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Finite permutation groups of rank 3" 
By 

DONALD G. HIGMAN 

By the rank of a transitive permutation group we mean the number of 
orbits of the stabilizer of a point - thus rank 2 means multiple transitivity. 
Interest is drawn to the simply transitive groups of "small" rank > 2  by the 
fact that every known finite simple group admits a representation as a primitive 
group of rank at most 5 while not all of these groups have doubly transitive 
representations. In this paper we consider finite transitive groups of rank 3, 
a class of groups which seems to have received little direct attention. 

WIELANDT [6, 7] proved that a primitive group of degree 2p, p a prime, has 
rank at most 3. Actually p = 5  is the only prime for which a non-doubly 
transitive group of degree 2p is known to exist. Any 4-fold transitive group 
has rank 3 when considered as a group of permutations of the unordered pairs 
of distinct letters. Thus, in addition to the symmetric and alternating groups, 
the four 4-fold transitive Mathieu groups are included amongst the rank 3 
groups. The (projective) classical groups of linear type are doubly transitive 
on the points of projective space, but are primitive of rank 3 on the lines when 
the degree is at least 4. Those of symplectic and unitary types of degree at 
least 4 are primitive of rank 3 when considered as groups of permutations of 
the absolute points. The groups of orthogonal type of degree at least 5 are 
primitive of rank 3 on the singular points, the groups of characteristic 2 being 
excluded for odd degrees. The representations mentioned here for the classical 
groups are closely related to their structures as groups of Lie type in that the 
stabilizer of a point contains a Borel subgroup. The exceptional groups of 
type E 6 discovered by DICKSON 1) also have primitive rank 3 representations of 
this kind, while the remaining groups of Lie type have such representations of 
ranks 2, 4 or 5. 

The examples of classical type suggest associating with each rank 3 group 
a certain block design having the given group as a collineation group. From 
this point of view, the problem is to determine the designs which admit rank 3 
collineation groups. We use the method developed by WIELANDT [6, 7] to 
obtain certain necessary conditions. As a simple application it is shown that 
a rank 3 group of degree k2+ 1, where k is an orbit length for the stabilizer of 
a point, must have degree 5, 10, 50 or 3250. Such groups of degrees 5, 10 and 50 
exists. Degree 3250 remains undecided. 

* Research supported in part by the National Science Foundation. 
i) The fact that the finite groups of type E 6 were already known to DICKSON was pointed 

out to the author by J.E. McLAUGHLn~. 
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Further consideration of the block designs yields a characterization of the 
symplectic group $4 (q) from which the known isomorphisms S~ (q) ~ Os (q), 
q odd, $4(2)~S 6 and $4 (3) ~ U4 (2) are very easily derived. (In this paper we 
use the notation of ARTXN [1] for the classical simple groups.) 

Fortunately the book of WIELANDT [7] is now available to be used as 
a general reference for the theory of permutation groups. For the convenience 
of the reader, and because of the difference of point of view, we have made 
w167 2 - 5  of our paper more complete than is strictly necessary in view of the 
availability of [61 and [7]. 

The author is indebted to Professors WIELANDT and J. E. McLAuCHLIN 
for valuable remarks and suggestions. 

Remarks on Notation. For the most part, our notation is consistent with 
that of [7]. Given a group G of permutations of a set f2, we denote by a g the 
image of a~f2 under gsG, and for a subset X of f2 we let Xg={aglaEX}. 
Ga denotes the stabilizer of a, Ga={gs G lag=a}, and Gx denotes the stabilizer 
of X, Gx={geG]Xg=X}.  (The notation Gx differs from that of [7], but is 
usual in geometric situations, where X might be, say, a line, and is most con- 
venient here.) If X is an orbit for a subgroup S of G (briefly, an S-orbit), 
then S x denotes the corresponding transitive constituent of X, i.e., the group 
of permutations of X induced by S. [A ] denotes the cardinality of the set A. 

1. Paired orbits 

Let G be a transitive group of permutations of a set O. A pairing of the 
G.-orbits, aeO, is obtained by associating with each such orbit A (a) the orbit 

A'(a)={agl g~G, ag-l~A(a)}. 

Lemma 1. (of. WmLANDT [7], 16.6). G, has a self-paired orbit +{a} if 
and only if I G I is even. 

2. Rank 3 groups 

Given a transitive group G of permutations of f2, the number of Ga-orbits 
is independent of the particular a ~ 2 ;  we shall calt this number the rank of G. 
The trivial orbit {a} is to be counted, so that the rank is always at least 2 
unless I•1 = 1, and rank 2 means multiple transitivity. 

From now on in this paper we are going to assume that the rank of G is 3, 
and that the degree n= If~! of G is finite. Thus G is a transitive group of per- 
mutations of f2 such that for a~f2, Ga has exactly 3 orbits 

{a}, A(a), r(a) .  

We choose the notation in such a way that A (a)g=A(a g) and F(a)g=F(aO for 
all a ~ 2  and all g~G, and set k = I A (a)[ and l=  IF(a) ] so that n = 1 + k +  l. 

Concerning the intersections of orbits we easily obtain 

Lemma 2. 

IA(a)nA(b)l  ~ 2 for b~A(a) 
= ( #.for b ~ r(a) 
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with 2 and # independent of the particular a and b ~Q. Moreover, 

21 for  b~F(a)  
[r(a) mr(b)l= # l f o  r b~A(a)  

where 2, = l - k + # -  1 and I~ 1 = l - k + 2 +  1. 

Lemmas 1 and 2 imply at once 

Lemma 3. I f  [G] is even, then A(a) and F(a) are both self-paired. I f  ]G[ 
is odd, then A ' (a)=F(a) ,  and hence k=l ,  n = 2 k +  1 and 2=.u. 

If now asA(b) ,  b =a  g, then ag-l~A(b)g-*=A(a) and hence b=agEA'(a),  
i.e., a~A (b) implies beA'  (a). Hence by Lemma 3 we have 

Corollary. I f  [G] is even, then a~A(b) implies beA(a).  I f  [G[ is odd, then 
aeA (b) implies bsF(a) .  

The possible systems of imprimitivity for G are easily determined. Namely 

Lemma 4. The following conditions are equivalent: 

(i) G is imprimitive and k < l. 

(ii) Ga 4= Gr (,). 
(iii) F (a) = F (b) for  some a + b. 

These conditions imply that the systems of imprimitivity for  G are the sets 
{a} w A (a), and hence that k + 1 [ n and k < I. 

Proof. (i) implies (ii). If �9 is a system of imprimitivity containing a, then 
either q)={a}wA(a)  or ~b={a}wF(a).  In the latter case l + l l n ,  which is 
impossible since n = 1 + k +  l and k < 1. Hence 4~ = {a} w A (a) and therefore 
Ga =~ Gr (a) since G a ~ G r (,) = G{a} ~ a (~). 

(ii) implies (i) and (iii). G, ~ Gr (~) implies that Gr (~) is transitive on {a} w A (a), 
and hence the set is a system of imprimitivity since G,< Gr(,)= G{a} ~A (a)" 
Hence k +  1 In and k<_<l. Moreover, if ageA(a), then 

({a} w A (a)) g = {a g} w A (a g) = {a} w A (a) whence F (a g) = F (a). 

(iii) implies (ii). Suppose F(a)=F(b) ,  a+-b, and assume that G,=Gr(,) .  
Then G~ = Gr (a) = Gr (b) = Gb. If A (a) = {b}, then G r (,) = G{,} u a (~) = G{~,b} ~: Ga. 
Hence F(a)={b}=F(b) ,  which is impossible. This completes the proof of the 
equivalence of (i) through (iii). 

In the proof that (i) implies (ii) it was shown that every system of imprimi- 
tivity has the form {a} w A (a). Since G is transitive on the sets of this form, 
they are all systems of imprimitivity. 

Of course there is the analogous result to Lemma 4 with A and F inter- 
changed. 

Corollaries. 1. I f  k < 1, then (a) G, = G~ (~) and (b) A (a) = A (b) implies a = b. 

2. if G is imprimitive, there is precisely one decomposition of f2 into systems 
of imprimitivity, and G is doubly transitive on the systems of imprimitivity. 

3. A rank 3 group of odd order is primitive. 
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We conclude this section with the following question about rank 3 groups. 
That G is a transitive group of rank 3 means that G has three doub!e cosets 
modulo Ga. Do primitive rank 3 groups of even order exists in which one of 
these double cosets contains no involutions? (Imprimitive ones are easily 
constructed.) 

3. The block designs 

With the transitive rank 3 group G we associate a block design A whose 
points are the elements of f] and whose blocks are the symbols A* (b), one for 
each bef2. A point a and a block A*(b) are defined to be incident if asA(b). 
There is a second design B defined in the same way as A, but with F in place of A. 

We can represent G as a group of collineation of A by letting each geG 
act on the points and blocks according to 

f a ~ a  g 
g: ~ A*(b)~A*(bg .  

In the same way, G may be regarded as a collineation group of B. If !GI is 
even, a polarity of A is defined by the correspondence a*--~A*(a), and the 
collineations induced by elements of G commute with this polarity. If I GI is 
odd, the mappings a ~ F *  (a) and A* (a)-~a define a correlation of A onto B, 
and the collineations induced by G commute with this correlation. 

Both A and B have n points and n blocks. In A, the number of points 
incident with each block is equal to the number of blocks incident with each 
point, and this number is k. In B, the corresponding number is t. It can 
happen that two distinct blocks are incident with precisely the same points; 
this happens in A precisely if G is imprimitive and k > l (Lemma 4). In A, the 
number of points common to two blocks A*(a) und A*(b) is 2 is aeA(b) and 
# if aeF(b) (this statement is true even if G is imprimitive and k >  l because in 
that case # = k). The corresponding intersection numbers for B are ~-t = l - k + # -  1 
and #1 = l - k + 2 +  1. 

Lcmma 5. It l = k ( k - 2 - 1 ) .  

Proof. Choose a block B in A and count the pairs (A, a) with A a block :~B 
and a a point on A and B. B=A*  (b) for some b, and each of the k blocks 
through b is + B  and meets B in 2 points. Furthermore, each of the I blocks 
+ B  not through b meets B in # points. On the other hand, each of the k points 
on B lies on k - 1  blocks 4=B. Hence 2 k + g l = k ( k - 1 ) ,  or # l = k ( k - 2 - 1 ) .  

k - 1  Corollary 1. I f  l G I is odd, then ~ = # = - -  
2 

Corollary 2. The conditions 
(a) G is primitive and k <= I, 
(b) # = 0 ,  

(c) X=k-1,  
are equivalent. 
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Proof. (a) implies (b): If G is imprimitive and k<l ,  then by Lemma 4, 
the set a l={a}  w A (a) is a system of imprimitivity for each a. Hence, for 
bsF(a),  a• and therefore # = 0 .  

(b) implies (c) by Lemma 5. 
(c) implies (d): 2 = k - 1  implies [G] even by Corollary 1, and hence 

a• I for beA (a) by the Corollary to Lemma 3. Hence F(a)=F(b)  and there- 
fore G is imprimitive and k < 1 by Lemma 4. 

Applying this to B instead of A we see that the conditions (a') G is imprimi- 
tive and l<<_k, (b') 2 = k - l -  1 and (c') # = k  are equivalent. In particular 

Corollary 3. G is primitive if  and only tf p4=0, k. 

4. The incidence matrices 
Let A be the incidence matrix for A with rows enumerated by the points 

in some fixed order a, b, c .. . .  and columns by the blocks in the corresponding 
order A*(a), A *(b), A* (c) . . . . .  Let B be the corresponding incidence matrix 
for B. Thus A and B are n x n-matrices of O's and l's, and from the properties 
of A and B given in w 3 we have 

(i) A has k l's in each row and column and B has l l's in each row and each 
column. 

(ii) I + A + B= F, the n x n-matrix with l 's  in every entry. 

(iii) A A t = k I + 2 A + # B .  

(iv) I f  [ G f is even, then A and B are symmetric. I f  ] G J is odd, then A t = B. 

(v) A and B have trace O. 

Now (i) through (iv) give 

( A - k I ) ( A Z - ( 2 - # ) A - ( k - # ) I ) = O  if IGf is even 
and 

Hence 

Lemma 6. 

k + l  "~ 
( A - k I ) ( A 2 + A + ~ I ) = O  if [G[ is odd. 

In addition to the eigenvalue k (of multiplicity 1) the matrix A 
has exactly the two distinct eigenvalues s and t, where 

{:} = ( ~ - # ) + w ~  2 ' d = ( 2 - # ) 2  + 4 ( k - # )  

-i+v--; 
2 

and 

if [G] is even, 

5. The permutation representation 
Let D: G-: GL,, (C), C the complex number field, be the matrix representation 

of G obtained by associating with each geG the corresponding permutation 
matrix D (g) relative to the same ordering of g2 used in constructing the incidence 
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matrices A and B in w The fact that ge G induces a collineation of A such that 
A * (a) g = A * (a g) means precisely that D (g) commutes with the incidence matrix A. 
(In fact, one sees easily that {I, A, B} is the basis of the commuting algebra 
of D described in [7], 28.4, with A = V(A) and B = V(F).) Because G has rank 3, 
D has exactly 3 inequivalent irreducible constituents D 1 ----1, D2 and Da, each 
with multiplicity 1 (see [7], w It follows that one of the eigenvaiues s, t of A, 
say s, has multiplicity equal to the degree f2 of De, while the other, t, has 
multiplicity equal to the degreefa of D 3 . Since A has trace 0, we have 

O = k + s f 2 = t f a .  

But D has degree n =  1 + f 2 + f 3 ,  h e n c e f 2 + f 3 = k + l ,  and therefore 

k + t (k  +l) k +s(k  +l) 
f 2 -  and f a =  t - s  s - t  

Hence, by Lemma 6 

{f2} 2 k + ( 2 - # ) ( k + l ) - T - V d ( k + l )  
fa = -T-2 V d  i f  lG[ is even 

while 
f e = f a = k if IG] is odd. 

Now we have at once 

Lemma 7. I f  I G I is even, then either 

I. k = l, #-= 2 + 1 = k/2 andre =f3 = k, or 

II. d=(~- i t )2  + 4 ( k - # )  is a square, and 

(i) if n is even, V-d divides 2 k + (,~ - #) (k + l) and 2 V-d does no t, while 

(ii) if n is odd, 2V[i divides 2 k + ( 2 - i t ) ( k + l ) .  

In case (ii)f2 #f3  and the eigenvalues of A are integers. 

6. Rank 3 groups of degree k 2 +  1 

If G is a primitive rank 3 group, then it 4=0 by Corollary 2 to Lemma 5. 
Hence, by Lemma 5, the maximum possible l for given k is l = k ( k - 1 )  given 
by 2 = 0  and # = 1. Thus the degree n of G is at most k 2 + 1. On the other hand, 
if G is a transitive rank 3 group of degree k 2 + 1, then G is primitive by Lemma 4 
and X = 0, it = 1. 

Theorem 1. I f  G is a transitive group of  rank 3 and degree n-=k2 + l ,  where 
k is the length of a G~-orbit, then n = 5, 10, 50 or 3250. 

Proof. I G] is even since one of k, k 2 + 1 is even. By Lemma 7 there are two 
cases: 

Case L k = l=  2. In this case n = 5. 

CaseII. d = l + 4 ( k - 1 ) = 4 k - 3  is a square and V 4 k - 3  divides 
2 k + ( - 1 ) ( k + k ( k - 1 ) ) = - k ( k - 2 ) .  Since ( 4 k - 3 ,  k) divides 3 and 
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( 4 k - 3 ,  k - 2 )  divides 5, it follows that in this case 4 k - 3 r 1 5 2 .  Hence 
k = 3, 7, or 57, giving n = 10, 50 or 3250. 

Such groups of degrees 5, 10 and 50 exist, namely 

(1) The dihedral group of order 10 has such a representation of degree 5, 

(2) the alternating and symmetric groups on 5 letters acting on the unordered 
pairs of distinct letters provide examples of degree 10, and 

(3) U3 (5) has a rank 3 representation of degree 50 of this kind, as does the 
group obtained from it by adjoining the field automorphism (cf. [4b]). 

This list is actually complete for these degrees as will be shown in a 
later paper. Degree 3250 remains undecided. 

Theorem 1 has an application in the theory of Mtibius planes. Namely, 
a M6bius plane of type (VI.1) in the classification given by HERING [3] has 
prime power order q and admits a rank 3 collineation group for which the 
orbit length are 1, q and q(q+ 1). By Theorem 1, therefore, we must have 
q=2 ,  3 or 7. The Michaelian planes of order 2 and 3 do, in fact, admit such 
groups. 

7. The block design A' 
As suggested by the "natural"  representation of the projective symplectic 

group, we modify the block design A by "adjoining" to each block A* (b) its 
"pole"  b. Precisely, we consider the block design A' whose points are the ele- 
ments of f2, and whose blocks are the symbols b • one for each b~f2. A point a 
and a block b • are defined to be incident if ae{b} w A (b). In A', two blocks 
a • and b • have 2 + 2  points in common if b~a • b ~a, and # points in common 
if b~a • The group G is faithfully represented as a group of collineations of A' 
when the action of g~G on the points and blocks is defined by 

~ a ~ a  g 
g: [a~(a~) • 

If I GJ is even, the Corollary to Lemma 3 implies that the correspondence 
a ~  a • defines a polarity ~ of A'; the collineations induced by G commute with ft. 

Now we look at the "lines" of A'. Here we assume that G is primitive, 
[ G [ is even and that p > 2 + 1. We shall see in w 8 that these assumptions hold 
ff A' is a symmetric incomplete block design. 

Given two distinct points a, b in A', we set 

a + b =  ~ x • 
a,  b E x -l- 

and refer to this set a+b as a totally singular line or a hyperbolic line according 
as a~b • or a~b • We remark a number of facts concerning lines. First, it is 
clear from the definition of a + b that 

(i) (a + b)g=ag + bg for all g~G. Hence Ga is transitive on the totally singular 
(resp., hyperbolic) lines through a, and G is transitive on the totally singular (resp., 
hyperbolic) lines. 
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Next we note that 

(ii) I f  xea + b, x +a, then a+ x=a+b.  
We prove (ii) for a hyperbolic line a + b, the corresponding fact for totally 

singular lines being almost abvious. If xea+b,  x#:a, then x e z  a for all z 
such that a, bez I. Hence a + x < a + b  and x•177 so that 
xCa" s ince /~>2+ 1. Therefore a+x is a hyperbolic line, so that a + x = a + b  
by (i). 

(iii) G,+ b is doubly transitive on the points of a + b, unless a + b = {a, b }. 
To prove this for a hyperbolic line a+b, consider x, yea+b,  x ,y+a.  

Then x, yea • by (ii), i.e., x, yeF(a). Hence there exists geG a such that xg= y. 
Then (a+b)g=(a+x)g=a+y=a+b, so geGa+~n G,. The result for totally 
singular lines is proved in the same way. 

(iv) I f  a+b is a totally singular (resp., hyperbolic) line, then a+b-{a}  
is a system of imprimitivity for G~ (resp., G r) unless it consists Qf the single 
point b z). 

Proof. We prove the result for hyperbolic lines. By (i) and (ii) it suffices 
to show that a+b~F(a).  But a+b>f (a )  implies that F(a)<A(x) for all 
x e  A (a) c~ A (b). This implies that t = k -  2 - 1, and hence that # = k by Lemma 5. 
This contradicts the primitivity of G by Corollary 3 to Lemma 5. 

The totality of elements of G fixing a • pointwise is precisely the kernel of 
the representation of G, on A (a). We denote this normal subgroup of G, 
by T(a), and note that 

(v) T(a) fixes all lines through a. 
Hence by (iv) and the normality of T(a) in G, we have 

(vi) I f  T(a)+-l, then the T(a)-orbits in F(a) are systems of imprimitivity 
for G r, and a + b -  {a} is a union of such orbits for every hyperbolic line a + b 2). 

(vii) T(a) is semiregular on F(a). 
Proof. We use (ii), Let c~eT(a)x, xeF(a). If zex  l, zCa • then a+z and 

x I are fixed by ~ and hence so is z=(a+z)c~x • Hence ~eT(x). If now 
yeF(a)~F(x) ,  y~a+x,  then a+y  and x + y  are fixed by e and hence so is y. 
Thus e fixes every point not on x+a. If uex+a,  then uic~(x+a)={u} so 
eeT(u). Hence c~ fixes u, and therefore e =  1. 

By (vi) and (vii) 

(viii) IT(a)[ divides h -  1, where h is the number of points on a hyperbolic line. 

(ix) I f  beA (a), then (T(a), T(b)) =T(a)  | T(b). 
Proof. T(a) and T(b) are normal subgroups of G,,b, and T(a)n T(b)= 1 

by (vii) since A (b) c~ F (a) + q~. 

8. The symplectic group 
In looking for a characterization of the symplectic groups amongst the 

rank 3 groups a basic question is: when is A' (or the similarly defined B') 

2) We write G, ~ (resp. Gar) in place of Ga ~(") (resp. Gar(a)). 
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a projective space ? As a first step in this direction we remark that from the 
definitions follows 

Lemma 8. A' is a symmetric balanced incomplete block design if and only 
if  p = 2 + 2  andn~-k+2.  

When A' is a symmetric balanced incomplete block design (or briefly, 
when A' is symmetric; see, e.g., [2] for the definition) the parameters are 
(n, k +  1, It). That is, A' has n points and n blocks, k +  1 points (blocks) are 
incident with each block (point), and any two distinct points (blocks) are 
incident with exactly # blocks (points). The condition n =t=k+2 is equivalent 
to the requirement that 0 < # < k + 1 < n -  1. 

It would be interesting to determine rank 3 groups, in addition to the 
symplectic groups, whose associated designs A' are symmetric; at present we 
know only the orthogonal groups Oz,,+l(q) ,m>2, q odd (see the remarks 
following the proof of Theorem 2). We mention the following facts. 

Lemma 9. I f  A' is symmetric, then G is primitive of even order, k +  1 --it----- e 2, 
a square, and e but not 2 e divides n -  (k + 1) if n is even, while 2e divides n -  (k + 1) 
if n is odd. 

Proof. If G is imprimitive, then # = 0  or k by Corollary to Lemma 5. 
Hence, if A' is symmetric, then I t = k  and 2 = k - 2 ,  and therefore, by Lemma 5, 
we have l=  1, giving n = k + 2 ,  which is not allowed. Hence G is primitive. 
[ G I is even by Corollary 1 to Lemma 5. The rest of the Lemma follows at once 
from Lemma 7. 

If A' is a projective space P=Pe(q)  of dimension d over a Galois field Fq, 
then • is a null polarity of P and the collineations commuting with 6 are the 
so-called symplectic collineations. Thus, in this case, G is a group of symplectic 
collineations, and the elements + 1 of T(a) are symplectic elations. Here results 
of [4] can be applied. For  instance, by Theorem 1 of [4], T(a)#: 1 then implies 
that G contains the group Se+~ (q), generated by all the symplectic elations, as 
a normal subgroup. We carry this through in this simplest case. 

Lemma 10. A' is a projective space of dimension 3 if  and only if  It = 2 + 2, 
n4=k + 2 and hyperbolic lines contain It points. In this case, the coordinatizing 

f ieM is Fq, q= I t -  1. 

Proof. The necessity of the conditions is clear. To prove the sufficiency, 
assume that [ a + b ] = I t = 2 + 2  for b(~a • and that n + k + 2 .  Then A' is a sym- 
metric block design with parameters (n, k +  1, It) by Lemma 8. According to a 
result of DENBOWSKI and WaGNEFt [2] we have only to show that every line 
contains It points, and we are assuming this for hyperboic lines. Consider a 
totally singular line x + y .  We show that x + y = x  • n y  • whence it follows that 
[ x + y [ = 2 + 2 = It. If x, y ~z • then z s x • c~ ya. Suppose there is a u e x • n z z, uCya. 
Then the hyperbolic line y + u is contained in x • c~ z • Moreover, neither x nor 
z is on y +  u by (ii) of w 7. Hence 2 + 2 =  Ix • n z• Jy+uJ +2=I t+2 ,  or 2=>It, a 
contradiction. This proves that x + y =  x • c~ y • 

We note that when A' is a projective space of dimension d=< 7, Theorem 4 
of [4] implies that G contains the corresponding Se+l(q), with the single 
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exception of d=  3 and G ~ , A  6 . In the application below, however, our assump- 
tions imply the existence of at least some elations in G, and we do not need to 
apply this result. 

Theorem 2. Let G be a transitive rank 3 permutation group such that the 
orbit lengths for  the stabilizer G, of a point a are 1, q (q + 1) and q3, q an integer 
>2. Assume that Ga is not faithful on its orbit of length q(q + 1), and assume that 
one of the following conditions holds: 

(i) There are at least q elements of G fixing a G,-orbit of length q (q + 1)point- 
wise. 

(ii) q =pr with p a prime and r a power of 2. 

Then G contains a normal subgroup isomorphic with S 3 (q). More precisely, 
G is isomorphie with a group of symplectic collineations of projective 3-space 
over Fq containing all the symplectic elations. 

Proof. Take k = q (q + 1), l = q3. From Lemma 5 it follows that q + 1 divides 
#, # = # l ( q + l ) ,  and #1 q 2 = q ( q + l )  - 2 - 1 .  If tq were >2  we would have 
2 = q 2 ( 1 - # l ) + q - l < - q 2 + q - l < O ,  which is impossible. Hence .u t= l ,  
p = q +  1 and 2 = q - 1 .  Hence, by Lemmas 8 and 9, A' is symmetric and G is 
primitive. 

Now we want to apply Lemma 10. The condition (i) means that ] T(a) j > q, 
and hence by (viii) of w 7, each hyperbolic line, contains at least q + 1 points. 
But the number of such points is =< # = q + 1. Hence, in this case, each hyper- 
bolic line contains exactly # = q +  1 points. By Lemma 10, therefore, A' is a 
projective space of dimension 3 over Fq. G is a group of symplectic collineations 
on A', and condition (i) means that G contains all the symplectic elations. 

Now assume condition (ii). Since T(a) + 1, (vi) of w 7 implies that the number 
of points on a hyperbolic line is of the form pt+ 1, 0 < t< r, since in this case 
I F(a) l=q  3 is a power of p. Moreover, the number of hyperbolic lines through 
a point is q3/pt=p3r-t. If x is the total number of hyperbolic lines, we have 

n p3r-t = (ff q_ 1) x 

and, if y is the total number of hyperbolic lines in each block, then 

n y = x ( q + l ) .  

Here we use the fact that in a symmetric design, the number of blocks through 
two points is equal to the number of points common to two blocks. It follows 
that pt-b 1 divides q+  1, and hence that p t+  1 = q +  1 since r is a power of 2. 
Hence A' is a projective space by Lemma 10, and the conclusion of the theorem 
follows at once by Theorem 1 of [4]. 

It is to be conjectured that the conditions (i) and (ii) can be dispensed with 
in Theorem 2, and that analogous characterizations of the higher dimensional 
symplectic groups can be obtained. The following examples show, however, 
that the assumption T(a) + 1 is needed for the conclusion that A' be a projective 
space. 
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The orthogonal group 02,.+ 1 (q), m > 2, q odd, acting on the absolute points 
of the corresponding orthogonal projective space, has rank 3. The orbit lengths 

q2m-2_ 1 
/~= , 2 = p - 2  

q - 1  

are exactly the same as those for the symplectic group Szm(q ) in its natural 
rank 3 representation. Hence the corresponding design A' is a symmetric ba- 
lanced incomplete block design with the same parameters as the block design 
of points and hyperplanes of (2m-1)-dimensional projective space over F~. 
But A' is not a projective space, since hyperbolic lines degenerate to pairs of 
points. This implies that T(a)= 1, which is the well-known fact that the ortho- 
gonal group does not contain elations. 

It is well known that 02 ,, + 1 (q) an S 2 m (q), q odd, m > 2, have the same order, 
but are isomorphic only for m = 2. The isomorphism of 05 (q) with $4 (q), q odd, 
can easily be obtained from our theorem as follows. Let G be the group 0 s (q) 
regarded as a group of permutations of the totally singular lines of the corre- 
sponding projective 4-space. Then G has rank 3, with k=q(q+ 1), l=q 3. Given 
a totally singular line m, the Gin-orbit of length q(q+ 1) consists of all totally 
singular lines meeting m. The existence of a group of q orthogonal transforma- 
tions fixing all of these lines is well known (cf. [5]). Hence, by Theorem 2, G 
contains a subgroup isomorphic with $4 (q), and since [0s (q) [ = ] 5:4 (q) I we 
have the desired isomorphism. 

We conclude with two further illustrations of Theorem 2. First, let G be the 
symmetric group on m > 4 letters, considered as a group of permutations of the 
n =re(m-1) /2  unordered pairs of distinct letters. Then we see that G and H 
are transitive groups of rank 3 with k = ( m - 2 )  (m-3)/2,  l = 2 ( m - 2 ) ,  2=  
( m  - 4) ( m -  5)/2 and # = ( m -  3) (m - 4)/2. (The same thing works for any 4-fold 
transitive group.) G and Hare  imprimitive for m = 4 and primitive for rn > 5. For 
m =  5 we have groups of degree 10 as in Theorem 1. For m =  6 we have k =  
6 = 2 ( 2 +  1) and l=8=23 .  Since there is an involution in G fixing an orbit of 
length 6 pointwise, it follows from Theorem 2 that A' is a projective 3-space 
over F2 and that G contains S 4 (2). Comparing orders we obtain a proof of the 
well-known fact that $4(2 ) is isomorphic with the symmetric group of degree 6. 
We also see the alternating group of degree 6 acts as a rank 3 subgroup. Of 
course it is not difficult to prove directly that A' is a projective space in this 
case, and this gives a simple direct proof of these facts. 

Finally, let G be the projective special unitary group U 4 (2) considered as a 
(transitive) group of permutations of the 40 ordinary (i. e., non-absolute) points 
of the unitary projective space P3 (4). If Q is an ordinary point, then it is easy 
to see that G o is transitive on the 12 ordinary points on Q• and on the 27 
ordinary points # Q  off Q.t. Thus G has rank 3 (in fact, U,~(2), m>4 ,  always 

q 2m-2~1 m-1 
k=q  , l=q 2 

q - 1  
and intersection numbers 
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has r ank  3 on the o rd ina ry  poin ts  as well as on the absolute  po in ts )  with the  
orb i t  lengths 1, 12 = 3 (3 + 1) and  27 = 3 for  the  s tabi l izer  of a point .  Moreover ,  
for  each o rd ina ry  po in t  Q, G conta ins  a (Q, Q l ) - h o m o l o g y  which is in  par t i cu la r  
an  e lement  =~ t f ixing an  orb i t  of length 12 pointwise.  Hence by  T he o re m 2, G 
conta ins  a subgroup  i somorph ic  with $4(3). C o m p a r i n g  orders  we ob ta in  the 
wel l -known i somorph i sm U 4 (2) g 5:4 (3). 
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