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Abstract Let V be an algebraic variety in Cn . We say that V satisfies the strong
Phragmén-Lindelöf property (SPL) or that the classical Phragmén-Lindelöf Theo-
rem holds on V if the following is true: There exists a positive constant A such that
each plurisubharmonic function u on V which is bounded above by |z| + o(|z|) on
V and by 0 on the real points in V already is bounded by A| Im z|. For algebraic
varieties V of pure dimension k we derive necessary conditions on V to satisfy
(SPL) and we characterize the curves and surfaces in Cn which satisfy (SPL).
Several examples illustrate how these results can be applied.

Mathematics Subject Classification (2000) 31C10 · 32C25 · 32U05

1 Introduction

An algebraic variety V in Cn, n ≥ 2, has the property (SPL) if there exists a
constant A ≥ 1 such that for each plurisubharmonic function u on V the estimates

u(z) ≤ |z| + o(|z|), z ∈ V, and u(z) ≤ 0, z ∈ V ∩ Rn,

imply

u(z) ≤ A| Im z|, z ∈ V .
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By the classical Phragmén-Lindelöf Theorem, V = Cn satisfies (SPL) with A = 1.
Thus the varietes V that have the property (SPL) are the ones for which a natural
extension of the classical Phragmén-Lindelöf Theorem holds. This, however, is not
the only reason why they are of interest. In fact, there are several problems concern-
ing linear partial differential operators with constant coefficients for which the prop-
erty (SPL) plays an important role in their solution. The first result of this type was
obtained in Meise and Taylor [14]. There it was shown that for a homogeneous poly-
nomial Pm ∈ C[z1, . . . , zn] of degree m ≥ 2 and P(z′, zn+1) := Pm(z′) − zn+1,
the operator P(D) : C∞(Rn+1) → C∞(Rn+1) admits a continuous linear right
inverse if and only if the variety V (P) := {z ∈ Cn+1 : P(−z) = 0} satisfies
(SPL). For n = 3 the latter property was characterized in [3] by properties of Pm
(for the precise formulation, see Theorem 5.10). For a weight function ω (e.g.,
ω(t) = tα, 0 < α < 1) and P ∈ C[z1, . . . , zn] we showed in [7] that the operator
P(D), acting on the space of ω-ultradifferentiable functions Eω(Rn) of Beurling
type, admits a continuous linear right inverse only if certain limit varietes Tγ,d V (P)
associated with V (P) have the property (SPL). A modification of this result by
Heinrich [11] together with a theorem of Hörmander [12] shows that P(D) acts
surjectively on the space A(Rn) of all real analytic functions on Rn only if for
each ξ ∈ V (Pm) ∩ Rn , |ξ | = 1, all limit varieties Tσ,δ(V (Pm) − ξ) satisfy (SPL),
where Pm is the principal part of P and where the limit varieties are computed at
the singular point 0 ∈ (V (Pm) − ξ).

In the present paper we characterize the algebraic curves and surfaces V in Cn

which satisfy (SPL) in terms of their geometry. To achieve this, we first collect
necessary conditions in Section 3 for any algebraic variety V in Cn of pure dimen-
tion k to satisfy (SPL). The first one was noted already in Meise and Taylor [14],
namely that at ξ ∈ V ∩Rn , the variety V must satisfy the local Phragmén-Lindelöf
condition PLloc(ξ) that was introduced in Hörmander [12]. The second and the
third one were proved in [7]. They are formulated in terms of limit varieties Tγ,d V
of order d ≥ 1 along real simple curves γ , which we briefly introduce in Section 2.
They state that each limit variety Tγ,d V satisfies (SPL) if V satisfies (SPL) and that
for each real regular point ξ of Tγ,d V , the variety V must satisfy a certain hyperb-
olicity condition which we call (γ, d)-hyperbolicity (see Proposition 3.9). These
necessary conditions are also sufficient for (SPL) if V is an algebraic curve (see
Theorem 3.10). However, for the characterization of (SPL) for algebraic surfaces,
we need a further condition for real singular points of Tγ,d V . As Proposition 3.14
shows, these singular points come in two classes. For one class (γ, d)-hyperbolicity
is still the necessary condition, while the more sophisticated (γ, d, δ)-hyperbolicity
is needed for the other class (see Proposition 3.14). Collecting all these necessary
conditions—except the first one—we define algebraic surfaces in Cn which are
called “hyperbolic in conoids”. Using this notion we show that for an algebraic
surface in Cn to satisfy (SPL) it is necessary to be hyperbolic in conoids and to
satisfy PLloc(ξ) at each real point ξ in V .

The main result of Section 4 is to prove that this necessary condition is also
sufficient. In order to do so we have to overcome the difficulty that we have too
many necessary conditions. Using a finiteness result from [9], we are able to single
out a finite number of real simple curves γ and exponents d for which the condi-
tions appearing in the definition of hyperbolicity in conoids are already sufficient.
Then a suitable modification of the arguments which we used in [5] to characterize
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the analytic surfaces in C3 which satisfy PLloc can be applied to prove the desired
characterization (see Theorem 4.3).

In Section 5 we use the results of the previous sections to treat a number of
examples. This illustrates that our methods are almost algorithmic. Example 5.6
shows that (SPL) is a very subtle property. Changing a polynomial by adding or
deleting a constant may destroy (SPL) for its zero variety. We also indicate how
the main result of [3] can be deduced from the characterization given in the present
paper.

2 Preliminaries

In this section we fix the notation and recall some basic facts that are needed in the
subsequent sections.

Throughout this paper, | · | denotes the Euclidean norm on Cn , B(ξ, r) or
Bn(ξ, r) denotes the open ball with center ξ and radius in Cn , and Sn denotes the
Euclidean unit sphere in Rn+1.

Definition 2.1 (a) Let V be the germ of an analytic variety at some point p in
Cn . The tangent cone TpV of V at p is defined as the set of all v ∈ Cn

which are tangent to V at p. Here v ∈ Cn is tangent to V at p if there exist
a sequence (p j ) j∈N in V converging to p and a sequence (a j ) j∈N in C such
that lim j→∞ a j (p j − p) = v. For a general discussion of tangent cones at p,
see Whitney [17], Chapter 7. The tangent cone defined here is Whitney’s cone
C3.

(b) For an algebraic variety V in Cn its cone of limiting directions Vh is defined as

Vh := {r lim
j→∞

z j

|z j | : r ≥ 0, z j ∈ V, |z j | → ∞}.

For a different description see [4], 2.4, where it is proved in particular that Vh
is an algebraic variety.

Definition 2.2 A simple curve γ in Cn is a map γ : [α, ∞[ → Cn which for some
α > 0 and some q ∈ N admits a convergent expansion

γ (t) =
q∑

j=−∞
ξ j t

j/q with |ξq | = 1.

The vector ξq is called the limit vector of γ at infinity. The trace of γ is defined as
tr(γ ) := γ ([α,∞[). A real simple curve is a simple curve γ satisfying tr(γ ) ⊂ Rn .

Remark 2.3 (a) If γ : [α,∞[ → Cn is a simple curve then for some β ≥ α the
restriction of γ to [β, ∞[ is injective. Hence it is no restriction to assume that γ is
injective.

Definition 2.4 A real simple curve γ in Rn is said to be in standard parametri-
zation with respect to a basis (ξ1, . . . , ξn) of Rn if for some q ∈ N we have
γ (t) = tξ1 + ∑n

ν=2 γν(t)ξν , where γν(t) = ∑q−1
j=−∞ aν, j t j/q .

From [7], Lemma 2.5, we recall the following lemma.
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Lemma 2.5 (a) Let V ⊂ Cn be a pure 1-dimensional analytic variety in Cn and
let T be a branch of V ∩ Rn at infinity. Then there exist a basis (ξ1, . . . , ξn)
of Rn, r > 0, and a real simple curve γ in standard parametrization such that
T \ Bn(0, r) = tr(γ ).

(b) Let γ be a real simple curve in Rn and let (ξ1, . . . , ξn) be a basis of Rn such
that ξ1 is the limit vector of γ at infinity. Then there are r > 0 and a real simple
curve δ which is in standard parametrization with respect to (ξ1, . . . , ξn) such
that tr(γ ) \ Bn(0, r) = tr(δ).

Definition 2.6 (a) Let V ⊂ Cn be an algebraic variety of pure dimension k ≥ 1,
let γ : [α,∞[ → Cn be a simple curve, and let d ≤ 1. Then for t ∈ [α,∞[ we
define

Vγ,d,t := {w ∈ Cn : γ (t) + wtd ∈ V } = 1

td
(V − γ (t))

and we define the limit variety Tγ,d V of V of order d along γ as the set

Tγ,d V : = {ζ ∈ Cn : ζ = lim
j→∞ z j , where z j ∈ Vγ,d,t j for j ∈ N and

(t j ) j∈N is a sequence in [α, ∞[ which tends to infinity}.

If it is clear from the context we will sometimes write Vd,t or just Vt instead of
Vγ,d,t .

(b) Let V be the germ of an analytic variety at some point p in Cn . The tangent
cone TpV of V at p is defined as the set of all v ∈ Cn which are tangent to V at p.
Here v ∈ Cn is tangent to V at p if there exist a sequence (p j ) j∈N in V converging
to p and a sequence (a j ) j∈N in C such that lim j→∞ a j (p j − p) = v.

From [8] we recall the following results about limit varieties.

Theorem 2.7 Let V be an algebraic variety of pure dimension k ≥ 1 in Cn, let
γ : [α, ∞[ → Cn be a simple curve in Cn with limit vector ξ at infinity, and let
d ≤ 1 be given. Then the following assertions hold:

(a) Tγ,d V is either empty or an algebraic variety of pure dimension k.
(b) Tγ,1V = Vh − ξ .
(c) If d < 1 then w ∈ Tγ,d V if and only if w + λξ ∈ Tγ,d V for each λ ∈ C.
(d) For each R > 0 there exists α0 ≥ α such that for each sequence (t j ) j∈N in

[α0, ∞[ which tends to infinity, the varieties (Vγ,d,t j ∩ B(0, R)) j∈N converge
to Tγ,d V ∩ B(0, R) in the sense of Meise, Taylor, and Vogt [15], 4.3.

Definition 2.8 Let γ : [α, ∞[ → Rn be a real simple curve, let d ≤ 1, a subset U
of Cn , and R ≥ α be given. We call

�(γ, d, U, R) :=
⋃

t>R

(γ (t) + tdU )

the conoid with core γ , opening exponent d , and profile U , with tip truncated at R.
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Definition 2.9 Two simple curves γ and σ in Cn are called equivalent modulo d
for d ≤ 1 if for each zero neighborhood U in Cn and each R ≥ 1 we have

�(γ, d, U, R) ∩ �(σ, d, U, R) 	= ∅.

If T is a branch of V ∩Rn at infinity as in Lemma 2.5 then T is said to be equivalent
to γ modulo d if there exists a real simple curve σ which is equivalent to γ modulo
d and satisfies tr(σ ) = T .

Definition 2.10 Let V be an analytic variety in Cn and let � be an open subset
of V .

(a) By �reg (resp. �sing) we denote the set of all regular (resp. singular) points of
V in �.

(b) A function u : � → [−∞,∞[ is called plurisubharmonic if it is locally
bounded above, plurisubharmonic in the usual sense on �reg and satisfies

u(z) = lim sup
ζ∈�reg,ζ→z

u(ζ )

at the singular points of V in �. By PSH(�) we denote the set of all plurisub-
harmonic functions on �.

3 Necessary conditions

In this section we will derive necessary conditions for an algebraic variety V of
pure dimension k in Cn to satisfy the following condition (SPL).

Definition 3.1 An algebraic variety V in Cn satisfies the condition (SPL) if there
exists a constant A ≥ 1 such that for each u ∈ PSH(V ) the conditions (α) and (β)
imply (γ ), where

(α) u(z) ≤ |z| + o(|z|), z ∈ V ,
(β) u(z) ≤ 0, z ∈ V ∩ Rn ,
(γ ) u(z) ≤ A|Im z|, z ∈ V .

We will write SPL(A) when we want to specify the constant A.

Remark 3.2 By the classical Phragmén-Lindelöf theorem for plurisubharmonic
functions on Cn , V = Cn satisfies the condition SPL(1). Hence one can consider
algebraic varieties which satisfy (SPL) as those for which the classical Phragmén-
Lindelöf theorem holds. In [3], Proposition 2.8, we pointed out why it would be
too restrictive to require A = 1 in Definition 3.1.

Besides this interpretation the property (SPL) also plays a role in the character-
ization of those polynomials P ∈ C[z1, . . . , zn] for which the differential operator
P(D) : D′(Rn) → D′(Rn) admits a continuous linear right inverse, as it was
shown in Meise and Taylor [14], Theorem 3.4, and in [3].

Remark A weaker condition than (SPL) is obtained if in Definition 3.1 one requires
the existence of A, B > 0 such that for each u ∈ PSH(V ) the conditions (α) and
(β) in 3.1 imply
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(γ ′) u(z) ≤ A| Im z| + B, z ∈ V .

This property was called SPL(A, B) in Meise and Taylor [14], Definition 3.1.
The algebraic surfaces V in C3 which satisfy SPL(A, B) for some A, B > 0 were
characterized in [7], Theorem 4.7, since one can take ω ≡ 1 in that theorem.

To derive necessary conditions for (SPL), we recall the definition of the local
Phragmén-Lindelöf condition that was used by Hörmander [12] to characterize
those differential operators P(D) that are surjective on the space A(Rn) of all real
analytic functions on Rn .

Definition 3.3 For ξ ∈ Rn and r0 > 0 let V be an analytic variety in B(ξ, r0)
which contains ξ . We say that V satisfies the condition PLloc(ξ) if there exist
positive numbers A and r0 ≥ r1 ≥ r2 such that each u ∈ PSH(V ∩ B(ξ, r1))
satisfying

(α) u(z) ≤ 1, z ∈ V ∩ B(ξ, r1) and
(β) u(z) ≤ 0, z ∈ V ∩ Rn ∩ B(ξ, r1)

also satisfies

(γ ) u(z) ≤ A|Im z|, z ∈ V ∩ B(ξ, r2).

For other equivalent definitions of PLloc(ξ) we refer to [5], Lemma 3.3.

From Meise and Taylor [14], Proposition 4.4, we recall the following result.

Proposition 3.4 If an algebraic variety V in Cn satisfies (SPL) then for each
ξ ∈ V ∩ Rn it satisfies PLloc(ξ).

Since by [7], Lemma 3.2, the condition (SPL) is equivalent to the condition
PL(ω) for ω ≡ 0, we get from [7], Theorem 3.12, the following necessary condition
for (SPL).

Proposition 3.5 Let V be an algebraic variety of pure dimension k ≥ 1 in Cn

which satisfies (SPL). Then for each real simple curve γ and each d ∈ ]−∞, 1],
the limit variety Tγ,d V satisfies (SPL). In particular, Vh satisfies (SPL).

In order to state further necessary conditions for (SPL) we introduce the fol-
lowing notions:

Definition 3.6 Let V be an analytic variety in a neighborhood of a point ξ ∈ V ∩Rn .
We say that V satisfies the dimension condition at ξ if for each locally irreducible
component W of V at ξ , the dimension of W ∩Rn as a real analytic variety is equal
to the dimension of W at ξ as a complex variety.

Remark If V satisfies PLloc(ξ) at ξ ∈ V ∩ Rn , then V satisfies the dimension
condition at ξ . This follows from Meise, Taylor, and Vogt [15], Lemma 2.8, since
the condition PLloc(ξ) implies the condition RPLloc(ξ), defined in [15], 2.3.

Definition 3.7 (a) Let V be an analytic variety in Cn which is of pure dimension
k ≥ 1 in ζ ∈ V . A projection π : Cn → Cn is called noncharacteristic for V
at ζ if its rank is k, its image and its kernel are spanned by real vectors, and
Tζ V ∩ ker π = {0}.
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(b) Let V be an algebraic variety in Cn of pure dimension k ≥ 1. A projection
π : Cn → Cn is called noncharacteristic for V at infinity if its rank is k, its
image and its kernel are spanned by real vectors, and Vh ∩ ker π = {0}.
Hence a projection is noncharacteristic for V at ζ if its kernel is transverse to

V at ζ and its image and kernel are spanned by real vectors.

Definition 3.8 Let V be an algebraic variety of pure dimension k ≥ 1 in Cn , let
γ : [α,∞[ → Cn be a real simple curve, let d ≤ 1, and let ζ ∈ Tγ,d V ∩ Rn . We
say that V is (γ, d)-hyperbolic at ζ with respect to a projection π : Cn → Cn

which is noncharacteristic for Tγ,d V at ζ if there exist a zero neighborhood U in
Cn and r > α such that z ∈ V ∩�(γ, d, ζ + U, r) is real whenever π(z) is real. V
is called (γ, d)-hyperbolic at ζ if it is (γ, d)-hyperbolic at ζ with respect to some
projection π as above.

From Proposition 3.5 and [7], Lemma 3.20, applied with ω ≡ 0 we get that
also the following condition is necessary for (SPL).

Proposition 3.9 Let V ⊂ Cn be a pure k-dimensional algebraic variety in Cn

which satisfies (SPL). Then for each real simple curve γ : [α, ∞[→ Cn, each
d ≤ 1, each ξ ∈ (Tγ,d V )reg ∩ Rn, and each projection π : Cn → Cn which is
noncharacteristic for Tγ,d V at ξ , V is (γ, d)-hyperbolic at ξ with respect to π .

The necessary conditions which we found so far lead to the following charac-
terization of the algebraic curves in Cn that satisfy (SPL).

Theorem 3.10 For each algebraic curve V in Cn the following conditions are
equivalent:

(a) V satisfies (SPL).
(b) V satisfies PLloc(ξ) for each ξ ∈ V ∩ Rn, Vh satisfies (SPL), and for each

η ∈ Vh ∩ Sn−1 and γη : t �→ ηt , t ≥ 1, V is (γη, 1)-hyperbolic at 0 ∈ Tγη,1V .
(c) V satisfies PLloc(ξ) for each ξ ∈ V ∩ Rn, Vh satisfies (SPL), and for each

(some) projection π : Cn → Cn which is noncharacteristic for Vh at infinity
with im π = ζC for some ζ ∈ Rn, there exists K ≥ 1 such that π−1(tζ )∩V ⊂
Rn for each t ∈ R, |t | ≥ K .

Proof (a) ⇒ (b): By Proposition 3.4, the first condition in (b) holds. Also the
second one holds, since Vh satisfies (SPL) by Proposition 3.5. To show the third
one, note that Vh is homogeneous of dimension 1 (see [4], 2.4), hence a finite
union of lines through the origin. Since Vh satisfies (SPL) and hence PLloc(0) by
Proposition 3.4, it follows from [5], Proposition 3.16, that these lines admit real
generators, i.e., there are µ ∈ N and a j ∈ Rn , |a j | = 1, 1 ≤ j ≤ µ, such that

Vh =
µ⋃

j=1

a j · C. (3.1)

In particular, each point η ∈ Vh ∩ Sn−1 is a regular point of Vh . By Theorem 2.7
we have Tγη,1V = Vh − η. Hence 0 is a regular point of Tγη,1V . Therefore, the
third condition in (b) follows from Proposition 3.9.

(b) ⇒ (a) and (b) ⇔ (c): This is proved in Remark 4.13 since later we have to
use the same arguments in greater generality. ��



394 R.W. Braun et al.

Remark Note that an analytic curve V in Cn satisfies PLloc(ξ) at some ξ ∈ V ∩Rn

if and only if in suitable coordinates and in some neighborhood of ξ , V is the union
of graphs of holomorphic maps which are real over real points. This follows from
[5], Proposition 3.16.

As a corollary we obtain the following characterization of the algebraic curves
in Cn satisfying (SPL), which was proved in [6], Proposition 18.

Corollary 3.11 Let P ∈ C[x, y] be of degree m > 0. Then V := V (P) satisfies
the condition (SPL) if and only if the following two conditions are satisfied:

(a) V satisfies PLloc(ξ) at each ξ ∈ V ∩ R2.
(b) For each (or some) η, ζ ∈ S1 satisfying Pm(ζ ) 	= 0 and spanR(η, ζ ) = R2

there exists R > 0 such that for each t ∈ R, |t | ≥ R, the polynomial λ �→
P(tη + λζ ) has only real zeros.

Proof If V (P) satisfies (SPL) then Theorem 3.10 implies (a). As in the proof of
Theorem 3.10 there exist µ ∈ N and a j = (α j , β j ) ∈ R2 1 ≤ j ≤ µ, so that
(3.1) holds. Now fix η, ζ ∈ S1 as in (b). Then the projection π : C2 → C2,
π(aη + bζ ) := aη is noncharacteristic for Vh at infinity. Hence there exists S > 0
such that π |V (P) is proper and unbranched over C \ B(0, S). In particular, for each
t ∈ R, |t | > S, the set π−1(tη) has m elements. Because of the hyperbolicity
condition in 3.10(b), all these points must be real. Hence (b) holds.

If the conditions (a) and (b) hold for some η, ζ ∈ S1 then it is easy to check that
V (P) satisfies the conditions in 3.10(b). To obtain the statement about Vh , note
that Vh is a finite union of complex lines in C2. They must have real generators
because otherwise condition (b) cannot hold. ��
Remark (a) In Example 5.1 we define an irreducible polynomial P ∈ C[x, y] for

which V (P) satisfies (SPL), while the principal part of P is not square-free.
Hence the number µ in (3.1) can be smaller than the number of branches in V .
This shows that the general situation, even for n = 2, differs from the special
one that was treated in Meise and Taylor [14], Corollary 4.10.

(b) Example 5.2 shows that V (P)∩R2 can have bounded connected components,
while V (P) satisfies (SPL).

Definition 3.12 Let V be an algebraic variety in Cn of pure dimension k ≥ 1
and let γ be a real simple curve. Then it was shown in [8], Proposition 5 and [9],
4.9, that there exist p ∈ N and rational numbers 1 = d1 > . . . > dp such that
d �→ Tγ,d V is constant on the intervals ]d j+1, d j [, 1 ≤ j ≤ p − 1 and ]−∞, dp[
and that these numbers are minimal in this respect. We call them the critical values
for the curve γ and the variety V .

Let d be a critical value for γ and V . A singular point ζ of Tγ,d V ∩ Rn is said
to be terminating for γ and d if there is a simple curve σ(t) = γ (t) + ζ td + o(td)
such that no critical value for σ and V is smaller than d . A point ζ1 ∈ (Vh)sing with
|ζ1| = 1 is called terminating if 0 is terminating for γ1(t) := tζ1 and d = 1.

If d ≤ 1 is a critical value for γ and if ζ ∈ (Tγ,d V )sing∩Rn is not terminating for
γ and d , then �(γ, d, ζ ) denotes the largest critical value for γζ : t �→ γ (t)+ ζ td

which is smaller than d .
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Definition 3.13 (a) Let V be an algebraic variety in Cn of pure dimension k ≥ 1,
let γ be a real simple curve, and let d ≤ 1 be a critical value for γ and V .
Assume that ξ ∈ Tγ,d V ∩ Rn and let δ < d ≤ 1. Then we say that V is
(γ, d, δ)-hyperbolic at ξ with respect to a projection π which is noncharacter-
istic for Tγ,d V at ξ if there exist R > 1 and zero neighborhoods U ⊂ B(0, 1

2 )
and G ⊂ Cn bounded, such that for each ζ ∈ V ∩�(γ, d, ξ +U, R) for which
π(ζ ) is real and π(ζ ) 	∈ �(π ◦ γ, δ, π(ξ) + π(G), 0) also ζ is real.

(b) Let W be an algebraic surface in Cn , denote by π : Cn → Cn the projection
π(z′, zn−1, zn) = (0, zn−1, zn) and let U be a subset of Cn . Then W ∩ U is
called hyperbolic with respect to π if ζ ∈ W ∩U is real whenever π(ζ ) is real.

Proposition 3.14 Let V be an algebraic surface in Cn that satisfies (SPL), let γ
be a real simple curve which is in standard parametrization with respect to the last
variable, and let d ≤ 1 be a critical value for γ and V . Assume further that 0 ∈
(Tγ,d V )sing and that the projection π : Cn → Cn, π(z′, zn−1, zn) := (0, zn−1, zn)
is noncharacteristic for Tγ,d V at zero. Then the following assertions hold:

(a) If 0 ∈ Tγ,d V is not terminating for γ and d then V is (γ, d, δ)-hyperbolic at
0 with respect to π for δ := �(γ, d, 0).

(b) If 0 ∈ Tγ,d V is terminating for γ and d then V is (γ, d)-hyperbolic at 0 ∈
Tγ,d V .

Proof (a) We first treat the case that d < 1 and that 0 is not terminating for γ and d .
Since d is less then 1, it follows from Theorem 2.7 (c) that there are algebraic curves
Wd and Wδ satisfying Tγ,d V = Wd × C and Tγ,δV = Wδ × C. By Proposition
3.5, the hypothesis implies that Tγ,d V and Tγ,δV satisfy (SPL). Hence Wd and Wδ

satisfy (SPL). By Proposition 3.4, Wd satisfies PLloc(0). Hence [5], Proposition
3.16, implies the existence of ε1, ε2 > 0 such that the following conditions are
satisfied:

(i) Tγ,d V ∩ (Bn−2(0, ε1) × B1(0, ε2) × C) is hyperbolic with respect to π .
(ii) π restricted to Tγ,d V ∩(Bn−2(0, ε1)×(B1(0, 2ε2)\{0})×C) is unbranched.

(iii) If w ∈ Tγ,d satisfies |wn−1| ≤ 2ε2 then |w′| ≤ ε1 for w = (w′, wn−1, wn).

Next note that by [9], Corollary 4.15, we have (Tγ,δV )h = T0(Tγ,d V ). Hence the
assumption on π implies that π is noncharacteristic for (Tγ,δV )h at infinity. Since
Tγ,δV satisfies (SPL), it follows from Theorem 3.10 (applied to Wδ) that we can
choose K1, K2 > 1 such that the following conditions are satisfied:

(iv) Tγ,δV \ (Cn−2 × B1(0, K2) × C) is hyperbolic with respect to π .
(iiv) π restricted to Tγ,δV \ (Cn−2 × B1(0, K2) × C) is unbranched.

(iiiv) If w ∈ Tγ,δV satisfies |wn−1| ≤ 2K2 then |w′| ≤ K1.

Next let

�R := �(γ, d, Bn−2(0, ε1) × B2(0, ε2), R), R > 1,

�′
R := �(γ, δ, Bn−2(0, K1) × B2(0, 2K2), R), R > 1,

and define

MR := V ∩ (Cn−2 × R2) ∩ �R \ �′
R .
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For R ≥ R1, MR is a semi-algebraic set. Moreover, the function

h : [R1, ∞[ → R, h(r) := sup
{| Im x ′| : there is y ∈ R with (x ′, y, r) ∈ MR

}

is semi-algebraic. Hence the curve selection theorem (see e.g. Hörmander [13],
Theorem A.2.8) implies the existence of R2 ≥ R1 and of an algebraic curve
σ : [R2, ∞[ → MR which satisfies πn(σ (r)) = r and h(r) = | Im σ ′(r)|.
Now we distinguish two cases: case 1: h(r) ≡ 0 for all large r . In this case the
Proposition is proved.
case 2: h(r) 	≡ 0 for all large r .
Since h is a semi-algebraic function, the hypothesis in the present case implies the
existence of c1 > 0, a ∈ Q, and t0 > 1 such that

h(t) = c1ta + o(ta), t ≥ t0.

Next note that we can choose t0 so large that the curve σ has a convergent Puiseux
series expansion of the form

σ(t) = γ (t) + (tbw′, tbwn−1, 0) + σ̃ (t), t ≥ t0,

where σ̃ satisfies πu ◦ σ̃ ≡ 0 and |σ̃ (t)| = o(tb) as t tends to infinity. Since
tr(σ ) ⊂ MR , the number b ∈ Q must satisfy δ ≤ b ≤ d . From

h(t) = | Im σ ′(t)| ≤ |σ ′(t)| = O(tb), t ≥ t0,

we conclude a ≤ b.
Now we can apply the arguments of the proof of [6], Proposition 20, with ω ≡ 0
to conclude that h(t) ≡ 0, in contradiction to the present hypothesis. Hence case
2 is excluded and part (a) of the Proposition is proved for d < 1.

If d = 1 then the arguments of the proof have to be modified since Tγ,1V is
not necessarily the product of a curve in C2 and C. However, it is the translate
of a homogeneous two-dimensional algebraic variety. Therefore, almost the same
arguments as for d < 1 apply.

(b) If 0 ∈ Tγ,d V is terminating for γ and d , then there exists a real simple
curve σ which is equivalent modulo d to γ so that for any δ, δ′ < d we have
Tσ,δV = Tσ,δ′ V and this variety is homogeneous. Obviously Tγ,d V = Tσ,d V , and
by [9], Corollary 4.15, we have for δ < d

Tσ,δV = (Tσ,δV )h = T0(Tσ,d V ) = T0(Tγ,d V ).

Hence the hypothesis on π implies that π is noncharacteristic for Tσ,δV at infinity.
Since V satisfies (SPL), Proposition 3.5 implies that Tσ,δV satisfies (SPL). Because
of δ < d ≤ 1 we get from Theorem 2.7 (d), that Tσ,δV = W × C for some alge-
braic curve in Cn−1, which also satisfies (SPL) and which is homogeneous. Hence
it follows from [5], Proposition 3.16, that for some k ∈ N and a1, . . . , ak ∈ Rn−1

we have

W =
k⋃

j=1

Ca j .
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If d < 1 then we get as in part (a) that Tσ,d V = Tγ,d V = Wd × C and that there
are ε1, ε2 > 0 such that (i)–(iii) of part (a) hold with Tγ,d V replaced by Tσ,d V .
For fixed δ < d the preceding considerations show that Tσ,δV is hyperbolic with
respect to π . For R > 1 we now let

�R := �(σ, d, Bn−1(0, ε1) × B2(0, ε2), R)

and

MR := V ∩ �R

Then we argue as in part (a) to conclude that for each ζ ∈ V ∩ �R for which π(ζ )
is real, also ζ is real. Hence V is (σ, d)-hyperbolic at 0 ∈ Tσ,d V = Tγ,d V . Since
|σ(t) − γ (t)| = o(td), this implies that V is also (γ, d)-hyperbolic at 0 ∈ Tγ,d V .
If d = 1, the proof has to be modified slightly, since Tγ,1V need not be of the form
W1 × C. As in part (a) we leave this modification to the reader. ��
Definition 3.15 Let V be an algebraic surface in Cn . We say that V is hyperbolic
in conoids if for each real simple curve γ and each d ≤ 1 the following conditions
are satisfied:

(1) Tγ,d V satisfies (SPL).
(2) For each ξ ∈ (Tγ,d V )reg ∩ Rn and each ξ ∈ (Tγ,d V )sing ∩ Rn which is termi-

nating for γ and d , V is (γ, d)-hyperbolic at ξ .
(3) For each ξ ∈ (Tγ,d V )sing ∩ Rn which is not terminating for γ and d , V is

(γ, d, δ)-hyperbolic at ξ for δ := �(γ, d, ξ).

Remark If V is an algebraic surface in Cn which satisfies PLloc(ξ) at each ξ ∈
V ∩ Rn then condition (1) in Definition 3.15 can be weakened and we still get
equivalence of V being hyperbolic in conoids. For the precise formulation we refer
to Corollary 4.4.

Combining the Propositions 3.5 and 3.14, we get the following theorem.

Theorem 3.16 Let V be an algebraic surface in Cn. If V satisfies (SPL) then V
satisfies the following conditions:

(a) V satisfies PLloc(ξ) at each ξ ∈ V ∩ Rn.
(b) V is hyperbolic in conoids.

To show that these necessary conditions are in fact sufficient for algebraic curves
in Cn , we need some preparation which is given in the next section. We conclude
this section by providing two rather coarse but useful necessary conditions for
(SPL).

Lemma 3.17 Let V be an algebraic variety in Cn of pure dimension k ≥ 1 which
satisfies (SPL). Then the following assertions hold:

(a) W ∩ Rn 	= ∅ for each irreducible component W of V .
(b) The ideal I (V ) := {p ∈ C [z1 . . . zn] : p|V ≡ 0} is generated by polynomials

with real coefficients.
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Proof (a) This can be shown by the same arguments that were used in the proof
of [7], Cor. 3.15 (b).

(b) Because of (a) and Proposition 3.14 this follows from [5], Lemma 3.17.
��

Remark Note that an algebraic variety V in Cn of pure dimension k ≥ 1 satisfies
(SPL) if and only if each irreducible component W of V has this property.

4 Sufficient conditions

To show that the necessary conditions in Theorem 3.16 are in fact sufficient for
(SPL) for algebraic surfaces V in Cn , we have to find out which of the many nec-
essary conditions are really needed to prove that V satisfies (SPL). To do so we
recall from [9], 4.16, the following definition.

Definition 4.1 Let V be an algebraic variety in Cn that is of pure dimension k. A
set C := (ζ j , d j )

l
j=1 in (Rn × Q)l is called a critical set for V of length l = l(C)

if the following conditions are satisfied:

(a) ζ1 ∈ (Vh)sing ∩ Rn , |ζ1| = 1, and d1 = 1.
(b) For 1 ≤ i ≤ l define γi (t) := ∑i

j=1 ζ j td j . Then for 1 ≤ i ≤ l − 1 we have
(b1) di+1 is the largest critical value for V and γi (t) strictly smaller than di ,

and
(b2) ζi+1 is a real singlar point of Tγi ,di+1 V and 〈ζi+1, ζ1〉 = 0.

A critical set C as above is called a normal critical set for V if ζ1 is not termi-
nating and if ζi is not terminating for γi−1 and di , 2 ≤ i ≤ l.

Definition 4.2 (a) For an algebraic surface V in Cn we let

M0 := {ξ ∈ (Vh)sing ∩ Sn−1 : ξ is not terminating},
and we define the relevant set R(V ) for V by

R(V ) := {C : C = (ζ j , d j )
l
j=1 is a normal critical set for V

satisfying l(C) ≥ 2 and ζ1 ∈ M0}.
Of course, M0 = ∅ implies R(V ) = ∅. Note that R(V ) is a finite set by [9],
Theorem 4.18.

(b) For C ∈ R(V ), C = (ζ j , d j )
l
j=1, we define the associated curve γC by

γC (t) := ∑l−1
j=1 ζ j td j and the associated triple by (γC , dl−1, dl). Moreover,

we let

K(V ) := {(γC , dl−1, dl) : C = (ζ j , d j )
l
j=1 ∈ R(V )}

and call it the set of all relevant triples for V .

In this section we will prove the following theorem.
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Theorem 4.3 For each algebraic surface V in Cn the following conditions are
equivalent:

(a) V satisfies (SPL).
(b) V is hyperbolic in conoids and V satisfies PLloc(ξ) at each ξ ∈ V ∩ Rn.
(c) The following conditions are satisfied:

(1) V satisfies PLloc(ξ) at each ξ ∈ V ∩ Rn.
(2) Vh satisfies (SPL).
(3) For each ζ ∈ Vh ∩ Sn−1 which is regular or a terminating singularity, V

is (γζ , 1)-hyperbolic at 0 ∈ Tγζ ,1V for γζ : t �→ tζ .
(4) For each (γ, d, δ) ∈ K(V ) the variety V is (γ, d, δ)-hyperbolic at 0 ∈

Tγ,d V and for each ζ ∈ Tγ,δV ∩ Rn which is regular or a terminating
singularity for γ and δ, the variety V is (γ, δ)-hyperbolic at ζ .

Corollary 4.4 Let V be an algebraic surface in Cn which satisfies PLloc(ξ) for
each ξ ∈ V ∩Rn. Then in Definition 3.15 condition (1) can be replaced equivalently
by one of the following conditions:

(1’) Tγ,d V satisfies PLloc(ξ) at each ξ ∈ Tγ,d V ∩ Rn.
(1”) Vh satisfies (SPL) or PLloc(0).

Proof If Tγ,d V satisfies (SPL) then it satisfies PLloc(ξ) at each ξ ∈ (Tγ,d V ) ∩ Rn

by Proposition 3.4. Hence condition 3.15 (1) implies condition (1’).
To show that (1’) implies (1”), note first that for any ζ ∈ Vh ∩ Rn , |ζ | = 1, and

γ (t) := tζ , we have Tγ,1V = Vh − ζ by Theorem 2.7 (b). By (1’) this implies that
Vh satisfies PLloc(0). Since Vh is homogeneous, [7], Remark 3.14, shows that Vh
satisfies (SPL). Hence (1”) is satisfied.

If condition (1”) and the conditions 3.15 (2) and (3) are fulfilled, then the con-
ditions in Theorem 4.3 (c) are satisfied. Hence V is hyperbolic in conoids by this
theorem. In particular, condition 3.15 (1) holds. ��

In order to prove Theorem 4.3 we need some preparation. We begin with the fol-
lowing definition which coincides with [7], Definition 5.1, for ω being identically
zero.

Definition 4.5 Let V be an algebraic variety in Cn , γ a real simple curve in Cn ,
d ≤ 1, G a bounded open set in Cn so that � := �(γ, d, G, R) is a conoid for
some R > 1 and fix a compact subset K of G. We say that V satisfies the conoidal
Phragmén-Lindelöf condition PL(V, �(γ, d, G, K , R)) if there exist A1 ≥ 1 and
R1 ≥ R such that for each u ∈ PSH(V ∩ �) the following two conditions

(α) u(z) ≤ |z|d , z ∈ V ∩ �,
(β) u(z) ≤ 0, z ∈ V ∩ � ∩ Rn ,

imply

(γ ) u(z) ≤ A1|Im z|, z ∈ V ∩ �(γ, d, K , R1).

We say that V satisfies PL(V, �(γ, d, G, R)) if G is a zero neighborhood and
if V satisfies PL(V, �(γ, d, G, K , R)) for a suitable compact zero neighborhood
K ⊂ G.

The following two lemmas are just specializations of the Lemmas 5.2 and 5.3
in [7] for ω ≡ 0.
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Lemma 4.6 Let V be an algebraic variety of pure dimension k in Cn, γ a real sim-
ple curve in Cn, and d ≤ 1. Assume that V is (γ, d)-hyperbolic at ξ ∈ Tγ,d V ∩Rn

and let γξ (t) := γ (t) + ξ td . Then there exist a convex zero neighborhood G in
Cn and r > 0 such that V satisfies PL(V, �(γξ , d, G, 1

2 G, r)). In particular, V
satisfies PL(V, �(γξ , d, G, r)).

Lemma 4.7 Let V be an algebraic variety of pure dimension k in Cn, γ a real
simple curve, d ≤ 1, and D a bounded open zero neighborhood in Cn. Then the
following assertions hold:

(a) If V satisfies PL(V, �(γ, d, D, r)) then for each zero neighborhood G ⊂ D
and s ≥ r the variety V satisfies PL(V, �(γ, d, G, s)).

(b) If for each ξ ∈ D ∩ Tγ,d V ∩ Rn there exist an open zero neighborhood Dξ

in Cn and rξ > 1 such that for γξ (t) := γ (t) + ξ td , the variety V satis-
fies PL(V, �(γξ , d, Dξ , rξ )) then for each compact set K ⊂ D, V satisfies
PL(V, �(γ, d, D, K , R)) for each R > 1.

In the following lemma, �′ denotes a cone in C2. If π : Cn → {0} × C2

is a projection we denote the corresponding surjection by π̃ : Cn → C2, i.e.,
π(z) = (0, π̃(z)).

Lemma 4.8 Let d ≤ 1 and let γ be a real simple curve whose limit vector at
infinity is (0, . . . , 0, 1). Assume further that 0 ∈ Tγ,d V and that π : Cn → Cn,
π(z′, zn−1, zn) := (0, zn−1, zn) is noncharacteristic for Tγ,d V at 0. For each
neighborhood D of zero in Cn there are ε1, ε2 > 0 and R1 > 1 such that U1 :=
Bn−2(0, ε1) × B(0, ε2)

2 is a subset of D and

π : V ∩ �(γ, d, U1, R1) → �′ (π̃ ◦ γ, d, B(0, ε2)
2, R1

)

is proper.

Proof Fix a neighborhood D of 0 in Cn . There are ε1, ε2 > 0 such that

Bn−2(0, 2ε1) × B(0, 2ε2)
2 ⊂ D

and

Tγ,d V ∩
((

Bn−2(0, 2ε1) \ Bn−2(0, ε1/2)
)

× B(0, 2ε2)
2
)

= ∅.

We have to show that there is R1 such that for no y in �′(π̃ ◦γ, d, B(0, ε2)
2, R1) the

fiber V ∩ π−1(y) intersects the boundary of �(γ, d, U1, 0). Precise descriptions
of the boundary of conoids are difficult. However, it is easy to see that

∂�(γ, d, U1, 0) ∩ �(γ, d, Bn−2(2ε1) × B(0, ε2)
2, R1)

⊂ �(γ, d, ∂ Bn−2(0, ε1) × B(0, ε2)
2, 0). (4.1)

We claim that there is R1 such that the claim holds for ε1 and ε2 as cho-
sen above. Assume this were wrong. In view of (4.1) this means that there is a
sequence (z j ) j∈N with lim j→∞|z j | = ∞ and

z j ∈ V ∩π−1(�′(π̃ ◦ γ, d, B(0, ε2)
2, 0)

) ∩ �(γ, d, ∂ Bn−2(0, ε1)×B(0, 2ε2)
2, 0)
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for all j ∈ N. Each z j is of the form

z j = γ (t j ) + td
j (w

′′
j , w j,n−1, w j,n)

with |w′′
j | = ε1, |w j,n−1| < ε2, and |w j,n| < ε2. Furthermore, (w′′

j , w j,n−1, w j,n)

is in Vγ,d,t j and lim j→∞ t j = ∞. A compactness argument implies that the se-
quence (w′′

j , w j,n−1, w j,n) j∈N has an accumulation point w := (w′′, wn−1, wn).
Then w ∈ Tγ,d V with |w′′| = ε1, |wn−1| ≤ ε2, and |wn| ≤ ε2. As this contradicts
the choice of ε2 and ε1, the claim is proved. ��
Lemma 4.9 Let γ , d, π , and D be as in Lemma 4.8. Assume, furthermore, that 0
is a singularity of Tγ,d V which is not terminating for γ and d, set δ := �(γ, d, 0),
and fix a bounded set K ⊂ Cn. Then ε1, ε2, and R1 in Lemma 4.8 can be chosen
in such a way that there are σ, S > 0 such that with U2 := Bn−2(0, S)× B(0, σ )2

we have K ⊂ U2 and

V ∩ �(γ, d, U1, R1) ∩ π−1 (
�′(π̃ ◦ γ, δ, B(0, σ )2, R1)

) \ �(γ, δ, U2, R1) = ∅.

Proof We assume that U1 is so small that the origin is the only point in V ∩ U1
satisfying π(z) = 0, and we fix ε2 and ε1 as in Lemma 4.8. In the sequel, the curve
selection lemma from real algebraic geometry will be used. Hence we assume for
the remainder of the proof that a semi-algebraic norm has been chosen on Cn−2.
This is no restriction since the claim is independent of the choice of the norm—
only the constants may vary. Since the claim is unchanged if we cut off all terms
of γ whose exponents are strictly smaller than δ, we may also assume that γ is a
semi-algebraic function.

Fix σ so large that K ⊂ Cn−2 × B(0, σ )2 and assume the claim were false for
this value of σ and arbitrarily large S. Then there is a sequence (z j ) j∈N such that

z j ∈ V ∩ �(γ, d, U1, 0), j ∈ N,

π̃(z j ) ∈ �′(π̃ ◦ γ, δ, B(0, σ )2, 0), j ∈ N, (4.2)

z j 	∈ �(γ, δ, Bn−2(0, j) × B(0, σ )2, 0), j ∈ N, (4.3)

lim
j→∞|z j | = ∞.

Define

� : ]0, ∞[ × U1 \ R × {0} × C2 → �(γ, d, U1, 0),

(t, w′′, wn−1, wn) �→ γ (t) + td(w′′, wn−1, wn),

and

� : ]0, ∞[ × U1 \ R × {0} × C2 → ]0, ∞[ × U1,

(t, w′′, wn−1, wn) �→ (tδ−d |w′′|−1, w′′, wn−1, wn),

and let M := �−1
(
V ∩ �′(π̃ ◦ γ, δ, B(0, σ )2, 0)

)
.

Note that d and δ are rational since they are critical values. Hence M is a
semi-algebraic set and � and � are semi-algebraic functions. For j ∈ N pick w̃ j
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with �(t j , w̃ j ) = z j . By (4.3), the first component of �(t j , w̃ j ) converges to
zero. By (4.2) we have lim j→∞ π(w̃ j ) = 0. Finally, a compactness argument
shows that the sequence (w̃ j − π(w̃ j )) j∈N admits an accumulation point. Hence
there is a point of the form (0, ζ ′′, 0) in the boundary of �(M). By the curve
selection lemma (see Bochnak, Coste, and Roy [1], Théorème 2.2.5), there is
a semi-algebraic curve L1 in �(M) leading to (0, ζ ′′, 0). Set L := �−1(L1).
Then L admits a parametrization (t, w′′(t), wn−1(t), wn(t)) for large t such that
limt→∞(w′′(t), wn−1(t), wn(t)) = (ζ ′′, 0). Since this parametrization is semi-
algebraic, there are A 	= 0 and a < 0 such that tδ−d |w′′(t)|−1 = ta(A + o(1)) as
t → ∞. This implies

|w′′(t)| = tδ−d−a
(

1

A
+ o(1)

)
as t → ∞.

Since |w′′(t)| < ε1 by the choice of U1, we have

a > δ − d or

(
a = δ − d and

1

A
≤ ε1

)
. (4.4)

Note that γ (t) + tδ−atd+a−δw(t) = γ (t) + tdw(t) ∈ V . Hence td+a−δw(t) ∈
Vγ,t,δ−a . Since π̃(w(t)) ∈ �′(π̃ ◦ γ, δ, B(0, σ )2, 0) we have limt→∞ wn−1(t) =
limt→∞ wn(t) = 0. Furthermore, the choices of a and A imply

lim
t→∞ td+a−δ|w′′(t)| = 1/A.

Hence Tγ,δ−a V contains an element (w′′, 0, 0) with |w′′| = 1/A. We have to
consider two cases:

If δ < δ − a < d , then δ − a is not a critical value. Hence Tγ,δ−a V , being
homogeneous by [8], Proposition 5, contains the line through (w′′, 0, 0) and the
origin. This is a contradiction since the projection π is noncharacteristic for Tγ,d V
at the origin and hence, by [9], Corollary 4.15, for Tγ,δ−a V at infinity.

If a = δ − d , then the only element of the form (w′′, 0, 0) in Tγ,d V satisfying
|w′′| < 1/A ≤ ε1 is the origin. So we have a contradiction in this case also, and
the proof is complete. ��
Lemma 4.10 Let V be an algebraic surface in Cn, let γ be a real simple curve in
standard parametrization, and let d ≤ 1 be a critical value for γ and V . Assume
that 0 ∈ (Tγ,d V )sing is not terminating for γ and d and set δ := �(γ, d, 0).
Assume further that π : Cn → Cn, π(z′, zn−1, zn) := (0′, zn−1, zn)) is nonchar-
acteristic for Tγ,d V at 0 and that (0′, 0, 1) is the limit vector of γ at infinity.
If V is (γ, d, δ)-hyperbolic at 0 with respect to π , then there exist ε1, ε2 > 0,
S, σ, R ≥ 1, R0 ≥ R, 0 < η1 < ε1, 0 < η2 < ε2, and A0, B ≥ 1 such that for
U := Bn−2(0, ε1) × B(0, ε2)

2 and G := Bn−2(0, S) × B(0, σ )2 the following
holds:

Whenever u ∈ PSH(V ∩ �(γ, d, U, R)) satisfies

u(z) ≤ |z|d for z ∈ V ∩ �(γ, d, U, R),

u(z) ≤ 0 for z ∈ V ∩ Rn ∩ �(γ, d, U, R), (4.5)
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then

u(z) ≤ A0|Im z|
for z ∈ V ∩ �

(
γ, d, Bn−2(0, η1)×B(0, η2)

2, R0
) \ �(γ, δ, G, 0)

(4.6)

and

u(z) ≤ B|z|δ for z ∈ V ∩ �(γ, δ, 4G, R0). (4.7)

Proof It is clear that the claim is independent of the choice of the norm, only the
constants may vary. Therefore, we use the maximum norm in this proof.

Let R be as in the Definition 3.13 of (γ, d, δ)-hyperbolicity and let D and K
be the neighborhoods of zero which are denoted by U and G in that definition, i.e.,
if z ∈ V ∩ �(γ, d, D, R) satisfies π(z) ∈ R2 and π(z) 	∈ �′(π ◦ γ, δ, π(K ), 0),
then z is real. It is not difficult to see the existence of C1 such that π

(
γ (t)+ tδw

) 	∈
�′(π ◦ γ, δ, π(K ), 0) whenever w ∈ Cn satisfies |wn−1| ≥ C1.

We apply Lemma 4.9 to obtain ε1, ε2, R1, σ , S, U1, and U2 as in that lemma
such that U1 ⊂ D and K ⊂ U2. Define U and G as in the hypothesis. Set η1 :=
min(1/4, ε1/2) and η2 := min(1/4, ε2/2). Choose C2 such that |z| ≤ C2|π(z)|
whenever z ∈ �(γ, d, U, R1). Let R0 ≥ max(R, R1) be sufficiently large.

Let u ∈ PSH(V ∩ �(γ, d, U, R)) satisfying (4.5) be given, and fix z ∈ V ∩
�(γ, d, Bn−2(0, η1) × B2(0, η2), R0). Then there are

t ′ > R0 and w′ ∈ Bn−1(0, η1) × B2(0, η2)

such that z = γ (t ′) + (t ′)dw′. We set t := t ′ + (t ′)d Re w′
n and define

w := t−d(
γ (t ′) − γ (t)

) + (
t ′/t

)d
w′.

This implies

z = γ (t) + tdw, (4.8)

Since |w′| < η2 ≤ 1/4, the mean value theorem shows that w ∈ Bn−2(0, 2η1) ×
B2(0, 2η2) provided R0 is sufficiently large. The advantage of w over w′ is that
Re wn = 0 since γ is in standard parametrization. These values of t and w will be
fixed for the remainder of the proof.

Define

a : B2(0, 1) → C2, a(ζ ) := π ◦ γ (t) + tdε2ζ.

Then a(ζ ) ∈ �′(π ◦ γ, d, B2(0, ε2), R0/2) for all ζ ∈ B2(0, 1). Furthermore,
we have |a(ζ )| < 2t + ε2td < 3t for all ζ ∈ B2(0, 1) provided R0 is chosen
sufficiently large. Similarly, we have |a(ζ )| > t/3 for all ζ ∈ B2(0, 1).

Set C3 := max(3dCd
2 , 3−d) and define

v : B2(0, 1) → [−∞,∞[,
v(ζ ) := C−1

3 t−d max
{
u(z) : z ∈ V ∩ (γ (t) + tdU ), π(z) = a(ζ )

}
.



404 R.W. Braun et al.

We claim that v is plurisubharmonic. For those points ζ for which all points in
π−1(ζ )∩ V ∩ (γ (t)+ tdU ) are regular points of V this is clear since the restriction
of π to V ∩ �(γ, d, U, R0/2) is proper by Lemma 4.8. In the other points, the
argument in Hörmander [12], Lemma 4.4, can be used to show that the singularity
of v is removable.

For ζ ∈ B2(0, 1) fix y ∈ V ∩ (γ (t) + tdU ) with π(y) = a(ζ ). Then |y| ≤
C2|a(ζ )| ≤ 3C2t and |y| ≥ |a(ζ )| ≥ t/3. This implies in particular that |y|d ≤
C3td . Hence the first inequality of (4.5) implies v(ζ ) ≤ 1.

Next assume that R0 is so large that ε3 := C1ε
−1
2 tδ−d satisfies ε3 < 1/2 and

consider ζ ∈ B2(0, 1) ∩ R2 with |ζ1| ≥ ε3. Fix y ∈ V ∩ (γ (t) + tdU ) with
π(y) = a(ζ ). There is x ∈ U with y = γ (t) + td x . Then

|xn−1| = tdε2|ζ1| ≥ tdε2ε3 = C1tδ.

In particular, π(y) 	∈ �′(π ◦ γ, δ, π(K ), 0). Hence y is real by the choice of K .
Since this holds for all such y, we have v(ζ ) ≤ 0 by the second inequality of (4.5).

Set λ := σC−1
1 . We have verified the hypotheses of [3], Lemma 5.8, with ε3

in the place of ε. This lemma—which is basically an estimate for the harmonic
measure of the slit polydisk—together with [3], Lemma 5.7, implies the existence
of a constant C4, depending only on λ, such that

v(ζ ) ≤
{

C4 (|Im ζ1| + |Im ζ2|) , λε3 ≤ |ζ1| < 1/2, |ζ2| < 1/2,

C4 (ε3 + |Im ζ2|) , |ζ1| < λε3, |ζ2| < 1/2.
(4.9)

We have to evaluate (4.9) at the point z which was chosen initially. To do
so, fix ζ ∈ B2(0, 1) such that a(ζ ) = π(z). Then ε2ζ = (wn−1, wn). In partic-
ular, |ζ1|, |ζ2| < 1/2. We start with the proof of (4.6). This inequality follows
immediately from the first line of (4.9) if |ζ1| ≥ λε3. So assume |ζ1| < λε3. We
only have to prove (4.6) if z 	∈ �(γ, δ, G, 0). Then Lemma 4.9 implies π(z) 	∈
�′(π ◦ γ, δ, π(G), 0). Hence td−δ|π(w)| ≥ σ and |ζ | ≥ ε−1

2 σ tδ−d = λε3. Since
|ζ1| < λε3, this implies |ζ2| ≥ λε3. However, ζ2 is purely imaginary by the choice
of w. Hence the first estimate of (4.9) implies

v(ζ ) ≤ C4(ε3 + |Im ζ2|) ≤ C4

(
1

λ
|Im ζ2| + |Im ζ2|

)
.

This completes the proof of (4.6).
Now we prove (4.7). We only have to do this if z ∈ �(γ, δ, 4G, 0). In this case,

tδ−d |π(w)| < 4σ and hence |ζ | < 4λε3. If the first line of (4.9) is applicable, we
get v(ζ ) ≤ 8C4λε3, otherwise v(ζ ) ≤ C4(1+4λ)ε3. In both cases, (4.7) is shown.

��
Definition 4.11 A pure dimensional algebraic variety V in Cn is said to satisfy the
strong radial Phragmén-Lindelöf condition (SRPL) if there are constants A ≥ 1,
B ≥ 0 such that each u ∈ PSH(V ) which satisfies

(α) u(z) ≤ |z| + o(|z|), z ∈ V
(β) u(z) ≤ 0, z ∈ V ∩ Rn

also satisfies



Algebraic surfaces satisfying (SPL) 405

(γ ) u(z) ≤ A|z| + B, z ∈ V .

Proof of Theorem 4.3 (a) ⇒ (b): This holds by Theorem 3.16.
(b) ⇒ (c): This holds by the arguments that we gave in the proof of Corollary 4.4
to derive condition (1”) from condition 3.15 (1).
(c) ⇒ (a): Since Vh is homogeneous and satisfies (SPL) by hypothesis, each irre-
ducible component W of Vh satisfies PLloc(0). Hence W satisfies the dimension
condition by the Remark after 3.6. In particular, each irreducible component W
of Vh has real regular points. By condition (3) of 4.3 (c) V is (γξ , 1)-hyperbolic
at such a point ξ ∈ W ∩ Sn−1 for γξ (t) := tξ . In the notation of [4], 2.8, this
means that V is locally hyperbolic at infinity in the direction ξ . Hence V satisfies
the condition (SRPL) by [4], Theorem 5.1. By condition (1) of 4.3 (c), V satisfies
PLloc(ξ) at each ξ ∈ V ∩ Rn . Therefore, two of the three conditions in Meise and
Taylor [14], Proposition 4.5, are satisfied and it follows that V satisfies (SPL) if
the following condition holds:

For each ξ ∈ Vh ∩ Sn−1 there exist A ≥ 1, R ≥ 1, and 0 < δ < 1
such that for γξ (t) := tξ, t ≥ 1, each u ∈ PSH(V ) which
satisfies the conditions (α) and (β) of 3.1 also satisfies u(z) ≤
A| Im z|, z ∈ V ∩ �(γ, 1, B(0, δ), R).

(4.10)

To prove that (4.10) holds, recall from 4.2 that there we defined

M0 := {ξ ∈ (Vh)sing ∩ Sn−1 : ξ is not terminating}
and that M0 = ∅ is equivalent to K = ∅. Then note that by the present hypothesis,
V is (γξ , 1)-hyperbolic at 0 ∈ Tγξ ,1V for each ξ ∈ Vh ∩Sn−1 \ M0 and γξ (t) := tξ .
Hence Lemma 4.6 implies that condition (4.10) holds for each ξ ∈ Vh ∩ Sn−1 \ M0.
Therefore, V satisfies (SPL) whenever M0 = ∅ or equivalently K = ∅.

To complete the proof if K 	= ∅ we define for each ξ ∈ M0 the sets

Rξ : = {C ∈ R(V ) : C = (ζ j , d j )
l
j=1, ζ1 = ξ},

Kξ : = {(γC , dl−1, dl) : C ∈ Rξ }.
By the definition of R(V ) there exists D ∈ Rξ with D = (ζ j , d j )

2
j=1. Since

γD(t) = ζ1t = ξ t = γξ (t), and since d1 = 1, the triple (γξ , 1, d2) belongs to Kξ .
Now we claim that the following assertion holds:

For each ξ ∈ M0, and each (γ, d, δ) ∈ Kξ there exist a
zero neighborhood G in Cn and r > 0 such that V satisfies
PL(V, �(γ, d, G, r)).

(4.11)

By the preceding considerations, (4.11) implies that (4.10) holds for all ξ ∈ M0
and hence for all ξ ∈ Vh ∩ Sn−1. Thus, the proof is complete once the claim (4.11)
is proved.

To prove (4.11) we fix ξ ∈ M0 and note that Rξ has a natural order structure,
which is defined in the following way: For C, D ∈ Rξ let C ≤ D if l(C) ≤ l(D)
and if the first l(C) components of C and D coincide. Obviously, this ordering
induces an order structure of K. It can be used to prove (4.11) in the following
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way: In step 1 we show that (4.11) holds for each maximal element (γ, d, δ) of
Kξ . Then we show in step 2 that (4.11) holds for (γ, d, δ) ∈ Kξ which is not max-
imal, provided that (4.11) holds for all (κ, s, σ ) ∈ Kξ which are direct successors
of (γ, d, δ). By an obvious induction over the length of C ∈ Rξ these two steps
imply that (4.11) holds for each ξ ∈ M0.
Step 1: Assume that (γ, d, δ) is a maximal element of Kξ . By the definition of a nor-
mal critical set this implies that all points of Tγ,δV ∩Rn are either regular points or
terminating singularities for γ and δ. To prove that V satisfies PL(V, �(γ, d, G, r))
for some neighborhood G in Cn and some r > 1, note first that by hypothesis,
V is (γ, d, δ)-hyperbolic at 0 ∈ Tγ,d V and that for each ζ ∈ Tγ,δV ∩ Rn the
variety V is (γ, δ)-hyperbolic at ζ . Hence we can apply Lemma 4.10. Using the
notation which was introduced in this lemma, let � := �(γ, d, U, R) and fix
u ∈ PSH(V ∩ �) satisfying condition (4.5). Then Lemma 4.10 implies that for
U0 := Bn−2(0, η1) × B(0, η2)

2 we have the estimates

u(z) ≤ A0| Im z|, z ∈ V ∩ �(γ, d, U0, R0) \ �(γ, δ, G, R0) (4.12)

and

u(z) ≤ B|z|δ, z ∈ V ∩ �(γ, δ, 4G, R0). (4.13)

Since we remarked already that V is (γζ , δ)-hyperbolic at each ζ ∈ Tγ,δV ∩ Rn , it
follows from Lemma 4.6, that there exist a zero neighborhood Gζ in Cn and Rζ > 1
such that V satisfies PL(V, �(γζ , δ, Gζ , Rζ )) or equivalently PL(V, �(γ, δ, ζ +
Gζ , Rζ )) for each ζ ∈ (Tγ,δV ) ∩ Rn . By Lemma 4.7 (b), this implies that V satis-
fies PL(V, �(γ, δ, 4G, , 2G, R0)). Hence it follows from the estimate (4.13) that
there exists A1, not depending on u, so that

u(z) ≤ A1| Im z|, z ∈ V ∩ �(γ, δ, 2G, R0). (4.14)

From (4.14) and (4.12) it follows that V satisfies PL(V, �(γ, d, U0, R0)). Hence
we proved (4.11) in the case that (γ, d, δ) is a maximal element of Rξ .
Step 2: Assume that (γ, d, δ) ∈ Kξ is not maximal and that (4.11) holds for
each (κ, s, σ ) ∈ Kξ which is a direct successor of (γ, d, δ). Then choose C =
(ζ j , d j )

l
j=1 in Rξ so that (γ, d, δ) = (γC , dl−1, dl). Since (γ, d, δ) is not maxi-

mal, there is D ∈ Rξ with D > C . This implies that Tγ,δV = TγC ,dl V contains
a real singular point which is not terminating for γ and δ. If ζ is such a point,
define γζ by γζ (t) := γ (t) + ζ tδ and let ζl+1 := ζ and dl+1 := �(γζ , δ, ζ ). Then
Cζ := (ζ j , d j )

l+1
j=1 is a normal critical set which is a direct successor of C . Hence

the present hypothesis implies that V satisfies PL(V, �(γζ , δ, Gζ , Rζ )) for some
Rζ > 1 and zero neighborhood Gζ in Cn . At each ζ ∈ Tγ,δV ∩Rn which is regular
or terminating for γ and δ, the variety V is (γζ , δ)-hyperbolic by condition (4) of
4.3 (c). By Lemma 4.6, this implies that V satisfies PL(V, �(γζ , δ, Gζ , Rζ )) for
some zero neighborhood Gζ in Cn and some Rζ > 1.

Next note that V is (γ, d, δ)-hyperbolic at 0 ∈ Tγ,d V by condition (4) of 4.3 (c).
Hence we conclude from Lemma 4.10 as in the first step that each u ∈ PSH(V ∩�)
which satisfies (4.5) also satisfies the estimates (4.12) and (4.13). By the consider-
ations above, we conclude as before that PL(V, �(γ, δ, 4G, 2G, R0)) is satisfied
for V . It follows as before that V satisfies PL(V, �(γ, d, U0, R0)). Thus we showed
that (4.11) holds for (γ, d, δ). As we already indicated, this completes the proof of
Theorem 4.3. ��
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To complete the proof of Theorem 3.10, we need the following lemma, whose
proof is essentially the same as that of [5], Lemma 3.19.

Lemma 4.12 Let V be an algebraic variety of pure dimension k in Cn, let γ be a
real simple curve in C, d ≤ 1, and κ ∈ (Tγ,d V )reg ∩ Rn. If V is (γ, d)-hyperbolic
at κ then V is (γ, d)-hyperbolic at κ with respect to each projection π in Cn which
is noncharacteristic for Tγ,d V at κ .

Remark 4.13 To complete the proof of Theorem 3.10, we show that 3.10 (b) implies
3.10 (a) and that 3.10 (b) is equivalent to 3.10 (c). To prove the first implication we
argue as follows: As in the proof of Theorem 4.3, the present hypothesis and Me-
ise and Taylor [14], Proposition 4.5, imply that V satisfies (SPL) if we show that
condition (4.10) is fulfilled. Now note that for each η ∈ V ∩ Sn−1 and γη(t) := tη,
the variety V is (γη, 1)-hyperbolic at 0 by the present hypothesis. Hence Lemma
4.6 implies condition (4.10).

To show that 3.10 (b) and 3.10 (c) are equivalent, note first that 3.10 (c) for
some projection π obviously implies 3.10 (b). For the converse implication let
π be a projection in Cn which is noncharacteristic for Vh at infinity. Then the
present hypotheses imply that Vh is given by (3.1) with a j ∈ R and a j /∈ ker π ,
1 ≤ j ≤ µ. Therefore, it is easy to check that 3.10 (b) together with Lemma 4.12
implies the assertions of 3.10 (c) for the projection π . Thus the proof of Theorem
3.10 is complete.

5 Examples

In this section we provide some examples which show how the main results of the
present paper can be applied. We begin with two examples concerning algebraic
curves in C2.

Example 5.1 Let P ∈ C[x, y] be defined as

P(x, y) := x3 − x2 y − xy2 + y3 + x2 − y2 − 1.

Then V (P) satisfies (SPL), while the principal part P3 of P is not square-free.
To show that V (P) satisfies (SPL), we check the conditions of Corollary 3.11.

Note first that gradP does not vanish on V (P). Since P has real coefficients, it fol-
lows from this, the implicit function theorem, and [5], Proposition 3.16, that V (P)
satisfies PLloc(ξ) for each ξ ∈ V (P) ∩ R2. Hence condition 3.11 (a) is satisfied.

To show that also condition (b) of 3.11 is fulfilled, note that for each x ∈ R,
|x | > 3 the equation P(x, y) = 0 has three different real solutions. To show this,
note first that

P(x, y) = (x + y)(x − y)(x − y + 1) − 1.

From this we get that for x > 3 we have:

P(x, y) < 0 if y < −x or y = x, while P(x, y) > 0 if y = 0 or y > x + 2.
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For x < −3 we have

P(x, y) < 0 if y < x or y = 0, while

P(x, y) > 0 if y = x + 1

2
or y > 2 − x .

Obviously, these sign changes imply that condition (b) of 3.11 holds for ξ = (1, 0).
Hence V (P) satisfies (SPL) by Corollary 3.11. However,

P3(x, y) = (x − y)2(x + y)

is not square-free.

Example 5.2 Let P ∈ C[x, y] be defined by

P(x, y) := 4x4 − 5y2x2 + y4 − 8x2 − 8y2 + 3.

Then V (P) satisfies (SPL) and V (P)∩R2 contains a connected component which
is bounded. As in the previous example it can be derived from Corollary 3.11 that
V (P) satisfies (SPL). To show that V (P) ∩ R2 has a bounded connected compo-
nent, note first that P(0, 0) = 3 > 0. Since it is easy to check that P is negative
on the boundary of the rectangle R := [−1, 1] × [−2, 2], V (P) ∩ R2 must have a
bounded component in the interior of R.

To treat examples of surfaces in C3 in a convenient way we will use the fol-
lowing lemma. It can be proved by an obvious modification of the proof of [6],
Lemma 5.1.

Lemma 5.3 Let P ∈ R[z1, . . . , zn] \ C, a real simple curve γ with Puiseux series
expansion γ (t) = ∑q

j=−∞ a j t j/q , and d ∈ Q ∩ ] − ∞, 1] be given. Expand

P(γ (t) + w) =
∑

j∈Z,α∈N
n
0

a j,αt j/qwα =
∞∑

k=0

Fωk (w, t),

where ω0 = ω0(d) := max{ j/q + d|α| : a j,α 	= 0} and

Fωk (w, t) =
∑

j/q+d|α|=ωk

a j,αt j/qwα.

If
∂ Fω0
∂zn

(ξ, 1) 	= 0 for some ξ ∈ V (Fω0(·, 1))∩Rn, then V (P) is (γ, d)-hyperbolic
at ξ with respect to the projection π : Cn → Cn, π(z′, zn) := (z′, 0).

Remark 5.4 For an algebraic surface V in Cn one can determine the set K(V ) of
relevant triples for V directly by induction. To do so let

M0 := {ξ ∈ (Vh)sing ∩ Sn−1 : ξ is not terminating}.
If M0 = ∅ then let K(V ) := ∅. Otherwise fix ξ ∈ M0, define the curve γξ by
γξ (t) := tξ, t ≥ 1, and let

K1 := {(γξ , 1, �(γξ , 1, 0)) : ξ ∈ M0}.
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If K j 	= ∅ is already constructed then let

K j,c := {(γ, d, δ) ∈ K j : there is ζ ∈ (Tγ,δV )sing ∩ Rn

which is not terminating for γ and δ}.
If K j,c = ∅ then define K(V ) := ∅. Otherwise fix (γ, d, δ) ∈ K j,c, denote by η
the limit vector of γ at infinity, and let

M(γ,d,δ) := {ζ ∈ (Tγ,δV )sing ∩ Rn : 〈ζ, η〉 = 0, ζ not terminating for γ and δ}.
For ζ ∈ M(γ,d,δ) let γζ (t) := γ (t) + ζ tδ and define

K j+1 := {(γζ , δ, �(γ, δ, ζ )) : ζ ∈ M(γ,d,δ), (γ, d, δ) ∈ K j,c}.
Since it is easy to check that

K j = {(γC , d j , d j+1) : C ∈ R(V ), l(C) = j + 1},
the procedure ends after finitely many steps and gives K(V ) = ⋃N

j=1 K j for
N := max{l(C) − 1 : C ∈ R(V )}.
Example 5.5 If P ∈ R[x, y, z] is defined as

P(x, y, z) := 1

2
y(x2 − y2) − (x − y)z + z,

then V (P) satisfies (SPL).

To derive this from Theorem 4.3, note first that gradP does not vanish on V (P).
Hence each point ξ ∈ V (P)∩R3 is a regular point and V (P) satisfies PLloc(ξ) by
[5], Proposition 7.4. Thus condition (1) of Theorem 4.3 (c) is fulfilled. Next note
that for V = V (P) we have

Vh = V (Q) for Q(x, y, z) := y(x2 − y2).

Hence Vh is the union of three complex planes, each of which has real generators.
Consequently, Vh satisfies (SPL). Whenever ξ ∈ Vh ∩ R3 is a regular point of Vh
then gradQ(ξ) 	= 0. Hence it follows from Lemma 5.3 that V is (γξ , 1)-hyperbolic
at ξ for γξ (t) := tξ . To show that each ξ ∈ (Vh)sing ∩ S2 is not terminating,
assume that there is such a point ξ which is terminating. Then it follows from [9],
Proposition 4.17, that there exists a simple curve σ which satisfies tr(σ ) ⊂ Vsing.
However, this is a contradiction, since we remarked already that all points of V are
regular. Hence the conditions (2) and (3) of 4.3 (c) are fulfilled.

To show that also condition (4) of 4.3 (c) holds, note that

(Vh)sing ∩ S2 = {(0, 0, 1), (0, 0,−1)} =: M0.

If we let γ±(t) := (0, 0,±t), t > 0, then a direct computation using [8], Corol-
lary 4, shows

Tγ±,d V = Vh, 1/2 < d ≤ 1,

Tγ±,1/2V = {(x, y, z) ∈ C3 : (x − y) (y(x + y)/2 ∓ 1) = 0}.
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Thus we get from 4.2 that

K1 = {(γ+, 1,
1

2
), (γ−, 1,

1

2
)}.

It is easy to check that Tγ−,1/2V has no real singularities while

(Tγ+,1/2V )sing ∩ R3 = {(1, 1, z) : z ∈ R} ∪ {(−1,−1, z) : z ∈ R}.
Hence we have K1,c = {(γ+, 1, 1/2)}. Note that by the same argument as before,
the points (1, 1, 0) and (−1, −1, 0) of (Tγ+,1/2V )sing are not terminating for γ+
and d = 1/2. If we define σ+(t) := (

√
t,

√
t, t) and σ−(t) := (−√

t, −√
t, t) then

we get from [8], Corollary 4, that

Tσ+,1/2V = {(x, y, z) ∈ C3 : 1

2
(y(x2 − y2) − 4y2 + (x + y)2) = 0}

Tσ+,d V = {(x, y, z) ∈ C3 : −2y2 + (x + y)2/2 = 0}, 1

4
< d <

1

2
,

Tσ+,1/4V = {(x, y, z) ∈ C3 : 1

2
(x + y)2 − 2y2 + 1 = 0}. (5.1)

Tσ−,1/2V = {(x, y, z) ∈ C3 : 1

2
(y(x2 − y2) + 4y2 − (x + y)2) = 0}

Tσ−,d V = {(x, y, z) ∈ C3 : 2y2 − (x + y)2/2 = 0}, 1

4
< d <

1

2
,

Tσ−,1/4V = {(x, y, z) ∈ C3 : 2y2 − (x + y)2/2 + 1 = 0}.
From the preceding considerations, (5.1), and the construction in 4.2 we now get

K2 = {(σ+,
1

2
,

1

4
), (σ−,

1

2
,

1

4
)}.

As (5.1) shows, Tσ±,1/4V is a manifold. Hence we have

K = K1 ∪ K2.

As Tγ±,1/2V and Tσ±,1/4V do not contain real terminating singularities, we have
to show that V is (γ±, 1/2)-hyperbolic at each ξ ∈ (Tγ±,1/2V )reg ∩ R3 and that V
is (σ±, 1

4 )-hyperbolic at each ξ ∈ (Tσ±,1/4V )reg ∩ R3. It is easy to check that these
statements follow from Lemma 5.3 and the above equations defining these limit
varieties. To complete the proof it therefore suffices to show that V is (γ±, 1, 1

2 )-
hyperbolic at 0 ∈ Tγ±,1V and that V is (σ±, 1

2 , 1
4 )-hyperbolic at 0 ∈ Tσ±,1/2V .

To prove the first assertion for γ+, fix z ∈ R, z > 1, and x ∈ R. We assume
first that x > 2

√
z. Then it is easy to check that

P(x, −2x, z) > 0, P(x, 0, z) < 0, P(x, x, z) > 0, P(x, 2x, z) < 0.

Hence P has three real zeros y j (x, z), 1 ≤ j ≤ 3, satisfying

−2x < y1(x, z) < 0 < y2(x, z) < x < y3(x, z) < 2x .
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If x < −2
√

z then one can check that

P(x, 2x, z) > 0, P(x, x/2, z) < 0, P(x, 0, z) > 0, P(x, −2x, z) < 0.

As in the case x > 2
√

z, this implies that P(x, ·, z) has three real zeros in the
interval ]2x,−2x[. Now define π : C3 → C3, π(x, y, z) := (x, 0, z), and

� := {(x, y, z) ∈ C3 : |z| > 1, |1 − z

|z| | <
1

4
, |x | < 2|z|, |y| < 2|z|}.

Then the considerations above show that V is (γ+, 1, 1/2)-hyperbolic at 0 ∈
Tγ+,1V in � with respect to π .

The same arguments show that V is (γ−, 1, 1/2)-hyperbolic at 0 ∈ Tγ−,1V . In
fact, a closer inspection shows that V is even (γ−, 1)-hyperbolic at 0 ∈ Tγ−,1V
with respect to the projection π which is given by ker π = {(−λ, λ/2, 0) : λ ∈ C}
and im π = {(λ, 2λ, ζ ) : (λ, ζ ) ∈ C2}.

Concerning the curves σ± we show more, namely, that V is (σ±, 1
2 )-hyperbolic

at 0 ∈ Tσ±,1/2V . We do this only for σ+ since the arguments are essentially the
same for σ−. To prove our claim, note first that T0(Tσ+,1/2V ) = {(x, y, z) ∈ C3 :
(x + y)2/2 − 2y2 = 0}.

Hence the projection π : (x, y, z) �→ (x, 0, z) is noncharacteristic at 0 ∈
Tσ+,1/2V . Then fix z ∈ R, z > 1, and x ∈ R satisfying |x | ≤ √

z/3 and define

Q(x, y, z) : = P(
√

z + x,
√

z + y, z)

= 1

2
(
√

z + y)(x − y)(x + y + 2
√

z) + z(1 − x + y).

We claim that

Q(x, −3
√

z/4, z) < 0, Q(x, x, z) = z > 0, Q(x, 3
√

z/4, z) < 0. (5.2)

To prove this claim, note first that λ �→ Q(λ, −3
√

z/4, z) is a quadratic polynomial
in λ with leading coefficient

√
z/8, which is negative at λ = ±√

z/3. Hence it must
be negative for all λ ∈ [−√

z/3,
√

z/3], which implies the first inequality in (5.2)
for |x | ≤ √

z/3. The last inequality in (5.2) follows by similar arguments. Since
Q(x, x, z) = z is easy to check, our claim is proved. Obviously, it implies that for
each x satisfying |x | ≤ √

z/3, the polynomial y �→ Q(x, y, z) has two real zeros
y1,2(x, z) satisfying |y j (x, z)| < 3

√
z/4. Since Q(x, ·, z) is a cubic polynomial

which satisfies Q(x, −z, z) > 0 for |x | ≤ √
z/3, its third zero y3(x, z) is also real

and satisfies |y3(x, z)| > 3
√

z/4. From these facts it now follows easily that V is
(σ+, 1/2)-hyperbolic at 0 ∈ Tσ+,1/2V .

Example 5.6 Let P5, R, S, P and Q ∈ C [x, y, z] be defined as

P5(x, y) : = (x − y/2)(x2 − y2)(x2 − 4y2)

R(x, y, z) : = −y(y − 3x)z2 − z2 + 1, P := P5 + R

S(x, y, z) : = −y(y − 3x)z2 − z2, Q := P5 + S.

Then the following assertions hold:
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(a) V (P) satisfies (SPL).

(b) V (Q) does not satisfy (SPL).

Proof (a) To derive this from Theorem 4.3, note first that gradP does not vanish on
V (P). Hence we conclude as in the previous example that condition (1) of 4.3 (c)
is satisfied. Then note that

Vh = V (P5) = {(x, y, z) ∈ C3 : (x − y/2)(x2 − y2)(x2 − 4y2) = 0}
is the union of five complex planes which have real generators. Hence Vh satis-
fies (SPL) and consequently condition (2) of 4.3 (c) holds. To prove that also the
conditions (3) and (4) of Theorem 4.3 are fulfilled, note first that

V (P5)sing ∩ S2 = {(0, 0, 1), (0, 0, −1)} =: M0,

and define γ±(t) := (0, 0,±t). Using [8], Corollary 4., it is easy to check that
V = V (P) has the following limit varieties:

Tγ±,d V = {(x, y, z) ∈ C3 : (x − y/2)(x2 − y2)(x2 − 4y2) = 0}, 2

3
< d ≤ 1

Tγ±, 2
3
V = {(x, y, z) ∈ C3 : (x − y/2)(x2 − y2)(x2 − 4y2) − y(y − 3x) = 0}

Tγ±,d V = {(x, y, z) ∈ C3 : y(y − 3x) = 0}, 0 < d <
2

3
Tγ±,0V = {(x, y, z) ∈ C3 : y(y − 3x) + 1 = 0}
Tγ±,d V = ∅, −∞ < d < 0. (5.3)

Since V (P) has no singular points, it follows as in Example 5.5 that the points in
M0 are not terminating. At each regular point ξ ∈ Vh ∩ Sn−1 we can use Lemma
5.3 to see that V is (γξ , 1)-hyperbolic at 0 for γξ (t) := tξ . Hence condition (3) of
4.3 (c) holds.

Next note that by the definition of the set K1 in 4.2, we have

K1 = {(γ+, 1,
2

3
), (γ−, 1,

2

3
)}.

From (5.3) we get

(Tγ±,2/3V )sing ∩ R3 = {(0, 0, z) : z ∈ R}.
Since all points of V (P) are regular, the singular point (0, 0, 0) ∈ Tγ±,2/3V is not
terminating for γ± and 2/3. Thus we have K1,c = K and it follows from (5.3) and
the construction in 4.2 that

K2 = {(γ+,
2

3
, 0), (γ−,

2

3
, 0)}.

Since all points of Tγ±,0V are regular, we have K2,c = ∅. Thus we showed that
K = K1 ∪ K2.

Next note that Tγ±,2/3V does not contain any real singular points which are ter-
minating and that Tγ±,0V does not contain any singular points at all. Furthermore,
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by Lemma 5.3, V is (γ±, 2/3)-hyperbolic at each ξ ∈ (Tγ±,2/3V )reg ∩ R3 and
(γ±, 0)-hyperbolic at each ξ ∈ (Tγ±,0V )reg ∩ R3. Hence it remains to show that V
is (γ±, 1, 2/3)-hyperbolic at 0 ∈ Tγ±,1V and that V is (γ±, 2/3, 0)-hyperbolic at
0 ∈ Tγ±,2/3V .

To show that V is (γ+, 1, 2/3)-hyperbolic at 0 ∈ Tγ+,1V , note first that the pro-
jection π(x, y, z) := (x, 0, z) is noncharacteristic for Tγ+,1V at 0 or equivalently
for Vh at (0, 0, 1). Then some computation shows that for z ≥ 27 and x ≥ 2z2/3

we have

P(x, 3x, z) < 0, P(x, x, z) > 0, P(x, 3x/4, z) < 0,

P(x, 0, z) > 0, P(x, −3x/4, z) < 0, and P(x, −2x, z) > 0,

while for x < −z2/3 we have

P(x, −x, z) < 0, P(x, −3x/4, z) > 0, P(x, 0, z) < 0,

P(x, 3x/4, z) > 0, P(x, 4x/3, z) < 0, and P(x, 3x, z) > 0.

From this it follows as in the previous example that V is (γ+, 1, 2/3)-hyperbolic
at 0 ∈ Tγ+,1V . Since P is an even function of z, the same arguments apply for γ−.

To derive the (γ±, 2/3, 0)-hyperbolicity of V , note first that the projection π
from above is also noncharacteristic for Tγ±,2/3V . To determine the real zeros of
V in the conoid �(γ+, 2

3 , G, r) for a suitable zero neighborhood G, we consider
the equation

0 = P(t2/3x, t2/3 y, t)/t10/3

= (x − y/2)(x2 − y2)(x2 − 4y2) − y(y − 3x) − t−4/3 + t−10/3.

Using the theorem of Rouché it is easy to check that for t ≥ 1 and t−2/3 ≤ |x | ≤ 1
20

and x real, this equation has exactly two solutions y1(x), y2(x) ∈ B(0, 1/5). Since
the roots of the equation y(y − 3x) = 0 are real and distinct in this range of x , a
standard application of the real and the complex implicit function theorem shows
that y1(x) and y2(x) must be real for real x . Rescaling these assertions, we get that
V is (γ+, 2/3, 0)-hyperbolic at 0. For γ− the same arguments apply.

(b) To show that V (Q) does not satisfy PLloc(0), note that the tangent cone to
V (Q) at zero is given by

T0V (Q) = {(x, y, z) ∈ C3 : z = 0}.
Hence the projection π(x, y, z) := (x, y, 0) is noncharacteristic for T0V (Q) at
zero. Next define γ (t) := (−t, 0, 0) for 0 ≤ t ≤ 1 and note that

π−1(γ (t)) ∩ V (Q) ⊃ {(−t, 0, i t5/2), (−t, 0,−i t5/2)}, 0 < t < 1.

Since these points belong to �(γ, 1, B(0, ε), r) for each ε > 0 and 0 < r ≤ r(ε),
we proved that V (Q) is not (γ, 1)-hyperbolic at 0 ∈ Tγ,1V (Q), in the notation
of [5]. Hence it follows from [5], Proposition 3.12, that V (Q) does not satisfy
PLloc(0). Since the latter condition is necessary for V (Q) to satisfy (SPL) by
Proposition 3.4, we proved (b). ��
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Next we indicate how the results of this paper can be used to derive the main
theorem of [3]. For that purpose, recall that for P ∈ C[z1, . . . , zn] and θ ∈ Cn the
localization Pθ of P at θ is defined as the lowest degree homogeneous term in the
Taylor expansion of P at θ .

Lemma 5.7 Let Pm ∈ C[z1, . . . , zn] be homogeneous of degree m ≥ 2 and define
V+ := {z ∈ Cn : Pm(z) = 1}. If V+ satisfies (SPL) then for each θ ∈ V (Pm)∩Sn−1

the variety

Wθ,+ := {z ∈ Cn : (Pm)θ (z) = 1}
satisfies (SPL).

Proof Fix θ ∈ V (Pm) ∩ Sn−1. After a real linear change of variables we may
assume that θ = (0, . . . , 0, 1). Then we expand

Pm(z′, zn) =
m∑

j=ν

Q j (z
′)zm− j

n

where Q j ∈ C[z1, . . . , zn−1] is either homogeneous of degree j or identically zero
and where Qν 	≡ 0. By [3], Lemma 3.9, we have (Pm)θ (z′, zn) = Qν(z′). Next
define γ (t) := (0, . . . , 0, t) and consider for P := Pm − 1 the expansion

P(γ (t) + z) =
m∑

j=ν

Q j (z
′)(t + zn)

m− j − 1

=
m∑

j=ν

Q j (z
′)

m− j∑

k=0

(
m − j

k

)
tk zm− j−k

n − 1.

From the Newton diagram of this expansion and [8], Corollary 4, it follows that
we have

Tγ,1V+ = {(z′, zn) ∈ Cn : Pm(z′, zn+1) = 0},
Tγ,d V+ = {(z′, zn) ∈ Cn : Qν(z

′) = 0}, 1 − m

ν
< d < 1, (5.4)

Tγ,1− m
ν

V+ = {(z′, zn) ∈ Cn : Qν(z
′) − 1 = 0}.

By Proposition 3.5, all these varieties satisfy (SPL). Since (Pm)θ = Qν , the proof
of the lemma is complete. ��
Lemma 5.8 Let Qm ∈ C[z1, . . . , zn] be homogeneous of degree m and define
W± := {z ∈ Cn : Qm(z) = ±1}. If both varieties W+ and W− satisfy (SPL) then
Qm is square-free.

Proof To argue by contradiction, we assume that Qm = Rk S for suitable R, S ∈
C[z1, . . . , zn], R not constant and k ≥ 2. By Proposition 3.5, the present hypothe-
ses imply that V (Qm) and consequently V (R) and V (S) satisfy (SPL). Therefore,
we may assume by Lemma 3.17 (b) that R and S have real coefficients. Moreover,
we can choose a regular point ξ ∈ V (Qm)∩Sn−1 which is in V (R). Then we define
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the real simple curve γ by γ (t) := ξ t . By Proposition 3.9, the present hypothesis
implies that W+ and W− are both (γ, 1)-hyperbolic at 0 ∈ Tγ,1W± = V (Qm) − ξ
for each projection π : Cn → Cn which is noncharacteristic for Tγ,1W± at the
origin. Fix such a projection π which is even noncharacteristic for V (Qm) at
infinity. Choosing appropriate coordinates, we may assume ξ = (1, 0, . . . , 0),
π(z′, zn) = (z′, 0), and Qm(0, . . . , 0, 1) 	= 0. Then p ∈ C [t, z], defined by

p(t, z) := Qm(t, 0, . . . , 0, z),

is homogeneous of degree m and vanishes on the line C \ {0} of order q ≥ k ≥ 2.
Hence there exist c, a1, . . . , am−q ∈ C \ {0} such that

p(t, z) = czq
m−q∏

j=1

(z − a j t).

Consequently, for each ε > 0 there exists t0 > 1 such that for each t ≥ t0 the two
equations

p(t, z) ± 1 = 0 (5.5)

have q solutions z±
j (t) ∈ B(0, εt), 1 ≤ j ≤ q . They admit a Puiseux series

expansion of the form

γ (t) =
κ−1∑

ν=−∞
bν tν/κ

for some κ ∈ N. A standard computation shows that the first nonvanishing term in
such an expansion is given by

(
∓c

(m−q∏

j=1

(−a j )
)

tm−q
)−1/q

.

Because of q ≥ 2 there is a choice of + or − such that the coefficient of this term
is in C \ R. Hence for each t ≥ t0 not all solutions in B(0, εt) of both equations in
(5.5) are real. Since this contradicts the (γ, 1)-hyperbolicity of W± at 0 ∈ Tγ,1W±,
the proof is complete. ��
Proposition 5.9 Let Pm ∈ C[z1, . . . , zn] be homogeneous of degree m ≥ 2 and
define V± := {z ∈ Cn : Pm(z) = ±1}.
(a) If V+ and V− both satisfy (SPL), then V (Pm) satisfies (SPL), Pm has real

coefficients, and for each θ ∈ V (Pm) ∩ Sn−1 the localization of Pm at θ is
square-free.

(b) For n = 3 the necessary conditions in (a) imply that V+ and V− satisfy (SPL).

Proof (a) The conditions stated in (a) hold by Proposition 3.5, Lemma 3.17 (b),
Lemma 5.7, and Lemma 5.8 since V− = V+(Qm) for Qm := −Pm and since
(Qm)θ = −(Pm)θ .
(b) To derive (b) from Theorem 4.3 we show that the conditions (1)–(4) in part
(c) of this theorem are fulfilled.
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(1) By Euler’s rule we have 〈x, gradPm(x)〉 = m Pm(x) for all x ∈ Cn . Hence
gradPm(x) = 0 implies Pm(x) = 0. Consequently, each point of V± is a regu-
lar point. Since Pm has real coefficents it follows that V± satisfies PLloc(ξ) at
each ξ ∈ V± ∩ R3.

(2) This holds by hypothesis.
(3) As we remarked in (1), there is no singular curve in V±. Hence no point in

(Vh)sing ∩ S2 can be terminating by the argument that we used in Example 5.6.
At each point in (Vh)reg ∩ S2, the gradient of Pm does not vanish because of
the present hypotheses. Hence (3) follows from Lemma 5.3.

(4) Let M0 := {ξ ∈ V (Pm)sing ∩ S2}. For ξ ∈ M0 and γ (t) = ξ t , we have by
(5.4)

Tγ,1− m
ν

V± = {z ∈ Cn : (Pm)ξ (z) = ±1} where ν = deg(Pm)ξ

and all points of this set are regular. Hence K = K1 = {(γξ , 1,�(γξ , 1, 0)) : ξ ∈
M0}. By Lemma 5.3 the (γξ ,�(γξ , 1, 0))-hyperbolicity condition in (4) is fulfilled.
The fact that V is (γξ , 1,�(γξ , 1, 0))-hyperbolic was proved in [3], Lemma 5.6. ��

Combining Proposition 5.9 with the results from Meise and Taylor [14] we
obtain now the main result of [3] namely Theorem 1.1.

Theorem 5.10 Let Pm ∈ C[z1, z2, z3] be homogeneous of degree m ≥ 2 and
define P ∈ C[z1, . . . , z4] by P(z) := Pm(z1, z2, z3) − z4. The following asser-
tions are equivalent:

(1) V (P) has (SPL),
(2) P(D) : C∞(R4) → C∞(R4) admits a continuous linear right inverse,
(3) V+(Pm) and V−(Pm) satisfy (SPL),
(4) V (Pm) has (SPL), Pm has real coefficients, and (Pm)θ is square-free for each

θ ∈ V (Pm) ∩ R3 with |θ | = 1.

Proof (1) ⇒ (2): Since the condition (SPL) for V (P) obviously implies that V (P)
satisfies PL(R4, log) (see [3], Definition 2.4) and since PL(R4, log) is equivalent
to (2), this implication holds.

(2) ⇒ (3) ⇒ (1): As we already remarked, V (P) satisfies PL(R4, log). By
[16], Theorem 4.1, this implies that also V (Pm) × C satisfies PL(R4, log). Since
V (Pm) is homogeneous, V (Pm) even satisfies (SPL). By Lemma 3.17 (b), there
exists λ ∈ C, |λ| = 1 such that λPm ∈ R[z1, z2, z3]. Since V (λP) = V (P) satis-
fies PL(R4, log), it follows from Meise and Taylor [14], Lemma 2.1, that λ = ±1.
Thus, Pm has real coefficients and the desired implications hold by Meise and
Taylor [14], Theorem 3.4.

(3) ⇒ (4) ⇒ (3): These implications hold by Proposition 5.9. ��
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