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w 1. Introduct ion 

The success of variational methods in the solution of scattering problems [9] 
has aroused an interest in the rigorous formulation and deeper understanding 
of these methods [1], [4], [6]. In this paper, we examine the variational 
principle for the one-dimensional quantum scattering of a plane wave with 

OO 

positive energy, k S, by  a positive potential, V(x), for which f V(x) dx < oo 
We find: - oo 

OO 

t. If f V(x)dx<2k, the Schwinger variational principle is valid; i.e., 
- - O O  

the behavior of the transmitted wave for a large x can be determined by  
the stationary value of an appropriate bilinear integral form, subject to a 

OO 

normalizing constraint. If J" V ( x ) d x >  2k an additional hypothesis must be 
- - O O  

imposed before the validity of the principle can be established; namely, the 
potential must not be "perfectly transparent" to the plane wave. To the best 
of our knowledge, this condition does not appear explicitly in the literature, 
although it is tacitly present in all the discussions of the principle. We call 
attention to an elementary example to show that  a perfectly transparent 
potential can occur. 

2. I t  is known [7] that  in the one-dimensional case both the transmission 
and reflection coefficients can be characterized formally as stationary points 
of a variational principle. In the case of the reflection coefficient, the varia- 
tional principle is symmetric with respect to a real inner product or, since 
it is convenient to use the theory of complex Hilbert space, quadratic with 
respect to a Hermitian inner product. In the case of the transmission coef- 
ficient, the variational principle is bilinear with respect to either inner product. 
However, as we will demonstrate, it can be reformulated as a quadratic 
variational principle in a suitably defined product Hilbert space. This re- 
formulation not only makes a geometrical interpretation possible but  in 
addition it results in unifying the theory since, when it is considered ab- 
stractly, it includes the variational principle for the reflection amplitude as 
a special case. 
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I t  should be noticed that  our formulation differs from the usual one, in 
which the competing functions do not lie in a Hi lber t  space since they do 
not vanish at infinity. However, by  multiplying the integral equation by  
V(x)=IV(x)]~ if Y(x)~O, and by  Ul(x)=I[iY(x)[]~ if g(x)~o, this 
formulation can be restated in terms of a Hilbert space. The first of these 
devices has been used by  Kato [5]. Throughout this paper we will assume 
V(x) ~ 0 and work with U(x). I t  is a simple mat ter  for the reader to verify 
that  the results and method of proof are similar under the alternate hypothesis. 

3. In the case of the transmission coefficient, the stat ionary points form a 
one (complex) parameter  curve on the constraining surface. These points 
can be divided into two classes, according to the behavior of the imaginary 
part  of the quadratic form. At points of the first class, the imaginary part  
exhibits a local saddle point behavior; i.e., we express this imaginary part  
as a real quadratic form on the direct sum of the two real Hilbert spaces, 
and show that  its projections onto these two spaces have, respectively, a 
local minimum and a local maximum. At points of the second class, one of 
these two projections has a global maxim~am and nothing can be said about 
the other. 

In the case of the reflection coefficient, the situation is much simpler 
geometrically. There is only one class of possible stat ionary points and it 
forms a one-dimensional linear.manifold. Here the projections of the imaginary 
part  of the corresponding real quadratic form on the direct sum of the two 
corresponding real Hilbert spaces always leads to a global minimum and a 
global maximum so that  there is always a global saddle point behavior. On 
the other hand, in this case we obtain less information concerning the reflection 
coefficient itself, since there appears to be no useful analog of the cross- 
section theorem from which to deduce its properties. 

4. For the sake of clarity and at the expense of some unity in the treat- 
ment  we first discuss the more difficult case of the transmission coefficient, 
reserving the t reatment  of the reflection coefficient for the last section of 
the paper. The outline of the paper is as follows: w 2 is devoted to a discussion 
of the pertinent properties of the associated Fredholm integral equations 
which underlie our entire theory; w 3 is devoted to a discussion to the relation 
of these equations with the scattering problem and to an example of a 
" t ransparent"  potential; w 4 discusses the bilinear variational principle for 
the transmission coefficient in Hilbert space; w 5 discusses the quadratic 
formulation of the same principle in a product Hilbert space; w 6 is devoted 
to the characterization of the stationary points for the transmission coefficient; 
and w 7 is given over to the corresponding formulation and discussion appro- 
priate for the reflection coefficient. 

The notation will, for the most part,  be self-explanatory. The symbol 
(*, *) will always be used to denote the inner product, regardless of the space 
with which we are dealing; the objects which appear in place of the asterisks 
will identify the space. We freely use the ~ of the calculus of variations; 
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[ j. When we say that  a this is equivalent to using Gateaux differentials 37 
function is stationary we mean that  its Gateaux differential is zero. The 
reader may be troubled by the extensive use of conjugations: in some cases 
the ordinary conjugation in a complex function space; in others a more 
abstract conjugation [8]. This could be avoided by using a symmetric, rather 
than a Hermitian symmetric, inner product, but this would involve a r e -  

orientation for the re~der familiar with Hilbert spaces; we have chosen what 
appears to be the lesser of two evils. 

The argument does no t  depend upon the existence of a biorthogonal 
expansion. I t  can be proved, using methods of Dunford, Schwartz, Werner, 
and Bade [2], that  the basic integral operator does have a biorthogonal 
spectral resolution. Thus, there is a possibility that  the problem could be 
formulated analogously to the  Rayieigh-Ritz procedure [1]. 

w 2. The Fredholm equation s 

We shall consider the operator on L (~) (--0% oo) defined by 
t~o 

(2.t) K~ = 2k~1 f U(x) e!~l,-Yt V(y) ~(y) dy 
- - 0 0  

where U(x) is a real valued function in L tz) (--oo, oo). 

LEMMA t. K is a bounded linear operator. The operator norm o/K, ill Kill, 
satisfies 

(2.2) IIKII Z ~ l[ e(x)ll ~. 

K is compact. The adfoint o /K ,  K* satis/ies 

(2.3) K* 9 = K ~ .  
1/90 is defined by 
(2.4) 9o(X) = U(x) eik', 
then 

1 
(2 .5 )  (Kg,~o) -- (~~ KV) = ~ - { ( 9 ,  90)(90,~) + (9,CP0)(UP0,~)}, 

/or all q~ and ~ in L (2) (--oo, oo). 
PROOF. (2.2) is obtained from Schwartz's inequality. K is generated by 

a Hilbert-Schmidt kernel and is therefore compact. (2.3) is obtained from 
inspection. To prove (2.5) we integrate by parts as follows: 

~ 6  o o  

t f ~ f UCx) eik[x-YlU(y) ~o(y) d y d x  (K~,~)-- 2ki_~ -oo 
t oo ~ • 

- - o o  ~ - - o o  

+ e - i k ~ f  dkYU(y)~(y)d dx 
x 
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_ t V (y )v , ( y )e ,~Ydy fe_ ,~ ,V(y )~(y )dy  
2k i oo-- 

- -  - - 0 0  

'[? T ] 2ki U(Y)~(Y)e- i~YdY eikYU(Y) q~(y)dy _~ - 
X 

' f ( s  ) 2/~i_~ _ U(Y) ~~ eikY d Y e-ik* U(x) q)(x) d x - -  

?(? ) t " U(y) Vo (y) e -ik y d y e ~ ~* U(x) 9 (x) d x 2]~ i 
- - 0 0  ~ X  

_ I {(~, ~o) (~o, wl + (~, ~o) (~o, w)} + 2ki 

+ f ~ ( x )  ~ U(x) e-ikl*-'lU(y)~o(y) y dx  

- ~ {(q,, q),) (q~o, ~o) + (~, ~o) (COo, ,e)} + (~o, K , e ) .  2ki 

LEMMA 2. The imaginary part o] every eigenvalue o] K is non-positive, 
and the eigen/unction 9 corresponds to a real eigenvalue i / a n d  only i/ (~, ~o)= 

( ~, ~o) = o. 

PRooF. If  K g = ~ 0 ,  then from (2.5), 

1 2 (~ - 5)ii~ll =-- ~7{1 (~ ,  ~o)1 + 1(~, ~o)lq. 

N o w ,  we define the operators 

(2.6) F - -  K -2iK* , G - -  K +2 K* 

LEMMA 3. F and G are bounded, sel/-adjoint, compact linear operators. 
K = G + iF. F is negative semi-definite. The range o / F  is the two dimensional 
spac e, H o, spanned by 9o and ~o o. 

PROOF. The first two s ta tements  are trivial. Using (2.5) and (2.6) we have 

t {(~, ~o) ~o + (~, ~o) ~o}, (2.7) F99 --  4k 

which proves the  l emma. 

Now, suppose K~o = ~o. Then, from lemma 2 and (2.7), F~o = 0. Therefore, 
Gcp=Kcp-=~. Conversely, if G q 0 = ~  and Fop=O, Kcp= 9. 

LEMMA 4. Let H, be the intersection o~ the null space o~ I -  G ( I  = identity) 
and H~. Then H x is the null space o /A = I -  K, and H =H# remains invariant 
under K. H 1 is also the null space/or A * =  I -  K*, and H remains invariant 
under K*. 

PROOF. The paragraph which precedes the lemma shows tha t  A ~0 = 0 if 
and only if F g = 0  and G ~ = 9 ;  this is equivalent to F * 9 = 0  and G ' 9 = 9 ;  
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thus, H 1 is also the null space for A*. Let  ~v be in H. Then  (~v, 9)) = 0 for all 
9) in H 1 . But  (K~v, 9)) = (~o, K*  9)) = (~v, G* 9)) = 0, for all 9) in H i . Therefore 
K~v is in H. Similarly, K*~v is in H. This completes the proof. 

THEOREM t.  The operators A = I - - K ,  A * = I - - K * ,  when regarded as 
operators on H both have bounded inverses. In  particular, the Fredholm equations 

(2.8) A 9 = 9)0; A*vp = 9)o, 

have unique solutions in H. 

PROOF. This follows directly from lemma 4. I t  st~ould be observed tha t  
if the inhomogeneous terms in (2.8) are replaced by  any  functions in H,  the 
theorem continues to be true. We use ~ ra ther  than ~v in (2.8) for later  con- 
venience. 

THEOREM 2. I /  9)1 and ~1 are the solutions o/ (2.8) then 

(2.9) (9)1, 9)0) - -  (9)0, ~1) (Reciprocity)�9 

I / I [U(x) l?<2k,  then (9)1, 9)0)4:0. 
PROOf. (9)D 9)0) ----= (9)1, A* ~1) = (A 9)1, v~l) = (9)0, VPl); if A 9)1 = 9)1-- K9)1= 9)0, 

and (9)1, 9)0) = 0, thenllg)llI 2 = (Kg) 1, 9)1) ~-- [[[KII[ II 9)111 ~. Therefore IIIKI[I :~ a. But  if 
IIU(x)ll~<2k, this contradicts (2.2). The theorem is proved. 

In what  follows, regardless of the value of l] U(x)[[, we shall assume tha t  
q)l satisfies 

(2.t0) (9)1, 9)0) 4: o. 

As we shall see in w 3 this is equivalent  to assuming tha t  the potential  is not  
perfectly t ransparent .  Restricting ourselves to H ra ther  than  studying the 
equations (2.8) on all of L(2)(--oo, oo) is not  essential, as we shall see in 
Theorem 4 below. We do so as a ma t t e r  of elegance,.since otherwise we would 
have to keep in mind the finite dimensional (G is compact) subspace, H 1, 
and phrase our s ta tements  accordingly. 

w 3. Discussion of the  preceding fo rmula t ions  

We shall now connect the Fredholm equations (2.8) with the problem of 
one-dimensional quan tum scattering. The fundamenta l  analyt ic  object  one 
has to deal with is the t ime independent  Schr6dinger equation 

(3.t) ,o" + [k~ - -  V(x)~ ~o = o,  

subject  to the conditions 

(3.2) lim [o) '--  i ko>~ -= O, 
X ---> O0  

(3.3) ,~_m 8 [ ~ ' +  i k o,i e-'k" = 2i  k. 
21" 
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Solving this problem is equivalent to solving, the, integral equation 

(3.4) o) (x) = e i~* + 1 2 ~ - _  ~ eiki*-Yl V(y) ~o (y) d~. 

If we assume that  ~[V(y)] d y < o o ,  this is a Fredholm equation of the 
- - O O  

second kind in the space of essentially bounded functions. Now, if V(y) ~_ O, 
we avoid the difficulty of dealing with a space which is not self-dual, by  
setting U(x) = IV(x)!}, 9 (x) = U(x) ~o (x), q~o (x) = U(x)e ~k*, and multiplying 
(3.4) by U(x). This gives the first equation in (2.8). I t  is clear that  the so- 
lution, 91, of (2.8) determines the solution of (3.4), except on the set for 
which U(x)= 0. On this set co (k)can be determined from (3.1) and the usual 
requirements of continuity of ~o (x) and ro'(x). 

The critical quanti ty we wish eventually to determine is 

(3.5) X = f o ( , )  V ( x ) e - ~ * ' a x ,  

t �9 where (o(x) is the solution of (3.4). t +  2~v~ lS  the complex amplitude of 

t is exactly the same as (~1, ~~ Thus we the transmitted radiation. But 

lose nothing by dealing with (2.8) rather than (3.4). 

Now what is the structure of the space H 1 ? To understand this we shall 
interpret H 1 from the point of view of equation (3.t). Suppose that 9(x) 
simultaneously satisfies 

(3.6) 9 = K q~, 

(3.7) (9 ~, 9o) = (9 9, UPo) = O. 

Then the corresponding a~(x) satisfies 

OO 

t f e ikl*-yl V(y)(o(y)dy,  (3.8) ~o (x) = ~ _  oo 

OO 0 0  

(3.9) f o,(x) v (x )  e ~ a x  = f o, (x) V ( x ) ~ - ~ ' a ~  = o. 
- - o o  - - O o  

But then we can write 

(3.to) 

(3 t t )  

(3.t2) 

~o (x) = ~ ~e '~* f e-'~y V(y) ,o (y) dy  + ~='~* f e '~y V(y) o, (y) dy  , 
2 k i  [ - o o  - x  

I * oo } o) '(x)=�89 eik* f e-ikYV(y) o~ (y )dy - - e  -ik* f e'kYV(y)~o(y)dy , 
v - - 0 0  - - ~ X  

,~" + Vk* - v(:~)l ~ = o. 
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Combining (3. t 0) and (3.t 1), and using (3.9) we secure the following conditions 
which must be satisfied by o (x): 

(3.13) lim [iko~+o~'~=O; lira [ i k m - - o J ' ] = 0 ,  
X ---> ~ O  X ---> OO 

(3.t4) lim I i k ~ o + o ~ ' ~ = 0 ;  lim [ i k ( a - - o Y ] = 0 .  
X--->" - -  ~ O  X - - ~  "-- O 0  

From (3.13) and (3.t4) it is apparent that  ~o(x) and o;'(X) must approach 
zero as x approaches both + ~ and --oo. The o~,(x) then correspond to 
certain bound states of the system; i.e., solutions of the Schr6dinger equation 
which together with their derivatives vanish at + oo and --oo. In limiting 
ourselves to H we exclude from consideration those 9(x) which correspond 
to these bound states. I t  is 0nly when we do this that  we guarantee the 
uniqueness o f  the solution of (2.8). There may well exist other bound states. 
These will correspond to those eigenfunctions of K which have real eigen- 
values. This is easily verified by making use of lemma 2 and repeating the 
above argument. I t  serves no useful purpose to exclude these other bound 
states. 

The condition (2.10) is, as we shall see, forced upon us if we wish to find 
(3.5) using a variational principle. In theorem 2 we proved that  if the po- 
tential is "sufficiently weak", i.e., 

(3.15) ~V(x) dx < 2 k ,  
- - O 0  

then (2.10) is automatically satisfied. But what can be said if (3.t5) fails 
to hold? Let us suppose t h a t  (~01, 9o)=0.  Since ~ 1 = 9 0 + K 9 1 ;  (Kg~, 91)----- 
(91, 91)----(91, Kgx). Consequently, using (2.5), (91, ~0) -- 0. Then the corre- 
sponding o (x), which is a solution of (3.4), satisfies the conditions (3.9). 
As in the discussion which led to (3.t3) and (3.t4), we obtain 

(3.t6) ,li--.m~ [ik~176 [iko+w'Je-ii '= 2ik, 

(3.t7) lim [ iko~--o~']= lim [ ikco - -oY]=O.  
X ---~ OO X - -*"  - -  t20  

Therefore, we have 

(3.18) lim a~e -i~'--- lim (oe- ik*= t .  
X - - +  OO X - - ~  - -  OO 

It  is (3A8) which supplies a precise meaning to the assertion that  V(x) is 
"perfectly transparent" to the incoming plane wave eik'. For large positive 
values of x, no scattering will be detected, and for large negative values 
of x, no reflection will be detected. That this can happen, even in a simple 
type of situation, can be seen by letting k=4z~, and defining 

V(x) = { t2~2 0 < x < t  
0 otherwise 
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then the function 

{ 
e - ~  0 ~ x ~ l  

otherwise 

is the solution of (3.4). In this case, the variational principle will not apply, 
as will become apparent in w 4. I t  is an open question to find the general 
conditions on V(x) which will guarantee (2.10). Trivially, (2.t0) fails to be 
satisfied if and only if (A-: 9o, 9o)= 0, but it is not obvious how to extract 
from this a sharp criterion. For a square wave potential, the question is 
easy to settle, but we shall not trouble the reader with the details. 

w 4. The variational principle for the transmission coefficient 

We shall consider the variational technique of finding (91, 90). Consider 
the bilinear form 

(4.t) J -- (A 9, v-p). 

Let us attempt to make J stationary, subject to the normalizing constraint 

(4.2) (9, 90) (90, ~) = 1. 

To do this, we introduce the Lagrange multiplier, 4, and set 

(4.3) = J - (9, 90) (90, 

Then the first variation of J~ is given by 

(4.4) { ~/~ = (89, A* ~) + (A 9, ~ )  -- ~(~9, 90) (9o, ~) -- 4(9, 90) (90, ~ )  

= (8 9, A* v-p -- 1 (y-p, 90) 9o) + (A 9 -- ~ (9, 90) 90, (Sv-p). 

Therefore f~ is stationary if and only if 

(4.5) A 9 = ~(9, 9o) 9o, A*~ = ~(~, 9o) 9o. 

THEORElVi 3 (Schwinger's variational principle). There exists exactly one 
value o/ 4, ~:, such that Ja can be made stationary. ,~1 is equal to the value o~ 
J when J is made stationary subject to the constraint (4.2). Simultaneously, 

~ : _  t The #air, 9, v/ make J stationary subject to (4.2) i/ and only i/ 
(9:, ~o) 

t ~ ~Pl- there exists an o~:~0 such that 9=~)~:91, ~O:~- 

PROOF. Since we are assuming (2A0), let ~t-- ~ = ~ The last 
( 9 : ,  90) (~%, ~:) " 

equality follows from theorem 2. Then the pair 9z,~z satisfy (4.5). Thus, 
Ja can be made stationary. On the other hand, if J~ can be made stationary, 
there exists a pair, 9, ~v such that  (4.5) holds. From theorem 1, A and A* 
have bounded inverses, so ~t (9, 9o) ~ 0 and ,~ (Vfl, 90) =~ 0. Then it is an easy 
matter, from-the uniqueness of the solutions of (2.8), to see that  9 -~ 2 (9, 9o)9:, 

~-2 (9o, ~)~vl. But then taking the inner product of the first of these with 
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90, we find that  ~(91, 90)= 1. Thus ~ = ~1 is uniquely determined. If 9 
and ~o satisfy (4.2), from (4.5) we obtain ~ =  (A 9, W), and from-above, we 

I 21~vl, where ~ = (9, 90)- Firially, for every e ~ 0 ,  obtain 9 = *r ~i 91, ~o = ~- 
t ~;t191~ ~-21~vl satisfy both (4.5) and (4.2). To emphasize the importance of 

(2.10), we state explicitly: 

COROLLARY. I /  (91, 90) = 0 there does not exist a ~ such that J~ can be made 
stationary, and consequently, J cannot be made stationary subject to (4.2). 

The next theorem shows that  in the application of the variational principle 
it is not necessary to distinguish between H and L (2)(- oo, oo). Our use of 
the space H has been a convenience for the easier statement and proof of 
theorem 3. 

THEOREM 4. Let 9 and ~v be in L (~) (-- oo, oo). Then 9 and ~ have unique er- 
presentations as 9 '+ 9", ~' + ~o", respectively, where 9' and ~' are in H 1, A, 9" 
and ~" are in H (A 9, ~v) = (.4 9", ~"), and (9, 90) (90, ~) = (9", 90) (9o, W"). 

PROOf. The proof follows easily from lemma 3. In the language of w 3, 
in the application of the variational principle, the failure to factor out those 
functions which correspond to bound states has no effect on the computed 
quantities, although it destroys the uniqueness of the solutions to (2.8). 

THEOREM 5. Let ~l=l,~ + ivl, where #1 and Vl are real. Then 

(4.t0) 

PROOF. 

2i h = (90, 91) -- (91, 9o) 
1(9- 9o) 13 

t [  1(91, r 

__ (A 91, 91) -- (91, A 91) = __ ~ (K91, 91) -- (91, Kgl ) . }  

Using this and (2.5) we obtain (4.10). This theorem is the one-dimensional 
counterpart of the totM cross-section theorem [7],. [9]. I t  shows that the 
imaginary part of ~1 is determined by the ratio of the reflected energy to the 
transmitted energy. If one assumes conservation of particles, theorem 5 can 
be proved analogously to the proof given by  Schiff in the three-dimensional 
case [L. I. Schiff, Proc. Theor. Physics 11, 288 (t954)]. The authors are 
indebted t o  Professor Schiff for this observation. 

w 5. T h e  q u a d r a t i c  f o r m u l a t i o n  

The variational principle stated in w 4 is in terms of a bilinear form and 
a bilinear constraint. We shall now show that the principle can be formulated 
as a quadratic problem. This will facilitate a heuristic understanding of the 
principle, and make clear the geometry of the "saddle" nature of the sta- 
tionary point. 

We introduce the space 

(5.1) H_ = H (3 H.  
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The elements of H will be of the form 

(5.2) 9- = [99, ~ ] ,  

where 99 and ~p are in H. If 9- '= [99', ~p'] and _99"= [99", ~o"] are in H, their 
inner product will be given by  

(5.3) (99', 99") = (99', ~") + (V, V ' ) .  

We now state two lemmas. Their proofs are matters  of routine computation,  
and hence will be omitted. 

LEMMA 5. Let C be a mapping o~ H into H_ defined by 

(5.4) __C_~ = _C 1-99,~] = [~,~j. 

Then C a = I_ (identity),  (C_-9, c_C - ~_) ---- (~_, 9-), C__ (2 9_) = i C_C - 9-. I /C_ 9- = 9- and 
C ~_ = ~_, then (99, ~o) = (~, 99)) and this inner product is real. I /  

(5.5) 9 -0=  [99o,~o], V o =  [ 9 9 o , - ~ o ] ,  
then 

(5.6) C9-o = 9-0, C_~o = - -  ~o. 

LE~MA 6. Let L be the mapping o/ H into H defined by 

(5.8) L_ 9- = _L V99, ~] = [A 99, A v;]. 

Then, L__ is a linear operator; L* the conjugate o/ L__ is given by 

(5.9) L $  = [A* 99, A * y ] ,  
and 

(5.t 0) L* C = C L.  

Now we define 

(5.tl) ] =  2 (_L 9-,_C 9-). 

We shall consider the problem of making _J stat ionary subject to the constraint, 

(5 .12)  (99, 990) 3 - -  (_9, _~o) 2 = 4 .  

As in w 4, we introduce the Lagrange multiplier, 2, and set 

(5.t3) A = _ / -  2 ((9-, 9-0) 3 - (9-, _ro)~). 
Then, 

~ =  2~__9,_C ~_~) + 2(L_ ~ 99,_C 99) - -  

( 5 . t 4 )  - -  2 2  ( ( 9 ,  990) (8 99, 990) - -  ( 9 ,  ~~ (8 9 ,  t o ) }  

= 2 (r _9, 2 __C L 99 -- i{(9-o, 9-) _990 -- (~o, 9-) ~o}). 
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This last equality makes use of (5.10) and lemma 5. Making use of lemma 5, 
we find that J~ is stationary if and only if 

(5.t5) 
But 

(5.t6) 

Therefore 

(5.t7) 

2 L _9 = ~t ((-9, 90) 90 + (_9, ~o) _~o}. 

(9, 90) = (9, 90) + (r, ~o); (9, %) = (9, 90) - (~, ~o). 

(_9, _9o) _90 + (_9, ~o) ~o = [2 (9, 90) 90, 2 (~o, ~o) fo~. 

Therefore, ~ is stationary at _9 = [9, ~oJ if and only if 

(5.t 8) A 9 = ~ (9, 90) 90, A * ~  = ~ (~, 90) 90. 

This is a consequence of (5.t7), (5A5), lemma 6, and (2.3). We have proved 
the following theorem: 

THEOREM 6. There is a unique value o/ 2, ~1, such that _J~, can be made 
stationary. 21 is the stationary value o / J  subject to the constraint (5.t2). 21 is 
the same as in theorem 3. _91 = [2191, )~plJ is a stationary point, and all other 

t stationary points are o] the /orm _9(:r ~-21~pl], e~=0. 
k J 

A heuristic interpretation of theorem 6 is that we are finding that member 
of a family of quadric surfaces which is tangent to a fixed hyperboloid. The 
tangency takes place along a one (complex) parameter curve, _9(e), in the 
surface (5.12). If we re-paramatrize the curve _9(~) by letting o~=e a, we 
see that the curve _9 (e) is the orbit of -91 under the analytic group of oper- 
ators e -Ba, where _B_9= B[9, ~p~ = [9, --~~ [81. 

w 6. The imaginary part  of _d 

If -9 is a stationary point, and if _9 + ~_9 is any point which lies on the 
surface (5.t2), we define 

f A J = 2 (L (_9 + ~_9), _C (_9+ '~2)) -- 2 (L-9, _C_9) 
(6.t) / = 4 (L _9, _c ,~ _9) + 2(~,~_9,__c,~_9). 

Since both _9 and _9+~_9 satisfy (5.12), we have 

(6.2) 2 ((_9, _90) _90 + (_9, _~o) ~o, _.C c~ _9) + (~ 9, %)3 _ (c~ 9, %)2 = 0. 

But at a stationary point (5.t5) holds. Combining this with (6.1) and (6.2) 
we secure 

(6.3) ~ ! = 2 (L ~_9, C ~_~) - -  ~1{(~ 9, %)3 _ (~ 9, ~o)'} �9 

LEMMA 7. I/_9 is in H_, we define 

(6.4) u = ! (9 + _C 9), v = ! (9 --  C _9). 
- 2 - - - 2 i  - - -  
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Then 

Also 

We de/ine 

(6.5) 

Then 

_9 = _ u +  iv, _C_u = u, 

• (990 + _c 9901 = ~o,  
2 ~ - �9 - 

• (99o - _c_go) - -  o, 
2i - 

Uo = _90 ; 

_Cu_0 = u 0, 

C v = v .  

t 
0 (~-~ - C_ ~o) = - i y o, 

A (v,o + c__~po) = o. 

V_o = --  i ~o" 

C_vo = V_o. 

PROOF. Direct computat ion,  using lemma 5. 

LEMMA 8. Let 

(6.6) _G = --2 ~ (L + L*_ ), _ = ~ - ~ _ F  1 --  L_*). 

Then, L = G_ + iF_, G and F are sel/-ad{oint operators, and F_ is positive semi- 
definite. Both G_ and F_ commute with C__, and i/C__99 = 9, C__~o=W, then (F_-9, ~_) 
= (~p, F g )  = (-9, F_~,) = (F_w , 9), and this inner product is real. S imi lar ly /or  G. 

PROOF. The first two assertions are obvious. To prove tha t  __F is positive 
semi-definite, we let -9 = [99, ~]. Then 

1 
(~99, 99) = ~ (L-9,-9) - - ~  (L_* 99, , )  

= !  2~ ([A 99, AWl, [99,~]) - - ~ ( [ A *  99, A*W], [99, W]) 

(6.7) = ~-/{((A --  A*) 99, 99) + ((A --  A*)~o, ~0)} 

_ I { ( ( K  - -  K * )  99, 99) + ( ( K  - -  K * )  ~o, v?)} 
2i 

- { ( F ~ ,  99) + ( ~ , ~ ) } .  

Therefore, from lemma 3, (ft. q 9, q0) ~ 0. Now 

t 1 
C F = - -  2 ~ ( C L - - C L * ) =  2 { ( L C - - L * C ) = F _ C ,  

from lemmas 5 and 6. Similarly C G = G C. Finally, 

(_F ~, ~) = (_F_C-9, C ~) = (C_F-9, _C_~) = (~, F-9), 

from lemma 5. The other  equalities follow from the self-adjointness of F-: 
Similarly for _G. This completes the proof. 

Returning to zJ J ,  setting 

(6.8) a 9  = a u + i a_v, 



The Schwinger variational principles for one-dimensional quantum scattering ~9~] 

where C 0 u =  0u, C 0v = 0_v (lemma 7), we have 

(6.9) L Oq)_ = (G_ + i F) (Ou_ + i Ov) = (Q_ Ou --  F Ov) + i (=F O_u + _G Ov) , 

(6.to) 

Now 

(6.t'1) 

(6.'12) 
Therefore, 

(6.'13) 

Then, 

(6.14) 

{ (~  ~_~,__c o~)  = (((_o o_,, - _f o_~) + r (F 0,* + __G 0v)},  O_- - -  i 0e)  

= { ( o  o . -  F O~; 0._) - -  (_F 0_. + _C 0_~, 0_~)} + 

+ ~((g o_~ + ~ oe, oe) + (~ o . -  F 0~, O~_)}. 

(0 9, ~o) = (O_u + i Ov,._o) = (a_-,_Uo) + i(o_v, U__o), 

(o~, ~Oo) = (0 .  + i o~, i_~o) = (o~, ~o) - i(o_., Vo). 

{ ( o ~ ,  %)~ - ( o ~ ,  ,po) ~ = {(o_~, ~_o) ~ + (o_~, _~o) . - (o_~, ~_o) . - (o_~, _~o) ~} 

+ 2~{(o_~,._o) (o_~,._o) + (o_., ~_o) (o_~, _~o)). 

a l{ (o_~,  _%)' - ( o ~ ,  Wo) , }  

= [~1 {(0_u, u__o)~ + (0u_, Vo? - (0 v, % ?  - -  (0v_, Vo) ~} - 

- -  2v:t{(0_u,_Uo) (0V, Uo) + (0u, Vo)(0V, Vo)}] q- 

+ i [v~{(o_u, u o)~+ (Ou, v_o?- (ov, u o)~-  (or, v o)~ } + 

-J- 2J*1{(0~, ~0)(0V, r -J- (0_U, VO)(0V, V0)}]. 

LEMMA9. I] _J=P_ + i Q ,  P and Q__ real, then A J _ = A P + i A Q _ ,  and 

A P  = 2{(__G O u, Out_) -- (__G bE, Or) -- 2(if_ 0_U, dE)} - -  

(6.t  5/ - ~ l { ( a _ . ,  ._o) = + (o_., Vo)~ - (o_~,.o) = - (o~,_~ol ~} + 

+ 2vl{(0u, _Uo)(0_v, U_o ) + (0u, Vo)(0_v, Vo) }. 

f A __Q = 2 { ( F  0_u, 0_u) - -  (F  0_v, 0_v) --]-- 2 ~ 0_u, 0_v)} - -  
/ 

(6.t6) - ~1 { ( o - , - o ) '  + ( o . ,  Vo)' - ( o V , . o ) ,  - (or ,  Vo)~} - 1 
t --  2/q{(0_u, U o ) (0v, u__o) -l- (0_u, _%)(0v, v_o)}. 

PROOF. (6.15) and (6.t7) are obtained by combining (6.3), (6.10), and 
(6.14) and observing that all the inner products are real (Iemma 5). The 
effect of lemma 9 is to express the increments of the real and imaginary parts 
of _J, as we move along the constraining surface, (5.12), away from a stationary 
point as real quadratic forms in O_u and 0v. Since all the inner products 
which appear are real, we can think of the pair 0u, 0_v as being a point in 
the direct sum of two real Hilbert spaces. It  should be observed however 
that these real Hitbert spaces are not spaces of real functions, but  rather 
complicated spaces built up by  using direct sums of complex function spaces 
and conjugation. 
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LEMMA 10. Let u_ and v he,obtained/rom the stationary point 9 (~) (theorem 6) 
according to (6.4). Then 

(6.17) (u,_Uo) = ~ + ~  [1~1~+ a] �9 
2 -  L~--J ' 

(6. ,8) (V,Uo) = ~ -  ~ [ ~ 1  - -  ~ T -  

(~,Vo)= (~-s) [1@+~] 
~.i L-~-J ' 

(v,v_o) _ ~ + ~ [ 1 ~ 1  ~ - 1 ]  
". L I ' - ?  J" 

In general, if _9 lies on (5.12), and  _u and v are given by (6.4), then  

(6.t9) (_u,uo) 2 + (u, vo)2 -- (v, Uo)~ -- (v, Vo)2 = 4, 

(6.20) (_u, U_o ) ~,  U__o) + (_u, v o ) (v, vo) = 0. 

PROOF. We shall carry out  the computa t ion  for the first equation in (6.t 7). 

~ (-9(~)) ' (_9 (~) + s (~), _90) = 7 (_9 (~)'-~~ + ~- (~'-"~ = 7 

= ~ - ~ + ~  2 t - S ~ - - ] "  

The remaining equations in (6.t7) and (6.18) are derived in a similar manner.  
As for (6.19) and (6.20), they  are obtained analogously to (6.t3). 

T~tEO~EM 7. Let u and v_ be obtained by (6.4) [rom the stationary point _9 (~). 
Let bu and by be similarly obtained/rom 8_9, where _9(o~) + b_9 satisfies (5.12). 
Then 

(a) I /  [~1 ~=t there exists an e < 0 ,  such that in the weak neighborhood o] 
_9(00 defined by (0_u, _uo)*+ (0_u, Vo)*< e, (0v, _uo)*+ (0v, Vo)*< e, the increment 
in the imaginary part o ] f  satisfies 

u 

(6.21) A Q],~=o = - (if_ by_, 0 v ) N o ,  

(6.22) A O]~o=o = (/7 bu,  8_u) ~ o. 

~o) I /  ]~]---i,  then AQ]~=o=--(F_Ov, b_v)_~0. 

PRoof.  Expanding  (6.2) with the  help of (6.13), we obtain 

(6.23) { 2{(u, Uo) (b_u, _Uo) + (_u, Vo) (b_u, Vo) -- (v, _Uo) Ov, _Uo) -- (v_, Vo) (0v, Vo) } + 

+ (b_u, _.o) ~ + (o_.,_~o) ~ - (Ov,_.o)~ - (o_~, _~o) ~ = o,  

(6.24) { (~' u-~ (by, Uo) + (u, vo) (bE, Vo) + ~,  Uo) (bu, uo) + (v, Vo) (0u, Vo) + 

+ (o_u,..o) (ov,_-o) + (8_., _~o) (o_~, _~o) = o.  

(a) Suppose 0_u=0.  Then  by mus t  satisfy 

(6.25) 2{(~,_Uo)(0v,_Uo) + (V, Vo)(bV, Vo) ) + (6v,_Uo)2+ (bV, Vo)2= 0 

(6.26) (u, Uo) (by, _Uo) + (~, Vo) (0v, vo) = 0. 
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From lemma 10, it is clear tha t  not  both  (_u, _u0) : 0 and (v, vo) ~ 0. Therefore, 
from the homogenei ty of (6.20) and (6.26), we have 

(6.27) (0_v, _Uo) (E, _Vo) --  (0_v, _Vo) (_v, _Uo) = O. 

But  (6.27) and (6.25) imply b y  Cramer's Rule that  either 

(6.28) (bv, _"o) = (d~_, Vo)" = 0, 
or  

(6.29) (d_v, uo) = --  2 (v, _uo); (d_v, _vo) = --  2 (_E, _Vo)- 

If (6.29) holds, then, from (6.t8), we have 

(6.30) (dr, _Uo)2 + (dr_, V_o)= = 4(Iml- i- 1) 2. 
Let dr__=0. Then d_u must  satisfy 

(6.31) 2{(u,_Uo)(d_u, uo) + (_U, Vo)(d_u,V_o)}+ (~u ,uo)~+ (d_U,Vo)2= 0, 

(6.32) (~, _Uo) (d_u, _Uo) + (v, Vo) (du, vo) = 0. 

Since it follows from (6.18) tha t  not  both  (v, _uo)=0 and (v, _Vo) = 0 ,  we find 
that  here d_u must  satisfy either 

(6.33) (d_u, Uo) = (d_u, vo) = o 
or  

(6.34) (~_u,_Uo)~ + (d_u, Vo)2 = 4([~1 + I~T) ~. 

( ,)2 
If we let e ~ 4 l e I --  ~ -  , then in the neighborhood determined b y  this e, 

when d_u= 0 (6.30) is excluded, and when d_v = 0, (6.34) is excluded. Therefore, 
from (6.16), (6.28), and (6.33) in this neighborhood (6.21) and (6.22) are valid. 

(b) I~1 = a. The discussion above applies through (6.30). But  if le[ = i ,  
bo th  (6.28) and (6.30) imply (~v, _Vo) = (d_v, _uo) = 0, so the theorem is proved. 
We Call now interpret  theorem 7 in terms of the principle formulated in w 4. 

t COROLLARY. Let 99s =e2191 ,  ~ s = ~ -  21~01 be a pair o/[unctions which make 

J = (A q~, ~_) stationary subyect to the constraint (~o, 90) (q%, ~P) = t.  Then i/  ~o 
and ~p are varied about q~,, ~o~ subject to the constraint, then 

(a) i/  I o~]~ 1, and i/  ~o + ~o is held constant, then Im J will have a local 
max imum at ~os, ~Ps. I[ ~o --  ~v is held constant, Im J will have a local min imum 
at qo~, ~p~. 

(b) i/ ]~1= 1, and i[ q~ + g d is held constant, then Im J will have a global 
maximum. 

w 7. The  var ia t ional  principle for  the  ref lect ion ampl i tude  

The complex reflection ampli tude in one dimensional quan tum scattering 
is given b y  

O O ,  

(7.1) --1 ,,,= f 
/*1 - - O O  
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where ~o (x) is the solution of the integral equation (3.4). If, as before 9o is 
defined by (2.4), the appropriate integral equations corresponding to the set 
(2.8) are 

(7.2) A 9 = 90, A* v) = Up0. 

As noted in the proof of theorem t, these equations have a unique solution 
in H. Moreover in view of lemma t,  here ~ = 9 .  The reciprocity relation 
corresponding to (2.9) reduces here to the trivial statement that 

(90,9) = (9, 90). 

Now if 91 once again is the unique solution to the first of the set (7.2), 
then 

I _ (91, cp0) 
#1 

so that here we may treat (7.2) instead of (3.4). 

The variational principle for the determination of t[/,1 consists in this 
case of making 

(7.3) jR = (A 9,Cp), 

stationary subject to the constraint 

(7.4) (9,UP0) = 1. 

To accomplish this, we introduce the Lagrange multiplier #, and set 

jR  = jR  _ 2 ~  (9, Cpo) 

and obtain the result that  jR is stationary if and only if 

A 9  = # 9 0 .  

This last equation corresponds to the set (4.5). Here, as in the set (7.2), 
the second equation is merely the conjugate of this and consequently it may 
be omitted. Equation (7.4) is simpler in appearance than the set (4.5) since 
here we may use a linear rather than a quadratic constraint. Actually, if 
we think of the variational principles (5.tt), (5.12), or (5.t3) abstractly; that  
is, independent of the interpretation given to them in w 5, (7.3) and (7.4) 
can be thought of as special cases of (5.tl) and (5.12) obtained by replacing 
90 by  C90, setting ~0 o equal to zero and interpreting C as usual conjugation. 
While a more unified treatment would result if (5.t 3) were similarly specialized, 
the simplifications resulting from the use of a linear rather than a quadratic 
restraint make the use of (7.4) preferable. 

In order to obtain a theorem analogous to theorem 3, we now make the 
additional assumption that  (91,~o)~0.  Physically this assumption is of 
course equivalent to assuming that  the potential barrier is at least partially 
reflecting. I t  is moreover, not equivalent to assuming that  the potential 
barrier is not transparent [i.e., that  (91, 9o)~=0~. I t  is interesting to note 
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that the existence of partial reflection implies the existence of partial trans- 
mission. More explicitly we have the following: 

LEMMA 11. Let 91 be the unique solution to (7.2). Then (91, UPo) ~=0 implies 
t hat (91, 9 o ) ~  0. 

P~OOF. The argument immediately below equation (3.t5) shows that  
(9:, 90)=  0 implies (9:, UP0)= 0. The lemma follows by logical equivalence. 

THEOREM 8. There exists exactly one value o/ #,/~1, such that jR  can be 
made stationary. #1 is equal to the value o/ jR when jR is made stationary 
subject to the constraint (7.4). Simultaneously, 

1 

# :  - -  ( ~ 1 ,  ~ o )  " 

Since the proof is nearly identical to that of theorem 3, we will content 
ourselves with remarking that  if 9, satisfies (7.5) it must be of the form 
9 s = # 9 1 ,  since 91 is the unique solution of (7.2). Moreover since 9s must 
also satisfy (7.4), it follows that/z(91,Up0 ) = 1. Now (7.5) implies that 

(A 9, ~) = # (90, Up) ~- # .  

Finally, in analogy to the corollary of theorem 7, we have 

THEOREM9. Let 9 s = # 9 :  be any /unction which makes J R = ( A 9 ,  Up ) 
stationary subject to the constraint (9, Upo)= 1, then 

(a) i/  9 + ~  is held constant, Im ]R will have a global minimum at 9,; 

(b) i/ 9 - - ~  is held constant, Im jR will have a global maximum at 9,; 

PROOF. Since here we are dealing with the linear constraint (7.4), the 
second variations of jR and jR are identical for any function 9s wbi~ch makes 
them stationary. The nature of the stationary point is therefore determined 
completely by the second variation 52 jR which is 

5z J R -  - (A 59, 5Up) . 

From this we find from (2.3), 

2i Im 5~J R -- (A 59, 5Up) -- (A 5% 5~p) 

= (A (99, 5~) -- (A* 5~, 59) 

---- (5 9, 5Up) -- (5~, 59) + (K 5% 5Up) -- (K* 5Up, 59). 

Letting 9----u+iv where u and v are real so that 

59 = 5u + i 5v 

and using (2.6) we find that 

2 Im 52J e = 2(5u, 5v) + (F 5u, 5u) -- (F 5v, 5v) + 2(G 5u, 5v). 

The theorem then follows from lemma 3 since F is negative serni-defirite. 

In conclusion it should be remarked that we have been unable to find 
useful analog of theorem 5 for this case. 



3 2 6  C . L .  DOLPH and  R. K. RITT: The  Schwinger  variatiofaal pr inciples  

References 

[1] DOLP~I, C. L. : The  M a t h e m a t i c i a n  Grapples  wi th  L inear  P rob lems  Associa ted  wi th  
t he  Rad ia t i on  Condit ion.  Trans .  Ins t .  Rad io  Eng ineers  P G A P ,  A P ~ 4 ,  (1956). - -  [2] DUN- 
FORD, N. :  Spectra l  operators .  Pac.  J.  Math .  4, 321- -354  (1954). - -  E3] HILLE, E. :  
F u n c t i o n a l  Ana lys i s  and  Semi-Groups .  Amer .  Math .  Soc., Col loquium Publ .  31 (t948). - -  
[4] JoNEs, D. S.: A Cri t ique of t he  Var ia t iona l  Method.  Trans .  Ins t .  Rad io  Engineers  
P G AP,  A P - - 4 ,  (I 956). - -  [5] KATO, T. : No te  o n  Schwinger  Var ia t iona l  Principle.  Progress  
of Theore t ica l  Phys ics  ( Japan)  b, 295- -305  ( t 9 5 t ) . -  [6] MARCUVITZ, N. :  Recen t  De- 
v e l o p m e n t s  in W a v e  Propaga t ion ,  Notes,  P a r t  I I I -D.  New York  Un ive r s i t y  1953. - -  
[7] MORSE a n d  FESHBACI~: Methods  of Theore t ica l  Phys ics ,  Vol II ,  Chap te r s  9, 11. New 
York :  McGraw Hill  1953. - -  [8] RiEsz,  F., and  B. Sz. NAGY: Lecons  d ' A n a l y s e  Fonc-  
t ionnel le .  B u d a p e s t  1952. - -  [9] SCltWlNGER, J., and  H. LEVlNE: On  t he  T h e o r y  of 
Di f f rac t ion  b y  an  Aper tu re  in an  Inf in i te  P lane  Screen. I. Phys ica l  Rev iew 74, 958- -974  
(t948). 

Engineering Res. Inst., University of Michigan, Ann Arbor, Mich. (U.S.A.) 

(Eingegangen am 9. Januar 1956) 


