Numer. Math. 25, 365—377 (1976)
© by Springer-Verlag 1976

Generalization and Acceleration of an Algorithm
of Sebastiao e Silva and its Duals

Soon Park Chung

Received November 18, 1974

Summary. In this paper, we extend Householder’s [4] generalization of an algo-
rithm of Sebastido e Silva [11] by adding a new elimination rule for defining the sequen-
ces which converge to the factors of the given polynomial. We then present the dual
algorithm and show that the dual algorithm becomes equivalent to the direct algorithm
in the generalized form. Next, we give accelerated forms of these algorithms which
are quadratically convergent. We also study the relation of these methods to other
methods.

The algorithm of Sebastido e Silva [11] for obtaining zeros of polynomials
has been further elaborated by Bauer {1, 2] and generalized by Householder [4].
The purpose of this paper is to investigate generalizations of the algorithm in
which different elimination rules are used to get approximations to the factors
of the given polynomial and in which the operating polynomial is varied to
accelerate the convergence, and to show the relation of these methods to other
algorithms. At the outset a theorem will be stated that extends Householder’s
generalization, in which a new elimination rule appears. In fact, this elimination
rule has been used in the dual form of the original algorithm (see [7]), which has
been extended to adapt to transcendental functions [13]. Next, we will present
the dual algorithm in the generalized form and show that it is equivalent to the
direct algorithm. Finally, we will study the accelerated forms of these algorithms
which are quadratically convergent, and show how these algorithms can be related
to other methods.

The polynomial to be considered will be taken as monic, for convenience:
f@)=2"+a, " ay, apF0
=(2—7)) (2—7s) ... (2 —7,).
L@ =@ {{z—r)z—r)) ... G—7)].
Also, for any polynomial

f’(z):pmzm+i)m—1zm_1+"'+750: ﬁm#o’
it will be understood that

(1)
Let

p*(2)=pn' b (2).

Theorem 1. Let f(2) be given by (1) and let g(z) and g,(z) be any polynomials
of degree n—1 ai most such that neither g(z), g'(z) nor go(z) vamishes for any v;,

366 S. P. Chung

and g(r;) =g () for r; = 7,. Define recursively
g1(8)=g2)g, () —o(9)f(2), »=0,1,2,..., (2
where each g,(z) is of degree n—1 at most. If

le(r)| > |glra)| = =|g(n)],
then

lim g2 () =/, (2)
Moreover, let
g,1(2)=g,(2), for each v,

and define the sequences g, ,(z), p=1,2,...,n, by any one of the following rules:

Rule 1. Form g, ,.1(2) by eliminating the highest term between g, ,(z) and
8v+1, p(z)

Rule 2. Form g, ,.1(2) by eliminating the constant term between g, ,(z) and
811, p(2) and dividing by 2.

Rule 3. Define g, ,(2) as the following determinant of order p:

&» (Z) 8yt (Z) ce gv+p-—1 (Z)

g, () =6 &y+1(2) 8or2(2) - &ip(2) [—F(z)]~ %Y. (3)
Eyrp—1(2) g,,ﬂ,(Z) "'gv+2p——2(z)
Then
}_iglog:p(z)zflz...p(z)x
tf

[gr)| = glg("p) | > |g("p+1)| = =g

Proof. Rule 1 und Rule 3 have been proved in [4]. We will verify Rule 2.
For simplicity, it will be assumed in the proof that g,(z)=1, since a different
choice would leave the argument unaffected. Let

y;=g(r)), G, (2)=g"(2);
& (Z) = bv,0+ bv,1z+ -t bv,n——lz”-‘l-

Since g, (z) is the polynomial of degree #—1 at most for which g, (r;) = g"(r;) =
y5, 1=1, 2, ..., n, we can write, by Newton’s formula for interpolation,

g,(Z)zG,(T”)+(Z—Vn) Gv(rm rn—1)+"'+f12(z) Gv(’n, To—11 ooy 72)

+£:(2) G, (7, Tyery -5 720 71), (4)
where, if the #'s are all distinct,
1 7, 15...G,(r;)
Glrargemm=o |1 T TS Npng))

1 7, 72...G,(r)

with (*3(r,, 7;, ..., 7,) the Vandermonde determinant, and in the confluent case
when certain 7’s become equal, certain rows in the numerator and denominator

Generalization and Acceleration of an Algorithm 367
in (5) are replaced by the derivatives. Now let

|g(71)| 2‘g(’2)|3 = |g(’p)|> lg(’p+1)| = §|g("n),:

for p>1. It can be seen [5] that Rule 2 is equivalent to defining g, ,(z) by

bv,o bv, 1 e bv,p—2 gv(z)
g, ,(2)=0 by1i1,0 T N &vi1(2) =1 (6)

bv+p—x,o bv+p—1,1---bv+p—1vp_2 gv+p—1(z)
Let

¢v(z):fl2...#(z)Gv(rn, Vae1s +o s Vp)+"'+f12(Z)G,,(1’”, Ya—1s ooes 72)
+H(2)G, (¥ Yy, -y 71)
:¢v,0+¢v,lz+"'+¢v,n—-1zn~1-

Since ¢, (z) dominates all other terms of g, (z), we know that

‘¢v,0 ¢v,l .- ¢u,p—2 é,(2)

) ¢v+1,o ¢v+1,1 ---¢v+1,p—-2 &y11(2) . =1

¢v+p—1,o ¢v+p—1,1 ¢v+p—1,p—2 ¢v+p-l(z)

dominates all other terms of g, ,(z) provided only it contains a term in yj y}...7}.
Now ¢, (z) can be written in the form

¢v(z):fl2...p(z) 'u)v(z)r

where
v,(2)=G,(7,, ..., rP)+(z—ri,)G,(r,,, ey 7p—1)+ ”)
@@=y (2—1p_1) ... (2—73) Gy (7, .., 7).
Let
v, (2) =w,,o+%,ﬂ+---+%,p—12"‘1 (8)
and
flz_._l,(z)zco—i—clz—i—---—{—cn_pz”_”.
We know that ¢, =+ 0 since a,==0. We then have
v —_ v z
ofPre Bl S)
Doip—10 Prrp—1,1-- Doip_1,p—2 Gy p-1(2)
Yy,0% Py, 1C0Ts,001 s Wy pgCot Y, 0Cp -2
Yotrp—1,00 Yotp—1,160T¥rtp~1,001--- Yorp—1,p—2C0t T Phip—1,0Cp—2
ha.. s, (2)
........... Wt

368 S. P. Chung

¥v,0% ¥y, 1%0 Wy p—2Cp P, (2) .
mhg p @O Pty
Yoip—1,0€0 Prtp—1,100 - Voip—1,p—2% Yyip—-1(2)
p—1
L Ys,0 Y1 Wy po2 Yy, p—17 .
=f1a...5(?) S B P

Voip—10 Yotp—1,1 - - Poip—1p—1

From (7) and (8), we have

P—7
w,’i:‘zldi,in(yn, s %), 7=0,1,...,p—1,

for some constants 4, ;. In particular,

dy_j;i=1, =01, ...,p—1.
So,

Yotp—10 WYoirp—11 - YPoip_1p—1

jd -1
<Z d; oGyt ..., 7)) 241G, (... 7) by p G (1)
‘ i-1
=0

P p—1
DI Z S CANEN NI) B M AN CHNENY AT 2) DY SN CAPUIRY (A Y
= .

=1

which has been shown [4] to contain a term in y{ 43 ... y;. This, together with (9),
shows that the term in f,, ,(z) dominates all other terms of g, ,(z) and hence
that

E)Iglog:p(z)=f12..,p(z)-

If g(2)=2, Theorem 1 is the original algorithm of Sebastido e Silva. As noted
in Householder [4], the original algorithm fails when all the zeros of the given
polynomial are equal in modulus while this generalization produces at least
quadratic factors even for this case. The determinants (3), when g(2)=z, can be
shown to be equivalent to those given by Bauer, who developed the following

Generalization and Acceleration of an Algorithm 369

algebraic relations among the polynomials g, ,(z) defined by his determinants:
Gy, p Erir, p(2) =285 5 (2) — &1, 51 (2), (10)
e p g,’,'fp+1(z) :gf+1,p(z) “g:p(z), (11)

where ¢, , and g, , are constants such that
Gir,pter1p-1=0 6, (12)
Cyi1,p Q1,5 00,090, p+1- (13)

In fact, (10) is the basis of Bauer’s treppeniteration and {11) justifies Rule 1
of Theorem 1 for the case g(z)=z. Also the algebraic relations (10) through (13)
suggest that Rutishauser’s gd algorithm is closely related (in this connection,
see Stewart [13]).

The dual of Theorem 1 will be stated in the following corollary.

Corollary 1. Let f(z) be given by (1) and let g(z) and gy(z) satisfy all the condi-
tions described in Theovem 1 and let k be the degree of g(z). Define recursively

& (?)=1[g(a)] g, () — ¢, ()f ()], »=0,1,2, ..., (14)

where each ¢, (z) is of degree k— 1 at most such that g,(z) — ¢, (2) f (z) is divisible by g (z).
It

lg(r)| <lgrn)| = =lg(r)]
then

lim g* () =1, (2

Moreover, let
8,1(2)=¢,(2),
and define the sequences g, ,(z) by any one of the three rules described in Theorem 1.
Then
grglog:p(z):fm...p:
if
lgtr) | == [etp) | <|gCpin) [= =g)]

Proof. Since g(z) and f(z) do not have common zeros, there exist polynomials
h(z) and k(z) of degrees n—1 and k—1, respectively, at most, such that

12 g(2) + () F2) =1.
Hence
h(r)=1/g(r;), j=1,2,...,n

so that the direct algorithm with % () is equivalent to the dual algorithm with g(z).
This algorithm, with g(z) =z and with elimination Rule 2, has been shown to
be effective for finding zeros of transcendental functions in a circle of analyticity
as well as of polynomials [13]. A more general theorem for transcendental func-
tions can be obtained by extending Corollary 1.
In computing the polynomials g,{z) in Corollary 1, we have two methods.

370 S. P. Chung

First Method: We can find the polynomials ¢ (2) and y(z) of degrees n—1
and k—1, respectively, at most, such that

¢ (2) g(2)—p(2) Hz)=1.

Hence
(8, (2) ¢ (2)] g(2) — (&, (2) w(2)] [(2) =8, (2).
Let
& (2) ¢ (2)=w(2) [(2) +7(2), (15)
and

& (@) p(e)=m(2)g(z)+s(2),

where 7(z) and s(z) are polynomials of degrees n—1 and 2—1, respectively, at
most. Then

(w(2) f(2) +7(2)] g (2) — [=(2) g (2) +5(2)] f (2) =&, (2)
[0 (2) —7(2)] 1(2) g(2) +7(2) g(2) —s(2) [(2) =&, (2)-

Since g,(z) is of degree n—1 at most, the term in f(z) g(2) must be zero, that
is w(z) = (2). Hence

or

7(2) g(2)—s(2) }{2) =8, ().
gv+1(2)=7(2), ¢,(Z)=S(Z)

In practice, the polynomials ¢ (z) and ¢ (z) can be found once and for all, there-
after the sequence of g,(z) can be obtained by

&1(2)=0(2) g,(2) —w(2) [(2). (15°)
Second method: Let

Let

g2 =(z—oy) (2—ay) ... (z—o).
g2 =g(2),

e () = (z—a)) " gl () — &,% M es) F(2)/F ()]
fori=1,2,..., kand let

For each », let

and define

&+1(2) =g (2).
The verification of the second method is trivial.

In Theorem 1, the rate of convergence of the sequence g, ,(2) depends upon
the ratio |g(7,)/g(75+1) |, Wwhen

lg("l)l == ‘g("p)l > |g("p+1)l Zer = |g(7n) |
Since
vl_ifgg:p(z):flz...p(z):
we can have
[gv,p("p)/gv,p("p+1) I > Ig(rp)/g (’p+1) l'

for a » sufficiently large. Hence if we redefine the recursion, replacing g(z) by
&, »(2), then the convergence should be much faster. In particular, we will examine
the case when g(z) is replaced by g, ,(2) at each step.

Generalization and Acceleration of an Algorithm 371

Theorem 2. In Theorem 1, suppose

le(r)| = =|gp) | > g (rp-)| Z - =) |-
Then

grgg:,,(z)=fxz,..p(z)-
Also, suppose that

he pr)Fhe pr;) for 7i=kr;, ¢,7=1,2,...,p.
Let

00 (2) =81, (2),
for a sufficiently large M such that
300(”j)_7‘12...p(";’) |<e, 7=1,2,...,m,
for a sufficiently small €. Let
golz) =0y (2)
and define 0,(2) for v=0,1, 2, ..., by the following scheme:
Step 1. Let g (z) =g, (2) and define

gl =0,(2) & &) — ¢, () [2), i=1,2,...,0p

. P in Rule t, 2,
1p=
2p—1 in Rule 3,

where each g (z2) is of degree n—1 at most and let

&-1(8)=8"(2).

Step 2. Let g} (z) =g¥(z) for each i, and jor p>>1, define gli}(z) by any onc of
the following rules:

Rule1. For k=1,2,...,p—1; i=1,2, ..., p—k, form g% ,(z) by elimina-
ting the highest term between gl (z) and g[‘“]

Rule2. For k=1,2,...,p—1;1=1,2, ..., p—k, form g8 11 (2) by eliminating
the constant term between gm () and gl Y(z) and dividing by z.

Rule 3. Define g[” by the following determinant:

ng] gl[l]"‘g[]
2 3 f2J
[»1 gv[]"’gv[]

Step 3. Let 6, (2)= gx[xil].().
Then
lim 6,(z) =f12...»(2)

1—>00

with the order of convergence 2.

Proof. Rule 3 will be proved here. The reader can easily verify Rule 1 and Rule 2
in a similar way using Newton’s formula for interpolation. We will consider the

27 Numer. Math., Bd. 25

372 S. P. Chung

case when 7; are distinct. Then we have, by Lagrange interpolation,

(1) = éo(”“”(n) £,

where
c(2)=0,(2) 6,_1(2) ... 6:(2) 04 (2).
So,
0 fi2) SEAOLAOTACIE K e DL P
f:(7) - ,‘;* filry) ,Z]_ filry)
L PO oK P LA T O (AL 1T
f:(#;) i=1 f:(r3) | 1)
&b) o fis) & b)) fie) & o) V() ()
i f;(n) ,;1 f1(71) .;1 ft (71)
—f(z))7 Y.
First we note that
i o< @) File) & oo, (r) o8 1i(2) b1 r;) (1) f;(2)
i=1 fi(”f) i=1 7547 A Iitry)
& 6,(r) () i) & i) i) & o) o ()
0 i=1ﬁ fi(”:) o 1——-2{ fi(yi) ‘Z"; filry)
1) o i) &) i) & o) o) fi(2)
i=1 f1 (71) 1=1 fz (‘71) 1= fz (71)
1 1 o1
_ o,(r) o,(r)) ...0,(r) : [gj”@ (2)) 1y (2)
=of\ T T diag | (3 e)

T I AL T A A
L D I R A A R

=cfi(2) fol2) ... fp(z)x

where ¢ is a non-zero constant. Now suppose

[6®(r)| <&, T=p+1,p+2, .., n

Since

() =c 1u(a) fald) - 1, @) [— @Y+ 3 (@)

— et L@+ 2 0@Vw,),

Generalization and Acceleration of an Algorithm 373

we have
o'v+1(z)=f12...p(z)+. z 0(0(9>(";'))»
f=p+1
and hence
|o‘,+1(z)——f12m,,(z)|éO(e,,),
and
0,11l | S0(6), G=p+1,p+2, ..., m.
Similarly,
0,28 =h2. @)+ 2 0(®TV()
j=p+1
=f1a.. 5@+ 2 0(0,4:(r;) 6(r}),
i=p+1
and hence
|a,,+2(z)—/12,_.,,(z)|éO(ef).
Since

log(r,)| <&, j=pH+1,p+2,...,m,

where ¢ is a sufficiently small number, we can see that
lim 0,(z) =/12...,(2)
$—>00

with the order of convergence 2. The confluent case can be handled in a similar
way.
Theorem 2 is particularly useful when =1 or p=2. Rule{ or Rule2 of
—12

Theorem 2 requires p evaluations of gl and BT eliminations of the highest

or lowest term between two polynomials to obtain each iterate, while Rule 1 or
Rule 2 of Theorem 1 requires 1 evaluation of g, and p—1 eliminations. Also,
Rule 3 of Theorem 2 requires 2p— 1 evaluations of gi¥l while Rule 3 of Theorem 1
requires 1 evaluation of g,. Thus, when p=1, the amount of work involved is
exactly the same in both algorithms, and, for that case, the recursion of Theorem 2
is

gv+1(z) =g?(z) (mOd f)’

while that of Theorem 1, for the choices g(z) ==z and gq(2) =1, is

g (=g () (modf).

The latter case is discussed in detail by Bauer, and this shows that the original
algorithm can be made quadratically convergent for p=1.

The dual form of Theorem 2 can also be obtained naturally.

Corollary 2. In Corollary 1, suppose

lgr)| S =) | <|gtpi) | = =g
Then

grggzp(z)=f12...p(z)-

27*

374 S. P. Chung

Let 04(2) =g%, 5 (2), for an M sufficiently large and let

00 =57 1@ =),

where yo(z) is the remainder and p,(2) is the quotient when [(z) is divided by o,(2).
Then py(2) is sufﬁciently close to (2—ry) (z—1y) ... (2—7,). Define o,(2) and o,(2),
forv=0,1, 2, ..., by the following scheme:

Step 1. Let g["]()=g,(z) and define

Hz)= [g['_”() b5 1)), i=1,2,...,4p,

where ¢, ;(z) is a polynomml of degree p—1 at most such that gl —1(z) — o, :(2) 1(2)
is divisible by o,(z) and let

8or1(2) =gHM(2).
Step 2. Same as Step 2 in Theorem 2.

Step 3. Let

0,.1(2) =g} (2)
and let

1

01 (d) =" 0y HE) = 7)), (16)
where y, (%) is the remainder and g, ,(2) is the quotient when f(z) is divided by
G,11(%). Then

vl_l)rg 0, (%) :flz...p(z)
and
lim g,(2)= (s) (z—7y) ... (= 7,),

with the order of convergence 2.

Proof. It suffices to show that if

Gy1(2)=Fa. p(2)+0(e,14), (17)
then

o) =(—=n)(z—ra) ... (—7,) +0(e, 1) (18)
From (16) and (17), we have that

Vo1 (1) =1(2) = 0,11 () 0,41 (2)
f(z)—[fw...p()+0(ey11)] 0,11(2)
=f12...p(7') [(z—7)(z—15) ... (z”"p)—QvH(z)]‘i'O(evﬂ)-
But, y,,1(2) is of degree n—p—1 at most while f,, ,(2) is of degree n—p.
Thus [(z—7,)(2—73) ... (2—7p)—0,;1(2)] must be O(e,,), which is (18). Also,
note that y,.,(2)=0(s,,,).
In Corollary 2, when p=1, we can see that

o,(2)=g; (2),

Generalization and Acceleration of an Algorithm 375

and

f(z)/g’,"H(Z)=g,+l(z)—i—0(s,+l). (19)
Let

g, (2)=2—f, for »=0,1,2,.... (20)

Consider the sequence a, defined by

%y 1 =0 f(av)/gr+1 (av)r (21)
and let
g,(2)=2—ea, v=0,1,2,.... (22)
Then
q,+1(Z)=Z—'Ot,,+1
=z—o,+ (o) /g1 (o) (by (21)]
=z~a,+ 0, —fB,11+0(&11) [by (19 and (20}]
= 0,+1(2) +0(&,11). [by (20)]

Thus we can replace g, (z) by g,(z) in Corollary 2, for p=1, without affecting the
convergence. This is in fact the algorithm of Jenkins and Traub [8]:

gye1(e)= —— [8,(2)— 6, 1)),

z~—av

where «, is defined by (21). Bauer and Samelson {3] give a similar algorithm
replacing (21) by
oy 1=, —f(a,) g} (o),

which requires somewhat less arithmetic per step but somewhat more steps. The
algorithm of Jenkins and Traub using quadratic iteration [9] can also be regarded
as a variant of Corollary 2 with =2, although the formulation of the sequence
o,(2) is somewhat different.

Stewart [12] extended the algorithm of Jenkins and Traub [8] for p=2:
Given monic polynomials g, (z) and g, (2) of degree p and »—p which are approxi-
mate divisors of f(z), define

1

e, (%)

O’,+1(Z)= [f(z)—¢v(z) UV(Z)]’

where ¢, (2) is of degree n—p—1 at most, so chosen that f(z) —¢,(2) 0,(2) is
divisible by ¢,(2). By interchanging g,(z) and o,(2), an analogous rule can be
obtained for forming g, ,(2). This algorithm is in fact identical with Samelson’s
factorization method [10] and the exact connection between these two algorithms
is given in [6]. In Corollary 2, we can see that

o,(2)=v,(2) g (2)—0,(2) f(2), »=0,1,2,...,

where, () and 6, () are polynomials of degree p*—p and p*—p—1, respectively.
Since

Gyt 1(2) =51 (2) &1 (2) — 6,41(2) 1(2)

=9 (8) gy (8 (8)— 0 1) —6,14(2) @)

376 S. P. Chung

we have
9y (Z) Oyt (Z) =Yy11 (2) &y (Z - [%+1 (Z) ¢v,1 (Z) + 67+1 (z)] f(Z)
=) L mod
So,

0y (1',-) Gyi1 (ri) =YPyt1 (ri) s (ri)/"pv ('i): 1=1 » 2, e, 1
Let @,(z) be a polynomial of degree p—1 such that

@v(ri) ::wv+1(ri)/1/)v(ri)’ i=17 2,..., P
Then D, (2) 0,(2) is a polynomial of degree #— 1 such that

0,(r) 0,1 (r) =D, (r) 0,(rs), i=1,2,...,p, (23)
and since
vlﬂg ,(z) =f12...p (2),
we have
0,(r:) 0,1 (r) =D, (1) 0,(r;) +e&, i=p+1,....n, (24)

where ¢, can be arbitrarily small for » sufficiently large. Since g, (2) 0,,,(2) is the
monic polynomial of degree # such that (23) and (24) hold, we have

0,(2) 6,41 (2) =1(2) — @, (2) 0, (2) +&,,

which shows that Corollary 2 is almost equivalent to Stewart’s method and hence
to Samelson’s. The formulation of the sequence g, (z) is, however, somewhat dif-
ferent: We define in Corollary 2

0i@= o 1O =1 @)
v+1

while Samelson’s method uses

01l =5 iy 1O =92 0, (2.

We will conclude this paper with a few comments. By the original algorithm
of Sebastido, we can factor a given polynomial f(z) as a product of polynomials
each of which has equimodular zeros. As we do this, however, if the sequence
&, turns out to converge, at some point of the recursion, by redefining the re-
cursion replacing g(z) =z by g(z) =g, ,(z) and using one of the generalized forms
of the algorithm, we can accelerate the convergence of g¥,(z) to fi5 . ,(2). We
can even use the accelerated form in Theorem 2, which may be, however, im-
practical for p > 2. Now suppose that all zeros of f(z) are equimodular and let
o be any nonzero constant which is not a zero of f(z). Then no more than two
zeros of f(z) can be equidistant from «, and if we set g (2)=2z—a in the generaliza-
tion, Theorem 1, then either the sequence g, , (2) or the sequence g, ,(2) will con-
verge. In either case, the accelerated form of the algorithm in Theorem 2 can be
used to give faster convergence.

Acknowledgement. The author wishes to express her thanks to Dr. Alston House-
holder for his valuable suggestions in preparing this paper.

10.

11.

12.

13.

Generalization and Acceleration of an Algorithm 377

References

. Bauer, F. L.: Beitrage zur Entwicklung numerischer Verfahren fiir programm-

gesteuerte Rechenanlagen. I. Quadratisch konvergente Durchfiihrung der Bernoul-
li- Jacobischen Methoden zur Nullstellenbestimmung von Polynomen. Bayer. Akad.
Wiss. Math. nat. Kl. S.-B., 275-303 {1954)

. Bauer, F. L.: Beitrage zur Entwicklung numerischer Verfahren fiir programm-

gesteuerte Rechenanlagen. II. Direkte Faktorisierung eines Polynoms. Bayer.
Akad. Wiss. Math. Nat. Kl. S.-B., 163-203 (1956)

. Bauer, F. L., Samelson, K.: Polynomkerne und Iterationsverfahren. Math. Z.

67, 93-98 (1957)

Householder, A. S.: Generalizations of an Algorithm of Sebastido e Silva. Numer.
Math. 16, 375-382 (1971)

Householder, A. S.: Multigradients and the Zeros of Transcendental Functions.
Linear Algebra and Its Application 4, 175-182 {1971)

Householder, A. S., Stewart, G. W.: Comments on ‘““Some Iterations for Factoring
Polynomials”, Numer. Math. 13, 470-471 {1969)

Householder, A.S., Stewart, G. W.: The Numerical Factorization of a Poly-
nomial. STAM Review 13, 38-46 (1971)

. Jenkins, M. A, Traub, J. F.: A Three-Stage Variable-Shift Iteration for Poly-

nomial Zeros and Its Relation to Generalized Rayleigh Iteration. Numer. Math.
14, 252-263 (1970)

. Jenkins, M. A., Traub, J. F.: A Three-Stage Algorithm for Real Polynomials

Using Quadratic Iteration, SIAM J. Numer. Anal. 7, 545-566 (1970)

Samelson, K.: Faktorisierung von Polynomen durch funktionale Iteration. Bayer.
Akad. Wiss., Math. Nat. Kl., Abhandlungen 95 (1959)

Sebastido e Silva, J.: Sur une méthode d’approximation semblable a celle de
Graeffe, Portugal. Math. 2, 271-279 (1941)

Stewart, G. W.: Some Iterations for Factoring a Polynomial. Numer. Math.
13, 458-470 (1969)

Stewart, G. W.: On a Companion Operator For Analytic Functions. Numer. Math.
18, 26-43 (1971)

Soon Park Chung,

Ass. Prof.

Dept. of Mathematics
Univ. of Michigan
Dearborn, Michigan 48128
U.S.A.

