex manifold Y which has a Hermitian metric of negative hoto- 
morphic sectional curvature. Assume also that ~z is of maximal rank everywhere 
and X is hyperbolic, then there exists a Hermitian metric on X with negative 
holomorphic sectional curvature everywhere. 

In particular, when n = 2, the example of Grauert and Reckziegel and Ko- 
daira's surfaces of general type satisfy these assumptions. In other words, these 
well-known hyperbolic surfaces have a Hermitian metric with negative holo- 
morphic sectional curvature. 

We will first try to construct a Hermitian metric in X, such that it has 
negative holomorphic sectional curvature along the fiber direction (Sect. 4), then 
add to it 2 times the pull-back of the Hermitian metric of Y. We will then 
try to show that, when 2 is large enough, the resulting metric is of negative 
holomorphic sectional curvature in all directions. This idea comes from a simple 
fact in matrix theory: Suppose A is a n x n symmetric matrix with its first coeffi- 
cient all  >0  and 

01 
where B' is an ( n - 1 ) x  (n-1)  positive definite matrix, then we know that A + 2B 
is also positive if 2 is large enough. (It suffices to check the determinants of 
all principal minors, but since B' is positive definite, so we only have to check 
det (A+2B)=2 "-1 al l  de tB '+O(2 "-2) which is >0  if 2 is large enough.) Note 
that this argument depends crucially on the fact that the first column and first 
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row of B are zero. In the geometric situation below, we will see that the same 
phenomenon reappears. 

In Corollary 2, when X is a Kodaira surface [9], we shall make an improve- 
ment: 

Theorem 2. There exists a Kfihler metric with negative holomorphic sectional 
curvature on the Kodaira surfaces of general type. 

3. Some Lemmas about Negative Holomorphic Sectional Curvature 

Lemma 1. Let M be a n-dimensional Hermitian manifold and G the Hermitian 
metric. Let {Rijkt } be the coefficients of the curvature tensor and K o, K1, Kz 
be positive constants. Suppose that for some natural number s < n, such that at 
a point p~M: 

(i) ~ RokT(p)(~(k~<=--Ko ~ ( ~ ( J ~  
i , j , k , l = l  i , j = l  

for all ( i ~ . ,  i= 1, .. . ,  s. 

( i i )  [Rijk~(p)[<K 1 whenever min(i,j ,  k, l)<=s. 

~t, fl, 7 , 6 = s +  l ~ t , p = s +  1 

for any (~ell;., c~ = 1 . . . . .  n. 

Then there exists a positive constant • ,  depending only on Ko/K1, such that, 
if Ka/K ~ > J~ff then G has neg. hol. sect. (negative holomorphic sectional) curvature 
at the point p. 

Proof. Since we are only interested in the sign of the holomorphic sectional 
curvature, it suffices to check the numerator of (2). Using assumptions (i) and 
(ii), we have, V (~, (J, (k, (t e ~,  

(3) ~ R~?k~(p)(f~(k~=--Ko ~, (~(J~ 
i, j ,  k, l= l i, j =  l 

e , B , V = s + l  i + 1  e, f l = s + l  i , j = l  

~ = s + l  i , j , k = l  ohfl, 7, f = s + l  

where the coefficients 4, 6, 4 come from the summing of indices. But for any 
positive numbers a, b, c, d, we have: 

< a21(i12 icile_t_ 1 ~ I(~l 2 [C~I2+I(Pl 2 IC~I 2 
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(5) Iffil IffJl I~11ffal ~ b 2 I(il 2 IffJl 2 + ~  I(~12 I~al 2. 

(6) 
d 2 1 

I(~11(Jl I~11fffl ~ c  2 Iff~l 2 IffJl 2 + ~  Iff~l 4 + c - ~ d  2 I~=1 ~ Ifffl 2. 

Now choose a, b, c, d, so small that: 

d 2 < l  Ko 
(7) 4(n-s)a a2 +6(n-s)2 b2 +4(n-s)sc2 +4s2(n-s)  -~=-2 KI " 

Substituting inequalities (4), (5), (6), (7) into (3), we have V (i, (j, (k, ( le~:  

i , j , k , l = l  

=<-K~ ~" ~i~J(2+[  4Kls(n-s)2a 2 ~ 1~[4 
i , j =  1 ~t-=s+ 1 

q-4Kl(n--s)s ~ 1(#121~712 d-~21 s 2 ~ I~a'2 '~fl[ 2 
p, ~,=s+ 1 ~ t , p=s+  1 

~ t = s + l  a , p ,  y , ~ = s +  1 

Using assumption (iii), it is clear that Lemma 1 follows, if we choose: 

2 [4s(n-s)2 ~-4(n--s)s 6s2 4sa \ 

Lemma 2 (Wu [16], see also [61). Let M be a n-dimensional complex manifold 
and let G, H be two Hermitian metrics on M whose holomorphic sectional curva- 
tures K(G) and K(H) satisfy K(G)< - L  1 < 0 and K(H)< - L 2  < 0, where L x and 
L 2 are positive constants. Then K(G + H) < - L1 L2/(L1 + L1). 

Also we need a simple result in linear algebra: 

Lemma 3. Let A, B be two n x n Hermitian matrices, with A positive definite 
and B positive semi-definite. Then, V veC n, with v* as its transpose conjugate, 
v(A+A1B) -1 v* <v(A+22B) -1 v*, if 21 >22. 

Lemma 4. Let N be a complex manifold, H and f i  be Hermitian metrics defined 
on N. Suppose that the metric ~ has neg. hol. sect. curvature at the point p. 
Then if 2 is large enough, H + A f l  also has neg. hol. sect. curvature at the point 
p. 

Proof. We use the notation of Lemma 2. Let t be a unit vector at p relative 
to H+217I. Let K(H+Afl,  t) denote the holomorphic sectional curvature of 
H + 2 f l  in the direction t. We shall choose 2 so large (and independent of 
t), so that K(H+2ITI, t)<0. By Lemma 4 of [16], there exists a 1-dimensional 
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imbedded complex submanifold N' tangent to t, such that if H'  and 17I ' are 
the induced metrics of H and 171 on N' respectively (so that H' +217I ' is the 
induced metric of H + 217I on N'), then 

K(H + 217I, t) = K ( H '  + 2I~')(p). 

Let z be an arbitrary co-ordinate function of N' near p, and let 

H'=hdzdL  ft '=~dzd~. 

We use the identity of 1-6] (see also p. 1105 of [16]), namely that 

(~ ~) h (,~ ~+ h)(h ~ X(H') + (~ ~)~ X(~ f i ' ) -  (,~ ~+ hy tc(n' + ~ fi')) 

= 2 h  8h ~,~(2~)1~,, 
~z-z - ~ n  ~ - - z  I -  ---O , 

to conclude that 

/~ . . . . . . . . . .  rh ~ X(H') + (,~)~ X(Xf i ' ) ] , ,  
(H + ZH )(p)~[- ~ + 2 ~  J (P). 

But since K(217I') = 1 K(H'), we get 

2 t 2 I~I t �9 ~ . . . .  < [ h  K ( H ) + 2 ~  K( ) 1 , ,  
K(H' -I- z t l  )tP) = [ ~ ]tP). 

By hypothesis, there exists a negative constant - K  a such that K(ITI) (p) __< - - K  3 . 

By the well-known decreasing property of hol. sect. curvature, we also have 
K(IZI')(p) < K(IZI)(p)<-K3.  Similarly, K(H')(p)< K 4 ,  for some positive constant 
K4. Hence: 

- ,  h2K4-1~2K3 
K ( H ' + 2 H ) ( p ) < [ -  ~ + - ~  ](p) 

h 2 

Since bo,htheterms.  , , are quadratic in -~z' for the pur- 

pose of evaluating the fraction it suffices to take ff~z so that H , (p) = 1. 

Since 
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the unit sphere (relative to H) is compact, clearly there exists a positive constant 
0 

K5 independent of 2 and t = ~ z ,  such that: 

K 5 =< (p). 

So we have: 

- _ , , < [  h~-- (p).(K 4 _ 2 K  3 Ks). K(H+ 2H, t ) - K ( l - I +  )~I-71 )(p) = ~h q_)~ ~/2 

So the Lemma follows if we choose 2 > K4 
K a K s "  

Remark.  With hypothesis as in Lemma 4 and using the notation of the preceding 
proof, suppose that K ( H + 2 1 I ~ ) ~ - - g  6, then using Lemma 2, we have, for 2 
>-~l, 

K(H + 2i71) = K(H + 2~ 171 + ( 2 _  20  i71) < K 6 K 3  
K6(2-21)+K 3" 

So K ( H + 2 f I ) <  O(2-1). Using ~ _ - R~r~ to denote the coefficients of the curvature 
tensor corresponding to the metric H + 2 171, then from (2), we have: 

(8) Y', R~Z~ {" ~-~ ~ ~-~ - O(2-1) 22 E ~" ~-" ~ ~-~ = -O().)  E ~ P ~ -~. 

4. Construction of a Hermitian Form ~ on the Total Space X 

Under the assumptions of Theorem 1, Suppose {Gt} is a smooth family of hermi- 
tian metrics with neg. hol. sect. curvature defined on each fiber, let qh be the 
Hermitian form associated to the metric G,. Fix (~ a Hermitian metric on X. 
Now we want to construct a (1, l)-form �9 on X, such that �9 restricted to 
each fibre rc-l(t) is equal to q~t- Let Z1 and Z2 be vector fields on X of type 
(1, 13) and (0, 1) respectively. At the point p~n-  l(t), define: 

~(Z1, Zz)(p) = ~ot(proje Z1 (p), proje Z2 (P)) 

where proje is the projection onto the fibre direction with respect to the metric 
~. Then clearly ~ is a ~ ,  Hermitian (1, t)-form defined on X, and ~ restricted 
to each fibre is equal to q~r which is positive definite. 

Now, let us consider the case of Corollary 1, namely, each fibre has negative 
first Chern class and the canonical Kghler-Einstein metric H, on each fibre 
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Xt = re-1 (t) has neg. hol. sect. curvature. By Koiso [111, {Ht} is a smooth family 
of K/ihler metrics. So the preceding construction can now be applied to produce 
a global Hermitian (1, 1) form �9 on X. 

5. Proof  of  Theorem 1 

Suppose that toy is the metric in Y that gives neg. hol. sect. curvature. We 
want to consider the form ~a---~+2n*(toy) with 2 a positive constant. It is 
obvious that when 2 is large enough, ~ is a positive definite Hermitian (1, 1)- 
form defined on X. (Compare to the matrix example discussed in Sect. 2). By 
identifying this form with the Hermitian metric it defines, we want to show 
that this form will have neg. hol. sect, curvature on X, when 2 is large enough. 

Let p be a point in X, we can assume that p lies in the fibre Xo. Since 
rc is of maximal rank everywhere, locally there is a neighborhood U of p such 
that U = V  x W, where V is a neighborhood of re(p) in Y, and W is a neighbor- 
hood of p in the fibre Xo. We may assume V, W are co-ordinate neighborhoods, 
so there exist co-ordinates {z ~+l . . . .  , z"} in V and {z 1, z 2, . . . ,  z ~} in W. Then 
{z l, z 2, . . . .  z"} is a co-ordinate system around p in U. For easier calculation, 

we will choose {z ~+~, . . . ,  z"} so that 3z~+ 1 . . . .  ' 0 z "  are orthonormal at z(p) 
with respect to the metric toy. Let 

---- ~, go dzi dzJ, 
i , j = l  

O)y= ~ gaj~(g s+l, . . . ,  z")dzad~ #, with ff,~(p)=6~r 
a , O = s + l  

then the Hermitian metric ~a with respect to {z l, z 2 . . . . .  z"} is given by: 

hi:idzidz j= ~ godzidTj+ ~ ~gi~ d z i d ~  
i , j = l  i , j = l  i = 1  a 

+ ~ ~, g#j dz a d~J + ~ (g~,B + 2 ga#) d z~ d ~.p 
j = l  fl a , #  

where ~, fl run from s + 1 to n. Denote by A the s x s matrix with coefficients 
(gas(P)), with a, b<s, and denote by Aab the (a, b) th cofactor of the matrix A. 
Then by direct calculation it is easy to see that: 

2,-s  det Aab + 0(,~. n-s- 1) 
(9) ha~(p) = hXZ(p) = 

2 ~-~ det A + 0 (2  a-~- 1) , 

2,-~- 1 det A +O(2 , - s -2 )  
2,-s det A_t_ O(2 n-s-1 ) 

hair(p)= 0(2-1),  hX~(p)= 0(2-1),  hZ*(p)=O(2-2), for a, b<s, and Z, t / > s +  1 with 
X=~t/. 
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Now. let us check the conditions of Lemma 1. First look at Condition (i): 
Substitute (9) into formula (1), we have, when i,j, k, l<s, 

ROk~(P)= ~_kgiJ, I +~ L hba t3gi~ ~ h~ 8gi, Og~.] I 

not both < s 

82go I ~[ ~ h b~ c3gi~ ag~l 1). 

Observe that lim hbn(p)= detAb, 
-. ~o det A 

and furthermore 

k•,l ( ~2 go. 
i,j, = 1  t ~ z k ~ z l P  -'1- ~ detAba ~gi~ dgb3 

a , b = l  detA Oz k Oet fl ( ,~(k~ 

is the numerator of the hol. sect. curvature of the induced metric on each fibre 
and which by assumption is bounded by a negative constant. It follows that 
if 2 is large enough, condition (i) is satisfied. 

Using (9) and the fact that ~g  is a function of z ~§ . . . . .  z" only, (this fact 
is similar to the vanishing of the first column and first row in the example 
of the matrices mentioned in Sect. 2), while 

0 2 h  0 p ah~B p 

~z = d~l , 8z" 

are both independent of 2, when u<s, it is easy to check that [Rtjkr(P)l~O(1) 
whenever min (i, j, k, l)<s. Hence the second condition is satisfied when 2 is 
large enough. 

As for condition (iii), we have to estimate 

~t, fl, 7, ~=s+ 1 

By definition it is equal to: 

Again using (9), we have: 

(10) R=~v~(P) ~(P  ~v~ -~= ~ ( t32 g=~ + ~'g=D 

x=~+x az ~ a~ ~ p+O(1 ( P ~ ( ~  
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Now consider a hypersurface M' around p defined by {z ~ =z  2 . . . . .  z~=0}. 
We would like to compare expression (10) with the hol. sect. curvature of the 
induced metric on M'. It is well known that the two differ by some positive 
terms, but in our case all these terms turn out to be of order 2 0 , as we shall 
see. 

Let G' be the Hermitian metric on M' induced by 4~. Notice that rc*(tav) 
becomes a Hermitian metric on M'; let us denote it by C,'. Then t]' has neg. 
hol. sect. curvature. Also we have: 

Let 

~,fl=s+l a,.a=s+ l 

7~41m,=G'+2~; ' =  ~ k~Bdz'd~ p. 
a,/~=s+ 1 

And similar to (9), we have: 

2 " - 2 + 0 ( 2  "-3 ) 
(11) k~(p)- 2.- 1 +O(2.-2)'  

kZ~(p)=O(2 -2) where )~ ,q>s+l  and Zq=~/. 

Using R',prs to denote the coefficients of the curvature tensor of the induced 
metric, then corresponding to (10), we have: 

(12) ~ R'~,~(p) ~ ~-a ~-~ 
a,~g, ~,6=s+ 1 

a. fl,~ s+l  OZy ~ p"~- Z =s+12 ~ZZ (P) ~Z ~ ~ P 

_[_ 0 (~-  2) _[_ 0 (~-  1) _~_ 0 (1)) ~ ~-fi ~7 ~-,~, 

But since 2 2 kXJ~(p)--2 2 hZZ(p) = 0 (1 ) .  Compare (10) and (12), we have: 

R ~ ( p )  (~ ~-P ~v~ -~= ~ (R'~v~(P) + O (1)) ~ ~-' ~v~ -~ �9 
a,#, 7,8=2 ~,p, ~,, 6=2 

By inequality (8), the last expression can be made arbitrary negative by increasing 
2. Hence by Lemma 1, if 2 is large enough, the Hermitian metric, 7J4, will have 
neg. hol. sect. curvature at point p. Hence there exists a neighborhood q/p, 4 
around p such that ~4 has neg. hol. sect. curvature at all points in q/p, 4. 

Lemma 5. Let qb+2n*(tOy) have neg. hol. sect. curvature in qlp, 4. I f  2~ >2, then 
~P + 21 n* (tOy) will also have neg. hol. sect. curvature at all points in qlp, 4. 

Proof. Let q~q/p,4, let Kxl(~ ) denote the hol. sect. curvature of the metric 4~ 
+21 n*(tOy) in the direction ~ at q. 
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Case 1. If ~ is not tangent to the fibre, then zc*(e0v)(g, g)>0. Thus g is tangent 
to a locally defined complex manifold Z transversal to the fibres so that re* (COy) 
restricted to Z is a Hermitian metric. Since 

+ 21 re* (Oy) = (~ + 2 z* ( ~ ) )  + (21 - 2) re* (Oy), 

applying Lemma 2, we can conclude that K~, (g) is negative. 

Case 2. If g is tangent to the fibre, then there exists a coordinate system 

{z 1,z 2, z"}, such that g= o_ . . . ,  Oz t (q). Then for some positive constants g7, K8, 
we have: 

X (e) =( 
oz oz Iq i , j \  8 zl 

'~z~ '~e~}lj'Ks' 
i , j  

where (hZ')O and (h~)i3 are the coefficients of the metrics ~ + 2 1  n*(~y) and 
+ 2re* (O~y) respectively. By Lemma 3, 

Kz,(O)/KT-Kz(g)/Ks<O, if 21__>2. 

So again we have KZl(~) is negative. 
Apply the construction to every point, then using Lemma 5 and a compact- 

ness argument, we can conclude that �9 + 2re* (oy) has neg. hol. sect. curvature 
at all points in X, if 2 is large enough. This completes the proof  of Theorem 1. 

Corollary 1 follows immediately from Theorem 1 and the construction of 
the form ~ in Sect. 4. 

In the case when the fibre is of dimension 1, then X is hyperbolic implies 
that each fibre must have genus __> 2, and Corollary 2 follows from Corollary 1. 
However, Corollary 2 can also be proved directly without using the arguments 
of Koiso, see Cheung [3]. 

6. Kodaira's Surfaces of General Type 

A Kodaira surface M can be considered as a m-sheeted ramified covering of 
W = R  x S, m>2 ,  with branch loci Fand F*, where R, S are some Riemann 
surfaces of genus > 2, F and F* are the graphs of some holomorphic maps 
from S ~ R. (For the actual construction, the reader can refer to Kodaira  [9], 
or [1], p. 167). Following the notation of Kodaira  [9], we have that if we let 
# be the covering map of M onto W = R x S, P2 be the second projection of 
W = R  x S onto S, then the inverse images of the branch loci are A = # - 1  (F), 
A*=  # -  1 (F*), A and A* are biholomorphic to F and F* respectively. 

Consider the product  metric in W = R x S: e~ w = oJ B +co s, where oJR, oJ s are 
the metrics in R and S with curvature - 1, then a standard computation shows: 
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(13) #* (tOw) is a K/ihler metric defined in M\ (A  w A*) with hol. sect. curvature 
< - - � 8 9  

So in order to get a K/ihler metric on M, we have to construct a positive-definite 
closed form around A and A*. 

Consider a point a in A (with similar considerations for A*), suppose {r,, s,} 
are the product coordinates at #(a)~R x S, then if f ,  is a defining function of 
F around #(a), {f~, sa} will be a local coordinate system around #(a). Let g. 
be the defining function for d at a, such that (ga)m = # ,  (fa). Since M is a m-sheeted 
cover of W, {g,,/~* (Sa)} is a coordinate system around a. 

We notice that if z is a coordinate function, then 1 / / ~  0 ~-(z~+ �88 2) gives 
a positive form with negative curvature, so in our construction we would consid- 
er the form ~ d~-(ga ga "[-�88 ga)2) �9 But since ga is not defined outside a neigh- 
bourhood of a, we have to multiply it with some cut-off functions. These take 
care the " g , "  direction. Then along the #*(sa) direction, we consider the pull 
back of the metric of S, namely, #* P*(tos). The constructions are carried out 
in the next section. 

7. A K/ihler Form ~ ,  k in M with Neg. Hol. Sect. Curvature 

Following Sect. 6, at each point aeA or d*, we can choose e,, 6~ small enough, 
such that ql,={[g~12<ea}C~{l#*(Sa)l(ra} is a well-defined neighbourhood of a 
in M. 

Let ql./2={lg~12<�89189 then since A and A* are compact, 

there exists {al, . . . ,  a,} such that A w A* c 0 qla,/2. Define the cut-off functions: 
t = l  

p/: 

such that p~-  1 when x < �89 and is identical to 0 when x > ea, 

x/: ~E --' ~ '§  ~ {0} 

such that Zi is rotationally symmetric and is identical to 1 inside the disc D( �89  
and identical to 0 outside the disc D(ra,). 

If no confusion is possible, we will denote the index "a / "  also by "i ". Now 
with these cut-off functions, p/(gi g/)" (gi g/+ �88 gi)2)" Zi(s/(p2 ~ is a ~ o  func- 
tion defined in M, with compact support inside ~/a, and is identical to g/g/ 
+ �88 inside qla,/2. 

Hereafter, we shall identify a Hermitian metric ~ go dz/dgj with its K/ihler 
form ~ / -  1 ~ go dzi ^ d~j" Define 

n 

(14) t~ k -  [ / ~  ~ 0/7(p,(g, ~,). (g, g, + �88 ~,)2). Z,(s,(p2 o p))) + k/~* p* (tos) 
i = 1  
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and let ~c,k~/2:#O, JW'-[-C(~k where c, k are positive numbers to be determined 
later. 

Now consider the point at.  Without losing generality we can assume that 
aleA.  Let { z l = g l ,  z2=#*p*(s l )}  be the local coordinates inside q/,~/2, then 
gi = hi z 1, where hi is a non-zero holomorphic function defined in q/., nog,, ,  and 
#*p*(si)=qi(z2), where qi is biholomorphic inside the region {Isa(p2o~)l 
< 6a,} ~ {I Si (P2 ~ < 6a,}" Let /2* p* (tas) = V ~-  1/~ (z 2) d- 72 ^ d e 2 in local co-ordi- 
nates. Then using the fact that p~ is = 1 near the branch locus (A or A*), and 
z ~ = 0  along the locus, by a simple computation we get: 

~kl~.,/2o;l=~/--~(dzl ̂ dfl + ~ zi(qi(z2))hi]{idzl A d f l  +kp(z2) dz2 ^d~2)  
i*l  

which is of course positive definite. Do the same to the other 0//,,/2. We have 
&k is positive definite on A uA* .  Therefore there exists a neighborhood ~k 
of A u A* such that th k is positive definite in ~k- On the other hand, #* taw 
is positive semi-definite in M. Therefore ~ ,k ,  which is equal to #* taw+ctbk, 
is positive definite in ~k for any c. Now, in the compact region M \ ~ k :  

lim ~ ,  k = #* taW which is positive definite. 
c---~ 0 

So if we choose c small enough, ~c, k will also be positive definite in M \ ~ k .  
Therefore we can conclude that ~c, k is a K/ihler form defined on M and is 
positive definite, when c is small enough. 

Next step is to check the curvature of ~c, k. Since thk defines a metric near 
A u A*, we want to apply Lemma 1 to check its hol. sect. curvature there. 

Let t~ k = ~ ~ Gij dz i ̂  dz  s in ~lai/2 , then the Gij terms can be calculated using 
formula (14). (The calculation is actually much simpler than it looks, because 
hj is holornorphic, Zj is a function of z 2 only, ps is = 1 near A or A*, a lot 
of terms will vanish.) In particular along A n 0//.,/2, that is when z 1 =0,  we have: 

Gii  = 1 + ~, hjhjzj(qi(z2)), Gi~ - 0 ,  G2i - 0 ,  G2~ =kP(z2); 
j*l  

OGl~ OGl~ O G z i _ O G 2 i _ O G ~ _ O G 2 ~ _ O G 2 ~ = O G z i = O  
Oz 2 - 0~2 - Oz 2 - ~ - T Z i - - z l  - dz i O~ 1 O~ 1 , 

OG2~ 0 OG2~ - 0 kff(z2); 
0z2 - ~ z 2  k/~(z2), 0~2 0~2 

while all other 0G o 0 z ~ terms are independent of k and since they are well-defined 

inside q/.l, there exists a constant K 9 ,  independent of k such that 

(15) ~ < K  9 in qla,/2nA. 
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Similarly, we have 

(16) ~ < K  9 in A ~z ~ %~/2 c~ 

for some constant K 9 when ~ and 6 are not both equal to 2. 
Now we can check the conditions for Lemma 1 along A ~ ~ll, l/z: 

OZGli 1 aGl i  c3Gii 
Rl i l i l z a =o -  ~-zl~-fi ~'=~ "+ Gi i 0Z1 ~i zl=0 

(all other terms vanish) 

) j . x ,  ~?zl ~ 1  zJ(qJ(zZ))+(hj~)2"zj(qJ(z2)) 

1 
hj zj(qj(z )0 

N -- 1 - ~ (hi ~j) 2 z~(qj(z2))N -- 1, 
j,i 

R2222[zl=o- 
02 G22 1 0G22 0G22 - 

~-22~2 zl=0 -~ G22 ~z 2 ~ 2  zl=o 

(all other terms vanish) 

0 2 kp(z 2) k @(z 2) @(z ~) 
~z 2 ~ 2  ~ p(z 2) Oz 2 0~2 =-k(P(z2)) 2 

(because/~ is the metric coefficient 
corresponding to - 1  curvature in S). 

By (15) and (16), all other coefficients of the curvature tensor are bounded 
inside ~//,,/2 c~ A and independent of k. 

By Lemma 1, if we choose kl large enough, then eSk~ will have neg. hol. 
sect. curvature along q/,1/2 c~A. Similarly for other points {a 2 . . . .  , a,}. Let 
---max {kl, . . . ,  k,}, then oSk will have neg. hol. sect. curvature at all points on 
A w A*. Therefore there exists a neighborhood ~//k of A w A*, which is independent 
of c, such that the hol. sect. curvature K(eSk)__<--Li<0 at every points in q/~. 
By (13), K(#* ~w)<  _ 1  in M \ A  w A * .  From Lemma 2, in ~ \ ( A  uA*), 

K ( ~ ,  k) = K(l~* m w +  c ~hk) < -- L i / ( c  + 2 L 0  < 0. 

By a continuity argument, ~c, k has neg. hol. sect. curvature in 0gk for any fixed c. 
Inside the compact set M\q/k,  lim ~c, k=p* e~ w which has neg. hol. sect. 

C--*O 

curvature. So if c is chosen small enough, ~c, k will have neg. hol. sect. curvature 
in the whole manifold M. This completes the proof  of Theorem 2. 
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