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SYMBOLS

= base area of body

mean cross-sectional area Qf body

center of pressure or point of zero aerodynemic moment
LIFT .,

= = . 11t coefficient
gueh

basE

M = W s coefficient of moment about body vertex

bare

function representing distribution of source or sink
strength along x axis at pointe ;

function representing distridbution of doublet strength
along x axis at pointa}

. length of body

distance from vertex to center of pressure of body
1ift normsl to x axis

moment of L about body vertex

static pressure

radius of body at station x

perturbation velocities in x, r, § directions, respectively

free stream velocity

ceylindrical coordinate system used. x axis orlented along

body axis of symmetry
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GREEK SYMBOLS

X = angle of attack

/3 ://%L —/ = compressibility factor

source, sink or doublet position alomg x axis

“"

free stream demsity

"

perturbation potential

perturbation potential for axially symmetrical flow

IS T P N

perturbation potential for spatial flow

Summery of Conclusions

Simple first order expressions for 1ift coefficient, pitching
moment coefficient and center of pressure location, are derived,
using solutions to the linearized potential equation for spatial
supersonic flow. These expressions have been used as a basis for
examining the trends and orders of magnitude of these aerodyunamic
parameters for various supersonic bodies. In all cases where these
formulss are used, more rigorous solutions should be and have been
used. It should be noted that these expressions simply point out
the way to an optimum missile shape and are first order solutlions
only in the case of very thin bodies of revolution. These relations
have their counterpart in subsonic incompressible flow theories such
as the thin asirfoil theory and the theory of airship bodies employ-
ing apparent mass concepts. '

The expressions as derived are:
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In the aserodynamic design of supersonic missiles some theory has
to be used to determine the conventionzl aerodynamic coefficlents.
Such theories employ solutions to the rigorous non-linear, hyperbolic,
partial differential equation of flow or its linearized derivative.
As yet, known solutions to the rigorous non-linsar equation are few in
number and restricted in nature. Such solutions include the Taylor-
Maccoll solution for the flow around a cone, tiie Rankine-Hugoniot
relations leading to two-dimsnsional deflection through a shock wave,
end the Prandtl-Meyer sclution for expansion flow around a convex
corner. The method of characteristics for problems having a two-
dimensional natural cosrdimte system is a solution to the rigorous
equation only when the characteristic quadrangles become smaller ap-
proaching the limit. None of these xrigorous solutions offers a reedy
tool for examining the spatial flow around supersonic bodies.

A standard approach to physical phenomena, obeying laws defined
by non-linear differential equations, is to attempt to examine and
Justify the approximate solution to the linsar differential esquation de-
rived. from the more rigorous non-linear equation. In aesrodynamice, numer-
ous solutions have appeared for problems of bodies immersed in the
flow field of the linear potential equation for supersonic flow. The
solution dealt with in this paper is one of the earliest solutions of
the linear equation for flow about axial symmstrical bodies of revolu-
tion. Because the method of linearizing the rigorous non-linear poten-
tial equation was the method of small perturbations, these sclutions
are restricted to slender pointed bodies at amall angles of attack.
The expressions derived herein are first order approximations to the
more rigorous solutions of the linearized equation. As such their
application is more restricted than are the more lengthy solutions.
However, these expressions can be used to indicate design trends and
orders of magnitude for preliminary analysis prior to obtaining the
more lengthy solutions to the linearized equations appearing in Ref. 1.
The following text contains the derivation of the first order exprese
sions for 1ift, moment and center of pressure location for very slender
axially symmetrical bodies in a supersonic stream.

The linear potential equation for spatial supersonic flow is:
.
(1-+1%)dar* /z orn T ga- T Rr Jor =0 (1)
Following in form the procedure outlined in Lamb (Ref. 2) the
general solution to (1) when Mach number exceeds one is

—f/ N3cora 58 + Y, N54in 56 (2)
Say ‘
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where 7¢ must satisfy the equation below obtained by
substltutlng equati;n (2) into equation (1).

Ll AR w20 o

A known solution teo equation (3) is

/ &\
g"(fida » (L)

where )? is identically the solution to equation (5) given by
Karman and Moore (Ref. 3).

VAT SVPY .
/"Mz) dx* i '}1‘1:0 (5)

Solution (2) to equation (1) was introduced by Lamb and further de-
veloped by Ferrari (Ref. li) and Tsien (Ref. 5).

The solution to equation (5) is

/f(’r-ﬁﬂ-w«) e (6)

4 054"—1

T

Solution (6) becomes more familiar when put in the form of a new
variable ; , where using the substitution below

where

equation (6) becomes
-2
v . L [ FCAS
' ”-a /x~&) — 2 (7)

Equation (7) is the form of the source-sink solution often used in
subsonic source-sink flow solutions. Here ,(F is a function re-
presenting the distribution of strengths of the sources and sinks at
points fg of the x axis of the cylindrical coordinate system of equa-
tion (5). x and r are the coordinates of the particular field points
for which the potential due to sources or sinks at points is de-
sired. According to (L), differentiation of (7) with respect to r
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will yield a solution for (1) However, (7) blows up at the upper
1limit and hence the dif ferentiation mst be performed on (7) in
the form of (6). This is not the case in subsonic flow where the
limits of (7) are constant.

Differentiate (6) with respect to r.

(z/\,) ’ i Plx,4) = -é/f/x-/eaau()w.
Ml‘t

By taking the index § equal to one in equatiors (2) and (h)
the corresponding somtion to (1) is:

>02 -—ﬂm‘y;(z-/ﬁ’dm«/,«)wy{,« A (9)

- (8)

Cosq~' X
A .
using f’«;’l-/sa A, - (9) becomes
| Z-sa
)0 = ad-c...g /ﬁfz- ’/ (10)
T IE-5)* San?
wal

(10) represents the potential for field point (x, r, & ) due to a
system of doublets distributed at points ; along the x axis accord-
ing to the function

Now, visualize a slender body of rewolution placed in the linearigzed
compressible supersonic stream of equation (1) at an angle of attack.
Assume a system of sources and sinks and doublets is distributed along
the x axis at poimts § according to the rule of functions £ and
J respectlvely. These singularities are so arranged such that the

fect of them in displacing the stream is to reproduce the effect of
the body displacing the stream, This restriction upon the singularity
distribution will be elaborated upon further in the statement of the
boundary conditions of solutions to (1) and ($5).

Tt is desired mow to obtain a eimple first order rule for the lift,
mmen? ;bout body vertex, and center of pressure location using solu-
tion (9

Let L = 1ift of a slender axially symmetrical body in t.he direc-
tion normal to the X, 3 plane.

Let M w moment of the slender u:ially symmetrical body about
the vertex of the body.

While determining a first order approximation to L and M, refer-
ence will be made to the sketch below.
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The 1ift4L on the elemental surface 1is:
AL:A-f RdBdx cex 8 (11)
vhereAp =z p surface - p free stream
Correspondingly, the moment of this elemental area is:
AM=z=apRzweodody (12)

Integration over the surface now yields the general expressions

for 1ift and moment about the vertex. That is,
g 2m
L= [ [;z.-@ Ecec 6 409;@}4
Q 6 -
and

' 92]7'
Mgffaf,zma 2 46 dx

(13)

(1%)

Within the rigor of the linearization process employed to ob-
tain equation (1) from the rigorous non-linear flow equation, the

expresaion for pressure coefficient is

o< 2P = - &
P RY Ve
vhere a @
AL = dx
and hence, . .
’ U é‘aa

étf“‘f’@, Ix

Substituting (17) 1nto (13) and (14) ylelds

Ls-/@lm [/aﬁazmg,gg,,a,(

| a%
M=*‘/Q,é€e nzf&eﬁ.géf&ﬁf
¢ a

(15)

(16)

(17)

(18)

(19)
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We must now determine the value of %';':as R=r-0. (1.e.

for a first order, very slender, body). Here the boundary conditions
come into play. The boundary condition on solution (10) is that the
derivative with respect to r (the r componsnt of the perturbation
velocity) must be equal and opposite to the component of the free
stream velocity in the r direction in order that the flow be tangent
to the surface of the body. To illustrate:

W™
RS
¢ ;
o
o
= U
A
NS EA (20)
d
dNA:E (21)
Where r - R, (10) beco',:isge
2 2r& /5, "r-”éf“‘;fz (22)
| [ GpY - 2 %R
o (ép‘\ o
We must determine the value of T}: r =R as R-90. Noticing again

that in (22) the denominator vanishes at the upper limit, return to




ENGINEERING RESEARCH INSTITUTE
EMB-26 UNIVERSITY OF MICHIGAN

Page 9

the more convenient form of (9) to perform the desired differentiation
' )

g@) _ éf.ezs.é‘/? (% ~ 8@ couk «) cooh’s due (23)
Ty *7 1f

Cosh /§-€
subatituting}- x -,BR cosh u yields

(w - o D=’ |
dn’/l‘e 4174@ @__gjx-___ﬂi’él | (24)

Let R~»0 in (2k) as for very slemder bodies.
x- 8L

¥ 2 / e o

The integral appearing in (25) can be 1ntegratbd by parts. Perform-

- ing this integration ylelds

%) — o] [10]

as R?O f. X -AR cosh u-»x. Noting that g (0) = O for pointed
bodies, expression (26) becoma for slender bodies,

3‘%) - 777{2/?(2')5& (27)

-’
Substitating ‘bhia value 1nto (1), yield-
47}'”,6"” /;(2)/2 aw X coo 6 (28)

Now fe z A (x) the cross-sectional area of the body at x. Hence |
/?@c(;(-:_&'woc # ) - (29)

4
Differsntiate with respect to x;, calling g (0) - O for a pointed

it A A
gz = # ot < 7;;{ (30)
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. This establishes a rule connecting the doudblet distridbution g (x)
with the shape of the body. 1.e.,

Ate) = 7R ; £=L%) _ (31)

Now, examine /d ) as R -»0.

From (9) e p

)%_ _: 3&0‘"0@ 1
/7; | o //? /d’.f’w‘{n’(jcov(«&

< 054"

11.’/{-1 -4 R cosh u ../5,(’
(,i_é_a} (Ee-£) 4f
d’Z/z:e 4?"/2’ -5 - g (33)

This becomes as R-» 0.

( &’-—90 | ;ZE)‘{({ (4
(4 "’*;;2/5@ —sop-+ gl

Ao,
as g (0) is taken as zero for pointed bodies. Combining (35) and
(30), yields

f.]..yé) — d"ﬁx jﬂma—wa <55)
JZE-? e L

This is the deasired value for which must be substituted into the
equations for lift and moment, 718) and (19).

Hence, j 2T

. Rl /”‘”‘/") cre0 0 dy

(37)

and
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L / — 2' coo’8 A¢ 4
(38)
Performing the indicated integrationa yields
4 ‘9" A ;&»
/0 ‘ (39)
and ,Q
A= Y200, “ a4/ v o& (40)
AR >
Now 0
14
[ by < [A0)-210] = Apre
since & (0) = O for a pointed body.
Then -
Lown
L = & b x Hpase (42)
Define 1ift coefficient as
C = ﬁ;ﬁz’;._ (43)
2 p;; ’47543‘?
Then the first order approximation for very slender bodies is
C, =2« (1)
where ( 1is in radians.
Define moment coefficient as
Aory 2 a7
C, = (45)
T A Z |
L~
Then the first order approximtion for very slander bodies is
(L6)

¢, - / /féw
fﬁbﬁ*x@ ‘
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Now the 1nj;gral
A A Yy
can be integrated by parts. That is, Plerce (Ref. 6) (19a):

/,«aﬂy» -;-,«/rr'.._.ﬁv—,&v (47)

Here let

then 17
p, 2,5, |
/f%g@z&“ ==fzza %%év —-/A’@"ﬂ@é (48)

b
| G e < R Voteme

¢
dence,
s Voieme
CM' = X [/ - ‘4‘;““""; (50)
Lt

This simple formula for moment has been independently derived by
Munk (Ref. 7), Teien (Ref. 5), and Laitohe (Ref. 8). =ZEquations
(50) and (44) can now be combined to yleld one first order approx-
imation for the center of pressure location.

This is:
Cuy /c.f Vo lum e
iy Y (51)
L ya base
Now:
VoTume = £ X Hponn (52)
and' hence

/——-10‘ = b= ] (53)

L 4&:1’
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Tlttia equation was used primarily Dy the Wizard Aerodynamics
Group to predict the proper trend of shape of a body of revolution
to yield favorable rearward c.p. location. In all cases, calcula-

tions based on these simple expressions were supported by the more
rigorous solutions.
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