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A tabulation is given of the vector coupling coefficients for the octahedral group, where the com- 
ponents of the degenerate representations have been defined with respect to a two-fold octahedral axis. 
Coefficients are given for both real and complex choices of the components, and should be useful in 
describing nearly octahedral transition metal complexes with orthorhombic perturbations. 

Tabellen von Vektor-Kopplungskoeffizienten ffir die oktaedrische Gruppe werden angegeben, 
wobei die Komponenten der entarteten Darstellungen bezfiglich der zweiz~ihligen Achsen im Oktaeder 
definiert sind. Die Koeffizienten werden sowohl ffir die Wahl von reellen als auch komplexen Basis- 
funktionen angeffihrt und sollten zur Beschreibung yon fast-oktaedrischen Qbergangsmetall-Kom- 
plexen mit orthorhombischen St6rungen yon Vorteil sein. 

Table des coefficients de couplage vectoriel pour le groupe octa6drique, les composantes des 
representations d~g~n6r~es 6tant d6finies par rapport ~ un axe octa~drique binaire. Les coefficients 
sont donn~s pour un choix de composantes r6elles ou complexes; ils devraient ~tre ufiles pour la 
description des complexes de m6taux de transition presque octa6driques avec des perturbations 
orthorhombiques. 

Introduction 

The quantum mechanical description of transition metal complexes is, as 
with atoms, greatly facilitated by the use of reduced matrix elements and vector 
coupling coefficients. This group theoretical algebra has been developed for the 
octahedral group by Tanabe and Sugano [1], Tanabe and Kamimura [2], and 
Griffith [3], their work paralleling in many ways that for atoms described by 
Fano and Racah [4]. The basic relation is the Wigner-Eckart theorem, which in 
Griffith's notation [3] takes the form 

(:a;) (a~ lg~la 'c ( ) - - (a l lgb l l  a') V c( ' (1) 

where the matrix element of an operator g transforming as component fl of re- 
presentation b connects states transforming as components ~ and a' of the re- 
presentations a and a' respectively. The double-bar reduced matrix element is 
independent of the component labels a, u', and fl, while the V coefficient, analogous 
to a 3 - j  symbol, is completely determined by group-theoretic considerations. 
The relation (1) holds for real components, with some modification if complex 
components are chosen 1. 

Griffith tabulates [-3] four sets of V coefficients for use in describing systems 
with octahedral (or tetrahedral) symmetry. These differ only in the choice of 

1 Ref. [3], p. 21; the change consists of replacing a in V by - a  and multiplying the expression 
by a phase factor [ -  1]"+% where [ - 1] r = 1 if ~ is A1, A2, E, or a component of E, - 1 if ~ is T 1 or T 2, 
and ( -  1)r if ~ is a component of T1 or T2. 
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components for the degenerate representations. These choices are real tetragonal, 
real trigonal, complex tetragonal, and complex trigonal. The tetragonal and 
trigonal systems are based on the choice of a four-fold or a three-fold quantization 
axis, respectively. Complex components are useful, as with atoms, in describing 
systems in magnetic fields. 

We have on several occasions found it useful to have available V coefficients 
similar to the above types, but defined instead with respect to a two-fold axis of 
an octahedron. One example is in the description of cis-MA4B 2 complexes, such 
as cis-Mn(OH2)4C12, present in crystalline MnC12 �9 4HzO. While the molecular 
symmetry is essentially C2~ (less in the solid), it is still convenient to use an octa- 
hedral description with low-symmetry fields defined relative to an octahedral 
two-fold axis passing through the C1-C1 edge. Another example is the anti- 
ferromagnet MnF2, having the futile crystal structure with Dzh cation site sym- 
metry. Here the antiferromagnetic exchange field of over 500KGauss is parallel 
to the c axis of the tetragonal crystal and hence passes along a C2 axis of the nearly 
octahedral MnF6 4 unit, bisecting a F - F  edge. In a recent calculation [5] of 
magnetic dipole oscillator strengths for the crystal-field transitions in MnF 2, 
we used the V coefficients presented here to check the results obtained separately 
by a transformation of f-values computed in a tetragonal component system. 

Procedure 

In order to calculate V coefficients with orthorhombic components we must 
define the new components in terms of a unitary transformation of components 
for which the V are known, say the real tetragonal case. The new V are obtained 
from the old V by Griffith's transformation z. 

V = ~ A~,~Bp,~ C~,~ V (2) ~' y ~' ~p~ ~ ' 

where a function (state or operator) transforming as the c~' component of irreducible 
representation a is given by 

f~  = • A~,~f~ (3) 
C~ 

with similar expressions for f~  and f ~ .  
If x, y, and z denote real tetragonal components of aT 1 or T z representation, 

then real orthorhombic components x', y', and z' are given by the transformation 

y' = 0 y (4) 
z' \ 2  -1/1 - 2  -1/z z 

with the complex orthorhombic components 1, 0, and - 1 then given by 

= 0 0 y' (5) 
- i/21/z 2-1/z  z' 

2 Ref. [3], p. 18; if the components c(,/3', and 7' are complex, replace A,,~, in (2) by its complex 
conjugate, which from (5) is simply A_~,~. 
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The elements of the square  arrays  in (4) or (5) comprise  the A=,~, Be,e, or C~,~ 
of (2). N o  t rans format ions  were made  for the representat ions  A1, A2, and E. This 
means  that  the two componen t s  of E are taken  as 0, g functions, cor responding to 
3z 2 - r 2 and x 2 - y2, respectively. This can be done because the par t icular  two-fold 
axis chosen for z' lies in the x y  plane, and  is the axis (x - y). In the new coordinate  
system x'  is also a two-fold axis, but  y' is a four-fold axis. Thus  0 and e are ir- 
reducible representa t ions  of  the sub-group  C2~ with z' as the two-fold axis. 

Results 

Coupl ing  coefficients involving T1 and T 2 representa t ions  with real or tho-  
rhombic  componen t s  are presented in Table  1. The c o m p o n e n t  labels x, y, and z 
in Table  1 refer to x' ,  y', and  z' of Eq. (4). Since no t rans format ion  was made  on the 
componen t s  of A1, A 2 ,  o r  E representat ions,  V coefficients involving only these 
representat ions,  namely  V's of types A~, A 1 A~, A 1 E 2, A 2  E 2 ,  and E 3, a r e  un- 
changed f rom their real te t ragonal  values [-3]. Fo r  completeness  these are: 
V(A 3) = V ( A  1 A~) = 1 ; V (A  1 E 2) = 2-1/2 3~,  where fi, 7 = 0 or e; V ( A  2 E 2) = + 2-1/2 
for /37 = 0e and  e0 respectively;  and V(E a) = 1/2 for ~/3y = 0ee, eOe, or ee0, but  
- 1 / 2  for c~/37 = 000. All real and complex o r tho rhombic  V's satisfy Griffith 's 

Table 1. Real orthorhombic component system "'b 

T2 T2 T2 

r 1 T, T 2 V 

X X y - - 6  -1/2 
z Z y 6 -1/2 

X y X - - 6  -1/2 
z y Z 6-1 /2  

y X X - - 6  - I /2  
y z z 6 -1/2 

T2 T2 0 
E Wl Wl V 

0 x x 12 -1/2 

0 z z 12 -1/2 
0 y y - 3  -1/2 

x z - 1 / 2  

e z x - 1 / 2  

E T1 T2 V 

e y y 3 -1/2 

x x -- 12-1/2  
z z - 12-1/2  

0 x z - 1/2 
0 z x - 1/2 

~al ~ 7 al ~ y a2 ~ 



376 L .L .  Lohr, Jr.: Coupling Coefficients for Oh 

Table 2. Complex orthorhombic component system a 

7"2 T2 7"2 
7'1 T~ W 2 V 

Table 3. Complex orthorhombic component system 

1~ T~ T2 
E T 1 T~ V 

0 0 •  - 1 2  -1/2 0 0 0 - 1 2  -1/2 
0 +1  0 - 1 2  -~/2 0 1 1 - 31/2/4 

+1  0 0 - 1 2  -1/2 0 - 1  - 1  - 31/2/4 
1 1 1 31/2/4 0 1 - 1 - 4 8  -1/2 
1 1 - 1  --48 -t/2 0 --1 1 - 4 8  -1/2 
l - 1  1 - 4 8  -1/2 e + 1  0 ~ 8 - ' 2  
1 - t  - 1  - 4 8  -~/2 e 0 +1  -T- 8 -1tz 

- 1 1 1 - 4 8 - 1 / 2  

--1 t - t  - 4 8  - l lz  E Tt T 2 V 
- 1 - 1 1 - 4 8 - 1 / 2  

- t - 1 - 1  3112/4 ~ 0 0 12- ljz 
1 1 31/2/4 

A 1 T 1 T 1 V b r - 1 -- 1 31/2/4 
1 - 1 48 - 1/2 

al 1 - I  3 - m  e - 1  1 48 -112 
a i 0 0 - 3 -1/2 0 4-1 0 T 8 -1/z 
a~ - 1  1 3 -1/2 0 0 -+1 T 8 -1/2 

(TI 7"1 T 1 ) = v ( T 1  T2 T2)=6_1/2 

b Same for A I T 2 7"2 and  A2 T17"2, 

symmetry with respect to permutation of columns; permutation introduces the 
phase factor ( - 1 )  raised to a power (a + b + c), where ( -1 )  to the A1, E, or T2 
is defined to be + 1, while ( -  1) to the A 2 or T1 is defined to be - 1. 

Similarly, coupling coefficients involving T~ or T2 representations with complex 
orthorhombic components are given in Tables 2 and 3. Coefficients involving 
only At, A2, and E representations are unchanged from their complex tetragonal 
values, and are equal to their real tetragonal values. As in the complex tetragonal 
(but not complex trigonal) case, all V for complex orthorhombic components 
are real. 

Several of the V coefficients are expressed in terms of the Levi-Civita tensor 5, 
whose elements ~a~ are 0 if any two afi7 are equal, 1 if afl;~ is an even permutation 
of x y z  (or of 1, 0, - 1), and - 1 if an odd permutation. 
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