The Integral Hellmann-Feynman Theorem Applied to Hydrogen Peroxide

Stuart M. Rothstein, and S. M. Blinder
Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48104

Received July 19, 1967

The integral Hellmann-Feynman (THF) theorem developed by Parr [1-7] has raised hopes that the origin of barriers to internal rotation could be isolated by $a b$-initio calculations. The method is practicable for any molecule for which a wavefunction of reasonable quality is available. In such instances, the rotational barriers calculated by the IHF theorem ought to be comparable to or better than those obtained by the standard method of subtracting total SCF energies of the different conformations. To date, the successful application based on Pitzer and Lifscomb's [8] ethane wavefunctions has provided an encouraging confirmation of the usefulness of the IHF approach $[5,6]$.

Very recently three sets of molecular orbital wavefunctions for the $\mathrm{H}_{2} \mathrm{O}_{2}$ molecule have become available: the LCAO-MO-SCF-STO wave functions of Kaldor and Shavitt [9], the LC(Double-Zeta)AO-MO-SCE functions with scaled hydrogens of Fink and Alcen [10, 11] and the LCAO-MO-SCF functions of Palke and Prtzer [12] using exponents optimized for $\mathrm{H}_{2} \mathrm{O}$. Working independently, various workers have applied the IHF theorem to these wave functions: the first set has been treated by Melrose and Parr [13], the second by Fink and Allen [14], and the third by the present authors. In each case the results for the cis-trans barrier are somewhat discouraging.

Within the framework of self-consistent-field theory and the Born-Oppenheimer approximation, the IHF theorem gives the cis-trans barrier to internal rotation ($\left.\Delta W_{\text {IHF }}\right)$ as the sum of a nuclear-nuclear $\left(\Delta V_{n n}\right)$ and an electronic ($\left.\Delta E_{e l}\right)$ barrier. In particular

$$
\begin{equation*}
\Delta W_{\mathrm{IHF}}=\Delta V_{n n}+2 \sum_{i j} \frac{\left\langle\phi_{i}^{\text {eis }}\right| V_{n e}^{\text {eis }}-V_{n e}^{\text {trans }}\left|\phi_{\mathrm{F}}^{\text {trans }}\right\rangle}{\left\langle\phi_{i}^{\text {eis }} \mid \phi_{T}^{\text {trans }}\right\rangle} \tag{1}
\end{equation*}
$$

where ϕ_{i}^{x} is the $i^{\text {th }}$ MO for the x conformation. The double summation is diagonalized by a transformation of the wave functions to corresponding orbitals (CO), $\hat{\phi}_{i}^{x}$. The addition theorem for spherical harmonics is then applied to the difference of the nuclear-electronic operators, and the transition density is expanded in a Fourier series in φ [6]. The matrices U and V which transform the Palke and Pitzer MO's and CO overlaps are listed in Tabs. 1-3. These matrix elements are defined by

$$
\begin{equation*}
\left|\hat{\phi}_{i}^{\mathrm{cis}}\right\rangle=\sum_{j}\left|\phi_{j}^{\mathrm{cis}}\right\rangle\left\langle\phi_{j}^{\mathrm{cis}} \mid \hat{\phi}_{i}^{\mathrm{cis}}\right\rangle \equiv \sum_{j}\left|\phi_{j}^{\mathrm{cis}}\right\rangle U_{j i} \tag{2}
\end{equation*}
$$

Table 1. U-Malrixa

$\overline{\left\langle\phi_{j}^{\text {cis }}\right.}$	$\hat{\phi}_{i}^{\text {cis }}$,								
	$i=1$	2	3	4	5	6	7	8	9
<1 a_{1}	. 9372162	-. 3414402	. 0257790	-. 0148274	. 0000000	. 0000000	-. 0599231	-. 0238535	. 0005415
$<2 a_{1}$. 2656205	. 6857002	. 2890288	-. 0939969	. 0000000	. 0000000	. 1678040	. 5675361	-. 1289673
< $3 a_{1}$. 0108571	. 0143741	. 1352575	. 7660073	. 0000000	. 0000000	-. 0080941	-. 1028787	-. 6196485
< $4 a_{1}$	$-.0422920$	-. 2086820	-. 7171441	. 0958493	. 0000000	. 0000000	-.0594782	. 6368394	-. 1485881
$<1 a_{2}$. 0000000	-. 0000000	. 0000000	-. 00000000	. 00017544	. 9999985	-.0000000	-. 0000000	-. 0000000
$\left\langle 1 b_{1}\right.$. 0000000	-. 0000000	. 0000000	$-.0000000$. 9999985	-. 0017544	-. 0000000	$-.0000000$	-. 0000000
$<1 b_{2}$	-. 0142664	-. 2124841	-. 0247132	. 0175498	. 0000000	. 0000000	. 9765405	-. 0098411	-. 0000005
$\left\langle 2 b_{2}\right.$	-. 2208058	-. 5657092	. 5907978	-. 1966554	. 0000000	. 0000000	-. 1034189	. 4379517	--. 2024977
$\left\langle 3 b_{2}\right.$. 0143654	. 0655952	-. 1831797	-. 5966650	. 0000000	. 0000000	. 0179168	-. 2632239	-. 7323382

\footnotetext{
Table 2. V-Matrix

$\left\langle\phi^{\text {trans }}\right.$	$\left.\hat{\phi}_{i}^{\text {(rang }}\right\rangle$								
	$i=1$	2	3	4	5	6	7	8	9
<1 a_{g}	. 9372142	-. 3414528	. 0257596	-. 0147368	. 0000000	. 0000000	-. 0599275	-. 0238211	-. 0001261
$<2 a_{g}$. 2638659	. 5844100	. 2937684	. 1501219	. 0000000	. 0000000	. 1684396	. 5573098	. 1189757
(3ag	. 0320099	. 1194329	. 4556174	. 5700071	. 0000000	. 0000000	. 0235383	-. 3746704	. 5579282
$\left\langle 4 a_{\sigma}\right.$	-. 0291707	-. 1662015	-. 5683643	. 3608175	. 0000000	. 0000000	-. 0524990	. 5263051	. 4884114
$\left\langle 1 a_{u}\right.$	-. 0000000	. 0000000	. 0000000	-. 0000000	. 9999985	-. 0017544	. 0000000	. 0000000	. 0000000
$\left\langle 1 b_{g}\right.$	-. 00000000	. 0000000	. 00000000	$-.0000000$. 0017544	. 9999985	. 0000000	. 0000000	. 0000000
$\left\langle 1 b_{u}\right.$	-. 0142781	-. 2125114	-. 0246710	. 0175318	. 0000000	. 00000000	. 9765356	-. 0098391	. 0007399
$\left\langle 2 b_{u}\right.$	-. 2230625	-. 5686036	. 5855637	-. 2454816	. 0000000	. 00000000	-. 1037211	. 4192426	. 1930404
$\left\langle 3 b_{u}\right.$. 0129592	. 0680783	-. 1972763	$-.6793971$. 0000000	. 0000000	. 0186240	-. 3091960	. 6314666

Table 3. Overlap Integrals

i	1	2	3	4	5	6	7	8	9
$\left\langle\hat{\phi}_{i}^{\text {cis }} \mid \hat{\phi}_{i}^{\text {rang }}\right\rangle$	1.0000003	.9999985	.9922593	.9998183	.9999994	1.0000015	.9999992	.9999899	.8301348

Table 4. Summary of Integral Hellmann-Feynman Calculations for cis-trans Barrier in $\mathrm{H}_{2} \mathrm{O}_{2}$
(All numbers in atomic units)
ic units)

Wave function type	Author	$\Delta W_{\text {exp }}=.0112^{\text {a }}$		$\Delta W_{\text {IfP }}$	$\Delta W_{\text {scr }}$
		$\Delta V_{n n}$	$\triangle E_{c l}$		
LC(Double-Zeta)AO-MO-SCF	Fing and Alleen	. 0938	-. 0547	. 0391	. 0263
LCAO-MO-SCF-STO	Mrlzose and Parr	. 1123	-. 0626	. 0497	. 0153
LCAO-MO-SCF-STO, $\mathrm{H}_{2} \mathrm{O}$ exponents	Present work	. 1123	-. 0603	. 0520	. 0208

and

$$
\begin{equation*}
\left|\hat{\phi}_{i}^{\text {trans }}\right\rangle=\sum_{j}\left|\phi_{j}^{\text {trans }}\right\rangle\left\langle\phi_{j}^{\text {trans }} \mid \hat{\phi}_{i}^{\text {trans }}\right\rangle \equiv \sum_{j}\left|\phi_{j}^{\text {trans }}\right\rangle V_{j i} . \tag{3}
\end{equation*}
$$

After Eq. (1) is diagonalized and the necessary integrations performed numerically*, the electronic barrier is found to be -.0603 au and the total barrier to internal rotation, .0520 au. These results and those of other workers are summarized in Tab. 4, as are the barriers obtained by direct subtraction of total SCF energies (ΔW_{SCF}).

The rotation barrier as calculated from the wave functions of Palee and Pitzer is comparable to the results of Fink and Allen [14] and of Melrose and Parr [13]. In each case the barrier is inferior to that obtained by the SCF subtraction method. Consequently the IHF theorem when applied to such wave functions can give no information on the barrier in $\mathrm{H}_{2} \mathrm{O}_{2}$. Recent calculations of Fine and Allen [14] lead to similar conclusions for a number of molecules.

Evidently, the IHF theorem must be modified in some way if it is to be applicable to wavefunctions of presently available quality.

Acknowledgements. We wish to thank Professor R. G. Parr for his cooperation and advice. The authors quoted in advance of publication are thanked for permission to use their results. SMR is particularly grateful to Professor K. T. Hecht for many illuminating discussions. Computer time for this research was supplied by the computing center of The University of Michigan.

[^0]
References

1. Parr, R. G.: J. chem. Physics 40, 3726 (1964).
2. Kim, H. J., and R. G. Parr: J. chem. Physics 41, 2892 (1964).
3. Karplus, M., and R. G. Parr: J. chem. Physics 38, 1547 (1963).
4. WYatt, R. E., and R. G. Parr: J. chem. Physics 41, 3262 (1964).
5. - - J. chem. Physics 43, S 217 (1965).
6. - - J. chem. Physics 44, 1529 (1966).
7. Hayes, E. F., and R. G. Parr: J. chem. Physics 44, 4650 (1966).
8. Pitzer, R. M., and W. N. Lipscomb: J. chem. Physics 39, 1995 (1963).
9. Kaldor, U., and I. Shavitt: J. chem. Physics 44, 1823 (1966).
10. Fink, W. H., and L. C. Allen: J. ehem. Physics 46, 2261 (1967).
11. - - J. chem. Physics 46, 2276 (1967).
12. Paleee, W. E., and R. M. Pitzer: J. chem. Physics 46, 3948 (1967).
13. Melrose, M. P., and R. G. Parr: Theoret. chim. Acta 8, 150 (1967).
14. Fink, W. H., and L. C. Allen: J. chem. Physics 46, 3270 (1967).

Prof. Dr. S. M. Blinder University of Michigan Department of Chemistry Ann Arbor, Michigan 48104, USA

[^0]: * The integrations over r and φ are performed numerically by a 10×10 Gaussian quadrature grid and the φ integration by a 10 point grid over each interval $(-\pi / 2 m) \leq \varphi \leq(\pi / 2 \mathrm{~m})$ and $(n \pi / 2 m) \leq \varphi \leq[(n+2) \pi / 2 m], n$ odd, where $m(=1,3 \ldots)$ is the m-th order component of the transition density.

