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Abstract. In a recent paper, we showed that the value of a nonlinear quantity computed from scalp electrode
data was correlated with the time to a seizure in patients with temporal lobe epilepsy. In this paper we study the
relationship between the linear and nonlinear content and analyses of the scalp data. We do this in two ways. First,
using surrogate data methods, we show that there is important nonlinear structure in the scalp electrode data to
which our methods are sensitive. Second, we study the behavior of some simple linear metrics on the same set of
scalp data to see whether the nonlinear metrics contain additional information not carried by the linear measures.
We find that, while the nonlinear measures are correlated with time to seizure, the linear measures are not, over
the time scales we have defined. The linear and nonlinear measures are themselves apparently linearly correlated,
but that correlation can be ascribed to the influence of a small set of outliers, associated with muscle artifact. A
remaining, more subtle relation between the variance of the values of a nonlinear measure and the expectation value
of a linear measure persists. Implications of our observations are discussed.
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1. Introduction

The problem of seizure anticipation in patients with
epilepsy has attracted significant attention in the past
few years. Success in developing a reliable ambula-

tory method of seizure anticipation would have impor-
tant implications both for the quality of life of people
with epilepsy, and for the development of short term
strategies to either limit or abort an impending seizure.
Recently, we showed that a certain nonlinear measure
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computed using data from scalp electrodes is posi-
tively correlated with the time to a seizure in a cohort
of patients with mesiobasal temporal lobe epilepsy
(Li et al., 2003a, 2003b). These results suggest that
this measure can be used as the basis for an ambulatory
method of seizure anticipation. In this paper we study
the relationship between time to seizure and two sim-
ple linear measures computed for the same set of data.
By “linear” with reference to a time series, we mean all
the information from the time series that is encoded in
one of the following (equivalent) sets of information:

(i) The coefficients of a linear auto regressive fit to
the data.

(ii) The power spectrum.
(iii) The values of all the linear two-point correlation

functions.

Any other information, and specifically, information
that involves the relative phases of the Fourier coeffi-
cients (as opposed to just their amplitudes) constitutes
nonlinear information about the time series.

There are a number of reasons spanning a range of
theoretical, practical and biological considerations to
study the relationship between linear and nonlinear in-
formation in the context of seizure anticipation. First,
questions have been raised by several different groups
concerning the value-added utility of nonlinear analy-
ses for seizure anticipation. See, for example, the older
works by Theiler (1995), Rapp (1992), Pritchard and
Duke (1992), and Paulus (1993) among others. More
recently, a comparative study of the efficacy of linear
versus nonlinear techniques yielded the conclusion that
nonlinear techniques added little to seizure anticipation
(Jerger et al., 2001). Finally, McSharry et al. (2003) ar-
gued that the change in behavior of a nonlinear measure
used by Martiniere et al. (1998) as a seizure approached
could be explained by the changes in the standard devi-
ation of the time series, a purely linear measure. From
a practical point of view, there is also good reason to
address this issue. In general, nonlinear measures are
more computationally intensive to estimate than are lin-
ear ones. If one seeks to develop a reliable ambulatory
method of seizure anticipation, one would want to use
the simplest possible metric that will do the job. It is
important, therefore, to determine whether, in practice,
nonlinear metrics have anything to offer over linear
ones. Finally, there may be dynamical, biological im-
plications if nonlinear measures add information over
that contained in linear measures. For all these reasons,
it is useful to compare the performance of some simple

linear measures with our nonlinear measures. In addi-
tion to comparing the behavior of linear and nonlinear
metrics on our data set, it is of interest to independently
establish the extent to which there is nonlinear struc-
ture in the data set to which our nonlinear metrics are
sensitive. In this paper we address the second issue by
using the method of surrogate data, and we show that
our nonlinear metrics behave very differently on linear
surrogate data sets than they do on the real scalp data.
Returning to our real scalp data, we show that, unlike
our nonlinear measures described in earlier work, a set
of very simple linear measures are not strongly corre-
lated with time to seizure, over the time scales in which
we are interested. On the other hand, there is, appar-
ently, a functional relationship between the linear and
nonlinear measures.

The rest of this paper is organized as follows: In the
next section we provide a brief review of our nonlinear
measures and summary of their behavior on the set of
scalp data we have analyzed. In Section 3 we first de-
scribe the results of our surrogate data analysis which
establishes the presence of strictly non-linear effects
to which our metrics are sensitive. We then introduce
some simple linear measures and describe their behav-
ior on our data set. We also describe an interesting
empirical relationship between the linear and nonlin-
ear measures. The paper ends with Section 4 which
contains a summary and discussion.

2. Marginal Predictability
and Seizure Anticipation

2.1. Definition of Marginal Predictability

Consider the correlation integral (Grassberger and
Procaccia, 1983) defined as

Cd (y(i), y( j)) = P
(∥∥y(d)(i) − y(d)( j)

∥∥ < ε
)
. (1)

P(·) is the probability of the argument, x j is the jth
element of the time series being reconstructed, and
y(d)(i) = (xi , xi−1, . . . , xi−d+1) is a d-dimensional vec-
tor reconstructed from data. The notation ‖·‖ means,
in our calculations max norm of the argument which is
computationally simple, i.e., ‖y(d)(i) − y(d)( j)‖ < ε

if max [|xi−k − x j−k |] < ε for k = 0, 1, . . . , d − 1.
The quantity Cd is the probability that two vectors

reconstructed from the time series in d-dimensions
will be close to each other. In terms of the original
time series, Cd is a measure of the likelihood that two
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sequences of length d taken from a time series will look
similar.

Using the Cd ’s, we can define the predictability
(Savit and Green, 1991) as

Sd = Cd+1

Cd
, (2)

and using (1), we see that Sd is just the conditional
probability

Sd = P(zd+1 | zd , . . . , z1) (3)

where

zk = |xi+k−1 − x j+k−1| < ε. (4)

In words, Sd is the conditional probability that if two
randomly chosen d-tuples from the time series have
their first d-1 elements within ε of each other, respec-
tively, then the dth elements will also be within ε.

Sd can be used as a nonlinear statistic, but (Manuca
and Savit, 1996) a more sensitive discriminator of non-
linear structure in time series is the ratio of Sd ’s, defined
as

Rd = Sd

Sd−1
= Cd+1Cd−1

C2
d

. (5)

The marginal predictability (MP) is then defined as:

δd ≡ Rd − 1

Rd
(6)

δd is a measure of how much additional predictive in-
formation there is in the (d +1)st lag of the time series,
given that we have already used information in the in-
tervening d lags. If δd is close to zero, then there is
no additional predictive information, on average, for
the current value of the time series in the value of the
(d + 1)st lag. If δd is significantly different from zero,
then Sd > Sd−1, and there is additional predictive in-
formation in the (d + 1)st lag. “Predictive informa-
tion” here must be understood in the sense of nonlinear
dynamics. See Savit and Green (1991) and Wu et al.
(1993) for more details.

Our approach has been to compare δd for two dif-
ferent scalp electrodes as a function of time. Consider
Qd (A, B; t) = δd (A; t) − δd (B; t), where A and B
are two electrodes and t is time. Typically, A will be
an electrode adjacent to the site of ictal onset and B
will be an electrode remote from the site of ictal onset.

In the case of mesiobasal temporal lobe epilepsy (MB-
TLE), we have generally found that the most consistent
results obtain when both A and B are ipsilateral to the
site of ictal onset. In this paper, we will report results
for which A is the temporal (adjacent) electrode (F7
or F8) and B is the occipital (remote) electrode (O1 or
O2), both electrodes being ipsilateral to the side of ictal
onset. Thus we are interested in whether there is any
difference in the marginal predictabilities of temporal
and occipital electodes ipsilateral to the side of seizure
onset between times far removed from a seizure and
times close to a seizure.

2.2. Marginal Predictability
and Seizure Anticipation

In our previous work Li et al. (2003a, 2003b) we
showed, using several different tests, that Q2(A, B; t)
tended to decrease approximately 20–30 minutes prior
to a seizure in patients with medically refractory MB-
TLE. In Li et al. (2003b) we used Wilcoxon’s sum of
positive rank test (SPR) on a sample size of 44 inter-
ictal epochs and 44 preictal epochs from a cohort of
14 patients. An interictal epoch is defined as one that
is at least one hour away from any seizure. A preic-
tal epoch is the hour immediately preceding a seizure.
Using the (SPR), we showed that we had to reject the
null hypothesis that Q2 = 0 for interictal epochs, and
for preictal epochs, up until about 30 minutes prior
to a seizure. When the null hypothesis that Q2 = 0
was rejected, we found that we had to accept the al-
ternative hypothesis that Q2 > 0. For times less than
about 30 minutes prior to a seizure we could not re-
ject the null hypothesis that Q2 = 0. We also studied
a variety of linear regressive models to try to reject
the null hypothesis that Q2 does not differ between
preictal and interictal epochs. In these model tests, we
used 61 interictal epochs of 20 minutes duration, and
33 preictal epochs consisting of the 20 minutes im-
mediately prior to a seizure. Specifically, we tried to
reject the null hypothesis that the value of Q2 aver-
aged over a 20 minute epoch, 〈Q2〉, does not differ
between preictal and interictal epochs. All of our re-
sults are consistent with rejection of this null hypoth-
esis. In addition, we have used a range of linear re-
gression models with this same data set to study the
dependence of 〈Q2〉 on behavior state. We have found
that we cannot reject the null hypothesis that 〈Q2〉 does
not depend on behavior state. In sum, we have strong
evidence, that Q2 systematically decreases several tens
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of minutes prior to a seizure, and that Q2 does not
systematically depend on the behavior state of the pa-
tient. Details of these analyses can be found in Li et al.
(2003b).

We parenthetically remark here that, not only do the
aggregate results suggest that Q2 decreases several tens
of minutes prior to a seizure, but disaggregated results
also support this view. In studies on individual patients,
we have found that the value of Q2 between occip-
ital and temporal electrodes is a good discriminator
of an impending seizure in 11 of 14 patients. Details
of this analysis will be reported elsewhere Li et al.
(2003c).

3. Linear Measures, Nonlinear Structure
and Seizure Anticipation

3.1. Nonlinear Structure in Epileptic Scalp Data:
Surrogate Data Methods

To test the hypthesis that thre is nonlinear structure in
the scalp epileptic EEG data, we used the method of
surrogate data (Schreiber and Schmitz, 2000) to con-
struct linear surrogates for both the preictal and inter-
ictal epochs. In this approach, a Fourier transformation
of the original data set is performed and the phases
of the Fourier coefficients are randomized. An inverse
Fourier transform of the phase randomized system is
performed to produce a “linear surrogate data set”. This
linear surrogate data set has the same linear properties
as the original data set, but has no specific nonlinear
structure. A collection of such linear surrogate data
sets, all with different realizations of the phase ran-
domization are produced from the original data set, the
metric of interest evaluated on the collection of linear
surrogates, and compared with its value on the original
data set. One simple measure that is used to determine
whether the value of the metric on the original data is
substantially different from its typical value on the sur-
rogate data is the significance, �, (Prichard and Theiler,

Table A. Significance of nonlinear quantities with respect to linear surrogates.

�, interictal epochs � preictal epochs

Quantity Range Mean Range, 80% Range Mean Range, 80%

δ2 (remote) 1.2–833.1 69.7 2.4–565.4 1.6–1245 105.7 3.2–935.5

δ2 (adjacent) 0.45–2355 155.4 1.8–1037.7 1.1–3779 173.9 2.8–3690.8

Q2 1.7–214.7 33.1 3.2–105.3 0.5–198.2 31.9 1.2–143.7

1994) defined by

� = |Vo − V̄s |
σs(V )

.

where Vo is the value of the metric on the original data
set, V̄s is the mean of the values of V computed on
the surrogate data sets, and σs is the standard devia-
tion of those values. Values of � greater than about 3
are generally thought to indicate significant differences
in the values of V on the original and surrogate data
sets.

We have performed this surrogate data analysis on 61
interictal and 33 preictal epochs of 20 minutes duration.
Each 20 minute epoch was divided into 30, 40-second
intervals. Each 40 second interval was considered as a
separate time series for which 20 linear surrogate data
sets were constructed. The results of our surrogate data
analysis is presented in Table A, below. Here we list
results for three different quantities, δ2 associated with
the remote electrode, δ2 associated with the adjacent
electrode and Q2. For each of these quantities, we list
the range of values of � for the preictal and interic-
tal epochs, the mean of those values, and the range
which includes 80% of the epochs whose values are
distributed symmetrically about the median (i.e. after
eliminating the smallest and largest 10% of the val-
ues). It is clear from this table that the behavior of our
metrics is substantially different on the original data
set as opposed to the linear surrogates. (Qualitatively,
for example, we observe that the absolute values of
δ2 are typically about an order of magnitude greater
on the original data than on the linear surrogates.) In
addition to the values of our metrics being much dif-
ferent on the original as opposed to the linear surrogate
data sets, we find no evidence of qualitatively different
behavior for our metrics on the linear surrogate data
sets 20–30 minutes prior to a seizure, as we did for
the original data sets. Thus, there is significant intrinsi-
cally nonlinear structure in scalp EEG recordings from
subjects with epilepsy, that structure appears to carry
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information about impending seizures, and our metrics
are sensitive to that structure.1

3.2. Linear Measures: Definitions and Methods

There are, in principle, many linear measures associ-
ated with a time series. These can be thought of, for
example, as the coefficients of an AR(n) fit to the data,
with n taken as large as is reasonable given the data. In
this paper we will consider what are arguably the two
simplest linear measures, namely, the standard devia-
tion of the time series, and the coefficient of a standard
linear AR(1) fit to the data. Specifically, for a time se-
ries x(t) consisting of N points, the standard deviation
is determined by

σ 2 = 1

N

∑

t

[x(t) − x̄]2, with (7)

x̄ = 1

N

∑

t

x(t). (8)

The coefficient of a linear AR(1) fit, a1, is determined
by a best least-squares fit of the form

x(t) = a0 + a1x(t − 1) + η (9)

where η is the residual. Note that we do not claim that
(9) is necessarily a good representation of the data. We
use this only to define one of the two simplest linear
measures whose behavior we are studying here.

In our case, we will consider σ 2 and a1 computed for
the twenty minute epochs of data derived from record-
ings of scalp electrodes that are adjacent to and remote
from the site of ictal onset, as described in the para-
graph following equation (6), above. We will use the
same set of 94 20-minute epochs (61 interictal and 33
preictal) that were used in Li et al. (2003b). As in Li
et al. (2003b), we take the data recorded from these
electrodes at 200 Hz, and construct from that data set
a new time series consisting of every third data point.
The technical reasons for this are described in detail in
Li et al. (2003b). This decimated data set constitutes
the time series x(t) for which we compute σ 2 and a1.

We will apply to σ 2 and a1, the same set of sta-
tistical tests used in Li, et al. (2003b)] to study the
nonlinear measures δ2 and Q2. Q2 appears to be the
nonlinear measure with the most power to discrimi-
nate between preictal and interictal epochs. Since Q2

is the difference between the δ2’s for the remote and
adjacent electrodes, we will be particularly interested

in the behavior of �σ 2 ≡ σ 2 (remote)-σ 2 (adjacent)
and �a1 ≡1 (remote)-a1 (adjacent), although we will
also study the dependence of the individual σ 2’s and
a1’s.

As in our previous work, we construct six linear mod-
els to test for the dependence of σ 2 (remote), σ 2 (ad-
jacent), �σ 2, a1 (remote), a1 (adjacent) and �a1 on
several variables that encompass (i) characterizations
of the behavior state, (ii) the side on which the seizure
focus is located, and (iii) whether the epoch in question
is interictal or preictal as defined above. With regard to
behavior states, we catalog each 20 minute epoch (61
interictal and 33 preictal) in our data set into a behavior
state according to the following categories:

Awake, eyes open—AEO
Awake, eyes closed—AEC
Lightly drowsy—D1
Heavily drowsy—D2
Stage 2 NonREM sleep—S2
Stage 3 and 4 of NonREM sleep—S3/4
REM sleep—REM

From the set of 40 30-second intervals for a given
epoch, a summary behavior score for that epoch was
produced. If 32 or more of the 30 second intervals
(80%) of a given epoch were in the same behavior state,
then that 20 minute epoch was deemed primarily in that
behavior state e.g. AEO or D2. If 60–79% of an epoch
was spent in one state, then that epoch was considered
as predominantly that state and indicated with the pre-
fix P, thus PAEO or PD2. When less than 60% of an
epoch was spent in just one state, then the epoch was
considered a blend of 2 or more states, thus AEO/D2.
Listed below are the numbers of various behavior states
that comprise our basic data set of interictal and preictal
epochs.

AEO—49
PAEO—3
D2—9
S2—17
Mixed states—16

No states were observed that were purely or predomi-
nantly D1, AEC, S3/4 or REM. However, the states D1
and AEC do contribute to some of the mixed states.

We will use this data to test for the dependence of
σ 2 (remote), σ 2 (adjacent), �σ 2, a1 (remote), a1 (adja-
cent) and �a1 for 20 minute epochs, on behavior state,
on whether the epoch in question is preictal or interictal,



340 Li et al.

and on whether the seizure focus is on the left or right
side of the brain. The models become more complicated
the more behavior state variables are included. For be-
havior states for which there are few observations it
is therefore inadvisable to include additional variables.
There are two approaches to this issue. The first is to ag-
glomerate related behavior states (e.g. AEO and AEC)
into one category. The second is to eliminate those
states with few observations. We have done two sep-
arate analyses using each of these two approaches. In
both cases, the number of behavior states against which
we test for dependence in either case is four, AEO, D1,
D2 and S2. For our first analysis we have used all 94
epochs of our data. This set we term “inclusive”. In this
approach we have categorized AEC observations with
AEO observations. Note that the AEC observations
only occur in mixed states. We have also performed
the statistical tests on a subset of epochs in which we
have eliminated those epochs and their associated be-
havior states for which there are only a few represen-
tatives. For this subset we have also removed all mixed
states. All epochs used in this data set are either purely
or predominately one behavior state. This data set we
term “restricted”. The total number of epochs that com-
prise the restricted data is 78 consisting of 54 interictal
and 24 preictal epochs. As we shall see, our qualitative
conclusions are the same for both data sets.

We introduce the following variables:

X1 = 1 if the behavior state is AEO and X1 = 0
otherwise

X2 = 1 if the behavior state is D1, and X2 = 0 other-
wise

X3 = 1 if the behavior state is D2, and X3 = 0 other-
wise

X4 = 1 if the seizure focus is on the left side and
X4 = 0 if the seizure focus is on the right side

X5 = 1 if the epoch is interictal and X5 = 0 if the
epoch is preictal

Note that since we use four categories of behavior state,
the assignment (X1, X2, X3) = (0, 0, 0) uniquely cor-
responds to the behavior state S2. An exception to the
assignment of binary values to the X1, X2 and X3 oc-
curs in the characterization of mixed states for the in-
clusive data set. In this case the Xi take on values that
reflect the fraction of the epoch associated with differ-
ent behaviors. So, for example, a mixed state containing
25% of each of the four states, AEO, D1, D2 and S2
would be represented by the assignment X1 = X2 =
X3 = 0.25.

In this paper we will present results for the six lin-
ear quantities σ 2 (remote), σ 2 (adjacent), �σ 2, a1 (re-
mote), a1 (adjacent) and �a1. Let V stand for one of
these quantities. We proceed in a standard way by con-
structing linear models, estimating coefficients in those
models and computing p-values for the rejection of the
null hypothesis that the values of the linear coefficient
are zero. As in our previous work, we do not believe
that the dependent variables, V , necessarily depend lin-
early on the variables, Xi . Rather, we adopt these linear
tests because they are simplest way to look for some
dependence of the variables, V on the variables Xi . The
following models and statistical tests were applied to
each of these six linear quantities:

Test I: V = a0 + a5 X5

Null hypothesis a5 = 0, alternate hypothesis a5 �= 0.

Test II: V = a0 + a4 X4

Null hypothesis a4 = 0, alternate hypothesis a4 �= 0.

Test III: V = a0 + a4 X4 + a5 X5

Null hypotheses a4 = 0 or a5 = 0 tested using partial
F-tests.

Test IV: V = a0 + a1 X1 + a2 X2 + a3 X3

Null hypothesis a1 = a2 = a3 = 0, alternate hypothe-
sis, at least one of the ai (i = 1, 2, 3, ) is non-zero.

Test V: V = a0 + a5 X5 + a1 X1 + a2 X2 + a3 X3

Null hypothesis a1 = a2 = a3 = 0, alternate hypothe-
sis, at least one of the ai (i = 1, 2, 3, ) is non-zero.

Test VI: V = a0 + ∑5
j=1 a j X j

Null hypothesis a1 = a2 = a3 = a4 = 0, alternate
hypothesis, at least one of the ai (i = 1.2.3.4) is
non-zero.

Test I is a test for dependence on whether the epoch
in question is preictal or interictal. Test II is a test for
dependence on whether the seizure arises from the left
or right side of the brain. Test III is an additional test
for each of these dependencies after controlling for the
other one. Test IV is a simple test for dependence on be-
havior state. Test V is a test for dependence on behavior
state after controlling for whether the epoch is preictal
or interictal, and test VI is a test for dependence on
behavior state and/or whether the seizure arises from
the left or right side, after controlling for whether the
epoch is preictal or interictal.

3.3. Linear Metrics: Results

In Tables 1–6 in the Appendix we present the de-
tailed results of our statistical tests. As is standard, we
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reject the null hypothesis (with 95% confidence) only if
p-value <0.05. The results in these six tables support
the following general conclusions:

1. There is no significant difference in our results be-
tween the inclusive and restricted data sets.

2. We cannot reject the null hypotheses that each of the
linear measures have no dependence on whether the
epoch is preictal or interictal, or whether the seizure
arises from the right or left side of the brain.

3. For all the linear measures, with the exception of
σ 2 (remote), we can reject the null hypothesis that
there is no dependence on behavior state.

These results are in marked contrast to the results ob-
tained for the nonlinear metrics 〈Q2〉 and 〈δ2〉 (Li et al.
(2003b)) for the same data set. In that case, we saw clear
evidence of dependence of, most importantly, 〈Q2〉 on
whether the epoch in question was preictal or interictal,
and no evidence of significant dependence on behavior
state. These differences will be discussed further in the
next section.

Given these results, it is interesting to look at one ad-
ditional set of tests. We want to examine more directly,
the relationship between some of the nonlinear mea-
sures and the linear measures. To this end, we consider
the following statistical tests based on simple linear
forms. As before, we do not necessarily believe that,
if there is a functional relationship between the non-
linear and the linear variables, that that relationship is
linear. We use these models only because they provide
a simple test of the existence of a relationship (or lack
thereof) between the nonlinear and linear quantities.

Test A (applied separately to both the remote and adja-
cent electrodes): 〈δ2〉 = b0 + b1σ

2

Null hypothesis, b1 = 0.

Test B (applied separately to both the remote and adja-
cent electrodes): 〈δ2〉 = b0 + b2a1

Null hypothesis, b2 = 0

Test C: 〈Q2〉 = c0 + c1(�σ 2)
Null hypothesis c1 = 0

Test D: 〈Q2〉 = c0 + c2(�a1)
Null hypothesis c2 = 0

Test E: 〈Q2〉 = c0 + c1(�σ 2) + c2(�a1)
Null hypotheses, c1 = 0 or c2 = 0, tested using partial

F-tests.

The results of these tests for both the inclusive and
restricted data sets appear in Table 7 of the Appendix.
It is clear from this table that there is some relationship

between the values of 〈δ2〉 and σ 2 for the electrode ad-
jacent to site of ictal onset. This relationship is also,
evidently, reflected in the relationship between 〈Q2〉
and �σ 2. On the other hand, this linear test is not able
to reject the null hypothesis of no relation between
〈δ2〉 and σ 2 for the remote electrode. Finally, in one
of our data sets, there appears to be a relationship be-
tween 〈δ2〉 and a1 for the adjacent electrode. However,
since we only reject the null hypothesis for the inclu-
sive data set, and since we accept the null hypothesis in
test E that c2 = 0 for both data sets, there is reason to
be skeptical of this relationship. We should, however,
take seriously the apparent relationship between 〈δ2〉
and σ 2 for the adjacent electrode, and the consequent
relationship between 〈Q2〉 and �σ 2. Since 〈Q2〉 is the
nonlinear measure of primary interest to us, we will
focus on that quantity. To help clarify the possible rela-
tionship between 〈Q2〉 and �σ 2, it is useful to look at
a scatter plot, for these two variables. This is presented
in Fig. 1. Note that most of the points are clustered,
but there is one far outlier. This epoch was associated
with more that the usual amount of muscle artifact. We
can redo Test C on a reduced data set that eliminates
this outlier. The result is presented in the last row of
Table 7. After eliminating this outlying epoch, we can
no longer reject the null hypothesis of no relation be-
tween 〈Q2〉 vs. �σ 2. It is also important to note that
even with this outlier eliminated, we still find a signifi-
cant relationship between 〈Q2〉 and whether the epoch
in question is preictal or interictal. In particular, if we
let V = 〈Q2〉, then in Test I above, we reject the null
hypothesis with a p-value of 0.038.

Thus, the apparent relationship between 〈Q2〉 vs.
�σ 2 can be eliminated by removing a single outlying
point, and removal of that epoch does not affect our
conclusions about the relationship between 〈Q2〉 and
whether the epoch is preictal or interictal. That said, it is
important to note that while we find no strong evidence
for a linear relationship between 〈Q2〉 and �σ 2, it is
possible that there is a more subtle relationship. Indeed,
an inspection of Fig. 1 shows that the range of values
of 〈Q2〉 is larger when �σ 2 is smaller, even thought
there is no systematic linear relation between them.

4. Summary and Discussion

In Li et al. (2003a), we introduced a new nonlinear
measure based on the analysis of scalp EEG recordings,
and demonstrated a relationship between values of that
measure and whether an epoch was in close temporal
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Figure 1. 〈Q2〉 vs. �σ 2 including all 94 epochs of the inclusive data set.

proximity to a seizure in patients with mesiobasal tem-
poral lobe epilepsy. In Li et al. (2003b), we extended
our analysis to include a much larger data sample. We
showed there additional support for the power of 〈Q2〉
to discriminate between preictal and interictal epochs,
and we showed also that 〈Q2〉 was relatively insensitive
to the behavior state of the patient.

In this paper we have studied the behavior of our
metrics on linear surrogates of our data, and we have
also studied the question of whether simple linear mea-
sures can reproduce the discriminative power of 〈Q2〉 ,
an intrinsically nonlinear measure, on scalp EEG from
epileptic subjects. We have shown that our metrics be-
have very differently on linear surrogates and that this
linearization appears to remove information that sig-
nals an impending seizure. Returning to the original
scalp EEG data set, we have shown that there is little re-
lation between the simplest linear measures, namely the
standard deviation and the first linear auto-regressive
coefficient, and our nonlinear measures on the data.
Notably, the linear measures are relatively sensitive to
the behavior state of the subject but are insensitive to
whether the epoch preictal or interictal. On the other
hand, the measure 〈Q2〉 is sensitive to whether the
epoch is preictal or interictal, but is insensitive to the be-

havior state of the subject. The only observed relation-
ship between the linear and nonlinear measures is evi-
dently attributable to the effect of a far outlying epoch.

It is important to study the relationship between lin-
ear and nonlinear measures for several reasons. First,
〈δ2〉 and 〈Q2〉 on the one hand, and σ 2 and �σ 2 on the
other are, a priori, sensitive to very different features of
the data. If there were a nontrivial relationship between
them it might have implications for the underlying dy-
namics of ictal genesis. In this regard, it is important
to mention the relationship between the values of 〈Q2〉
and �σ 2 that we pointed out in the last section, namely,
that the spread in values of 〈Q2〉 is larger when �σ 2

is smaller, even thought there is no systematic linear
relation between them. The dynamical implications of
this observation are unclear, but a deeper investigation
of it is clearly warranted. Second, since linear mea-
sures are typically easier to compute than nonlinear
ones, a demonstration that the linear measures are as
sensitive as nonlinear measures to the preictal or in-
terictal nature of the epoch would have had practical
implications, possibly resulting in a simpler strategy
for seizure anticipation. This, however, appears not to
be the case. Absent a systematic relation between the
expected values of linear and nonlinear measures, it is
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hard to see how linear metrics could easily supplant the
use of nonlinear metrics in a protocol such as the one we
consider. Finally, and to avoid confusion, we make the
following technical remark. A paper by Martinerie et al.
(1998) has been criticized by McSharry et al. (2003).
These latter authors demonstrated that the behavior of
a nonlinear metric observed in Martinerie et al. (1998)
could be explained by the behavior of the standard de-
viation of the time series that those authors studied.
The technical origin of this observation is, essentially,
that Martinerie et al. did not properly renormalize their
computation of the correlation integral to remove the
large effect of an increased spread of the data (and the
consequent reduction in the value of the correlation
integral) that is associated with an increased standard
deviation. Our approach is immune from this criticism
since we renormalized all the data in each 30 second
window, 40 of which comprise one of our 20 minute
epochs.

Although the analyses of our data is strongly sug-
gestive that 〈Q2〉 could be the basis for a robust seizure
anticipation protocol, the most important test of this
possibility will be in studies on disaggregated data. In

Table 1. Summary of dependence tests for 〈σ 2〉, focal electrode.

〈σ 2〉 inclusive data set Adjacent (temporal) electrode 〈σ 2〉 restricted data set Adjacent (temporal) electrode

Null hypothesis p-value Null hypothesis p-value

Test I Accept 0.80 Accept 0.55

Test II Accept 0.82 Accept 0.84

Test III (Accept, accept) 0.83, 0.81 for (a4, a5) = 0 (Accept, accept) 0.797, 0.537 for (a4, a5) = 0

Test IV Reject 0.02 Reject 0.034

Test V Reject 0.012 Reject 0.012

Test VI Reject 0.027 Reject 0.083

Table 2. Summary of dependence tests for 〈σ 2〉, remote electrode.

〈σ 2〉 inclusive data set Remote (occipital) electrode 〈σ 2〉 restricted data set Remote (occipital) electrode

Null hypothesis p-value Null hypothesis p-value

Test I Accept 0.14 Accept 0.60

Test II Accept 0.09 Accept 0.13

Test III (Accept, accept) 0.08, 0.12 for (a4, a5) = 0 (Accept, accept) 0.17, 0.08 for (a4,a5) = 0

Test IV Accept 0.94 Accept 0.80

Test V Accept 0.83 Accept 0.85

Test VI Accept 0.40 Accept 0.30

Li et al. (2003b) we noted that in 11 of 14 patients with
temporal lobe epilepsy 〈Q2〉 was systematically lower
in preictal than in interictal epochs. There is reason
to be optimistic that, at least in a significant subset of
patients with localization-related epilepsy, a protocol
similar to the one suggested here will be useful. Not
only do we have promising preliminary results, but our
approach also admits of the possibility of tailoring the
protocols to different patients. There are a number of
control parameters in the algorithms (e.g. ε, τ , window
length, reconstruction dimension) that can be varied to
optimize the reliability of the protocol for different pa-
tients. Because of the heterogeneity of even a relatively
well-defined syndrome such as mesiobasal temporal
lobe epilepsy, it is not unreasonable that different pa-
rameter settings in a seizure anticipation protocol may
be appropriate for different patients. Our results are,
indeed, very promising, but much more work needs to
be done. A much larger database needs to be studied
and out of sample tests need to be performed. We are
currently pursuing these studies.

Appendix
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Table 3. Summary of dependence tests for 〈�σ 2〉, remote electrode.

〈�σ 2〉 inclusive data set 〈�σ 2〉 restricted data set

Null hypothesis p-value Null hypothesis p-value

Test I Accept 0.38 Accept 0.42

Test II Accept 0.10 Accept 0.14

Test III (Accept, accept) 0.09, 0.35 for (a4, a5) = 0 (Accept, accept) 0.16, 0.50 for (a4, a5) = 0

Test IV Reject 0.0095 Reject 0.02

Test V Reject 0.014 Reject 0.027

Test VI Reject 0.0089 Reject 0.035

Table 4. Summary of dependence tests for 〈AR1〉, adjacent electrode.

〈AR1〉 inclusive data set Adjacent (temporal) electrode 〈AR1〉 restricted data set Adjacent (temporal) electrode

Null hypothesis p-value Null hypothesis p-value

Test I Accept 0.61 Accept 0.77

Test II Accept 0.95 Accept 0.22

Test III (Accept, accept) 0.94, 0.61 for (a4, a5) = 0 (Accept, accept) 0.21, 0.69 for (a4, a5) = 0

Test IV Reject 0.011 Reject 0.0385

Test V Reject 0.009 Reject 0.033

Test VI Reject 0.018 Accept 0.052

Table 5. Summary of dependence tests for 〈AR1〉, remote electrode.

〈AR1〉 inclusive data set Remote (occipital) electrode 〈AR1〉 restricted data set Remote (occipital) electrode

Null hypothesis p-value Null hypothesis p-value

Test I Accept 0.27 Accept 0.70

Test II Accept 0.22 Accept 0.60

Test III (Accept, accept) 0.23 0.28 for (a4, a5) = 0 (Accept, accept) 0.58, 0.67 for (a4, a5) = 0

Test IV Reject 0.005 Reject 0.005

Test V Reject 0.008 Reject 0.006

Test VI Reject 0.001 Reject 0.01

Table 6. Summary of dependence tests for 〈�AR1〉, remote electrode.

〈�AR1〉 inclusive data set 〈�AR1〉 restricted data set

Null hypothesis p-value Null hypothesis p-value

Test I Accept 0.34 Accept 0.61

Test II Accept 0.10 Accept 0.32

Test III (Accept, accept) 0.19 0.36 for (a4, a5) = 0 (Accept, accept) 0.29, 0.55 for (a4, a5) = 0

Test IV Reject 0.02 Reject 0.043

Test V Reject 0.035 Reject 0.05

Test VI Reject 0.035 Accept 0.06
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Table 7. Linear tests of the existence of relationships between nonlinear and linear measures.

Inclusive data set Restricted data set

Null hypothesis p-value Null hypothesis p-value

Test A (adjacent) Reject 0.0017 Reject 0.0003

Test A (remote) Accept 0.313 Accept 0.254

Test B (adjacent) Reject 0.0156 Accept 0.500

Test B (remote) Accept 0.224 Accept 0.545

Test C Reject 0.0001 Reject 0.0001

Test D Accept 0.9393 Accept 0.905

Test E (Reject, accept) (0.0001, 0.2741) for (c1, c2) (Reject, accept) (0.0001, 0.860) for (c1, c2)

Test C (outlier removed-93 epochs) Accept 0.204
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Note

1. Although nonlinear effects dominate the linear structure in the
original data set, as far as our metrics are concerned, there is still
interesting linear structure in these data. We have performed an
additional analysis of our data by taking the linear surrogates and
treating them as “original” data sets. For a given linear surrogate,
we constructed a set of IID surrogates that removes the linear
structure, turning the time series into a random (IID) series. Us-
ing our metrics, we have found some interesting structure in the
linear surrogates that are absent in the IID surrogates. A detailed
discussion of this finding is beyond the scope of this paper, but
will be presented elsewhere.
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