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Summary. In this paper, we extend the dual form of the generalized algorithm 
of SebastiTto e Silva [3] for polynomial zeros and show that it is effective for 
finding zeros of transcendental functions in a circle of analyticity. 

Subject Classifications. AMS(MOS): 65H05 R: 5.15. 

w I. Introduction 

Let f ( z )  be a polynomial of degree n. For convenience, f ( z )  will be taken as 
normalized: 

f ( z ) = l + a l z + a 2  zz + . . . + a . z "  

=(1 - q- 1 z)(1 - r2-1 z)..-(1 --rn-lz). (1.1) 

For any function p(z) such that p(O)#O, it will be understood that 

p + (z) = p (z)/p (0), (1.2) 

throughout this paper. We wilt now state a global method for finding the zeros r~ 
off(z). 

Theorem 1.1. Let f ( z )  be given by (1.1). Let g(z) and go(z) be any polynomials of  
degree n - 1  at most such that neither g(z), g'(z) nor g0(z) vanishes for any ri, and 
g(ri) + gO))for r i 4= ~). Let k be the degree of g(z) and define recursively 

gv+~(z)= [g(z)] -~ [gv(z)- ~pv(z)f(z)], v=0, 1, 2, ..., (1.3) 

where each (o~(z) is of  degree k - 1  at most such that gv(z)-4)~(z) f ( z )  is divisible 
by g(z). 

i f  

[g(q)[ < ]g(r2)l =<... < Ig(r.)[ (1.4) 
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then 

l im g+ (z) = f (z)/( l - r~ -1 z). (1.5) 

Moreover, let 

g~,l(z)=g~(z), for each v, (1.6) 

and define the sequences g~,p(z), p = 1, 2 . . . .  , n, by either o f  the following rules: 

Rule I : Form g~,v + a (z) by eliminating the constant term between gv, p(z) and gv + x, p(z) 
and dividing by z. 

Rule 2: Define g,,v(z) as the following determinant of  order p: 

/ gv(z )  g~+l(z) ... g~+v-~(z) \  

gv, p ( z ) = 6 (  gv+l(z) gv+z(z)"" g~+v(z) ) . [ - f ( z ) ] - ~ P - 1 )  (1.7) 

\gv+v-l(z) gv+p(Z)'"gv+zp-z(Z)/ 
Then 

lim g+ _(z)= f(z)/[(1 - r [  l z). . .  (1 - r  v- 1 z)] (1.8) 
v ~ o o  ' / 1  

if 
[g(q)[ <- . .  < Ig(rp)[ < tg(rp+l)[ < " "  < [g(r,)[. (1.9) 

The algorithm presented above is in the dual form. The direct form of the 
algorithm has the recursion 

g~+l(z)=g(z) g~(z)-ev(z) f(z) ,  v=0,  1, 2 . . . .  , 

where each g~(z) is of degree n -  1 at most, in place of the recursion (1.3). 
The discoverer of the idea of this algorithm is Sebasti~to e Silva [7]. He uses 

g(z)=z, go(z)--I, 

and defines gv, p(z) in a little different way. His method has been further elaborated 
by Bauer [1, 2], who gives treppeniteration for forming the sequences gv, p(z); and 
generalized by Householder [5], who has shown that an almost arbitrary poly- 
nomial can be used for g(z). 

Chung [3] has added an elimination rule, Rule 1, for defining the sequences 
g~,p(z) and introduced the accelerated forms of the algorithm which are quadrati- 
cally convergent. 

In this paper we will show that this algorithm can be extended to adapt to 
transcendental functions in a circle of analyticity. Stewart [8] has shown this for 
the case g(z)=z. The advantages of the general algorithm where g(z) can be any 
polynomial satisfying some mild conditions are that the zeros of equal modulus 
can also be handled and that an acceleration in convergence can be obtained by a 
proper choice of g(z). 
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The transcendental function f ( z )  to be considered in this paper will be taken 
as normalized, for convenience, i.e., f ( z )  has the series expansion 

f (z) = 1 + a 1 z + a 2 z 2 + . . . .  (1.10) 

Let f ( z )  be analytic in a circle 

C~= {z[ Izl <R}, 

where R > 0  is a fixed real number. Also, let f ( z )  have exactly n zeros, q,  r z . . . . .  r,, 
in C R counting multiplicities. Define 

//(P>(z) = (1 - q- 1 z)(1 - r z 1 z)...(1 - rp ~z), (1.1 t) 

and 

f<V>(z) = f(z)/II<P>(z), (1.12) 

for p = 1, 2, .. . ,  n. Also, define 

G1 e = {v(z).f<P>(z)lv(z) is a polynomial of degree p - 1  at most} 

and 

~ = { u ( z ) r t ~ . ~ ( z ) l u ( z ) ~  ~ } , 

where 

G ---{q(z)lq(z) is an analytic function in CR}. 

We have the following lemma which is due to Stewart [8]. 

Lemma 1,1. Let r i r  2 . . . .  ,rp} for i = p +  l , p +  2, . . . ,n .  Then for any q(z)~G, 
there exist qx (z)6 Gf and q2 (Z)E G~ such that 

q (z) = ql (z) + q2 (z). 

Moreover, this decomposition is unique. 

In w we will introduce a class of generalized operators which produce the 
basic sequence g~(z). Many of the ideas in this section are taken from Stewart's 
work mentioned above. In w we will give the algorithm and in w numerical 
results will be presented. 

w The Generalized Operators 

Let g(z) be a polynomial  which does not have zeros in common with f ( z )  and 
whose zeros are in CR. Let k be the degree of g(z) and define an operator Fg: G ~ G  
by 

Fg (p (z)) -- [ 1/g (z)] [p (z) - ~b (z) f (z)], (2.1) 
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where 4~ (z) is a polynomial  of degree k -  1 at most that is uniquely determined by 

dJ(4)f) diP , j = 0 ,  1,2,.  m ~ - i  (2.2) 
I . . . .  . . . .  " ' 

for any zero el of g(z) of multiplicity m i. Also, let 

l~;(p(z))=I~g(V;-l(p(z))), v=1 ,2 ,  . . . ,  

and 

F~ (p(z))= p(z). 

The properties of F~ follow from the following lemma which is easily proved 
by induction. 

Lemma2.1 .  Let go(z)sG. Assume that ri${rt,ra,... ,rp} for i = p +  l , p+  2,. . . ,n.  
Let 

go (z) = Po (z) + qo (z), 

where po(z)eG[ and qo(z)eG~. For v= 1, 2 . . . . .  let 

g~(z)= F; (go(z)) ' (2.3) 

p~(z)= F~ (po(Z)) ' (2.4) 

and 

qv(z)= F~ (qo (z)). (2.5) 

7hen 

p~(z)~G[, q~(z)~G~, v = 1 , 2  . . . . .  (2.6) 

Moreover, 

gv(z) = p~(z) + qv(z), v = I, 2, . . . .  (2.7) 

For  any real number  p > 0, let 

Qo = {zl Ig(z)t < p } ,  

~o = {zl Ig(z)l <p} ,  

and 

~p = {zl Ig(z)l = p } ,  

throughout  this paper. 

Lemma 2.2. Let go e G~ and define the sequence g~(z) by (2.3). I f  

tg(r~)t _<--lg (r2)f _-<"" <_-lg(rv)I < Jg(rv + 1)f N. . .  <_ t g (r,)t, (2.8) 
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then for any real number p such that 

0 < p  < lg(%+l)[, f)o c Cr ,  (2.9) 

if such a p exists, we can find a constant M z depending upon p and z such that 

]g~(z)l<Mzp -v, for z~Eap. (2.10) 

Moreover, for any Po such that 0 < Po < P, we can find Mpo depending upon p and Po 
such that 

Igv(z)l <Mpop -~, for all z ~ p o .  (2.11) 

Proof. Let  p be a real number  satisfying (2.9) and let 

q~(z)=g~(z)/f(z), v = 0 ,  1, 2 . . . . .  

It is easy to see that  each q~(z) is analytic in f)p. 
Since, for each v, 

gv+l (z) = F~(g,.(z)), 

we have 

g~ + 1 (z) = [ 1/g (z)] [g~ (z) - q~ (z) f (z)], (2.12) 

where q5 is a po lynomia l  determined as in (2.2), and by dividing (2.12) by f(z), 
we obtain 

q~ (z) = ~b~ (z) + g (z) q~ + 1 (z). 

Hence, we can see that, for v --- 1, 2 . . . .  , 

v--1 ] 

qo(z) = [ ~ ~b,(z)g"(z) +q~(z)gV(z), 
I-n= 0 J 

and 

v--1 

q~(z) = qo (z)/g ~ (z) - ~ ck,(z)/g ~-"(z). 
n=O 

By Cauchy 's  integral formula,  we have, for zeOp, 

q,(z) = (2n i)- 1 ~ q~({) d { / ( { -  z) 
~o 

= (2 n i)-1 ~ qo (~) dr ~ (~)(~ - z)] 

v--1 
--(2/~i) -1 E ~(Pn(~) d~/[gv-n(~)(~-Z)]" 

n=O ~'o 

We now wish to represent  ~b,({)/[gV-"({)({-z)]  as a sum of part ial  fractions. In 
the simplest case the zeros ~ ,  i = 1, 2, . . . ,  k, of g(z) are distinct and z is not  equal 
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to any gi- Then the representation is 

k v - n  ] 

[~_, ~ c i J ( ~ - a i )  j +c / (~ - z ) .  (2.13) 
c=l i  j= l  

In the other cases, some minor changes occur in the representation, which do not 
/ k \ 

affect our discussion below. In (2.13), it can be seen that { ~ c n ) +c  is the coeffi- 
\ i = l  / 

cient of ~k(,-,) in the polynomial qS(~) of degree k - i  at most and hence must be 
zero for n = 0, 1, 2, ..., v - 1. Since 7p is a lemniscate I-9], we have 

d~/(~ - z) = 2 n i, z �9 f2 o . 
~p 

So, for all zel2 o, 
k 

70 \ i = l  / 

f o r  n = O, 1, 2 . . . . .  v - 1, a n d  hence 

I q,(z)l = 1(2n 0 -1 S q0 (r dg/[g ~(C)(g- z)]l 
Tp 

_-< Np- ' (2n )  -1 S Idr 
70 

where 

N = m a x  I%(r 

Let 

M~=l f (z ) lN(2~)  -~ ~. id;~]/l~-zl. 
Yp 

Then, for each v, 

Ig , (z) l=lq,(z) l . l f (z) l<M=p-L for zeOp. 

Moreover, if we let 

Mpo=N.  max lf(z)l- (2n min I~-zl)  -1 ~ td~t, 
zef2 po ze~  po ~ p 

for 0 < P0 < P, then for each v, (2.11) holds, and the proof is complete. 
Lemma 2.2, together with Cauchy's integral formula for the derivatives, leads 

to the following lemma. 

Lemma 2.3. Let go e G~ and define g~ (z) by (2.3). Let g~ (z) have the series expansion 

g,(z)=b~o+b~ z+b~ z2+ ..., v=0,  1 ,2 , . . . .  

Let (2.8) hold and let 

Ig(0)l < Ig(rp+ 0l. (2.14) 
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Then, for any real number p such that 

Ig(O)l<p<lg(rp+l)[, ~o =CR, (2.15) 

if such a p exists, we can find a constant K depending upon p such that 

Ib~jl<Kp -~, forall  v and j = 0 , 1 , 2  . . . . .  p - 1 .  (2.16) 

w 3. The Algorithm 

In the following two theorems, we will show that Theorem 1.1 can be extended to 
adapt to transcendental  functions with a few restrictions on the operat ing poly- 
nomial g (z). 

Theorem 3.1. Let g(z) be a polynomial whose zeros are in C R and which satiesfies 
all the conditions described in Theorem 1.1. Let go(z)eG and go(ri)#:0 for i= 
1, 2 . . . .  , n. Define the sequence g~(z) by (2.3). I f  

Ig (rl)[ < lg(r2)l <---  =< [g (r,)l 

and if there exists a real number p > 0 such that 

Ig(q)l < p < [g(rz)l 

then 

lina g+ (z) = f <1 >(z) 

and Opc C R 

for zef2 o. 

Proof. By Lem ma  1.1, there exist po(z)eGl and qo(z)eG~ such that  

go (z) = Po (z) + qo (z). 

Let  

p,(z)=F;(Po(Z)), %(z)=Fg(qo(z)), v= 1, 2 . . . . .  

Then, by Lem ma  2.1, for each v, 

g~(z)=p~(z)+q~(z); p~(z)eG~, %(z)eGlz. 

By Lemma  2.2 there exists a constant  M~ such that  

Iqv(z)l<Mzp-~,zeQp. 

Now, for each v, we have 

pv(z)=v~f(l>(z), 

where v~ is a constant ,  and 

v,+t=[1/g(z)][v~-4),(z)H<l>], v = 0 ,  1,2 . . . . .  

(3.1) 

(3.2) 

(3.3) 

(3.4) 
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So 
V=Vo/g~(rl), v = 0 ,  1,2 . . . . .  (3.5) 

Since go(r1)*0 and qo(rl)=0,  we have po(rl)+O. So Vo4:0 and hence 

vv~0 ,  v=0 ,  1,2 . . . . .  (3.6) 

F r o m  (3.3), (3.4) and (3.5), we have 

[q~(z)l/[p~(z)l<Mzp-~lVo[ -1 [g(rl)l~/if<a>(z)[, v=0 ,  1, 2, ..., 

for each zef2p. Since p > [g(rl)], we have 

lim tq~(z)l/lpv(z)l = 0, 
v ~ O O  

and hence 

lim gv(z)/p~(z)= 1, (3.7) 
v ~ O O  

for each z~f2p. Moreover ,  from (3.4) and (3.6), 

lira p~+ (z) = f<x >(z). 
v ~ O ~  

Hence, by (3.7), 

lim g~+ (z) = f <1 > (z), z ~ f2p. 
v ~ O O  

Theorem 3.2. Let go(z) and g(z) satisfy all the conditions described in Theorem 3.1. 
Define g~(z) by (2.3). Let 

g~.l(z)=gv(z), for each v. 

(I) Define the sequences gv, p(Z), p = 2 , . . . ,  n, by Rule 1 of Theorem 1.1. If(2.8) and 
(2.14) hold and if there exists a real number p > 0 such that 

lg (0) l<p  and ff2o=C R, (3.8) Ig(rp)] < p < Ig(rp+~)], 

then 

lim g+ r (z) = f<P> (z) 
v ~ O 0  

for zeQp. 

(II) Define the sequences gv, p(z), p = 2 ,  ..., n, by Rule 2 of Theorem 1.1. I f  (2.8) 
holds, and if there exists a real number p > 0 such that 

]g(rp)[ < p < [g (rp+l)[, ~p = CR, (3.9) 

then 

l im g+p(z)= f<P>(z) for ze~2p. 
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Proof. We will prove the second part  of the theorem. Let 

go (z) = Po (z) + qo (z) 

where po(z)eG~ and qo(z)~G~. Then, 

po(r~)4=O, i =  1, 2, . . . , p ,  

since go (ri) 4= 0 while qo (r~) = 0. 
Let 

p~(z)=F;(Po(Z)), %(z)=F;(qo(z)), v=0 ,  1 ,2 , . . . .  

Then, by Lemma 2.1, for each v, 

pv (z)e Gf , q~ (z)e Gg. g , ( z )  = p , ( z )  + q , ( z ) ;  

Let 

p, (z) = vv (z) f <p> (z), 

367 

(3.10) 

(3.2)' 

v=0 ,  1,2 . . . .  , (3.11) 

where each vv(z ) is a polynomial  of degree p -  1 at most. Then 

vv +1 (z) = [ 1/g (z)] [vv (z) - 4) (z)//<P> (z)], (3.12) 

where qS~(z) is the polynomial  such that v~(z)-c~v(z)II<P>(z ) is divisible by g(z). 
Let 

p~(z) ... pv+p_~(z) ~ . . . . . . . . . . . . . . . . . . . . . . . . .  j / (P>(z)  (3.13) Av(z) . . . . . . . . . . . . . . . . . . . . . . . . . . .  

\Pv+p-x(z)-..Pv+zp-z(z)/ \v~+p-t(z)...v~+2p_z(Z)/ 
and 

/ %(z ) . . .  q,+l,_,(z)\ 
,.(z,= t . . . . . . . . . . . . . . . . . . . . . . .  ) .  ,3.,4, 

\%+p+1 "" " q v + 2 p - 2 ( z ) /  

We will consider the case when r i are distinct. F rom (3.12) we obtain 

v~ (r,)= v o (r,) g -  v (r,), i =  1, 2 . . . . .  p, 

and by Lagrangian interpolat ing formula 

p 

v,,,(z) = .~, Vo (rl) g-~ (rl) II ~P> (z)/ H~P) (ri), 
i=1  

where 

r /~ ,>(z )  = /~<p>(z ) / (1  - r~ -1  z) .  
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Hence 

A~(z) t' "'till : . . " . 7 7 : ' . .  �9 �9 

\g- .+ l  (q)... g-,+l (r,)l 

0 t 
g-~(r.)l 

n~.>(z) VO(rl)/n~p>(rl) o ) 

0 If<P> (z) Vo (rp)///~ p> (5) 

/ 1  g - l ( r x ) . . . g - ' + l ( q ) \  

/ ........................ / I<'>~ 
\1 g-'(r,)...g-P+'(r.)/ 

It is now easy to see from (3.9), (3.10) and (3.11) that  ATX(z) exists for zeOp, z~er~, 
i = 1, 2, . . . ,  p, and is given by 

A71 (z) = A(z) G~B, 

where 

G = diag [g(q),  g(r2), . . . ,  g(rp)], 

and A(z) and B are matrices not  depending upon v. Confluent case can be handled 
in a similar way to  obtain the same result. 

Now, by L e m m a  2.2 we know that  

IIBv(z)ll = 0(p-~), z~Op. 
Since 

lira [I GVll x/~ = Ig(rp)t, 

for any matrix norm [1" II I-4, p. 183], we have that, for v sufficiently large, 

tln~(z)h~ l (z)ll = O(Ig(rp)/pl~), 

with a slight adjustment  of p. Since p > Ig(rp)l, we have that  

lim llB~(z)ATX(z)ll=O, zeOp, z~=r~, i = 1 , 2  . . . . .  p. 

Moreover ,  for each v, 

Bv(r~) = 0, i = 1 , 2 ,  . . . , p .  

Hence 

lira 6(A~(z)+Bv(z))= 1 for z~Op. 
~.oo ,~04~(z)) 

(3.15) 
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For each v, let 

c.,.):, t . . . . . . . . . . . . . . . . . . . . . . . . .  

\v~+,_l(z)... vv+ 2,_ 2(Z)l 
Then 

lim 5(A~(z))l[-f(z)] "-1 = lim Cv(z)f<Pb(z). (3.16) 

But, Theorem 1.1, together with (3.12), gives 

lira C~+(z)= 1. (3.17) 
v~oo 

Now, we can see from (1.7), (3.2)', and (3.13) through (3.17) that 

lirn g+,(z)=f<'>(z), for zef2 o. 

This proves the second part of the theorem. The first part of the theorem can be 
proved similarly using Lemma 2.3. 

w 4. Numerical Results 

Numerical testing has been performed on a computer program which implements 
the algorithm described in w 3. A few comments may be in order before exhibiting 
numerical examples. The restrictions on the operating polynomial g(z) to insure 
the existence of a p satistying (3.8) for part (I) of Theorem 3.2 or (3.9) for part (II) 
of Theoreme 3.2 are not crucial. It is easy to see that g(z)=z  guarantees the exist- 
ence of such a p and it is best to start the algorithm using g(z)= z if no information 

+ Z about the zeros o f f ( z )  is available. When the sequence gv, p(),  for some p, starts 
to converge, we can accelerate the convergence by using g(z)=qv, p(z), where 
qv, p(z) is the polynomial of degree p obtained from f(z)/g~p(z), since the rate of 
convergence depends upon the ratio ]g(rp+l)/g(rp) I. In particular, if g(z) is replaced 
by q,,p(z) at each step, the convergence is of order two [3]. (See Example II below.) 
Note that g(z)= q~, p(z) satisfies all the hypotheses for part (II) of Theorem 3.2. 

Another advantage of this generalized algorithm is that equimodular zeros 
can be produced by using g ( z ) = z - a ,  for a properly chosen. Numerical experi- 
ments show that a good value of a to be used in this case can be obtained from the 
sequence g+ (z) generated using g(z)= z. A numerical example of this is given now. 

Example I. f (z)  = (1 - 1.997512438 z + 0.246268657 z 2 + 1.748756219 z 3 
- 1.246268657 z 4 + 0.248756219 z 5 ) e=. 

zeros: 1, 1, -1 ,2 ,2 .01.  Table 1 contains some results 
of the algorithm. 

Acceleration technique can be used for faster, convergence in Example I but we 
exhibit the behavior of the acceleration method in the following example. 

Example II. f ( z ) = s i n  z/z; zeros: +_t/n, r/= 1, 2, 3 . . . . .  
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T a b l e  I 

S.P. Chung 

g ( z )=z ,  g o ( z ) = l  

v q~,l(z) q~,:(z) qv.3(z) 

5 

t0  

1 - 1.354569 z 
zero:  0.7382421 

1 - 1 . 0 1 5 8 4 2  z 
zero:  0.9844054 

[ N o  convergence,  bu t  a 
good  a p p r o x i m a t i o n  
for the first zero is 
obta ined. ]  

1 +0.02819744 z - 0 . 9 6 6 9 0 2 7  z 2 

1 -0 .1983125  z -  1.159201 z z 

1 - 1.020645 z -0 .990315  z 2 
+ 1.025851 z 3 

1 - 1.001468 z - 0 . 9 9 9 3 1 2 2  z 2 
+ 1.001835 z 3 

[Convergence]  

g ( z ) = z - 0 . 7 ,  g 0 ( z ) = l  

v q~,l(z) q~.2(z) 

5 1 - 1.058209 z 
zero:0 .9449929 

10 1 - 1.029548 z 
zero:  0.9713000 

[Slow convergence]  

1 - 2 . 0 1 1 5 9 7  z + t . 0 3 1 7 3 6  z 2 

1 - 2 . 0 0 0 0 0 0 z + 0 . 9 9 9 9 9 6 5  z 2 

[Convergence]  

Remark. q~, 2(Z) converges  to the factor q (z)=  (1 - z )  2 of f (z) .  Any po lynomia l  wi th  one zero of integer 
mul t ip l ic i ty  can be solved easily. In this  case q(z) is quadra t i c  and  we can  use quadra t i c  formula.  

Replace  f ( z )  by f (z) /q(z) .  
g(z) = z, go(z) = 1 

v qv, l(z) 

5 1 + 1.015636 z 
zero:  -0 .984604453  

10 1 +0.9992598 z 
zero:  -1 .0007407065  
[Convergence ]  

Remark. The o ther  two  zeros can also be ob ta ined  similarly.  

T a b l e  2 

v g(z) = z Vary ing  g(z) f rom v = 5 

1 •  
2 •  
3 •  
4 •  
5 • 3.124704710 
6 •  
7 •  
8 • 3.137176863 
9 •  

30 • 3.141592652 
[Convergence ]  

•  
•  
• 3.141592654 
[Convergence ]  
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The roots computed from each q~, 2(z) in the original method with g(z)=z and in 
the accelerated method are given in Table 2. 
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