Collingwood, E. F., and G. PIRANIAN Math. Zeitschr. 84, 246–253 (1964)

Tsuji functions with segments of Julia*

Dedicated to HELMUT GRUNSKY on his 60th Birthday, 11th July 1964

By

E. F. COLLINGWOOD and GEORGE PIRANIAN

1. Introduction

Let D denote the unit disk |z| < 1, C the unit circle |z| = 1, and C_r the circle |z| = r. Corresponding to any function w meromorphic in D we denote by w^* the spherical derivative:

$$w^*(z) = \frac{|w'(z)|}{1+|w(z)|^2}.$$

We say that w is a *Tsuji function* provided the spherical length of the curve $w(C_r)$ is a bounded function in 0 < r < 1, in other words, provided

$$\sup_{r<1} \int_{0}^{2\pi} w^{*}(re^{i\vartheta}) r d\vartheta < \infty.$$

A rectilinear segment S lying in D except for one endpoint $e^{i\vartheta}$ on C is called a *segment of Julia* for w, provided in each open triangle in D having one vertex at $e^{i\vartheta}$ and meeting S, the function w assumes all values on the Riemann sphere except possibly two. A point $e^{i\vartheta}$ is a *Julia point* for w provided each rectilinear segment lying in D except for one endpoint at $e^{i\vartheta}$ is a segment of Julia for w.

Corresponding to each ϑ and each $\alpha(|\alpha| < \pi/2)$, let $S(\vartheta, \alpha)$ be the segment that joins the points $e^{i\vartheta}$ and $(1 - e^{i\alpha} \cos \alpha) e^{i\vartheta}$; in other words, let $S(\vartheta, \alpha)$ denote the chord of the circle with diameter $[0, e^{i\vartheta}]$ that forms a directed angle α with $[0, e^{i\vartheta}]$ at $e^{i\vartheta}$. In case w(z) approaches a limit as $z \to e^{i\vartheta}$ on $S(\vartheta, \alpha)$, we denote this limit by $w(\vartheta, \alpha)$.

The present note answers a question that W. SEIDEL raised concerning a theorem of M. TSUJI [3]. In terms of the notation introduced in the preceding paragraph, we can state Tsuji's theorem as follows.

Let w be a Tsuji function, and let $\Lambda(\vartheta, \alpha)$ denote the spherical length of the image under w of $S(\vartheta, \alpha)$. Then, for each α in $|\alpha| < \pi/2$, $\Lambda(\vartheta, \alpha)$ is an integrable function of ϑ ; and for almost all ϑ , $\Lambda(\vartheta, \alpha)$ is an integrable function of α . Moreover, for all ϑ in a set of measure 2π on $[0, 2\pi)$, the relation $w(\vartheta, \alpha) = w(\vartheta, \beta)$ holds whenever both limits exist, while $S(\vartheta, \gamma)$ is a segment of Julia if $\Lambda(\vartheta, \gamma) = \infty$. In particular, the theorem implies that if w is a Tsuji function, then $\Lambda(\vartheta, \alpha) < \infty$ except for a set of points (ϑ, α) of two-dimensional measure 0.

 $[\]star$ This paper was written with partial support from the National Science Foundation (Grant G-23830).

In a review of [3], SEIDEL asked whether the segments of Julia mentioned in the theorem can actually occur. We shall display several relevant examples.

2. Meromorphic Tsuji functions

Lemma. If $\{z_n\}$ is a sequence of points in the unit disk D such that $|z_{n+1}| > |z_n|$ for all n and $z_n \to 1$ as $n \to \infty$, then the function

(1)
$$w(z) = \sum a_n / (z - z_n)$$

is a Tsuji function provided the a_n are small enough.

Proof. We chose a sequence $\{\rho_n\}$ of positive numbers such that $\rho_{n+1} + \rho_n < |z_{n+1}| - |z_n|$ for all *n*, and we denote by D_n the disk $|z - z_n| < \rho_n$. Clearly, $\sum \rho_n < 1$.

Now let $\{a_n\}$ denote any sequence subject to the restriction that $0 < a_n < \rho_n^3$ for all *n*. Then

(2)
$$\sum^{*} \frac{a_n}{|z-z_n|} < \sum \frac{a_n}{\rho_n} < \sum \rho_n^2 < 1$$

and

(3)
$$\sum^{*} \frac{a_n}{|z-z_n|^2} < \sum_{n} \frac{a_n}{\rho^2} < \sum_{n} \rho_n < 1$$
,

where the asterisk indicates that if z lies in D_m , the *m*-th term is to be omitted.

If a circle C_r meets none of the disks D_n , it follows from (3) that |w'(z)| < 1 on C_r , and hence that $w(C_r)$ has Euclidean length less than 2π .

$$\{z \mid z = r e^{i \vartheta}, |r - z_m| \leq a_m/3, |\vartheta| \leq a_m/3\};$$

we write $C'_r = C_r \cap G_m$ and $C''_r = C_r \setminus C'_r$ (Fig. 1 shows the relation – not to scale – between D_m , G_m , and C_r ; note that C'_r is empty if $z_m - \rho_m < r < z_m - a_m/3$ or $z_m + a_m/3 < r < z_m + \rho_m$); and we estimate separately the spherical length of $w(C'_r)$ and the Euclidean length of $w(C''_r)$.

On C'_r , we use the relations

$$|z-z_m|^2 = r^2 + z_m^2 - 2r z_m \cos \vartheta = (r-z_m)^2 + 4r z_m \sin^2 \vartheta / 2 < 2a_m^2 / 9.$$

They imply that $a_m/|z-z_m|>2$; together with (2), this gives the inequalities

$$|w(z)| > \frac{a_m}{|z-z_m|} - \sum^* \frac{a_n}{|z-z_n|} > \frac{a_m}{|z-z_m|} - \sum^* \frac{a_n}{\rho_n} > \frac{a_m}{2|z-z_m|}.$$

Also, for points z on $C'_r \setminus \{z_m\}$ it follows from (3) that

$$|w'(z)| < \frac{a_m}{|z-z_m|^2} + \sum^* \frac{a_n}{|z-z_n|^2} < \frac{a_m}{|z-z_m|^2} + 1 < \frac{2a_m}{|z-z_m|^2}$$

and we deduce that

$$w^*(z) < |w'(z)| \cdot |w(z)|^{-2} < 8/a_m$$

on C'_r . Since C'_r has length less than $2a_m/3$, the curve $w(C'_r)$ has spherical length less than $\frac{16}{3}$.

The arc C_r'' may contain a subarc of points $z = re^{i\vartheta}$ with $-a_m/3 < \vartheta < a_m/3$. If that is the case, the inequalities

$$|w'(z)| < 1 + a_m / |z - z_m|^2 < 1 + 1/9 a_m$$

hold on the subarc, and therefore w maps the subarc onto an arc of Euclidean length less than

$$\frac{2}{3}a_m\left(1+\frac{1}{9a_m}\right) = \frac{2}{3}a_m + \frac{2}{27} < \frac{1}{6}.$$

For the remainder of C_r'' , we use the relations

$$|re^{i\vartheta}-z_m|^2 = (r-z_m)^2 + 4r z_m \sin^2 \vartheta/2 \ge 4r z_m \vartheta^2/\pi^2 > 2r \vartheta^2/\pi^2.$$

They yield the upper bound

$$2\int_{a_{m/3}}^{\pi} |w'(re^{i\vartheta})| r d\vartheta < 2\int_{a_{m/3}}^{\pi} \left(1 + \frac{a_{m}}{|re^{i\vartheta} - z_{m}|^{2}}\right) r d\vartheta < 2\pi + a_{m}\pi^{2} \int_{a_{m/3}}^{\pi} \vartheta^{-2} d\vartheta < 2\pi + 3\pi^{2}.$$

In summary: the spherical length of $w(C_r)$ is less than $2\pi + 3\pi^2 + \frac{17}{3}$, and the lemma is established.

Theorem 1. There exists a Tsuji function for which each point $e^{i\vartheta}$ is a Julia point.

Proof. Let $z_n = (1 - n^{-\frac{1}{2}}) e^{i \log n} (n = 2, 3, ...)$, and choose the constants a_n as in the proof of the lemma. Then the function (1) is a Tsuji function.

Since the right member of (1) converges uniformly in the complement H (relative to the plane) of the set $\bigcup D_n$, it defines a function w that is continuous on H. Now let S denote a line segment in D, with an endpoint $e^{i\vartheta}$, and let A denote a Stolz angle containing S. Then there exist infinitely many integers n_k such that the disk D_{n_k} lies in A. For large k, the set of values omitted by w in D_{n_k} lies in a small neighborhood of the point $w(e^{i\vartheta})$, and therefore S is a segment of Julia. This completes the proof of Theorem 1.

The following theorem shows that segments of Julia may occur even if all segmental limits $w(\vartheta, \alpha)$ exist.

248

Theorem 2. There exists a Tsuji function w with the following two properties: (i) If S is a chord of the unit disk, then the spherical length of the arc w(S) is less than some constant independent of S.

(ii) The radius of the point 1 is a segment of Julia for w.

Proof. First we choose the points z_n so that they lie on the parabola $y = (x-1)^2$; then we select the constants ρ_n small enough so that no line meets more than two of the disks D_n . The remainder of the proof follows the pattern that we have already established.

Theorem 3. If E is a set of measure 0 on C, then there exists a Tsuji function of bounded characteristic for which every point of E is a Julia point.

Proof. Since E has measure 0, we can choose a sequence of arcs A_m on C, of lengths σ_m and with midpoints t_m , such that each point of E lies in infinitely many of the arcs A_m and such that $\sum \sigma_m < \infty$. For each m, we denote by J_m the intersection of D with the circle $|z - t_m| = \sigma_m$.

There exists a sequence $\{k_m\}$ of positive integers such that $k_m \to \infty$ and $\sum k_m \sigma_m < \infty$. If on each arc J_m we choose k_m equally spaced points ζ_{mn} (in such a way that the angular distance between ζ_{mn} and $\zeta_{m,n+1}$ is approximately π/k_m), then, at each point of E, every Stolz angle contains infinitely many of the points ζ_{mn} . We can easily choose the ζ_{mn} in such a way that $|\zeta_{m_1n_1}| \neq |\zeta_{m_2n_2}|$ except when $m_1 = m_2$ and $n_1 = n_2$, and therefore we can choose disks D_{mn} with centers ζ_{mn} in such a way that no circle C_r meets more than one of the disks. We now form two Blaschke products $B_1(z)$ and $B_2(z)$, the first with zeros $b_{mn} = (1 + \varepsilon_{mn}) \zeta_{mn}$, the second with zeros $c_{mn} = (1 - \varepsilon_{mn}) \zeta_{mn}$. If the ε_{mn} are sufficiently small, then each pair of zeros lies close to the center of the corresponding disk. The convergence of the two products follows from the inequality

$$\sum_{m,n} (1-|\zeta_{mn}|) < \sum_{m=1}^{\infty} k_m \sigma_m$$

Now let $w(z) = B_1(z)/B_2(z)$. If the ε_{mn} are sufficiently small, the product

(4)
$$\prod_{m,n} \frac{b_{mn} - z}{1 - \bar{b}_{mn} z} \cdot \frac{1 - \bar{c}_{mn} z}{c_{mn} - z}$$

converges uniformly in $\overline{D} \setminus \bigcup D_{mn}$, and therefore the symbol $w(e^{i\vartheta})$ has a meaning. Moreover, if $\varepsilon_{mn} \to 0$ fast enough as $m \to \infty$, then for any sequence of disks D_{mn} tending to a point $e^{i\vartheta}$, the set of values omitted by w in D_{mn} lies in a small neighborhood of $w(e^{i\vartheta})$ when m is large. Therefore every segment in D terminating at a point of E is a segment of Julia for w.

To see that w is a Tsuji function, we note that if the ε_{mn} are small enough, then w'(z) is bounded in the set $D \setminus \bigcup D_{mn}$, and that in D_{mn} the function w is the product of the factor with index (m, n) in (4) and a function whose values lie in an annulus $R_1 < |z| < R_2$ $(R_1$ and R_2 positive, independent of m and n) and whose derivative is bounded. E. F. COLLINGWOOD and GEORGE PIRANIAN:

We observe that since the function is of bounded characteristic, the set of its Fatou points (at each of which it has a uniform limit in every Stolz angle) is of measure 2π on C, so that the set of its Plessner points on C (at each of which the cluster set of the function in every Stolz angle is total) is of zero measure, by PLESSNER's theorem [2, p. 70]. Since the Julia points form a subset of the Plessner points, the property of the set E in Theorem 3 is best possible.

3. The Tsuji set of a meromorphic function

Let w denote any meromorphic function in the unit disk D; corresponding to each point α in D, we write

$$w_{\alpha}(z) = w\left(\frac{z-\alpha}{1-\overline{\alpha} z}\right),$$

and we define the *Tsuji set* of w to be the set of values α for which w_{α} is a Tsuji function. Since the quantity

$$\sup_{r<1}\int_{0}^{2\pi} w_{\alpha}^{*}(re^{i\vartheta}) r d\vartheta$$

is a lower-semicontinuous function of α , the Tsuji set of a meromorphic function is a point set of type F_{σ} .

Theorem 4. The Tsuji set of a function may be the point set $D \setminus \{0\}$.

Proof. For k=2, 3, ..., we choose k equally spaced points z_{nk} on the circle $|z|=1-b_k$, where $\{b_k\}$ is a strictly decreasing sequence with $b_1 < 1, b_k \rightarrow 0$. We construct the function (1) as in the proof of the lemma, except that now some circles C_r meet several of the disks D_{nk} . If the b_k and the a_{nk} are small enough, then the spherical length of the curve $w(C_r)$, where $r=1-b_k$, has the order of magnitude πk , and therefore w is not a Tsuji function. On the other hand, if $b_{k+1}/b_k \rightarrow 0$ fast enough, then for each α in $D \setminus \{0\}$ the number of disks that meet the circle $|(z-\alpha)/(1-\overline{\alpha}z)|=r$ is a bounded function of r (in fact, it is 1 or 0, for $r > r_x$), and therefore w_α is a Tsuji function for all α except $\alpha=0$.

4. Holomorphic Tsuji functions

Theorem 5. There exist holomorphic Tsuji functions with segments of Julia.

If the function w constructed in the proof of Theorem 2 were to omit the value w(1), in D, then the function 1/[w(z) - w(1)] would provide a proof of Theorem 5. However, it is not obvious that the a_n can always be chosen so that w omits the value w(1). In particular, if the z_n and the a_n are real, then w(1) is real, and w assumes this value in each interval (z_n, z_{n+1}) .

We shall prove that the function

$$w(z) = \exp\left(\frac{1+z}{1-z}\right)^2$$

is a Tsuji function with two segments of Julia. First we observe that if r is near to 1, the mapping

$$f(z) = \frac{1+z}{1-z}$$

carries the circle C_r onto a large circle a long arc of which lies near the imaginary axis; that the function $\exp f(z)$ carries this arc onto an arc making many turns

around the unit circle C, not far from C; and that $\exp f(z)$ is therefore not a Tsuji function. On the other hand, the mapping $g(z) = [f(z)]^2$ carries C_r onto a reniform curve Γ_r that meets the imaginary axis in four points, each time at an angle of approximately $\pi/4$ (Fig. 2 shows approximately the upper half of the circle $f(C_r)$ and the curve Γ_r , for $r=\frac{1}{2}$). The function $w(z) = \exp g(z)$ therefore carries C_r onto a curve

making few turns around the origin, except quite near the origin and quite far from the origin; that is, the majority of the turns of the image of C_r make only small contributions to the spherical length of the image. We shall now show that w is indeed a Tsuji function.

Since

and

$$|w'(z)| = \left| \frac{4(1+z)w}{(1-z)^3} \right|$$
 and $w^*(z) < \left| \frac{4(1+z)}{(1-z)^3 w} \right|$,

it will be convenient to integrate the first or the second expression, on subarcs of C_r , according as the real part of g(z) is negative or positive on these subarcs. Now, at $z=re^{i\vartheta}$,

$$\left|\frac{1+z}{(1-z)^3}\right| = \frac{\left[1+r^2+2r\cos\vartheta\right]^{\frac{1}{2}}}{\left[1+r^2-2r\cos\vartheta\right]^{\frac{3}{2}}} = \frac{\left[(1+r)^2-4r\sin^2\vartheta/2\right]^{\frac{1}{2}}}{\left[(1-r)^2+4r\sin^2\vartheta/2\right]^{\frac{3}{2}}}$$
$$|w(z)| = \exp\Re\left(\frac{1+z}{1-z}\right)^2 = \exp\Re\left(\frac{1-r^2+2ir\sin\vartheta}{(1-r)^2+4r\sin^2\vartheta/2}\right)^2$$
$$= \exp\frac{(1-r^2)^2-4r^2\sin^2\vartheta}{\left[(1-r)^2+4r\sin^2\vartheta/2\right]^2}.$$

In view of the symmetry of $w(C_r)$, it will be sufficient to show that the integral

$$\int_{0}^{\pi} \frac{4\left[(1+r)^{2}-4r\sin^{2}\vartheta/2\right]^{\frac{1}{2}}}{\left[(1-r)^{2}+4r\sin^{2}\vartheta/2\right]^{\frac{3}{2}}} \exp\left\{-\frac{\left|(1-r^{2})^{2}-4r^{2}\sin^{2}\vartheta\right|}{\left[(1-r)^{2}+4r\sin^{2}\vartheta/2\right]^{2}}\right\} d\vartheta$$
Mathematische Zeitschrift, Bd. 84 17

251

is a bounded function of r, for $\frac{1}{2} < r < 1$. Over the interval $\pi/4 \le \vartheta \le \pi$, the integrand has a bound independent of r, and therefore we may restrict our attention to the range $0 \le \vartheta \le \pi/4$.

We deal first with the range $0 \le \vartheta \le \sin^{-1}(1-r^2)/r$. Since $\cos \vartheta$ is bounded away from 0, on this range, the substitution

$$\sin\vartheta = \frac{1-r^2}{2r}\lambda, \quad \cos\vartheta \, d\vartheta = \frac{1-r^2}{2r}\,d\lambda$$

allows us to replace the integral in question with

$$K_{1}\int_{0}^{2} (1-r)^{-2} \exp\left\{-\frac{(1-r^{2})^{2}|1-\lambda^{2}|}{K_{2}(1-r)^{4}}\right\} d\lambda$$

(here K_1 and K_2 denote positive constants independent of r), and if we write $1-r=\mu$, we obtain the upper bounds

$$K_{1} \int_{0}^{2} \mu^{-2} \exp\{-K_{3} |1-\lambda| \mu^{-2}\} d\lambda$$

= $2K_{1} \int_{0}^{1} \mu^{-2} \exp\{-K_{3} \lambda \mu^{-2}\} d\lambda < 2K_{1} \int_{0}^{\infty} \exp(-K_{3} s) ds = 2K_{1}/K_{3}.$

For the integral from $\vartheta = \sin^{-1}(1-r^2)/r$ to $\vartheta = \pi/4$ we have the majorant

$$K_4 \int_{\sin^{-1}(1-r^2)/r}^{\pi/4} (\sin^2 \vartheta/2)^{-\frac{3}{2}} \exp\left\{-\frac{3r^2 \sin^2 \vartheta}{K_5 \sin^4 \vartheta/2}\right\} d\theta,$$

and the substitution $\sin \vartheta = t$ shows that this is less than

$$K_6 \int_0^\infty t^{-3} \exp(-K_7 t^{-2}) dt = K_6/2K_7.$$

This concludes the proof that w is a Tsuji function.

To see that the two segments $S(0, \pm \pi/4)$ (which make angles $\pm \pi/4$ with the real axis at z=1) are segments of Julia, we consider (for example) two segments $S(0, \pi/4\pm\epsilon)$. The function f carries the Stolz angle between these segments into a certain infinite triangle in the right half-plane. The triangle is bounded by portions of two lines through the point z=-1 and by the segment of the imaginary axis that lies between them.

The function g carries the same Stolz angle into a domain containing a wedge that in turn contains the imaginary axis, and it follows immediately that the segment $S(0, \pi/4)$ is a segment of Julia for w. This concludes the proof of Theorem 5.

Conjecture 1. If w is a holomorphic Tsuji function, then at most finitely many points $e^{i\vartheta}$ are endpoints of segments of Julia in D, for w.

Conjecture 2. If w is a holomorphic Tsuji function, then at most finitely many segments in D are segments of Julia for w.

Let A denote one of the two circular arcs in D that meet the circle C at an angle $\pi/4$ at the two points $z = \pm 1$. Then the function w that we used in the proof of Theorem 5 has the property that |w(z)|=1 on A, and it follows further that $|w^*(z)|=2|1+z|/|1-z|^3$ on A. By a theorem of O. LEHTO and K.I. VIRTANEN [1, Section 12], we conclude that w is not a normal function in D.

Conjecture 3. If w is a holomorphic, normal Tsuji function, then w has no segments of Julia.

References

- [1] LEHTO, O., and K. I. VIRTANEN: Boundary behaviour and normal meromorphic functions. Acta Math. 97, 47-65 (1957).
- [2] NOSHIRO, K.: Cluster Sets. Ergebnisse der Mathematik und ihrer Grenzgebiete. Berlin-Göttingen-Heidelberg: Springer 1960.
- [3] TSUJI, M.: A theorem on the boundary behaviour of meromorphic function in |z| < 1. Comment. Math. Univ. St. Paul 8, 53-55 (1960). Math. Rev. 22, 1899, No. 11131 (1961).

Lilburn Tower, Alnwick, Northumberland, G.B. Dept. of Math., University of Michigan, Ann Arbor, Mich., USA.

(Received January 14, 1964)