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Abstract. In this paper we study the Betti numbers of a type of simplicial complex known as a chessboard
complex. We obtain a formula for their Betti numbers as a sum of terms involving partitions. This formula allows
us to determine which is the first nonvanishing Betti number (aside from the0-th Betti number). We can therefore
settle certain cases of a conjecture of Bj¨orner, Lovász, Vrećica, andZ̆ivaljević in [2]. Our formula also shows
that all eigenvalues of the Laplacians of the simplicial complexes are integers, and it gives a formula (involving
partitions) for the multiplicities of the eigenvalues.
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1. Introduction

An admissible rook configurationon anm × n chessboard is a subset of squares of the
chessboard such that no two squares lie in the same row or column. The collection of
such configurations,C(m,n), is a simplicial complex (i.e. it is closed under taking sub-
sets). These simplicial complexes arise in various settings (see [2, 17, 10]), especially
in some combinatorial geometry problems where understanding theirconnectivity1 was
important. In [2] it is proven that for anym,n, C(m,n) is (ν − 2)-connected, where
ν = min(m,n, b(m+n+1)/3c). It was conjectured thatC(m,n) isnot(ν−1)-connected.

It is the above conjecture and the observations in [9] which motivate this paper. In [9] the
above conjecture was verified in a few cases by computer, and it was empirically discovered
that the eigenvalues of the Laplacians of the chessboard complexes are integers. In this
paper we give a proof of this fact, a formula for the multiplicity of each eigenvalue of the
Laplacian (including, therefore, a formula for each Betti number), and we determine exactly
which Betti numbers vanish. This verifies the conjecture in [2] in certain cases (including
some new ones), and shows that in the other cases if the conjecture holds it is due to torsion
in the relevant homology group. We explain this paragraph in detail below.

We claim that the connectivity conjecture in [2] amounts to:

Conjecture 1 (Björner, Lovász, Vrećica, andZ̆ivaljevi ć ) For any positivem,n (except
m = n = 1) we haveHν−1(X) 6= 0 (or 6= Z if ν = 1). whereX = C(m,n) and

ν = min(m,n, b(m+ n+ 1)/3c).
* The author wishes to thank the NSERC for supporting this research in part.
** Work partially supported by the NSF.
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Indeed, forν ≤ 2 the connectivity conjecture was verified in [2], and our conjecture also
holds by the calculations there2. Furthermore, forν ≥ 3 we already know thatC(m,n) is
(ν−2)-connected, and soC(m,n) is connected andπ1(C(m,n)) is trivial; by the Hurewicz
Theorem (see [16], chapter 7, section 5) we have thatC(m,n) is (ν − 2)-connected iff its
homology groups from the first up to the(ν − 2)-th are trivial.

In [2] conjecture 1 was proven in a number of cases: (1)m ≤ n with m ≤ 5, excepting
C(4, 6), C(5, 7), C(5, 8), and (2)n ≥ 2m−1. The conjecture was verified via computer in
[9] for C(4, 6) andC(5, 8), and was shown to hold forC(5, 7) unless a certain degeneracy
holds in Laplacian eigenvalues.

Fix m,n, let ν be as before, and letX = C(m,n). Let bi(X) denote thei-th Betti
number ofX; it equals the rank ofHi(X). In this paper we shall prove:

Theorem 1 br−1 > 0 iff (n− r)(m− r) ≤ r andn > r or m > r.

This theorem verifies the conjecture forC(4, 6), C(5, 7), C(5, 8) (without computer aid).
Moreover, this theorem easily shows that:

Theorem 2 For m ≤ n, we havebν−1(C(m,n)) > 0 iff n ≥ 2m − 4 or (m,n) =
(6, 6), (7, 7), (8, 9).

So for such values ofm ≤ n the conjecture is verified. For other values ofm ≤ n,
bν−1(C(m,n)) = 0; so if Hν−1(C(m,n)) is non-trivial, it is due to torsion. Note that
whenm = n = 5, indeedH2(C(5, 5)) = (Z/3Z) (see [2]3), so we can have a vanishing
Betti number and nonvanishing homology group. We have not been able to extend our
analysis to the homology groups, and to do so would be very important.

Our method is to study the combinatorial Laplacians of theC(m,n). The dimension of
the kernel of thei-th Laplacian onC(m,n) is just bi. It was empirically observed in [9]
that these Laplacians seem to have integral eigenvalues. We prove this observation, and
give a formula for the multiplicity of the eigenvalues in terms of certain partitions. This is
theorem 4.

We mention an interesting special case of theorem 4. Forn = m+ 1, them-th Laplacian
onC(m,n) is just the Laplacian of the Cayley graph,G, onSn, the symmetric group on
n elements, with generators(1, n), (2, n), . . . , (n − 1, n). It follows that its first nonzero
Laplacian eigenvalue,λ1, of G is 1 (and that it occurs with multiplicity(n − 1)(n − 2)).
This result was first proven in [7], in a somewhat different fashion. This shows thatG
is, in a sense, a much better expander thanH, the Cayley graph onSn with generators
(1, 2), (2, 3), . . . , (n − 1, n), which hasλ1 = 2 − 2 cos(π/n) (see [1]). This obervation
has led to [8], where it is shown that among all Cayley graphs onSn with n− 1 generators
which are transpositions,G has the largestλ1.

We finish this section by outlining the rest of the paper. In section 2 we review Hodge
theory and introduce some notation. In section 3 we prove theorem 4, the main theorem in
this paper, which gives a formula for the multiplicity of the eigenvalues of the Laplacians in
terms of certain partitions via the representation theory of the symmetric group. In section 4
we analyze this formula to find the smallest eigenvalue of the Laplacians, thus determining
when the Betti numbers vanish. In section 5 we determine precisely for whichm,n we
havebν−1 6= 0.
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2. Hodge Theory and the Laplacian

To compute the Betti numbers we will use the combinatorial Laplacians (see [12, 6, 4, 5]).
These Laplacians are most easily described via Hodge theory of Hodge [12].

Fix anabstract simplicial complex,X, i.e. a collection of sets closed under taking subsets.
By ani-face ofX, we mean a subset of sizei+ 1. Recall that the Betti numbers,bi, are the
dimensions of the rational homology groups,Hi = ker(∂i)/im(∂i+1) of the chain complex,

· · · −→ Ci+1
∂i+1−→ Ci ∂i−→ Ci−1 −→ · · · −→ C−1 = 0, (1)

whereCi is the space of formalR-linear sums of orientedi-dimensional faces, i.e. oriented
subsets of the abstract simplicial complex of sizei + 1, and∂i is the boundary map (see
[15]), given by

∂i(vj1 ∧ · · · ∧ vji+1) =
i+1∑
k=1

(−1)k+1vj1 ∧ · · · ∧ vjk−1 ∧ vjk+1 ∧ · · · ∧ vji+1 .

Hodge theory works for an arbitrary chain complex overR (or any field of characteristic
0, such asQ or C). Recall that a chain complex is a collection,Ci, of vector spaces, with
maps∂i: Ci → Ci−1, as in equation 1, such that∂i−1 ◦ ∂i = 0 for all i. Endowing each
Ci with an inner product, we get maps∂∗i : Ci−1 → Ci (i.e. the transpose of∂i), and thus a
Laplacian,∆i: Ci → Ci, for eachi, defined by

∆i = ∂i+1∂
∗
i+1 + ∂∗i ∂i.

For eachi we define the set ofharmonici-formsto be

Hi = {c ∈ Ci|∆ic = 0}.

For chain complexes where eachCi is a finite dimensionalR-vector space, Hodge theory
involves only elementary linear algebra, and says:

Proposition 1 (Hodge theory) For eachi we haveHi ∼= Hi, in that each member ofHi
gives rise to a class inHi, and each class inHi contains a unique harmonic form inHi.
Proof: Follows easily from the facts that (1)A = ∂∗i ∂i andB = ∂i+1∂

∗
i+1 are positive

semi-definite and commute, satisfyingAB = BA = 0, and (2) imS = imS ◦ S∗ for any
map of finite inner product spaces,S:V →W .

2

3. Laplacian Eigenvalues: A Formula

In this section we give a formula for the multiplicity of the eigenvalues of the Laplacian on
chessboard complexes.
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Let [1..n] denote{1, 2, . . . , n}, and let[1..n](r) denote the set of tuplesI = (i1, . . . , ir)
with i1, . . . , ir distinct integers in[1..n]. LetSt denote the symmetric group ont elements
which we take to be[1..t], and letSt1,...,tk = St1 × · · · × Stk . ThenSn acts on[1..n] in
the obvious way,(σ, i) 7→ σ(i), and this gives rise to anSn action on[1..n](r). Also Sr
acts on[1..n](r) in the obvious way, namely

τ(i1, . . . , ir) = (iτ(1), · · · , iτ(r)).

Let C[1..n](r) be the vector space of formalC-linear combinations of[1..n](r) elements;
it becomes anSr,n-module.

Fix m,n. LetV = C{zi,j} with i ∈ [1..m] andj ∈ [1..n] be the vector space of formal
C-linear combinations of thezij ’s. Clearly, forX = C(m,n) we have

Cr−1 = Span
〈
zIJ = zi1j1 ∧ · · · ∧ zirjr | I ∈ [1..m](r), J ∈ [1..n](r)

〉
,

viewed as a subspace of
∧r

V , and we have∂r−1 is given by extending by linearity the
map:

∂r−1(zIJ) =
r∑

k=1

(−1)k+1zi1j1 ∧ · · · ∧ zik−1jk−1 ∧ zik+1jk+1 ∧ · · · ∧ zirjr .

We makeV into an inner product space by making{zi,j} orthonormal; this induces the
inner product on

∧r
V where{zIJ} are orthonormal. This determines

∂∗r (zIJ) =
∑

α/∈I, β /∈J
zαβ ∧ zIJ

and thereby determines the Laplacians.
The following proposition follows easily:

Proposition 2 For anyr we have:

∆r−1 =
(
r + (n− r)(m− r)

)
I +Ar−1 +Br−1,

whereI is the identity,

Ar−1(zIJ) =
r∑

k=1

∑
`/∈I

zi1j1 ∧ · · · ∧ z`jk ∧ · · · ∧ zirjr ,

and

Br−1(zIJ) =
r∑

k=1

∑
`/∈J

zi1j1 ∧ · · · ∧ zik` ∧ · · · ∧ zirjr .

So to understand∆r−1 it sufficies to understandKr−1 = Ar−1 +Br−1.
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We now describe a method to determine the eigenvalues and eigenspaces ofKr−1. Since
Sr,n acts on theI ∈ [1..n](r), and sinceSr,m acts on theJ ∈ [1..m](r), we have a natural
Sr,n,r,m action on thezIJ ’s and therefore onCr−1. Note thatKr−1 commutes with this
action; hence the eigenspaces we seek decompose intoSr,n,r,m irreducibles, and we will
be able to understand them more easily this way.

First of all, it will be easier to studyKr−1 andCr−1 by deriving them as the antisymmetric
parts of a tensor product of spaces. So set

Vr−1 = Span
〈
zIJ = zi1j1 ⊗ · · · ⊗ zirjr | I ∈ [1..m](r), J ∈ [1..n](r)

〉
,

viewed as a subspace ofV ⊗r. LetKr−1 = Ar−1 + Br−1 act onVr−1 via

Ar−1(zIJ) =
r∑

k=1

∑
`/∈I

zi1j1 ⊗ · · · ⊗ z`jk ⊗ · · · ⊗ zirjr ,

and

Br−1(zIJ) =
r∑

k=1

∑
`/∈J

zi1j1 ⊗ · · · ⊗ zik` ⊗ · · · ⊗ zirjr .

The naturalSr,n,r,m action on thezIJ ’s gives one onVr−1.
EmbeddingSr diagonally intoSr,r gives theSr action onVr−1 which just permutes

tensors. Cr−1 can be viewed as the subspace ofVr−1 of skew symmetric tensors, and
clearly:

Proposition 3 The mapπ:Vr−1 → Vr−1 given by

π =
1
r!

∑
σ∈Sr

sgn(σ)σ (2)

is a projection ontoCr−1. We have thatπ commutes withAr−1 andBr−1, andAr−1,Br−1

restricted toCr−1 are justAr−1, Br−1.

Now we seek to understandKr−1 acting onVr−1. We start by observing that:

Vr−1
∼= C[1..n](r) ⊗ C[1..m](r)

asSr,n,r,m modules.
Next we explain howKr−1 can be understood in terms of a certain conjugacy class sum.

For an integerp we defineTp to be the element ofCSp

Tp =
∑

1≤i<j≤p
(i, j).

It acts as a scalar multiplication by an integer on each irreducible ofSp, and the particular
integer can be easily determined from the partition indexing the irreducible. OnCSr,n ∼=
CSr ⊗ CSn we define the difference:

Dr,n = 1⊗ Tn − Tr ⊗ 1−
(
n− r

2

)
1⊗ 1
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Clearly the elementDr,n ⊗ 1 ∈ CSr,n ⊗ CSr,m = CSr,n,r,m gives the same action on
Vr−1 as doesAr−1. Similarly 1⊗Dr,m, interpreted accordingly, equalsBr−1. SinceTp’s
actions onSp irreducibles is, in a sense, understood, we will get a similar understanding
of Kr−1’s action onVr−1 (and ofKr−1’s on Cr−1) as soon as we decomposeVr−1 into
Sr,n,r,m irreducibles.

We begin this decomposition by the following:

Theorem 3 As anSr,n module we have thatC[1..n](r) decomposes as:

C[1..n](r) ∼=
⊕

λ`n, (n−r)⊆λ
Sλ/(n−r) ⊗ Sλ

We first explain this theorem. Byλ ` n we mean thatλ is a partition ofn. To each such
partition,λ, there is an naturally associated irreducible representationSλ of Sn. Partitions
have a natural partial order4 ⊆. By (n − r) we mean the one element partition ofn − r.
Forα ⊆ β there is natural “skew representation,”Sβ/α, having the property that for eachγ
the multiplicity ofSγ in Sβ/α is the Littlewood-Richardson coefficientcβγ,α; see [13, 14].
Proof: First we notice that asSr,n-modules,

C[1..n](r) ∼= ε⊗CSn−r CSn,

whereε is the trivial representation ofSn−r, and where the right-hand-side is viewed as an
Sr,n-module as in [11]. The theorem then follows from proposition 4.9 of [11].

2

To finish our analysis it suffices to understand the action ofTp on Sp irreducibles, to
understand the Littlewood-Richardson coefficients in our case, and to combine the results.
To this end we have the standard results. From [3] pages 36 and fact 2 on page 40 (and see
[14] page 118) we have

Lemma 1 If λ ` p, thenTp acts onSλ as a constant,Cλ, times the identity, where
Cλ =

∑
x∈λ cx, the sum being over the squares,x, in the Ferrers diagram ofλ, and where

cx is the “content” ofx, i.e. its horizontal coordinate minus its vertical coordinate.

Definition Letα andβ be partitions withα contained inβ. We say thatβ/α is ahorizontal
strip if β can be obtained fromα by adding at most one square in each column.

Note that in this definition we have identified a partition with its Ferrers diagram. We
will continue to do so throughout this article.

From [14] page 143 we have:

Lemma 2 cλα,(n−r) is 1 or 0 according to whether or notλ/α is a horizontal strip.

We now make some simple conclusions:

Corollary 1 As anSr,n,r,m-module,Vr−1 splits as a direct sum ofSα,λ,β,µ, where
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1. Sα,λ,β,µ = Sα ⊗ Sλ ⊗ Sβ ⊗ Sµ,

2. the sum is over allα, β ` r, λ ` n, andµ ` m, such thatcλα,(n−r) = cµβ,(m−r) = 1,
i.e. such thatλ/α andµ/β are horizontal strips,

3. since the splitting is asSr,n,r,m-modules, the actions ofπ andKr−1 factor through
each direct summand, and

4. Kr−1 acts as the identity times

Cλ + Cµ − Cα − Cβ −
(
n− r

2

)
−
(
m− r

2

)
on the summandSα,λ,β,µ (if present).

Now considerπ, as in equation 2, as an element ofCSr,r. We have:

Lemma 3 The image ofπ (π viewed as an element ofCSr,r) onSα ⊗ Sβ for α, β ` r is
{0} unlessα = β′, i.e. α andβ are conjugate partitions, in which case the image is one
dimensional.

Proof: The alternating representation,S1r , can be viewed as a (one dimensional)Sr-
submodule,A, of CSr. π, viewed as an element ofCSr, clearly acts as projection ontoA.
It follows that forλ ` r we haveπ is the identity or0 according to whether or notλ = 1r

(the partition(1, 1, . . . , 1)). So the action ofπ on Sα ⊗ Sβ (viewed as anSr-module)
depends on how many copies ofS1r lie inside of it (viewed as anSr-module). Since
Sβ
′

= Sβ ⊗ S1r , this number of copies is the same as the number of copies of the trivial
representation inside ofSα ⊗ Sβ′ . Since all characters ofSr are real (see [13]), we have
Sβ
′ ' (Sβ

′
)∗, and soSα ⊗ Sβ′ ' Hom(Sα, Sβ

′
) as representations, whereg ∈ Sr acts

on f ∈ Hom by taking it to the mapu 7→ gf(g−1u). So theSr invariants of the above
Hom are just those elements of Hom which are intertwining maps. By Schur’s Lemma the
dimension of such maps is1 or 0 depending on whether or notα = β′.

2

This lemma simplifies things, for clearlyCα = −Cβ for α = β′.
We recall thatfλ = dim(Sλ) is a positive integer; it can be computed via the hook length

formula (see [14]).
We summarize our finding as follows:

Theorem 4 The eigenvalues of∆r−1 on Cr−1 are as follows: for everyα ` r, λ ` n,
andµ ` m such thatλ/α andµ/α′ are horizontal strips, we have anfλfµ-dimensional
eigenspace of eigenvalue(

r + (n− r)(m− r)−
(
n− r

2

)
−
(
m− r

2

))
+ Cλ + Cµ.

Corollary 2 All the eigenvalues of∆r−1 onC(m,n) are integers.
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4. The Betti Numbers

Now we apply theorem 4 to find out which Betti numbers vanish. Although the formula in
theorem 4 is not quite explicit, it allows us to easily enough tell whether or not a0 eigenvalue
in ∆r−1 occurs.

Theorem 5 For X = C(m,n) we havebr−1 = 0 iff (m− r)(n− r) > r.

More generally, we can give a fairly simple formula for the multiplicity of the smallest
eigenvalue of∆r−1, and the above theorem is a corollary. Our formula involves the
following notion:

Definition Forα ` r and integern ≥ r, theminimally horizontally built partition of sizen
fromα is the partition obtained by adding one square toα in each of the firstn−r columns.
We denote itα[n].

Note that of all horizontal stripsβ/α with α fixed andβ ` n, clearlyβ = α[n] has the
minimum content.

Definition Given non-negative integersa, b, we say thatα is a, b-subrectangularif α is
contained in thea×b rectangle. We say thatα isa, b-super-rectangularif it contains thea×b
rectangle and if no square ofα lies past thea-th column and theb-th row simultaneously.
By Ra,b andSa,b we denote respectively thea, b-subrectangular and super-rectangular
partitions.

We remark thatS0,0 is empty and that ifa > 0 or b > 0 (or both) thenSa,b contains one
partition of sizen for anyn > 0.

Our main theorem is:

Theorem 6 For (m− r)(n− r) ≤ r we have

br−1 =
∑

α`r, α∈Sn−r,m−r
fα[n]fα

′[m];

in this casebr−1 > 0 unlessm = n = r (in which caseSn−r,m−r is empty and it is easily
checked that∆r−1 is r times the identity). For(m− r)(n− r) > r the smallest eigenvalue
of ∆r−1 is (m− r)(n− r)− r (in particular br−1 = 0), and its multiplicity is given by:∑

α`r, α∈Rn−r,m−r
fα[n]fα

′[m].

Proof: Fix α ` r, and letλ = α[n]. As mentioned before, clearlyλ is the partition of
least content such thatλ/α is a horizontal strip andλ ` n. Consider the “excess content”
of λ with respect toα, i.e. the sum of thecx with x ranging over theλ− α squares (which
equalsCλ − Cα). Clearly the excess content is(

n− r
2

)
− r
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if n − r ≥ col(α), where col(α) is the number of nonempty columns ofα. Furthermore,
whenn− r < col(α), we have that the excess content is(

n− r
2

)
− r + E

whereE is the number of squares ofα in its last col(α) − (n − r) columns. Doing the
same forα′ andµ = α′[m], we get an excess content of(

m− r
2

)
− r + F,

whereF is the number of squares ofα in its last row(α)− (m− r) rows (if this number is
positive, and otherwiseF = 0). SinceCα + Cα′ = 0, we have that

Cλ + Cν =
(
n− r

2

)
+
(
m− r

2

)
− 2r + E + F.

It follows that the smallest eigenvalue of∆r−1 to whichα contributes as in the formula in
theorem 4 is

(n− r)(m− r)− r + E + F. (3)

It follows thatα contributes multiplicityfα[n]fα
′[m] to the eigenvalue0 iff r = (n−r)(m−

r) + E + F , which will be the case iffr ≥ (n − r)(m − r) andα is (n − r), (m − r)-
super-rectangular. Hence the formula forr ≥ (n − r)(m − r), the casem = n = r
being special in thatSn−r,m−r is the empty set— in this case we easily check that∆r−1

is r times the identity. Forr < (n − r)(m − r), the minimum value of the expression in
equation 3 is(n− r)(m− r)− r, and is achieved iffE = F = 0, i.e. for thoseα’s which
are(n− r), (m− r)-subrectangular.

2

5. The Conjecture of Björner, Lovász, Vrećica, andZ̆ivaljevi ć

Now we draw some conclusions about the Bj¨orner, Lovász, Vrećica, andZ̆ivaljević conjec-
ture based on the formula in the last section. Recall,br−1 > 0 iff (m− r)(n− r) ≤ r. So
we can verify the conjecture whenν ≥ (m− ν)(n− ν). We may assumem ≤ n. When
2m− 1 ≤ n we haveν = m and, of courseν ≥ (m− ν)(n− ν) (also the conjecture was
verified in [2] in this case).

For2m−1 > nwe haveν = b(m+n+ 1)/3c. So letn = 2m−1− c, assumingc ≥ 1.
We haveν = m− dc/3e. If c = 1, 2, 3 we haveν = m− 1 and(m− ν)(n− ν) = m− c
so thatν ≥ (m − ν)(n − ν). We shall show that forc ≥ 4 there are only finitely many
values ofn,m for whichν ≥ (m− ν)(n− ν) holds.

For c ≥ 0 the conditionν ≥ (m− ν)(n− ν) amounts to

m− dc/3e ≥ dc/3e(m+ dc/3e − 1− c),
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which for c ≥ 4 is to say

m ≤ dc/3e(c− dc/3e)dc/3e − 1
;

the conditionm ≤ n amounts tom ≥ c + 1. Hence forc ≥ 4 the two conditions amount
to:

c+ 1 ≤ m ≤ dc/3e(c− dc/3e)dc/3e − 1
.

The casesc = 4, 5, 6 therefore give three(m,n) pairs, namely(6, 6), (7, 7), (8, 9). For
c ≥ 7 we havedc/3e ≥ 3, and so

dc/3e(dc/3e+ 1) ≥ 3(dc/3e+ 1) > c+ 1.

Hence
dc/3e − (c+ 1) > −dc/3e2,

and addingdc/3ec to both sides yields:

(c+ 1)(dc/3e − 1) > dc/3e(c− dc/3e)

and so

c+ 1 >
dc/3e(c− dc/3e)
dc/3e − 1

.

Hence forc ≥ 7 there are no possible values ofm.
We summarize our findings:

Theorem 7 Form ≤ n and2m− 4 ≤ n we havebν−1(X) > 0 whereX = C(m,n) and
ν = min(m,n, b(m + n + 1)/3c). The same holds for(m,n) = (6, 6), (7, 7), (8, 9). In
all other cases we havebν−1(X) = 0.

Notes

1. A topological space,X, isk-connectedif for any 0 ≤ r ≤ k, any map from ther-dimensional unit sphere to
X can be extended to a map from the(r + 1)-dimensional unit ball toX; equivalently,πi(X,x) are trivial
for anyx ∈ X andi = 0, . . . , r.

2. Assumingm ≤ n, theν = 1 case corresponds to eitherm = 1 (disjoint points) orm = n = 2 (a single
edge), andν = 2 corresponds to eitherm = 2 < n (a complete graph on more than two vertices) orm = 3
andn = 3, 4 for which the(ν − 1)-th Betti number does not vanish (see [2], section 2).

3. In [2] the homology appears as(Z/3Z)4, but Vic Reiner informed us that he and Jack Eagon and Joel Roberts
have noted this error, found the above to be correct, and contacted the authors in [2], who concur with them.

4. There are many partial orders on partitions. The partial orderα ⊆ β used here means that the Ferrers diagram
of α fits into that ofβ; i.e. if α = (α1, . . .) andβ = (β1, . . .), thenαi ≤ βi for all i.
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