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Abstract. In this paper we study the Betti numbers of a type of simplicial complex known as a chessboar
complex. We obtain a formula for their Betti numbers as a sum of terms involving partitions. This formula allow:
us to determine which is the first nonvanishing Betti number (aside from-théetti number). We can therefore
settle certain cases of a conjecture obBir, Lowdsz, Vreica, andZivaljevic in [2]. Our formula also shows

that all eigenvalues of the Laplacians of the simplicial complexes are integers, and it gives a formula (involvin
partitions) for the multiplicities of the eigenvalues.
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1. Introduction

An admissible rook configuratioon anm x n chessboard is a subset of squares of the
chessboard such that no two squares lie in the same row or column. The collection
such configurations;(m, n), is a simplicial complex (i.e. it is closed under taking sub-
sets). These simplicial complexes arise in various settings (see [2, 17, 10]), especia
in some combinatorial geometry problems where understanding dbeirectivity was
important. In [2] it is proven that for anyh,n, C(m,n) is (v — 2)-connected, where

v = min(m,n, | (m+n+1)/3]). ltwas conjectured th&t(m, n) isnot(rv—1)-connected.

Itis the above conjecture and the observations in [9] which motivate this paper. In [9] th
above conjecture was verified in a few cases by computer, and it was empirically discover
that the eigenvalues of the Laplacians of the chessboard complexes are integers. In |
paper we give a proof of this fact, a formula for the multiplicity of each eigenvalue of the
Laplacian (including, therefore, a formula for each Betti number), and we determine exact
which Betti numbers vanish. This verifies the conjecture in [2] in certain cases (includin
some new ones), and shows that in the other cases if the conjecture holds it is due to tors
in the relevant homology group. We explain this paragraph in detail below.

We claim that the connectivity conjecture in [2] amounts to:

Conijecture 1 (Bjorner, Lovasz, Vredica, andZivaljevic) For any positiven, n (except
m =n = 1)we haveH,_;(X) # 0 (or # Z if v = 1). whereX = C(m,n) and

v = min(m,n, |[(m+n+1)/3]).

*
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Indeed, forv < 2 the connectivity conjecture was verified in [2], and our conjecture also
holds by the calculations theéteFurthermore, for > 3 we already know that’(m, n) is
(v—2)-connected, and s6(m, n) is connected ang, (C(m, n)) is trivial; by the Hurewicz
Theorem (see [16], chapter 7, section 5) we havedHhat, n) is (v — 2)-connected iff its
homology groups from the first up to tfie — 2)-th are trivial.

In [2] conjecture 1 was proven in a number of cases:n{1X n with m < 5, excepting
C(4,6),C(5,7),C(5,8),and (2)n > 2m — 1. The conjecture was verified via computer in
[9] for C(4,6) andC(5, 8), and was shown to hold f@r (5, 7) unless a certain degeneracy
holds in Laplacian eigenvalues.

Fix m,n, let v be as before, and IeX = C(m,n). Letb;(X) denote the-th Betti
number ofX; it equals the rank off;(X). In this paper we shall prove:

Theorem 1 b,_; > 0iff (n —r)(m —r) <randn >rorm > r.

This theorem verifies the conjecture 1G¢4, 6), C(5, 7), C(5, 8) (without computer aid).
Moreover, this theorem easily shows that:

Theorem 2 For m < n, we haveb,_1(C(m,n)) > 0iff n > 2m — 4 or (m,n) =
(6,6),(7,7),(8,9).

So for such values ofn < n the conjecture is verified. For other valuesmf< n,
b,—1(C(m,n)) = 0; so if H,_1(C(m,n)) is non-trivial, it is due to torsion. Note that
whenm = n = 5, indeedH,(C(5,5)) = (Z/3Z) (see [2}), so we can have a vanishing
Betti number and nonvanishing homology group. We have not been able to extend o
analysis to the homology groups, and to do so would be very important.

Our method is to study the combinatorial Laplacians of@e:,n). The dimension of
the kernel of the-th Laplacian onC'(m,n) is justb;. It was empirically observed in [9]
that these Laplacians seem to have integral eigenvalues. We prove this observation, :
give a formula for the multiplicity of the eigenvalues in terms of certain partitions. This is
theorem 4.

We mention an interesting special case of theorem 4nkerm + 1, them-th Laplacian
on C(m,n) is just the Laplacian of the Cayley grapHi, on .S,,, the symmetric group on
n elements, with generatof$, n), (2,n),...,(n — 1,n). It follows that its first nonzero
Laplacian eigenvaluey;, of G is 1 (and that it occurs with multiplicityn — 1)(n — 2)).

This result was first proven in [7], in a somewhat different fashion. This showsihat
is, in a sense, a much better expander thrthe Cayley graph oty,, with generators
(1,2),(2,3),...,(n — 1,n), which hask; = 2 — 2cos(m/n) (see [1]). This obervation
has led to [8], where it is shown that among all Cayley graphS,pwith n — 1 generators
which are transpositiong; has the largest; .

We finish this section by outlining the rest of the paper. In section 2 we review Hodg
theory and introduce some notation. In section 3 we prove theorem 4, the main theorem
this paper, which gives a formula for the multiplicity of the eigenvalues of the Laplacians i
terms of certain partitions via the representation theory of the symmetric group. In sectior
we analyze this formula to find the smallest eigenvalue of the Laplacians, thus determini
when the Betti numbers vanish. In section 5 we determine precisely for whichwe
haveb, _; # 0.
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2. Hodge Theory and the Laplacian

To compute the Betti numbers we will use the combinatorial Laplacians (see [12, 6, 4, 5]
These Laplacians are most easily described via Hodge theory of Hodge [12].

Fix anabstract simplicial complexX , i.e. a collection of sets closed under taking subsets.
By ani-face of X, we mean a subset of size- 1. Recall that the Betti numberis, are the
dimensions of the rational homology groups, = ker(09;)/im(9;+1) of the chain complex,

'—>Ci+161—+l>cii’ci—l_’"'—>C—1:O7 1)

whereC; is the space of formd-linear sums of orientettdimensional faces, i.e. oriented

subsets of the abstract simplicial complex of size 1, andg; is the boundary map (see
[15]), given by

i+1
k
ai(vjl ARERNA vji+1) = Z(_l) +1Uj1 ARRRAY AL RIS RRNAR
k=1

Hodge theory works for an arbitrary chain complex oRgfor any field of characteristic
0, such ax) or C). Recall that a chain complex is a collecti@h, of vector spaces, with
mapso;:C; — C;_1, as in equation 1, such that ; o 9; = 0 for all i. Endowing each
C; with an inner product, we get maps:C;_; — C; (i.e. the transpose @f;), and thus a
LaplacianA;: C; — C;, for eachi, defined by

Aj = 04107, + 0;0;.
For each we define the set dfarmonici-formsto be
H;, = {C S Ci|AiC = 0}.

For chain complexes where eachis a finite dimensionaR-vector space, Hodge theory
involves only elementary linear algebra, and says:

Proposition 1 (Hodge theory) For eachi we haveH,; = H;, in that each member 61,
gives rise to a class iif;, and each class iit/; contains a unique harmonic form #;.

Proof: Follows easily from the facts that (1) = 9;0; andB = 0;,10;,, are positive
semi-definite and commute, satisfyilg3 = BA = 0, and (2) in6 = imS o S* for any
map of finite inner product spaces,V — W.

3. Laplacian Eigenvalues: A Formula

In this section we give a formula for the multiplicity of the eigenvalues of the Laplacian or
chessbhoard complexes.
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Let[1..n] denote{1,2,...,n}, and lef1..n]"” denote the set of tuplds= (iy, ... ,i,)
with iy, ..., 4, distinctintegers iffl..n]. Let S; denote the symmetric group éelements
which we take to b¢l..t], and letS;, . ; = Sy x --- x S,.. ThenS, acts on[1..n] in

the obvious way(a i) — o(i), and this gives rise to afi, action on[1..n]"). Also S,
acts or{l..n] in the obvious way, namely
T(ih R aiT) = (i‘r(l)7 e ai‘r(r))'

Let C[l..n](r) be the vector space of form@Hlinear combinations O[fl..n](r) elements;
it becomes ard,. ,-module.

Fix m,n. LetV = C{z; ; } with ¢ € [1..m] andj € [1..n] be the vector space of formal
C-linear combinations of the;;’s. Clearly, forX = C(m,n) we have

Cr_1= Span<zu = Zigjy N N2, ‘ Ie [1..m](7’), J e [1..n](r)>,
viewed as a subspace gf V, and we have),_; is given by extending by linearity the

map:

T

87’*1(21]) = Z(_l)k+1zi1j1 N N2y et N Ziggging N N Zigge
k=1

We makeV into an inner product space by makifig; ;} orthonormal; this induces the
inner product of\" V where{z;;} are orthonormal. This determines

8:(Z]J) = Z Zaf Nzrg
agl, pgJ

and thereby determines the Laplacians.
The following proposition follows easily:

Proposition 2 For anyr we have:
A= (r +(mn—=r)(m-— r))[ + A1+ B,_1,
wherel is the identity,
Ar—1(z1) Zzzml SN2 N Nz
k=1 ¢¢1

and

B, _1(z17) E E Ziggy N NZige N Nz g

k=10¢J

So to understand,._; it sufficies to understanél’,_; = A,._1 + B,_;.
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We now describe a method to determine the eigenvalues and eigenspages ofince
S, acts onthd € [1..n]", and sinces,. ,,, acts on the/ e [1..m]"), we have a natural
Sr.n.rm action on thez;;'s and therefore o€,_,. Note thatK,_; commutes with this
action; hence the eigenspaces we seek decomposg,intp,, irreducibles, and we will
be able to understand them more easily this way.

First of all, it will be easier to stud¥’,._; andC,._; by deriving them as the antisymmetric
parts of a tensor product of spaces. So set

Voo = Span(z"7 =z, © - @ 20, | 1 €[], T € [Ln] "))

viewed as a subspace Bf*". LetK,_, = A,_; + B,_; actonV,_, via

Arfl(zl‘]) = Z Z Zigjr @+ © Zujy, @0 @ Zig,,

k=1 ¢¢1

and

T

Bra(: ) =33 sy @ @ e @ @ 5
k=1¢¢J

The naturalS,. ,, .-, action on the:!’’s gives one orV,._;.

EmbeddingS, diagonally intoS, , gives theS, action onV,_; which just permutes
tensors. C,._; can be viewed as the subspacelpf ; of skew symmetric tensors, and
clearly:

Proposition 3 The mapr:V,_; — V,_1 given by
1
= zs: sgn(o)o (2)
oES,

is a projection ont@,._;. We have that commutes wittd,_; andB,._,,andA,_1,5,_1
restricted toC,_; are justA, 1, B,_1.

Now we seek to understarid,._; acting onV,_;. We start by observing that:
Vr1 2 C[1.n]") © C[1..m]™

assSy n.rm Modules.
Next we explain howC,._; can be understood in terms of a certain conjugacy class sum
For an integep we definel}, to be the element a5,

1<i<j<p

It acts as a scalar multiplication by an integer on each irreducibt, céind the particular
integer can be easily determined from the partition indexing the irreducibleC£n, =
CS, ® CS,, we define the difference:

DT)n:1®Tn—TT®1—<n;T)1®1
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Clearly the elemenD,.,, ® 1 € CS,,, ® CS;.,, = CS,prm gives the same action on
V-1 asdoesd,_,. Similarly 1 ® D,. ,,,, interpreted accordingly, equals _;. Sincel}’s
actions onS,, irreducibles is, in a sense, understood, we will get a similar understandin
of K,._1's action onV,._; (and of K,._1's onC,_) as soon as we decompogg_; into
Sr.nr.m irreducibles.

We begin this decomposition by the following:

Theorem 3 As ans,.,, module we have tha&[1..n]") decomposes as:

C[1..n]") =~ EB SN (n=1) & GA
Abn, (n—r)CA

We first explain this theorem. By n we mean thad is a partition ofn. To each such
partition, ), there is an naturally associated irreducible representatiasf S,,. Partitions
have a natural partial ordec. By (n — ) we mean the one element partitionsof- r.
Fora C (there is natural “skew representatio’/*, having the property that for eagh
the multiplicity of S7 in S%/< is the Littlewood-Richardson coeﬁiciec@ﬁa; see [13, 14].
Proof: First we notice that a$,. ,,-modules,

Cli.nl" = eacg, , CSu,
wheree is the trivial representation &f,,_,., and where the right-hand-side is viewed as an
Sy n-module as in [11]. The theorem then follows from proposition 4.9 of [11].

O

To finish our analysis it suffices to understand the actioff,pbn S, irreducibles, to
understand the Littlewood-Richardson coefficients in our case, and to combine the resul
To this end we have the standard results. From [3] pages 36 and fact 2 on page 40 (and
[14] page 118) we have

Lemmal If A - p, thenT, acts onS* as a constant(, times the identity, where
Cx =) ,cx Car the sum being over the squaresjn the Ferrers diagram ok, and where
¢, is the “content” of z, i.e. its horizontal coordinate minus its vertical coordinate.

Definition Let« andg be partitions withy contained in3. We say thaB/« is ahorizontal
stripif 5 can be obtained from by adding at most one square in each column.

Note that in this definition we have identified a partition with its Ferrers diagram. We
will continue to do so throughout this article.
From [14] page 143 we have:

Lemma 2 cg(nﬂ) is 1 or 0 according to whether or not/« is a horizontal strip.

We now make some simple conclusions:

Corollary 1 As anS,.,, ,.,-module,V,_; splits as a direct sum g§:*5:#, where
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1. §oMhu = G2 g S @ S8 @ S,
2. the sumis over all,, 3 - r, A = n, andp = m, such thatcg_’(nfr) = cj 1,

i.e. such that\/« and /3 are horizontal strips,

(m—r) =

3. since the splitting is as$,.,, » »-modules, the actions of and K,_; factor through
each direct summand, and

4. K,_1 acts as the identity times

cx+cu—ca—05—<”2r)— (m2r)

on the summangd A+ (if present).

Now considerr, as in equation 2, as an element@#$, .. We have:

Lemma 3 The image ofr (7 viewed as an element 6fS,.,.) on S* ® S” for a, B - 1 is
{0} unlessae = (@, i.e. a and 3 are conjugate partitions, in which case the image is one
dimensional.

Proof: The alternating representatiofi!”, can be viewed as a (one dimensiong}
submoduleA, of CS,.. 7, viewed as an element @fS,., clearly acts as projection onib.

It follows that for A - » we haver is the identity or0 according to whether or not = 1"

(the partition(1,1,...,1)). So the action ofr on S* @ S? (viewed as anS,-module)
depends on how many copies 6t lie inside of it (viewed as arf,-module). Since

S8 = 8P @ S, this number of copies is the same as the number of copies of the trivia
representation inside &f* ® S?'. Since all characters o, are real (see [13]), we have
S8 ~ (87")*, and 505> ® S7 ~ Hom(S®, S¥') as representations, whejez S, acts

on f € Hom by taking it to the mam — ¢f(¢g~'u). So theS, invariants of the above
Hom are just those elements of Hom which are intertwining maps. By Schur’'s Lemma th
dimension of such maps isor 0 depending on whether or nat= 3'.

This lemma simplifies things, for clearty, = —Cjg fora = g'.

We recall thatf* = dim(S?) is a positive integer; it can be computed via the hook length
formula (see [14]).

We summarize our finding as follows:

Theorem 4 The eigenvalues ak,_; onC,_; are as follows: for everyx - r, A F n,
and u - m such that\/a and u/o’ are horizontal strips, we have aft* f*-dimensional
eigenspace of eigenvalue

<r+(nr)(m7”) (”;’“) - (mzr)>+cx+qt.

Corollary 2 All the eigenvalues ai,._; onC(m,n) are integers.
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4. The Betti Numbers

Now we apply theorem 4 to find out which Betti numbers vanish. Although the formula in
theorem 4 is not quite explicit, it allows us to easily enough tell whether orteigenvalue
in A,._1 occurs.

Theorem 5 For X = C(m,n) we haveh,_1 = 0iff (m —r)(n —r) > r.

More generally, we can give a fairly simple formula for the multiplicity of the smallest
eigenvalue ofA,_;, and the above theorem is a corollary. Our formula involves the
following notion:

Definition Fora F randintegen > r, theminimally horizontally built partition of size
fromc is the partition obtained by adding one square to each of the first. — » columns.
We denote itv[n].

Note that of all horizontal strip8/a with « fixed andg + n, clearly 3 = «a[n] has the
minimum content.

Definition Given non-negative integets b, we say that is a, b-subrectangulaif « is
contained inthe x brectangle. We say thatis a, b-super-rectangulaif it contains thex x b
rectangle and if no square oflies past the:-th column and thé-th row simultaneously.
By R, andS,, we denote respectively the b-subrectangular and super-rectangular
partitions.

We remark thatS, o is empty and that it. > 0 or b > 0 (or both) thenS, ; contains one
partition of sizen for anyn > 0.
Our main theorem is:

Theorem 6 For (m — r)(n —r) < r we have
by = Z foc[n]fo/[m];
akr, aesnfrﬂn—r

in this caseb,_; > 0 unlessm = n = r (in which caseS,,_, ,,—, is empty and it is easily
checked thaf\,._; is r times the identity). Fofm — r)(n —r) > r the smallest eigenvalue
of A,_qis(m —r)(n —r) —r (in particular b,._, = 0), and its multiplicity is given by:

Z f(x[n] fo/[m] ]

abr, a€Rn—rm—r

Proof: Fix o - r, and letA = «[n]. As mentioned before, clearly is the partition of
least content such that/ « is a horizontal strip and + n. Consider the “excess content”
of A with respect tay, i.e. the sum of the, with x ranging over the\ — « squares (which
equalsCy, — C,). Clearly the excess content is

("27)-
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if n —r > col(a), where col«) is the number of nonempty columns @f Furthermore,
whenn — r < col(a), we have that the excess content is

n—r
— E
( 9 ) r+
where E is the number of squares ofin its last co(«) — (n — ) columns. Doing the
same fore’ andp = o/ [m], we get an excess content of

(mz—r) o4 F

whereF is the number of squares afin its last row(«) — (m — r) rows (if this number is
positive, and otherwisg' = 0). SinceC,, + C,, = 0, we have that

C\+C, = (n;T>+<m;T> —2r+E+F.

It follows that the smallest eigenvalue Af._; to whicha contributes as in the formula in
theorem 4 is

(n—r)m—-7r)—r+E+F. (3)

It follows thata contributes multiplicityf [ f'[™] to the eigenvalu@iff r = (n—7)(m —
r) + E + F, which will be the case iff > (n — r)(m —r) andais (n — r), (m — r)-
super-rectangular. Hence the formula for> (n — r)(m — r), the casen = n = r
being special in thas,,_,. ., is the empty set— in this case we easily check that
is r times the identity. For < (n — r)(m — r), the minimum value of the expression
equation 3ign — r)(m — r) — r, and is achieved iftf = F' = 0, i.e. for thosex’s which
are(n — r), (m — r)-subrectangular.

n

5. The Conjecture of Bjérner, Lovasz, Vredica, andZivaljevitc

Now we draw some conclusions about themBgr, Lodsz, Vreica, an(ﬁivaljevié conjec-
ture based on the formula in the last section. Resall; > 0iff (m —r)(n —r) <r. So
we can verify the conjecture when> (m — v)(n — v). We may assumer < n. When
2m — 1 < n we haver = m and, of course > (m — v)(n — v) (also the conjecture was
verified in [2] in this case).

For2m —1 > nwehaver = [(m+n+1)/3]. Soletn = 2m —1— ¢, assuming: > 1.
We haver = m — [¢/3]. If ¢ =1,2,3we havev = m —1and(m —v)(n —v) =m —c¢
so thatv > (m — v)(n — v). We shall show that foe > 4 there are only finitely many
values ofn, m for whichv > (m — v)(n — v) holds.

Forc > 0 the conditionv > (m — v)(n — v) amounts to

m —[c/3] = [¢/3](m+[c¢/3] =1 —c),
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which forc > 4 is to say
_ Tef3le—Te/3]).
- [e31-1 7

the conditionm < n amounts tan > ¢ + 1. Hence fore > 4 the two conditions amount

to:
[¢/3](c = [¢/3])
[e/31 =1~
The cases = 4,5, 6 therefore give threém, n) pairs, namely(6,6), (7,7), (8,9). For
¢ > 7we have[c/3] > 3, and so

c+1<m<

[e/3]([c¢/3]+1) > 3([¢/3]+1) >c+ 1.
Hence
/8] = (c+1) > —[e/3]%,
and adding ¢/3]c to both sides yields:

(c+1)([e/3] =1) > [e/3](c — [¢/3])
and so
[¢/3](c = [¢/3])
[e/3] -1
Hence forc > 7 there are no possible valuesmf
We summarize our findings:

c+1>

Theorem 7 Form < nand2m — 4 < nwe have,_;(X) > 0 whereX = C(m,n) and
v = min(m,n, [(m +n + 1)/3]). The same holds faim,n) = (6,6), (7,7),(8,9). In
all other cases we havg,_1(X) = 0.

Notes

1. Atopological spaceX, is k-connectedf for any 0 < r < k, any map from the-dimensional unit sphere to
X can be extended to a map from the+ 1)-dimensional unit ball toX; equivalently,r; (X, =) are trivial
foranyz € X andi =0,...,r.

2. Assumingm < n, ther = 1 case corresponds to either = 1 (disjoint points) orm = n = 2 (a single
edge), and’ = 2 corresponds to eithen = 2 < n (a complete graph on more than two verticesyroe= 3
andn = 3, 4 for which the(v — 1)-th Betti number does not vanish (see [2], section 2).

3. In[2] the homology appears é&/3Z)%, but Vic Reiner informed us that he and Jack Eagon and Joel Roberts
have noted this error, found the above to be correct, and contacted the authors in [2], who concur with ther

4. There are many partial orders on partitions. The partial arder3 used here means that the Ferrers diagram
of o fits into that of 3; i.e. if &« = (a1, ...) andg = (51, . . .), thena; < G, for all .
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