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Abstract: We show that the family of  solitary waves (1-solitons) of the Korteweg-de 
Vries equation 

Otu + uOxu + ~3xu = 0 ,  

is asymptotically stable. Our methods also apply for the solitary waves of  a class 
of  generalized Korteweg~le Vries equations, 

~tu -4- 0~ f (u) -4- a3 u = O . 

In particular, we study the case where f (u) = uPH/(p + 1), p = 1, 2, 3 (and 3 < 
p < 4, for u > 0, with f E C4). The same asymptotic stability result for KdV is 
also proved for the case p = 2 (the modified Korteweg-de Vries equation). We 
also prove asymptotic stability for the family of  solitary waves for all but a finite 
number of  values of  p between 3 and 4. (The solitary waves are known to un- 
dergo a transition from stability to instability as the parameter p increases beyond 
the critical value p = 4.) The solution is decomposed into a modulating solitary 
wave, with time-varying speed c (t) and phase 7(0 (bound state part), and an infi- 
nite dimensional perturbation (radiating part). The perturbation is shown to decay 
exponentially in time, in a local sense relative to a frame moving with the solitary 
wave. As p --~ 4 - ,  the local decay or radiation rate decreases due to the presence 
of a resonance pole associated with the linearized evolution equation for solitary 
wave perturbations. 

1. Introduction 

Solitary waves are a class of  finite energy, spatially localized solutions of  nonlinear 
dispersive partial differential equations of  Hamiltonian type. In many such systems, 
computer simulations and certain analytical results suggest that, in general, solutions 
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eventually resolve themselves into an approximate superposition of weakly interact- 
ing solitary waves and decaying dispersive waves. Thus it has been suggested (see 
[L, GGKM1] that solitary waves play the role of elements in a nonlinear basis, 
with respect to which it is natural to view the solution in the limit of large time. A 
natural step toward understanding this sort of asymptotic decomposition is to con- 
sider the stability of solitary waves. This is the study of the behavior of solutions 
with initial conditions in a neighborhood of the solitary wave. 

In this paper we establish a result concerning the asymptotic stability of solitary 
wave solutions of the Korteweg-de Vries (KdV) equation 

8tu + UOxU + 0x3u = 0.  (1.1) 

The methods we use also apply, for example, to the solitary waves of a generalized 
KdV equation (gKdV) 

a~u + Oxf(u) + a3u = 0.  (1.2) 

In particular, we study the case where f (u)  = up+l/(p + 1), for p = 1, 2, 3, (and 
3 < p < 4 for u > 0, with f E C4). The same asymptotic stability result which 
is proved for KdV is shown to hold for the case, p = 2, the modified Korteweg- 
de Vries equation (mKdV). The solitary waves of (1.2) are known to undergo a 
transition from stability to instability as the parameter p increases beyond the critical 
value p = 4, cf. [LS, W1, W3, BSS, PW2]. Some of the results of the present paper 
were announced in [PWl]. 

The KdV and gKdV equations have a two-parameter family of solitary wave 
solutions of the form u(x, t)= ue(x-  ct + 7), for all c > 0, y E IR. The solitary 
wave profile uc (y) is the unique symmetric solution of the equation 

-82u~ + cu~ - f (uo) = 0,  (1.3) 

having u~ (y) -+ 0 as I Y 1 7 oc. Explicitly, for our particular nonlinearity, we have 

( l  1)(p+2)) 1/p l p v  ~ Uc(y)=~sech2/pfly, where c~= ~ e ( p +  , f i =  . (1.4) 

Because a small perturbation of a solitary wave can yield a solitary wave with 
a permanent phase shift, or one with a different speed, it is appropriate to study 
the orbital stability of solitary waves. An extensive mathematical literature on 
the subject of orbital stability of solitary waves developed following the work of 
Benjamin [Be] (see also Bona [Bo]) for the KdV equation. The results of Laedke 
and Spatschek [LS], Weinstein [W1], [W3] and Bona, Souganidis and Strauss [BSS] 
(see also [BSo]) assert that for integer p with 1 <p  < 4, a solution which is ini- 
tially close to a solitary wave uc(x-  ct) in the Sobolev space HI(IR), will forever 
remain close to the set of translates Uc ( x -  ct + 7) of the wave. (This is the orbit 
of the wave under the group of time translations.) Somewhat more precisely, for 
sufficiently small 6 > 0, one has 

inf llu(., t)-uc('+~)llH~ < c5 (1.5) 

for all t > 0, if the same quantity is small at the initial time t = 0. This notion of 
stability establishes that the shape of the wave is stable, but does not fully resolve 
the question of what the asymptotic behavior of the system is. A priori, it is possible 
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that the solution wanders in a neighborhood of the group orbit of the solitary wave 
without settling down to some well-defined asymptotic state. 

Our goal in this paper is to describe more precisely the long-time asymptotic 
behavior of a class of solutions initially close to a solitary wave. In the general 
study of the stability of periodic solutions of ordinary differential equations [CL], 
and traveling waves of parabolic systems [Sa], one often seeks to establish that a 
perturbed solution will approach, as t - ~  c~, some fixed translate of the periodic 
orbit or wave. This is the property of orbital asymptotic stability. In the present 
context, since small perturbations of solitary waves can change the wave speed, 
what we seek to show is that under suitable conditions, if u (x, t) is initially a small 
perturbation of a given solitary wave u~ ( x -  ct + 7), then 

u(x , t ) -Uc+(X-e+t+7+) - -+O a s t - - + + e c ,  (1.6) 

for some c+ near c and 7+ near 7. If this property holds, we say that the family 
of solitary waves is asymptotically stable. (For the pure power nonlinearity with 
f '  (u) = u p, the family of solitary waves may also be regarded as a group orbit, 
under the larger group of symmetries consisting of translations u ~ u(. + 7), and 
dilations u ~-+ cl/pu(c 1/2 .).) 

Now, the approach taken in the H 1 stability theory does not yield this informa- 
tion. The reason is as follows: To prove H 1 stability, the solitary wave profile, u~, 
is viewed as a critical point of a conserved energy functional: 

g[u] = ~ [ u ] + c X [ u ] .  

Here, the Hamiltonian ~ and impulse functional ~AZ are given by 

J/a[U] ~--- f 2(6qxR) 2 -  F(u)dx, K'[u] = f ~uadx, (1.7) 

where F'(u) = f ( u ) ,  F(0)  = 0. The estimate (1.5) arises because u~ is a constrained 
minimum of g, under the condition 

d~/'[uc]/dc > O, 

which is true for p < 4, due to the scaling relation uc(v)=  cl/PbtI(Yv/C). Being 
derived from conserved integrals, the norm in (1.5) is insensitive to dispersive decay 
phenomena. 

In order to establish asymptotic behavior of the type in (1.6), one should choose 
a norm which decreases as perturbations disperse. A program along these lines was 
carried out for a class of nonlinear Schrddinger equations by Softer and Weinstein 
[SWl-3], who used L p and polynomially weighted L 2 norms to establish the asymp- 
totic stability of a family of nonlinear bound states. There, and in the present work, 
a key ingredient is a decay estimate for the local energy of perturbations, where 
the measure of local energy is tailored to the dynamics at hand. 

What norm is appropriate for KdV solitons? For the KdV equation, numerical 
computations and certain results based on the method of inverse scattering suggest 
that, i f  a soliton moving to the right with speed c > 0 is perturbed, the solution 
will evolve toward a superposition of a similar dominant soliton, possibly followed 
by a number of small solitons (bound states) also propagating to the right, and then 
a dispersing part (radiation), cf. [ZK, GGKM, L, AS, DJ]. See Fig. 1. (For rigorous 
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Fig. 1. Schematic picture of a solution of the KdV equation with two solitons and a dispersive 
wave 

results regarding the emergence of solitons from arbitrary initial conditions, obtained 
using results from inverse scattering theory, see Schuur [Sc].) 

One therefore should not expect (1.6) to occur in any translation-invariant norm, 
such as any L p norm, 1 < p  < oo. Heuristically, we may analyze the situation as 
follows: First, by (1.4), small solitary waves travel slower than larger ones; the 
amplitude increases with the speed c. Second, small amplitude dispersive waves, 
considered in the f rame y = x -  ct  of a dominant solitary wave traveling to the 
right with speed c, evolve approximately according to the equation 

~tu - C~3xU + ~3 u = O,  

whose solutions are a superposition of plane waves e ikx-i~ where c o ( k ) = - c k -  
k 3. The group velocity of these linear waves is always negative: c d ( k ) = - c -  
3k 2 < 0 for all k. So small amplitude dispersive waves should travel to the left in 
this frame. 

Hence, one may expect the dominant soliton to "outrun" the generated distor- 
tions. In a coordinate system moving with the large soliton, one could expect local 
uniform convergence in (1.6). Thus, we introduce a notion of local decay, to be 
used in the frame of the dominant solitary wave. This is expressed in terms of 
weighted norms, with exponential weights of the form e ay where a > 0. We define 

L2a = {v  i eaYv E L2(IR)}, with II v IIL  = I1 eayv ILL2, 

H 1 = {v  ] eaYv E H 1 (IR)}, with II v IIHA = It eaYv [[H 1 �9 

Convergence in the space Ha l implies local uniform convergence. Furthermore, given 
a function v (x + s t )  which is simply being translated to the left, with speed - s  < 0, 
then its norm II v(. + st)IIH~ in the weighted space decays at an exponential rate, 
like e -ast. 

The global existence of solutions of the KdV equation with initial data u (., 0) E 
H s MLZa with s = 2  has been considered by Kato [K3], who showed that a unique 
solution exists with u E C([0, oo), H s N Lma), depends continuously on its initial 
data, and furthermore, enjoys a "parabolic" smoothing property, having e ~ u  E 

C ((0, e~), H ~') for any real s'. Further developments concerning the well-posedness 
of  KdV and gKdV appear in the more recent papers [KPV, GT]. 
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Our main result for solitary waves of the KdV equation is as follows. 

Theorem 1. Let  u~ (x - ct + 7), c > 0, 7 C IR, be a solitary wave solution o f  the 
KdV equation (1.1). Suppose 0 < a < V / ~  and 0 < b < a ( c -  a2). Then there 
exists C > 0 such that i f  e > 0 is sufficiently small, we have the following: Con- 
sider the initial value problem fo r  the KdV equation with data 

u(x, o) = uc(x + J + vo(x). (1.8) 

Assume that vo E H 2 f'l H i ,  with II vo IIH1 + II vo IIHA < e. Then there exist  c+ > 

0, 7+ E IR, such that [ c - c +  1< Ce, [ 7 - 7 +  [< Ce, and fo r  all t>=O we have 

II u ( . ,  t )  - Uc+ (.  - c + t  + 7+)IIH1 ----< C~, 

II u(. + c+t - 7+, t) - Uc+ (.)IIHa~ ~ C ~ e - b t  " (1.9) 

Exact ly  the same result is true f o r  the modified KdV equation (mKdV), which is 
(1.2) with p = 2. 

Remarks.  

1. The solution to KdV and gKdV (see Theorem 3 below) will be expressed in 
the form 

u(x, t) = uc(o(x + O(t)) + v(x + O(t), t) , (1.1o) 

where 0 (t) = 7 (t) - f~ c (s)ds. It is proved that 

[ c(t)  -- c+ [ + I 7(0 -- 7+ [ +[[ v( . ,  t)[[HJ <=Cee-bt" 

The modulating speed c (t) and phase 7 (t) do not depend on a, nor do their asymp- 
totic limits c+ and 7+. 

2. Related results for the KdV and mKdV (p = 2) equations appear in [Se]. 
The KdV and mKdV equations are completely integrable, and may be solved by 
the inverse scattering transform. In [Sc] the representation of the solution in terms 
of the inverse scattering transform is analyzed to obtain information about the large 
time behavior of solutions in which solitons emerge. This approach does not apply 
to Eq. (1.2) with more general f (u ) ,  where the equation is not expected to be 
integrable. 

In (1.10), the leading (and dominant) term is an exact solitary wave solution of 
(1.1) when c(t), 7(t) do not vary in time. If we perturb the solitary wave slightly, 
it is natural to expect the solitary wave to adjust, via slow and small variations of 
its available parameters, to a nearby solitary wave. Thus we allow the parameters c 
and 7 to "modulate." Substitution of the ansatz (1.10) into (1.2) yields an equation 
of the form 

OtV = OyLc(t)v -- (C~c -~ f~3y)Uc(t) -Jr ~ (Uc(t), v), (1.11) 

where 
Lc = -0~  + c - f '  (u~) . 

At this point c(t)  and 7(0 are still unspecified fimctions of time. The evolution 
equations we obtain for these quantities may be said to arise from a non-secularity 
condition to be imposed on the solution v of (1.11). In the space L 2 (with domain 
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H3), the operator OyLc is degenerate, with an eigenvalue at the origin 2 = 0. The 
(generalized) eigenfunctions are Oyu~ and Ocuc, which satisfy 

OyL~3yUc = O, OyL~cuc = -OyUc . 

(To derive these equations, differentiate (1.3) with respect to y and c.) These two 
zero modes are associated, respectively, with infinitesimal changes in the location 
and speed of the solitary wave. They give rise to solutions Oyuc and OcUc- t~yu~ 
to the linearized problem 

~tv = OyLcv, (1.12) 

which are, respectively, constant and linearly growing with time. 
Formally, to ensure that v contains no component of these solutions which ex- 

hibit secular growth, it is appropriate to require that the right-hand side of (1.11) be 
orthogonal to the (presumably 2-dimensional) generalized kernel of the adjoint of 
OyLc. These constraints yield two coupled first order differential equations for e (t) 
and ?(t) (called modulation equations), which are themselves coupled to the infinite 
dimensional dispersive evolution equation for v(., t). 

It turns out that the weighted space La 2 also plays a role at this point. In fact, the 
generalized kernel of the adjoint of ~yL~ is not 2-dimensional in the space L 2, but 
it is 2-dimensional in L] for 0 < a < v ~. Thus, introducing the weighted space 
L ] provides a regularization which facilitates the derivation and justification of the 
modulation equations. (We note, however, that the modulation equations themselves 
do not depend on a.) 

The functions c(t) and y(t) are sometimes referred to as collective coordinates. 
Modulation equations for collective coordinates have been previously derived by 
various formalisms (see for example [KM, KA, Ne]). In formal perturbation theories, 
the coupling to the dispersion is usually neglected and the modulation equations are 
approximated by a coupled system of ordinary differential equations. The validity 
of this approximation on large but finite time intervals is considered in [W2] for a 
class of nonlinear Schr6dinger equations. 

Another point of view that describes our analysis is that the change of variables 
implicit in (1.10), from u to (?(t), e(t), v(y, t)), is one for which the family of 
solitary waves becomes a 2-dimensional manifold of equilibria, corresponding to 
constant values of 7 and c, with v = 0. We study the asymptotic stability of this 
manifold by regarding it as a center manifold. The "parabolic" character of the KdV 
equation in the space H s N L] makes this approach feasible. 

Our results below for gKdV in Theorem 3 will differ from the results in Theorem 
1, due to differences arising in the detailed spectral properties of the operator ~yLc 
in the linearized evolution equation (1.12). As mentioned above, the point 2 = 0 
is an eigenvalue of the operator 0yLc in L 2. Concerning the rest of the spectrum, 
the results of [PW2] and Sect. 2 (see Theorem 2.1 below) imply that when 
1 =<p < 4, the spectrum consists of the entire imaginary axis. Most of this spectrum 
is approximate point spectrum. The point 2 = 0 is an eigenvalue which is embedded 
in the essential spectrum. 

A crucial spectral property that makes Theorem 1 possible is that for the solitary 
waves of KdV (and mKdV). 

,~ = 0 is the only eigenvalue of OyLc in the space L 2 . (1.13) 
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In particular, the linearized equation (1.11) has no localized (L 2) solution of the form 
ei~ with co ~= 0 real. While this refined spectral information concerning OyL~ is 
not required in the H1-Lyapunov stability theory, it is necessary for our asymptotic 
stability analysis that (1.12) admit no spatially localized, temporally nondecaying 
solution which is not associated with modulation of the parameters c(t) and 7(0. 
We will prove (1.13) in sect. 3 and Appendix B. The proof relies on some general 
results in [PW2] concerning the eigenvalue problem for solitary waves of gKdV, and 
on explicit formulae available for the solution of the eigenvalue equation O y L c v  = 2V 
for KdV solitons. (Such formulae appear in [JK, Ber]. Our development relies on 
results from [M, GGKM].) 

We are not presently able to prove that (1.13) holds for the solitary waves of 
gKdV for all p E (l,  4). For p fixed, we note that 2 is an eigenvalue of 3yL~ if  and 
only if 2/c 3/~ is an eigenvalue of ~yL1. (This is due to a dilational symmetry admitted 
by the gKdV equation, but can easily be checked using (1.4).) It follows that the 
property in (1.13) does not depend on c. What we can prove is the following: 

Theorem 2. The set E, o f  values o f  p with p > 0 such that the operator 3yLc has 
a nonzero eigenvalue in L 2, is a discrete set. In particular, E ;q [1, 4] is a finite 
set (which does not contain the values p = 1 or p = 2). 

We conjecture that E is empty, in fact. There is strong numerical evidence to this 
effect, see the remarks concluding Sect. 3 below. But at this time, except for p = 1 
and 2, we are unable to prove that any particular p E [1, 4] lies in E or not. 

Our main stability result concerning gKdV solitary waves is as follows. 
We are interested in treating real values of p near p = 4, the transition to 
instability. Since for noninteger p, the nonlinearity f ( u )  is not smooth, the 
results of Kato [K3] do not immediately yield the global existence of solutions. 
In Appendix A, we show that the method of Kato does yield global existence for 
3 < p < 4 (where f is C 4) : given u(., 0) E H 2 N Hi,  the solution u E C([0, oo), 

H 2 (q Hla), and e~u E C([0, oo), H s') for any s' < 4. In particular, the solution is 
classical: For t > 0, Otu and Ox3u are continuous. 

Theorem 3. Let u~(x -  ct + 7), e > 0, 7 E IR, be a solitary wave solution of  
the gKdV equation (1.2). Suppose 3 <p < 4, and assume that (1.13) holds, i.e. 
p ~ E. Let 0 < a < X / ~ .  Then there exists C >  0 and b, 0 < b < a(c - a2), 
such that i f  e > 0 is sufficiently small, we have the following: Consider the initial 
value problem for gKdV with the data in (1.8). Assume that Vo E H 2 N H i ,  with 
II v0 IIH1 -}- II v0 < ~- Then there exist c+ > 0, 7+ E IR, such that I c - c+ I< 

Ce, I 7 - 7+ I < Ce, and for all t >_ 0 we have 

II u ( . ,  t) - Uc+ (. - c + t  + v+ ) I lu l  < c ~ ,  

[] u ( .  + c+t  - 7+, t) - uc+ (.)[I/~j < Cee-b t  . (1.14) 

The conclusion of this theorem differs from that of Theorem 1 regarding the rate 
of exponential decay obtained in the weighted norm. In both Theorems 1 and 3, 
the local decay rate - b  satisfies -a (c  - a 2) < - b  < 0, but now it may be further 
restricted. The difference arises from the character of the spectrum of the oper- 
ator OyLc in (1.12), considered in the space La 2. Studying the resolvent equation 
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(2 -- ayLc)v = 9 in La 2, is equivalent, after multiplying by e ~y and letting w = eaYv, 
h = e ~y 9, to studying the resolvent equation 

(2 - A a ) w  = h, with Aa = eaYayLce -ay , (1.15) 

in the space L 2. The transformation from A0 = ~yLc to Aa has the effect of shifting 
the essential spectrum (defined to consist of all points of the spectrum which are 
not isolated eigenvalues of finite multiplicity [H, chap. 5]): The essential spectrum 
of A0 is the imaginary axis, but the essential spectrum of Aa lies entirely in the 
left half plane Re2 __< - a(c - a 2) < 0. Thus, modulo a finite dimensional subspace 
corresponding to point eigenvalues of Aa, we expect that the linearized flow defined 
by e Aat is dissipative. Now, for the KdV and mKdV equations one can verify that 
the entire spectrum of A~ consists only of its essential spectrum, plus the isolated 
eigenvalue 2 = 0 of algebraic multiplicity 2. But for gKdV this may no longer be 
true: In principle, the operator Aa can have isolated eigenvalues of finite multiplicity 
lying in the strip - a ( c -  a 2) < Re2_-<0. The property (1.13) is used to guarantee 
that, for p ~ E, the only eigenvalue of Aa on the line Re2 = 0 is 2 = 0. The 
additional restriction on the exponential decay rate - b  in Theorem 3 arises because 
b must have the property that Re2 < - b  whenever 2 lies in the spectrum of Aa 
and 2=t=0. 

We remark that the restriction 0 < a < ~ is imposed in Theorems 1 and 

3 because the expression a(c - a 2) is maximized at a = V / ~ .  Larger values of a 
would restrict the initial data further, with no gain in the decay rate achieved. 

The possibility that A~ has isolated nonzero eigenvalues in the strip - a ( c -  
a 2) < Re2 < 0 becomes reality for p near 4, the point of transition to instability: 
Forp  > 4 the operator A0 = 3yLc (and also Aa) has an eigenvalue 2#(p) > 0 [PW2- 
3]. Having characterized 2#(p) as a zero of a Wronskian-like analytic function D(2) 
called Evans' function, Pego and Weinstein showed that 2#(p) is analytic in p in a 
neighborhood of p = 4, with 2#(p) < 0 for p < 4. 

When 2#(p) < 0, it is not an eigenvalue of A0 in L 2. As discussed in [PW2-3], 
it is instead analogous to a resonance pole in quantum scattering theory [RS4]: It 
is a singularity arising in the analytic continuation of ( 2 - A o ) - l f ( x )  (for fixed x 
and f E L 2 with compact support, for example), as 2 moves from the right half 
plane, across the essential specmma on the imaginary axis, onto the second sheet 
of a Riemann surface, above the left half plane. Such singularities of an analyti- 
cally continued resolvent control radiation rates in a variety of physical problems, 
accounting, for example, for the phenomenon of Landau damping in the Vlasov- 
Poisson system of plasma physics [CH1-2], and for acoustic scattering in the 
wave equation, where local decay occurs at rates given by scatterin9 frequencies 
[LP, V]. 

What we will show below is that in the present circumstances, 2#(/)) is a small 
negative eigenvalue of Aa, when 4 - p  is small and positive. The decay rate b in 
Theorem 3 must then satisfy 2#(p) < - b  < 0, and 2#(./)) ~ 0 as p --~ 4. Therefore, 
the local decay rate of solitary wave perturbations, as guaranteed by Theorem 3, 
must approach zero as p approaches 4. See Fig. 2, comparing the spectrum of A0 
with that of A~, for a value of p near 4. 

Finally, a word about issues arising in carrying out d priori estimates of the 
perturbation about the solitary wave. A significant technical obstacle to overcome 
is that nonlinear terms like v 2 become discontinuous when considered as functions 
on the weighted space Ha 1, because the weight e ay is not bounded away from zero. 
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Fig.2. (a) Spectrum of OyLc for p near 4. '~)' marks resonance pole. (b) Spectrum ofAa. '• 
mark eigenvalues 

(For this reason Sattinger [Sa] required his weights to remain strictly bounded away 
from zero.) As an example that describes how we will overcome this problem, we 
estimate IJ v2 I[~J as follows: 

][ v2 ]In2 = ]] eayv2 ]]H 1 < ]] v 11141 I] v I]H1 . 

Thus if the unweighted norm [I v I]H1 can be shown to be small, then a quadratic 
term can be controlled like a small linear term. While control of the weighted 
perturbation w(y, t) = eaYv(y, t) is obtained by direct estimates of an integral equa- 
tion, using smoothing and decay estimates on the semigroup e Aat, control of the 
unweighted norm II v(., t)1181 requires a different kind of analysis. The key is to 
use the conserved energy functional d o , originating in the work of Benjamin [Be], 
for which Uc is a critical point. Using this together with the local decay of the 
perturbation v(., t), we obtain the necessary bound for I] v(., t)1181. 

The paper is organized as follows: In Sect. 2, we begin the spectral analysis 
of the linearized operator ~yLc in (1.12), characterizing its essential spectrum and 
generalized kernel in the spaces L 2 and La 2. Nonzero eigenvalues are characterized 
as zeros of Evans' function D(2), whose properties are recalled from [PW2] and 
further developed. In Sect. 3, we exhibit D(2) explicitly for p = 1 and 2, and verify 
the property (1.13). Also, we prove Theorem 2, by studying D(2, p) using analytic 
continuation in p. 

We study the linear equation (1.12) in Sect. 4 by semigroup methods, and obtain 
certain smoothing and exponential decay estimates for later use. In Sect. 5 we justify 
the representation (1.10) of the solution, and derive the equations of motion of the 
new variables (c(t), 7(0, w(y,  t)). In Sect. 6 we obtain the estimates indicated in 
Remark 1 following Theorem 1, and complete the proofs of Theorem 1 and 3. 

Section 7 contains discussion of some further points, concerning, for example, 
multisoliton initial data, and the influence of the resonance pole on local asymp- 
totic behavior when p is close to 4. In Appendix A, the existence and regularity 
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of solutions of gKdV for 3 < p < 4 is studied using Kato's theory. Appendix B 
contains the details of the calculation of Evans' fimction D(2) for the KdV and 
mKdV equations. 

2. Spectral Analysis of the Linearized Equation 

In this section we study the spectral properties of the operator A0 = 3yLr appearing 
in the linearized equation (1.12), in the spaces L 2 and L]. 

2.1. Spectral Theory in L 2. We consider the operator A0 = QyLc on L 2 with domain 
H 3. The properties of the specmarn of this operator were delineated in [PW2]. The 
spectrum consists of discrete spectrum (isolated eigenvalues of finite multiplicity), 
and essential spectrum (everything else in the spectnma). Since uc(y)--+ 0 at an 
exponential rate as l y I--+ go, the essential spectrum may be shown to agree with 
the spectrum Se of the constant coefficient operator 0y ( - 0  2 + c). Hence the essential 
spectrum Se is the imaginary axis. 

Regarding the isolated eigenvalues of A0, the following result was proved in 
[PW2]. 

Theorem 2.1. 
(1) I f  0 < p < 4  (corresponding to dJg[uc]/dc>O), then Ao has no isolated 

eigenvalues. Its spectrum coincides with the imaginary axis. 
(2) I f  p > 4 (corresponding to dd[uc]/dc < 0), then the spectrum of Ao con- 

sists of  the imaginary axis together with two simple, real eigenvalues 2 = 2#(p) 
> 0 and -2#(p)  < 0. 

In [PW2], the isolated eigenvalues of A0 were studied using their characterization 
as zeros of Evans' function D(2). Evans' function also yields finer spectral infor- 
mation, such as the location of eigenvalues embedded in the essential spectrum, and 
resonance poles. This information is important in our asymptotic stability analysis. 

We now discuss the definition of Evans' function D (2) and some of its key 
properties. For a more detailed development, see [PW2], also [E, AGJ]. If 2 is an 
eigenvalue of A0 with L 2-eigenfunction Y (y), then Y is a solution of the differential 
equation 

Oy [-- 0 2 @ C - -  f '  (uc (y))] Y (y) = 2 Y (y) .  (2.1) 

As l Y [ 4  oc, the coefficients of (2.1) rapidly converge to those of the constant 
coefficient equation 

Oy(-O 2 + c )Y  (y) = ,~ Y(y) . (2.2) 

This equation has solutions of the form e "y where the exponent # satisfies 

~ ( # )  = _#3 + c #  = 2.  (2.3) 

For arbitrary 2 in the right half plane Re2 > 0, Eq. (2.3) has roots #j()O,J = 1, 2, 3, 
which satisfy 

Re#l(2) < 0 < Re#j(2), j = 2 ,  3.  (2.4) 

Corresponding to the solution e ,uly of (2.2) which decays to zero as y --* +ec,  Eq. 
(2.1) has a solution Y+(y, 2) which is analytic in 2 and satisfies 

Y+(y, 2) ,'~ e my as y ~ + o o .  (2.5) 
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From the solution Y+(y, 2), Evans '  function D(2)  may be defined, as a transmission 
coefficient, with the property that 

Y+(y, 2) N D(,{)e#lY as y --+ - - o c .  (2.6) 

D(2)  is an analytic function in the fight half  plane. I f  D ( 2 ) =  0 for some 2 with 
Re2 > 0, then Y+(y, 2) must decay exponentially as y --+ - o o .  In this case, 2 is 
an eigenvalue of  A0 with corresponding eigenfunction Y = Y+(., 2), Conversely, i f  
2 is an eigenvalue with Re2 > 0 and eigenfimction Y(y),  then Y ( y )  must be a 
constant multiple of  Y+(y, 2) and so D(2) = 0, since Y(y) is bounded. 

Theorem 2.2. For Re2 > 0, 2 is an eigenvatue o f  Ao if  and only t f D ( 2 )  = 0. 

The origin 2 = 0 is an eigenvalue of  A0 embedded in the essential spectrum, with 
eigenfunction ByUc. Furthermore, 0cu~ is a generalized eigenfunction: we have 

8yLcOyUc = O, OyLc8cU~ = -OyUc . (2.7) 

For the purposes of  this paper, it is useful to observe that D (2) is naturally defined, 
by the same property (2.6), on a domain properly containing the (closed) right half  
plane, defined by the inequalities 

Re# l (2 )  < Re#j(2),  j = 2, 3 .  (2.8) 

We denote the domain defined by (2.8) by g2o. For Re2 --- 0, it turns out that 

Re#1()0 < 0 ~ Re#2(2) < Re#3(2 ) ,  

thus (2.8) holds in a neighborhood of  the imaginary axis, i.e., {2 I R e 2 > 0  } C f20. 
In fact, f20 is explicitly given as follows. 

Proposition 2.3. D(2) /s analytic in the whole complex plane, cut along the 
negative real axis from - o c  to 2, = -2(c/3)  3/2. That is, f20 = C \ ( - o o ,  2,]. 

Proof  By the theory developed in [PW2], it suffices to show that the equation 
~(/1)  = 2 has a unique root o f  smallest real part, for all 2 E 112\(-eo,/ t , ] .  This 
statement is true for R e 2 > 0  because of  (2.4), which is proved in [PW2]. Assume 
Re2  < 0 and that @(#) = 2 for distinct #1 = e + it31, #2 = ~ + ifl2, with the same 
real part. Now 

2 = ~(# j )  = ~(c - c~ 2) + 3~fl 2 + iflj(c - -  3c~ 2 + fl~). 

We have e4=0 since Re2 < 0. Comparing real parts, we find /?2 =/722, so /31 = 
-/?2, hence #1 = )5. Then comparing imaginary parts, we find that 2 must be 
real, and /72 = 3c~2_ c > 0. Since 2 < 0, we must have ~ < - V ~ / 3 ,  so since 

2 = c~(8c~ 2 - 2c) is an increasing function of  c~, 2 < - V / ~ ( 8 c / 3  - 2c) = 2,.  
The only value of  2 with Re2  < 0 for which a double root occurs is when 

~ ( # )  = 0. i.e., # = - c , r  and 2 -- 2,.  The proposition now follows. 

In principle, when Re2=<0, zeros of  D(2)  need not be eigenvatues o f  Ao, and 
conversely. However,  the following was shown in [PW2], using the symmetry 
Y(y)  ~ Y ( - y )  of  (2.1) which is valid when Re2 = 0. 
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Theorem 2.4. Suppose Re2 = 0. Then 2 is an eigenvalue o f  Ao i f  and only i f  
D(2)  = 0. I f 2  is an eigenvalue, then the eigenfunction Y ( y )  = Y+ (y, 2) ---+ 0 at 
an exponential rate as ] y ]--+ co. 

Since 2 = 0 is an eigenvalue, D(0)  = 0. It will turn out that 2 = 0 is an isolated 
eigenvalue of  A0 in the space L 2. In order to describe the associated eigenspace and 
spectral projection, we introduce the following definitions: 

= OyUc,  = acu  , 

Y 
O1 ~- Ol f acUc--O2Hc, 

-- oco 
~2 = 0 3 R e "  (2.9) 

Here, 

01 = A#[uc] , 02 = ~ Uc Y[u~]  , and 03 = - 0 1 .  
--OO 

The functions ~1 ~2, and 02 decay exponentially as l Y I -+ oo, at the rate e -v~ly[. 

The function ~1 decays like e v~y as y ~ - o c ,  but is merely bounded as y --+ +oo.  
In addition, these functions have the following properties: 

~ L c  ~1 = O, ~ L c ~  2 = -~1  , 

tcOy~l = 02, LcOy ~2 = 0 ,  (2.10) 

and 
(Oj, ~k) = c~jk, j ,  k = 1, 2 ,  (2.11) 

where (u, v) = f-~oo ugdx. 

2.2. Spectral Theory in L 2. As mentioned in the remark following Theorem 1, we 
seek to prove that perturbations of  a modulated solitary wave decay in a local 
energy sense, captured by norms in the weighted space L 2. Thus, we consider now 
the spectral theory of  the linearized operator OyLc in L 2. 

We first make a change of  variables, 

W (y) = e ay Y (y) . (2.12) 

Then the eigenvalue equation (2.1) is transformed into the equation 

AaW = eaYOyLce-ayW = (Oy - a) [ - (0y  - a) 2 + c - f ' ( U c ) ]  W = 2 W .  (2.13) 

The spectral theory of  A0 = OyL~ in L 2 is equivalent to the spectral theory of  Aa in 
L 2, and from now on we refer to the latter. 

We first consider the essential spectrum of  Aa. Since f '  (u~ (y))  and 0yf '  (uc (y)) 
decay to zero at an exponential rate as l Y I --+ oo, the essential spectrum of  Aa can 
be shown to agree with the spectrum, Se ~, of  the constant coefficient operator 

A ~ = ( O y -  a ) [ - ( 0 y -  a) 2 + c] .  

Hence, we have: 
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Proposit ion 2.5. For 0 < a < V / ~ ,  the essential spectrum of  A~ is the set S a, 
a curve parametrized by 

~-+ ~(i ' r  - a) = (i'c - a) [-(i 'c - a) 2 + c] 

= i'c 3 - 3a'c 2 + (c - 3aZ)iz - a(c - a2),  (2.14) 

which lies in the open left half plane. (See Fig. 2.) 
Next, we study the discrete spectrum of  A~. For 0 < a < ~ ,  the complement 

o f  the set Sea in the complex plane consists of  two disjoint open components. One 
of  these components, which we denote by (2+ or O+ (a), contains the closed right 
half  plane. Any point of  the spectrum of  Aa lying in Q+ is an isolated eigenvalue 
of  finite multiplicity. The following result characterizes such eigenvalues as zeros 
of  Evans' function D(2).  

Proposition 2.6. Let 0 < a < V ~ .  Then: 
(i) {2 I Re2=>0} C f2+(a) C ~2o, the domain of  definition of  D(2). 
(ii) For 2 E (2+ (a), 2 is an eigenvalue o f  A~ in L 2 if  and only / f D ( 2 )  = 0. 

Proof Consider the curve in (2.14) which parametrizes S~. The imaginary part 
of  ~ ( i r -  a) is a strictly increasing function of  ~, since c -  3a 2 > 0. Also ~ ( - a )  
> 2,. So Se ~ = O0+(a) and S a does not intersect the cut ( - o o ,  2,]. Thus f2+(a) C 
(20. 

Next, observe that for 2 ~ Sea, the equation ~ ( # )  = 2 has exactly one root sat- 
isfying R e #  = - a .  Because of  this, and the fact proved in [PW2] that the roots 
#j(2) of  (2.3) satisfy 

#j = (_).)1/3 + O(1 ,~ 1-1/3) as [ 2 /---+ cc with 2 E (20, (2.15) 

it follows that for 0 < a < V / ~ ,  

Re# l (2 )  < - a = R e # 2 ( 2 )  < Re #3(2), 2 E S e  ~, 

Re# l (2 )  < - a  < Re#j(2) ,  j = 2 ,3 ,  )L E Q+(a) .  (2.16) 

Now suppose 2 E Q+ (a) is an eigenvalue of  Aa. Then the differential equation (2.13) 
has solution W (y) in L 2. By standard results on the asymptotic behavior of  solutions 
of  ordinary differential equations with asymptotically constant coefficients, W(y) is 
bounded uniformly in y. Hence e-aYW(y) is a solution of  (2.1) and satisfies 

e -ay W ( y )  = O(e -ay) as y ~ + e ~ .  

Therefore, by Proposition 1.6 of  [PW2], e-ayW(y) is a constant multiple o f  
Y+(y, 2), and furthermore, since now Y+(y, 2) = O(e -ay) as y ~ - o c  and Re#1(~.) 
< - a  for 2 E f2+(a), it follows that D(2) = 0. (Also see (2.6).) 

I f  conversely, D(2)  = 0, then we know from Proposition 1.6 and Theorem 1.9 
of  [PW2] that 

{ O ( e  ~ly) as y ---+ + e c ,  
Y+(y, 2) = O(eU.y+<yl) as y---+ - e c ,  

whenever 0 < e < # . - R e # l ,  where #.  = rain(Re#z, Re#3). Hence by (2.16), 
W(y) = e"YY+(y, 2) satisfies (2.13) and decays exponentially as lY [-+ c~. So 2 
is an eigenvalue of  Aa. 
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Proposition 2.6 implies in particular, since the closed fight half plane {2 
Re)~>0} C f2+ for 0 < a < V@-3, that eigenvalues of Aa in the closed right half 
plane must be zeros of D(2). We know that 2 = 0 is an eigenvalue of A0, and 
that D(0) = 0. Hence 2 = 0 is an eigenvalue of A~. In Sect. 3, we prove that for 
1 < p  < 4, except for values p E E (a finite set), D (2)4:0 for all nonzero 2 in the 
closed right half plane. (See Theorem 3.6.) Therefore, we have: 

Theorem 2.7. Let 0 < a < V / ~  and assume p =  l or 2, or 1 < p<=4 with 
p ~ E. Then the only eigenvalue o f A  a in the closed right half plane is 2 = O. 

We shall require a detailed characterization of the generalized eigenspaces of A a and 
its adjoint A a = -e-~YLcQye ~y. The dimension of these eigenspaces is determined by 
the fact that 0 = D(0) = Dr (0) ~:D" (0) for p + 4 ,  proved in [PW2]. (The fact that 
0 = D ( 0 ) =  Dr(0) is associated with the existence of a two-parameter continuous 
family of solitary waves, obtained by translation and changes in wave speed.) For 
an operator A defined in L 2, define 

OO 

ker(A) = {w E dom(A) I Aw = 0}, ker0(A ) = U ker(Ak) �9 
k = l  

Proposition 2.8. (Spectral projections for the zero eigenvalue) Assume d~Ar [uc]/dc 
0 (p ~= 4) and 0 < a < V ~ .  Then 2 = 0 is an eigenvalue for A~ with algebraic 

multiplicity two, and 

kerg(A~) = ker(A2~) = span{~l, {2}, kerg(A*) = ker(A .2) = span{t/l, t/2}, (2.17) 

where {j = e ~y ~j and t/j = e-aY Oj for j = 1, 2, i.e., 

~1 = e~YOyuc, ~2 = eaYOcu~, 

(y ) t/1 = e--aY O1 f ~cUc -}- 02Ue , 
- - 0 0  

t/2 = e-aYO3ue , (2.18) 

where 01, 02, 03 are as in (2.9). In addition, the ~j and qk are biorthogonal, with 
(~j, t/k) = 6jk for j, k = 1, 2. Thus the spectral projection P for A~, associated with 
the eigenvalue 2 = 0, and the complementary spectral projection Q, are given by 

2 2 

P w =  ~ ( w , t / k ) ~ k ,  Q w = ( I - P ) w = w -  Z ( w , t / k ) ~ k ,  
k = l  k = l  

(2.19) 

for w E L 2. These projections satisfy PAaw = A~Pw, QAaw = AaQw, for w E 
dom(Aa). 

Proof Because of (2.10), zero is an eigenvalue of Aa of algebraic multiplicity at 
least two, with 

Aa~l =0,  Aa~2 = -~ l  , 

A* 111 = --t12, Aa q2 = 0 .  (2.20) 

We must show that the algebraic multiplicity is not greater than two; then the 
formula (2.19) for the spectral projection P follows. But there is a general relation 
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between the algebraic multiplicity of eigenvalues of A~ and the order of vanishing 
of  D(2), see [El, [AGJ]. We have the following. 

L e m m a  2.9.  Assume 0 < a < V / ~  and 2 E f2+ (a) with D (2)  = 0. The algebraic 
multiplicity of 2 as an eigenvalue of Aa equals the order of 2 as a zero of D(2). 

Proof Assume 2 is a zero of D(2) of order k +  1, k > 0 ,  so 0 = D ( 2 )  . . . . .  
D (k) (2)4:D (k+l) (2). By [PW2], Propositions 1.2 and 1.21, in this situation the deriva- 
tives 8~ Y+ (y, 2) satisfy 

a S Y+(y, 2) = ~ O(e'UlY+eY) as y ---+ q - ~ ,  
O(e ~*y+eIyl) as y ---+ - o o ,  k 

for any e > 0, fo r j  = 0, . . . ,  k. Here/~. = min(Re/~2, Re#s) > - a  by (2.16). De- 
fine Wj(y)=  e~YO~Y+(y, 2). Since 

(SyLc - 2)aj  Y+ (y, 2) =joJ~ -1 Y+(y, 2) 

for j = 1, 2 . . . .  , we have that Wj(y) decays exponentially as [y I---+ oo for j = 
0 . . . .  , k, and 

AaW0---0, AaWj=jWj_~, f o r j = l  . . . . .  k .  
t 

Hence 2 is an eigenvalue of A~ of algebraic multiplicity at least k + 1; the functions 
W0, ... Wk form a Jordan chain. 

To prove that the algebraic multiplicity is not greater than k + 1, it remains to 
show: 

(a) ker(A~) is one dimensional, and (b) the equation A~ W = Wk has no L 2 so- 
lution. That (a) is true is a consequence of the proof of Proposition 2.6. To prove 
(b), suppose that W is an LZ-solution ofA~W = (k + 1)Wk. Then W(y) is bounded. 
Put Y(y)=e-~YW(y)-O~k+~)Y+(y, 2). We have OyLcY=O, Y(y)= O(e -aT) as 
y ---* +oo. It follows that Y(y) is a constant multiple of Y+(y, 2). Hence, we find 
that 

c3Jo(k+I) Y+{" 2)  = O(e -aT) as y ~ --oo (2.21) 

for j  = 0, 1, 2. But Proposition 1.21 of [PW2] gives a formula that implies that since 
D(k+l) (2) =[: 0, the 3-vector ~(k+l)(y+, y+',  y+,,) has exact order e ~ly as y -+ -oo .  v 2 

Since Re/~l < - a ,  the bound (2.21) contradicts this and implies D(k+l)(2)= 0. 
Hence (b) is true, and this finishes the proof of the lemma. [] 

We conclude this section by describing how a resonance pole of the operator A0, 
present for p near 4, yields an eigenvalue of A~ near 0. In [PW2] (see also [PW3]), 
we showed, for p less than but near the critical value Pot = 4, that D (2) has a real 
and negative zero, 2# (p) < 0, with 2# (p) -~ 0 as p ~ 4. Associated with 2# (p) is 
the solution ~#(. ,p)-~ Y+(., 2#(p)) of (2.1), which fo rp  < 4 decays exponentially 
as y tends to +(x), and grows exponentially as y --+ - o o  since p, (2#) < 0: 
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Fig. 3. D(2) vs. 2 f o r p = 3 ,  c = 3  

{ O(eUl(~#)Y) as y -+ e c ,  
~#(Y'P) = O(e u*('~#)y) as y ---+ - o c .  (2.22) 

The transition to instability of  the solitary wave, as p increases from values less 
than Per = 4 to values larger than 4, is marked by the passage of  2#(p) through the 
origin and becoming positive for p > 4. For p > 4, the function ~#(y, p)  is now 
in L 2 since #,(2#) > 0, and so 2#(p) > 0 is now an unstable eigenvalue of  A0. 

Now consider the function ~#(y, p)  = eaY~#(y, p). By (2.22) we have 

{ O ( e  (a+~l (;~#))Y) as y ---+ o c ,  
~#(Y' P) = O(e (a+u*(J~ as y -+ - o c  . (2.23) 

Since 2# (.p) --+ 0 as p ~ 4, we have # ,  (2# (p)) --+ 0. Hence, for p sufficiently near 
4 and p < 4, we have ~# (y, p)  E L 2, and so 2# (p) < 0 is an eigenvalue of  Aa. 
This eigenvalue (which is also a resonance pole of  0yLc) is indicated in Fig. 2. 

An analogous construction can be carried out for the adjoint operator -Lc0y. 
Summarizing these results we have: 

Proposition 2.10. Let 0 < a < v ~. Let p be less than and sufficiently near per = 
4. Then 

(a) 2#(p) < 0 is an L 2 eigenvalue o f  Aa with corresponding exponentially de- 
caying eigenfunction ~#(y, p). 

(b) 2# (p) is an L 2 eigenvalue of  A* with corresponding exponentially decaying 
eigenfunction q# (y, p). 

We can choose ~#(y,p) and tl#(y,p) to satisfy the normalization (~#(p), 
~ d p ) )  = 1. 

Remark.  There is strong numerical evidence suggesting that no resonance pole is 
present for 1 =<p < 2 while there is a resonance pole for all p with 2 < p < 4. In 
Fig. 3, we plot numerically computed values of  D(2) vs. 2 f o r p  = 3 with c = 3, for 
2 between 0 and the endpoint o f  the cut ( - o %  2,]  where 2, = - 2 ,  cf. Proposition 
2.3. A zero, corresponding to a resonance pole of  A0, is apparent at the approximate 
value 2#(3) ~ -1 .6 .  
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The results of this section will prove Theorem 2, establishing that for p = I(KdV), 
p = 2 (mKdV), and for all but a possibly finite set of values of p E E with 
p E ( t ,2 )U (2,4), the linear operator 8yLc has no nonzero eigenvalues in L 2. By 
Theorems 2.3 and 2.4, this implies that D(2)4=0 for nonzero 2 with Re2 >0,  and 
hence that the operator Aa has no nonzero eigenvalues in the closed right half plane 
(except possibly when p E E). This proves Theorem 2.7. The proof of Theorem 2 
relies on: (a) the explicit calculation of D(2) for the KdV and mKdV equations 
(p = 1 and 2), and (b) an analytic continuation argument in p, using a result of 
[PW2] which implies the simplicity of any nonzero embedded eigenvalue of ~3yLc. 
This argument does not depend on the explicit form of  the nonlinearity f (u ,  p), and 
could be used for other analytic families of nonlinearities that contain the KdV case 
f ( u )  = u2/2. 

Theorem 3.1. Let 2 E f2o (see Proposition 2.3). (a) For the case o f  the K d V  
equation (p = 1, i.e., for the eigenvalue problem 

OyLcY = Oy(-O2y + c - 3c sech2(lyv~)) Y = 2 Y ,  (3.1) 

Evans' function is 9iven explicitly by 

(#1 (2) -~ V~) 2 
D(2) \ ~ - - - ~  , (3.2) 

where Pl (2) is the root # of  smallest real part o f  equation (2.3),/13 - c# + 2 = 0. 
(b) For the case o f  the mKdV equation (p = 2), i. e, for the eigenvalue problem 

8yL~Y = 8y ( -8  2 + c - 6c sech2(yv/~)) Y = 2Y, (3.3) 

Evans' function is also 9iven explicitly by (3.2). 

Corollary 3.2. For the cases p = 1 and p = 2, 
(a) 2 = 0 is the only eigenvalue of  OyLc. 

(b) /t = 0 is the only eigenvalue of Aa, for 0 < a < V ~ .  

To prove the corollary, note that if D(2) = 0, then #~ (2) = -v/~,  hence 2 = 0 
by (2.3). The proof of Theorem 3.1 is given in Appendix B. 

Next, we study the eigenvalue problem for OyLc for p ~ {1,2}: 

8yLcY = 8y(-8~ + c - ~ (y ) )  Y = 2 Y ,  (3.6) 

where ~ ( y )  = �89 + 1)(p + 2) sech2(�89 

Lemma 3.3. I f  2 is a nonzero purely imaginary eigenvalue of  (3.6), then 2 is 
simple and D' (2) 4 = 0. 

Proof Recall from [PW2, Theorem 3.6] that if 2 = ifl is an eigenvalue of (3.6) 
with 0+f i  real, then the eigenfunction Y ( y ) =  Y+(y, 2) decays exponentially as 
y ~ •  Moreover, the eigenspace is one dimensional (by [PW2, Proposition 1.6] 
any eigenfunction must be a multiple of  Y+ (y, 2)). Furthermore, with Y ~ ( y ) =  
8~Y+ (y, 2), the following ordinary differential equation is satisfied: 
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(~yLc - ,z) Y~(y) = Y+ (y). (3.5) 

Suppose D ' ( 2 ) =  0. Then from Propositions 1.2 and 1.21 of  [PW2] we find that 
since Re#2 (2) = 0, for k = 0, 1,2 we have 

--+ 0 exponentially as y --+ + o o ,  
OkYY+(Y) = o(e elyl) a s y  --+ - - ~ ,  for all e > 0 .  

Therefore, when we multiply (3.5) by LcY+(y) and integrate by parts, we are as- 
sured that the integrals involved converge and boundary terms vanish. We find 

OO 

(Y+,LcY +) = f Y+LTU~dy = f (ayLc - 2)Y~LcY+dy 
- - 0 0  - - 0 0  

= - L j + ~ Y + + -  f ~r2Lcr+dy = o, 
- -  O O  ~ C X )  

since 2 + ,~ = 0 and Lc is real and formally self adjoint. It follows (Y+,LcY +) = O, 
and one has also 

2(Y+,LcY 7) = f 0~L~r+Lcr+ay = 0 
- - O O  

From these considerations, we have that ~ span{Y + (. ,  2), Y+ (-,  2)} is a subspace 
of  L 2 (complex valued functions) that satisfies 

(L~u, v) = 0 for all u, v C Y/ . 

Furthermore, q /A  ker (Lc) = {0}. Since L~ has only one negative eigenvalue, which 
is simple, it follows that dim q / <  1. (This follows from Lemma 3.3 o f  [PW2], but 
is also easy to show directly.) But this contradicts the fact that dim qr = 2. Hence 
D'(2)  4= 0. 

We also claim that 2 is simple, i.e., there is no LZ-solution of  (~yLc - 2)Y = Y. I f  
indeed there were, then from standard results on the asymptotic behavior of  solutions 
o f  ordinary differential equations [CL, C], we find that Y(y)  (and its derivatives) 
decay to zero exponentially as lyl --+ ~ .  From this it follows that Y+ - I 7 is a 
constant multiple of  Y+, and hence Y~-(y) (and its derivatives) decays exponentially 
as lY] ~ exp. But this implies that D' (2)  = 0; see Proposition 1.21 of  [PW2]. This 
finishes the proof  of  Lemma 3.3. [] 

One consequence of  Proposition 3.3 concerns how the zeros of  D(2)  depend on 
p. Considered as a function of  2 and p, Evans '  function D(2,p)  is analytic in both 
2 and p, as remarked in [PW2]. So we have the following: 

Corol lary 3.4. I f  for some positive flo,Po it happens that D(iflo,Po) = O, then there 
is an analytic function 20(p), defined for  p in some neighborhood of  po, such that 
20(P0) = iflo, and D ( 2 0 ( p ) , p ) =  0, and such that, for every (2,p) in some small 
neighborhood of  (iflo,po) with D(2 ,p )  = 0 one has 2 = 20(p). 

Our next result will be used to confine any zeros of  D(2)  to a compact set in 
the plane. 

L e m m a  3.5. D(2)  --+ 1 as 12[ ~ oo with 2 E 0o, uniformly for p in any compact 
set o f  (0, oo). 
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Proof It was proved in [PW2] that D()~) ~ 1 as ]21 ~ oc with Re )~ > - e ,  for 
some e > 0, for p fixed. But an examination of  the proof, in Sects. 2b (iv) and lg  
of  [PW2], reveals that the stronger statement above is true, as a consequence of  the 
following facts: 

(1) 7 luPl + I  (up)l+ 
- - 0 0  

is uniformly bounded for p in any compact set o f  (0, oe), and also 
(2) The roots #j(2) o f  ~ ( # ) =  2 in (2.3) do not depend on p, and satisfy (2.15), 
hence 

I# / /~ ' (# j ) l  = o([2[ -1/3) as 121 --* oc with 2 E f20 , 

for l = 0, 1 and any .L k. 
The second fact was proved in [PW2], but the point is that it does not mat- 

ter that Re(#1 - # 2 )  can become arbitarily small for 2 C f20 as 2 approaches the 
boundary. [] 

Theorem 3.6. The set E, o f  values of  p in (0, oc) such that D(2 ,p )  = 0 for some 
nonzero imaginary 2, is a discrete set. In particular, E N [1,4] is a finite set, which 
includes neither the value 1 nor the value 2. 

Proof  Assume that E has an accumulation point P0 > 0. From Lemma 3.5, we 
may conclude that there is a real sequence fij > 0 and distinct pj > 0 such that 
D(iflj,pj) ----- 0, and that a s j  ---+ oc, pj --*Po and flj -+ flo>_>_O. 

We claim/3o > 0. I f  instead/3o = 0, a contradiction is obtained as follows. The 
value 2 = 0 is known to be a zero of  D (2) of  order exactly two for all p + 4, three 
f o r p  = 4 [PW2]. Since D(+i/3i,Pj) = 0 for all j ,  we infer that if/3j ~ 0 then )~ = 0 
is a zero of  D(2,p0)  of  order at least four, contradicting known facts. 

Now since /3o > 0, we have D(i/3o,Po)= 0. So from Corollary 3.4 there is 
an analytic curve 2 = 20(p) of  zeros of  D(2,p) ,  defined for p near P0, such that 
i/3j = 20(Pj) f o r j  sufficiently large. Since pj ~ P o ,  we may be conclude that 2o(p) 
is purely imaginary for real p. (Consider the Taylor series of  i20(p).) Hence the 
analytic continuation of  2o(p) will remain purely imaginary for all p in the maximal 
real interval o f  existence that contains P0. 

Now, the function 2o(p) may be analytically continued to be defined on the 
entire half  line p > 0. This is a consequence of  the results 3.3-3.5 above, the 
implicit function theorem, and the fact that Im20(p) > 0 for all p (which is proved 
as we proved fl0 > 0 above). 

We conclude that for p = 1 in particular, D ( 2 ) =  0 for 2 = 20(1), which is 
purely imaginary with positive imaginary part. But by inspection of  the explicit 
formula (3.2), no such zero of  D(2)  exists for p = 1. This is a contradiction, and 
proves that E is discrete. We note that Theorem 2 is a corollary. 

Remarks. 

1. Although we have fixed the wave speed c in the above discussion, the set E 
does not change with e. This is due the the scaling satisfied by the the eigenvalue 
problem (3.6): ,~ is an eigenvalue (resp. zero of  D(2))  for ~yLc i f  and only if  c-3/22 
is, for OyL1. 

2. We cannot prove that D (2,p) + 0 for purely imaginary 2 =~ 0, for any particular 
p > 0, except p = 1 and p = 2. But for any particular value of  p, strong numerical 
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Fig.4. Log-log plot of [D(it)[ vs. t, forp = 4 

evidence is easy to obtain to decide whether it is so. For example, in Fig. 4, for 
the case p = 4 at which transition to instability occurs, we present a log-log plot of  
[D(it)lvs.  log t. Note that for small t, the graph is approximately linear, with slope 
3. Correspondingly, for p = 4, 2 = 0 is known to be a zero of  order 3 of  D (2). The 
numerical evidence is strong for the following conjecture, which is significant for 
our study of  the influence o f  a resonance pole on the decay rate o f  solitary wave 
perturbations when 4 - p  > 0 is small. See the remarks following Theorem 4.2 and 
the concluding Sect. 7 below. 

Conjecture 3.7. The value p = 4 ~ E. I.e., f o r  p = 4, D (2) + 0 f o r  imaginary  2 ~ O. 

4. Decay and Smoothing Estimates 

In the introduction, we remarked that dispersing radiation, for the gKdV equation 
linearized about a constant state, moves to the left. One manifestation of  this is 
that in a weighted space, with spatial weight decaying exponentially as x -+ - e o ,  
the dynamics are dissipative.  In this section, we develop the analysis o f  the linear- 
ized evolution equation (1.11), for solitary wave perturbations in such a space, the 
space L2a. 

After the substitution 

w ( y , t )  = eayv(y, t) ,  a > 0 ,  (4.1) 

the linearized evolution equation (1.11) becomes 

~tw =- Aaw, with Aa = eay~yLce -ay . (4.2) 

As l Yl ---' oo, the coefficients in (4.2) converge to those of  the f r e e  evolution equat ion 

OtW = MOw 

where 

A~ = (Oy - a ) ( - ( O y  - a) e + c) = - 0  3 + 3aO~ + (c - 3ae)0y - a(c - a2) . 

(4.3) 
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_ o + (Oy a f t '  (u~). Equation (4.2) is a dissipative evolution equation Indeed, Aa - A a 

for 0 < a < V / ~ .  As is easy to see using the Fourier transform, initial data in L 2 
for (4.3) yield solutions which are C ~ for t > 0 and decay exponentially to zero 
a s  t ----+ OO " 

Proposition 4.1. For any integer n>O, and 0 < a < x / ~ ,  there exists C = 
C(n,a)  such that, for  any w E L 2 and fo r  all t > O, 

110 e XtwllL2 < Ct-n/2  e-a<~-'2>tllw[lL2 , 

Proof. 
0%(t~ eC-@+(e-aa2)Oy]t e-a(c-a2)tOyeaa @ y a ~ 

The group exp ( -03  + (c - 3a2)Oy)t is unitary on L 2. Therefore, we find that 

e2a(c--a2)t n AOt 2 go 110ye ~ 3 o2, 2 = = 110;e ,wll   f l~12"e-3a~2tl~(~)12d~ 
- - O O  

~ s u p  (l~12ne -3a~2t) llwII22 ~ct-nllw[]22 . 

The main result of this section is a decay and smoothing estimate for the semi- 

group e A~t, of the type above satisfied by the free semigroup e A%. Since 2 = 0 is 
an eigenvalue of A~, however, the estimate we seek will hold only on the invariant 
subspace range (Q) complementary to the generalized kernel of Aa. 

Theorem 4.2. Assume that 0 < a < V ~  and that 2 = 0 is the only eigenvalae 
o f  Aa in the closed right ha l f  plane, with associated spectral projection P. Le t  
Q = I - P. Then Aa is the generator o f  a C o semigroup on H ~ fo r  any real s, 
and, f o r  any b > 0 such that the L2-spectrum tr(A~) C {XlRe;~ < -b} u {0}, there 
exists C such that f o r  all w E L 2 and t > 0, 

IleA~t QWlIH1 <= Ct-1/2 e btllw[l~2 . (4.4) 

Remark.  The smoothing-decay estimate (4.4) will be used in the proofs of  Theorem 
1 (KdV and mKdV) and Theorem 3 (gKdV). For KdV and mKdV (p = 1 or 2), 
Corollary 3.2 (b) implies that for 0 < a < V / ~ ,  Aa has no eigenvalues in the 
open left half plane. Therefore, we can take - b ,  the exponentially rate of local 
energy decay, to satisfy - a ( c -  a 2) < - b  < 0. 

For general p, we can deduce from the results of Sect. 3 that if  p ~ E, then 
there is a number b > 0 for which the L2-spectrum a(Aa) C {21Re2 < - b }  U {0}. 
Furthermore, if  4 r E, and 4 - p  > 0 is sufficiently small, then Proposition 2.10 
ensures the existence of a negative eigenvalue ofAa,  2#(p), with 2#(p) ---+ 0 as -+ 4. 
We then have for p less than and sufficiently near 4, that b is constrained by the 
inequality 

2#(p) < - b  < 0 .  

Therefore, the location of the resonance pole, 2#(p), here dictates the exponential 
rate of  decay of the perturbation's local energy. 

The proof of  Theorem 4.2 relies on perturbation arguments. The property that 
Aa generates a C o semigroup on H ~ will be used below for s = 0, 1 and - 3 .  To 
establish the estimate (4.4), we begin by studying the free resolvent ( 2 / -  A~ -1, 
which is defined for 2 not on the curve 5e ~ in (2.14). It is convenient to estimate 
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this resolvent in regions of  the form f2+(~) for 0 < ~ < a; the botmdary of  f2+(7) 
is the curve S~, which will be a convenient contour to use for representing eA~tQ 
as a contour integral. 

L e m m a  4.3. Let  0 < ~ < a < X / ~ .  Then there exist Co, C1 such that for  2 E 

f2+(~) with I,~l--C0, 

H~;(21 -A~ ~Cl[~l  ("-2>/3, for  n = O, 1. (4.5) 

Here and below, [I'll denotes the operator norm in L 2. 

Proof  First, we note that the inequalities (2.16) imply that g2+(e)C f2+(a) for 
0 < e < a < V / ~ .  Also note that (A~ - 21)e (~+~)y = 0 if  and only if ~ ( # )  = 2. 
The action of  the resolvent is given by convolution with the Green 's  function K~ (y) 
for the resolvent equation ( 2 / - A ~  = w, i.e., ( 2 / - A ~  = K a .  w. Provided 
that #2(2)@#3(2), we claim that the Green's  function is given explicitly by 

{ a l  e(gl+a)y for y > 0, (4.6) 
K2(y) = - a2  e(t12+a)y - a 3  e(#3+a)y f o r y  < 0, 

where 
aj = aj(2) = 1 /~I  (#j - #k) .  

k+j 

To see this, we need to see that (21 - A~ = 6, i.e., that with [v] = v(0+) - v (0 - ) ,  
we have 

[K~] = O, [K~] = O, [KI'] = 1 .  

But this follows from a computation: Put vj = #j + a, then 

(V2--V3)--(V1 --V3)§ --Y2) 
a l + a 2 + a 3  = = 0 ,  

(Vl --Y2)(Vl --V3)(V2--V3) 
Yl(Y2--V3)--Y2(Y 1 --V3)-~-V3(V 1 --Y2) 

Vlal +v2a2+v3a3 = (Vl --v2)(Yl --Y3)(Y2--Y3) 

+ + = - - - + - 

(Yl --V2)(Yl --Y3)(V2--V3) 

= 0 ,  

z l ,  

Now for 2 large, it is true that #2:~=#3 by (2.15). To prove the lemma, since 
~3~(21-A~ = c~Kz *w, it sumces to estimate II~K~IIL1 and use Young 's  in- 
equality. From (4.6) we obtain the estimates 

- . 

From (2.15) we have 1 / 1 # ~ -  izjl = o(12[ -1/3) as 121 ~ ~ ,  and since 2 c I2+(c~), 
from (2.16), R e # j ( 2 ) +  a > - a -  c~ f o r j  = 2,3. From these facts and (2.15), one may 

also check that Rip1 ~ - e o  as 121 -~  oc with 2 ~ o+(~) .  Hence we obtain the 
estimates 

IIK~IIL1 = o(121-2/3), II~yKMIL1 = o(121-1/3), 

as 121 --' oo with  ,~ c O§ The l e m m a  fo l lows .  []  
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L e m m a  4.4 Let 0 < ~ < a < X / ~ .  Then there exist Co, Ca such that for 2 E 
f2+(e) with [2[>C0, we have 2 E p(A~) and 

I IO~[(~-A~)- I - (2 / -A~ n - - 0 , 1 .  (4.7) 

IlC3y( ) J  -- Aa) -1 ]l < C112[ (n-2)/3, n = 0, 1. (4.8) 

Proof That 2 E p(A~) / f  2 E f2+(c0 is sufficiently large follows from Lemma 3.5 
and Proposition 2.6. Now, i f  A and B are operators with the same domain, and 
2 E p(A)A p(B), then we have the resolvent identity 

( 2 /  - -  B )  - 1  - -  ( 2 1  - -  A) -1 = ( 2 / -  A ) - I ( B  - A ) ( 2 / -  A) -1 

x [I - (tt - A ) ( 2 / -  A)-1] - I .  (4.9) 

We may take A =A~ =Aa in this identity, so B - A  = (Oyf'(uc))+f'(uc) 
(~?y - a ) .  Since f '(u~(y)) and Oyf'(u~(y)) are bounded, from Lemma 4.3 we have 

II(B - A ) ( 2 / -  A ) - '  ]l = I[(Aa - A~ M - A~ -1 [l = O([21-1/3)  

as ]4[ ~ ec with 2 E O+ (~). From this we easily obtain (4.7), which together with 
Lemma 4.3 implies (4.8). [] 

Proof o f  Theorem 4.2. Postponing for a moment  the proof  that A, is a generator 
o f  a C O semigroup on H s, we complete the proof  of  (4.4). Let b > 0 be such that 
~(Aa) C {2IRe2 < -b} U {0}. Then by Lemma 4.4, we may choose ~,0 < ~ < a, 
so that the nonzero spectrum of  Aa lies to the left of  the curve Se a,i.e.,f2+(a) C 
p(Aa) U {0}. We may choose ~ so - b < - e ( c  - c~2), so that the curve Sea intersects 
the line Re2 = - b ,  at two points ~ (+ iT0  -- C~) for some unique T0 > 0 see (2.14). 

We define the contour f" to consist o f  the leftmost portions of  the curve Se ~ and 
the vertical line Re2 = - b .  F may be parametrized by: 

T ~ 2(r) = { ~ ( i r  - a) 
- b  + ifloT 

if [~[ >'Co, 
(4.10) 

if [TI_--<TO. 

where fl0 = Im~(iz0 - c~)/'c0 > 0. 
Now, since Q = I -  P, where P is the spectral projection for the eigenvalue 

2 = 0, the operator-valued function 2 ~+ ( 2 I - A a ) - I Q  is analytic on and to the 
right o f  F, with only a removable singularity at 2 = 0. Because of  estimate (4.8), 
standard results in semigroup theory [P] imply that we have the representation 

eAat Q 1 2t = - - f e  [ (2 / - -  Aa)-lQd2 
2 rci r 

= eA~ + ~l~.feat[(2I -- Aa) -1 - (21 - A~ 
z ~i r 

From Lemma 4.4, we obtain the following estimate for n = 0, 1. (Here, C denotes 
a generic constant, whose value may change from instance to instance.) 
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[If e'~'t 8y[(2I - Aa) -~ - (21 - A~ < C f eRe'~tl.t 1-2/3 id2[ 
F F 

o o  2 2 

<= Ce -bt + C f e -<~-~ )t e-3~ t l~(i'c - ~)1-2/3 [s~'(iv - c01&. 
"c o 

But IS(i~ - ~)ll~(e~ - c0] -2/3 =< c,  so the above is bounded by 

2 o c  2 
Ce -bt + Ce-~( ~-~ )t f e-3~* tdz 

"cO 

~ C e - b t  + Cg-~(c-~2)te-3C~z2t/x/~ = Ce-bt(1 + t - l /2 )  , 

since ReN(i~0 - e) = -3c~0 2 - cffc - ~2) = - b .  
Now, in this argument, b can be replaced with a slightly larger value b ~ > b. 

So we may bound the above by 

Ce-b't(1 + t -1 /2 )<Ce-b t t  -1/2, for all t > 0. 

Combining this estimate with Lemma 4.1, the estimate (4.4) follows. 
It remains to prove that in H s, for any real s, A~ (with domain H s+3) is the 

generator o f  a C o semigroup. Now, A = Aa ~ is the generator o f  a contraction semi- 
group on H~; this is easy to check using the Fourier transform as in Proposition 4.1. 
We claim that, on H s, the operator B = Ac, - A = (Oy - a)f~(uc) has the following 
properties (the terminology is taken from Kato [K2]): 

(i) B is A-bounded with relative bound 0, i.e., for any e > 0, 

IIB ll.s + C(Ollullm, u e dom(A); (4.11) 

(ii) B is quasi-accretive - it suffices to prove 

I<Bu, u>wl<=CllullL, u eg  ~ (4.12) 

By a standard result in perturbation theory [K2, p. 502], these properties imply that 
Aa is the generator o f  a Co semigroup on H ~. (Here, the inner product in H s is 
given by {u, v)~rs = (A~u, A~v), where A = (I  - 02)I/2.) 

Property (i) is straightforward to prove, based on the two facts that: (a)f1(uc(.)) 
is smooth and all its derivatives decay exponentially, so it lies in H ~ for all s; and 
(b) by standard interpolation estimates, for j = 0, 1,2, the operator 0 j is 0y3-bounded 
with relative bound 0. 

The proof  of  (ii) is based on a classic procedure of  obtaining energy esti- 
mates and commutator estimates. Let g(Y)=f~(uc(y)) ,  then clearly (Bu, u ) ~  = 
(gOyU, U)H s + O(]]u]12s). Now with the notation [A,B] = AB - BA, 

(A~gOyU, ASu) = (gOyASu, A~u) + ([A ~, OOy]U, ASu) . 

The first term equals - � 89  ASu)= O(llullL). To bound the second term, we 
claim that v = [A*,g~y]U satisfies ][v][ = O(]]Wul]). To prove this, we write (4) = 
( 1  ~ -  ~2)1/2, then 

o o  (3o 

= f - - = f 
- - o o  - - o Q  
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where K ( r  0 ( 4 -  7)((4) s -  (7)s)i~/(7)q Now, to show that IIvlIL2 <-_CIIAXulIL2, 
it suffices to show that 

O<3 

sup f IK(4,~)ld7 + supf_~lK(4 ,7) ld4  < o c .  (4.13) 

To estimate ]K[, we make use of  the inequalties 17[ _-< (r/) and 

max ((~)/(7), 1)< [(4) - <7)1 + 1 < 2 ( 4  - 7 ) .  

We consider two cases. If  s >  1, then 

I(~) x - (7)~1/(7} s-1 __<s max(((~)/(7}, 1) ~-114 - 71 <s2S-1 (4 - 7) ~ �9 

Hence Ig(r  7)[ <:C10(4  - 7)1<~ - 7> x- Since f~-~o~ [ O ( 4 ) [ ( 4 ) S d 4 < C l l ~ l l m  +1 , 

(4.13) holds for s=>l I f s  < 1, then 

1(~) s - (7 ) s ] / (?] )  s - 1  ~ I s l m i n ( ( ~ ) ,  ( 7 ) ) ~ - ~ / ( 7 ) s - 1 1 r  - t/ 

= ] s lmax( (7 ) / (4 ) ,  1)~-s14 - ~/I < Isl2X-s(~ - 7) 2-s.  

From this, (4.13) similarly follows. 

Remark.  It follows from the fact that A~ is a generator of  a C O semigroup on H 1, 
that for w E H 1, 

IleA~ <CIIwlIH1, 0_<t_<l. 

Hence (4.4) implies also 

I[eA~ <Ce--b~llW[lg~, t > o  . (4.14) 

5. Decomposition of the Solution 

We seek to represent solutions of  the initial value problem (1.2), (1.8) for the gKdV 
equation in the form 

u(x, t) = uc(o(y) + v(y, t) (5.1) 

with 
t 

y = y(x, t) = x - fc(s)ds  + V(O. 
0 

Given the initial data in (1.8), fix co = c and 70 = 7 to avoid a conflict of  notation. 
In order to achieve exponential decay for the perturbation v(y, t) in the weighted 

space H i ,  we wish to impose the constraint that 

w(y,  t) = eaYv(y, t) E range(Q) = ker(P) ,  (5.2) 

where P is the spectral projection associated with the zero eigenvalue of  the oper- 
ator Aa = e~Y~yLco e-ay. This requirement corresponds to the two scalar constraints 
(w, 7k) = 0, k = 1, 2, cf.(2.19), which we will satisfy by modulating the parameters 
7(0, c(t) in a time-dependent fashion. An alternative point of  view is that the change 
of  variables u (x, t) ~ (7 (t), c (t), v (y, t)) is one for which the family of  solitary waves 
becomes a manifold of  equilibria (corresponding to 7, c constant, v = 0), and the 
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representation (5.1) arises from the use of  (time-dependent) tubular coordinates in 
a neighborhood of  this manifold. 

In this section, we first establish the existence of  the decomposition (5.1) locally 
in time, for u( - ,0 )  close to uo0(. + 70)- We also establish a continuation property 
for this decomposition: it should persist as long as v remains small and c(t) remains 
close to co. Finally, we establish the validity of  evolution equations for 7(0, c(t) and 
v(y, t) which arise from the constraints on w. The d priori estimates carried out in 
Sect. 6 will be used to obtain the global continuation of  the decomposition, and to 
prove the results on asymptotic behavior asserted in Theorems 1 and 3.  

Proposition 5.1. (Local existence of  the decomposition). Let  0 < a < ~ o / 3 .  Let  
s be real, and tl >=0. Then there exist 6o, •1 > 0 such that: For any real 7o, i f  
u(x, t) is such that 

eaXu E C([O, q l ,  H ' )  with sup Ilea('+~~ - U~o(" - cot + 7o))IIH~ < & ,  (5.3) 
O<_t<_tt 

then there exists a unique function t H (7(0, c(t)), 

(7,c) C C([0, tl],IR 2) with sup IV(t)- 7ol + Ic( t ) -  col < 61, 
O<_t<t  1 

(5.4) 

such that 

o(9 

~-"k [U, 7, C] (t)  =def  -- f [U(X, t )  - -  Uc(t)(y)]eaYt/k(y)dx = O ,  
-o(3 

(5.5) 

for  k = 1,2, 0 < t < tl, where y = x - fo c(s)ds + 7(0. The number bo may be cho- 
sen as a decreasing function o f  h. The map u ~ (7,e) , from the set defined in (5.3) 
to that defined in (5.4), is analytic, and moreover, i f  eaXu E Cm([0, h),HS) for  some 
integer m > O, then (7,c) E Cm([0, tl),lR2). 

Proof  The idea is to use the implicit function theorem [Ni] to solve (5.5) for the 
functions (7(t),c(t)) in terms o f  u. First, from (1.4) and (2.18) we see that t/k and 
its spatial derivatives decay exponentially at infinity, so t/k E H -s for all real s. In 
fact, one can check that t/k(x) is analytic in a strip IIm x] < e for some e > 0, so 
the map 7 ~ t/k(" + 7) from IR to H -~ is analytic. Also, the map (7, c) ~ uc(. + 7) 
from ]R x ]R + to H i = {v[e~ C H s} is analytic. Then it is not hard to verify 
that the map (u, 7, c) ~-+ 3-  = (Y-l, Y--2) defined in (5.5) is analytic, where ~-- maps 
a neighborhood of  the function t ~ Uo( t )= (u~o(.-cot) ,O,  co) in C([O, t l ] ,H~)x  
C([0,tI],]R 2) to C([0,tl],]R2). (Note that it suffices to consider the case 7o = 0, by 
a simple translation.) 

In fact, J-[U0] = 0. To compute the Fr6chet derivative of  Y with respect to the 
pair (7, c) at U0, observe 

oo oo 
J-k[u, 7, c](t) = -- f u(x, t)qk(y)dx + f uc(t)(y)qk(y)dy, 

- -0~  - - 0 0  

where g/k,k = 1,2 are defined in (2.9). Then we find, for (c57, c5c ) E C([0, tl],IR2), 
since y = x - cot for (u, 7, c) = U0, 
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8Y-k 
[U~ = _ f Uco( x -cot)Oyflk(y)dx.ay(t ) 

- - 0 0  

= _ ~  OyUco(Y)~k(y)dy'67(t)= { ~7(t) 

~ d T "  

~--~k [Wo](&)(t) 

f o r k =  1, 
f o r k  = 2, 

OG t O 0  

= f u(x, t)ayflk(y)dx.f6c(s)ds + f OcUco(Y)Ok(y)dy.ac(t) 
- - c ~  0 - o o  

~ of =_ f O,U~o(Y)Ok(y)dy" f &(~)ds + a~U~o(y)Ok(y)dy'&(t) 
- o o  0 - cx~ 
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= I - f o ~ C ( s ) d s  f o r k = l ,  
[ 6c(t) for k = 2. 

Hence the Fr6ehet derivative with respect to the pair (7, c) may be written in block 

(o  oC  ,  forc 
This block operator is clearly invertible (replace - B  by B to get the inverse). Hence 
the implicit fimction theorem can be applied, proving the main conclusion of  the 
Proposition, and establishing the analytic dependence o f  (7, e) on u. 

Since J[u ,7 ,c] ( t )  depends only on values of  (u ,7 ,c ) (s ) for0_<s<t ,  one can 
follow the proof  of  the implicit function theorem to see that if  a value 6o in (5.3) 
works for some value of  tl = h(6o) > 0, then it works for smaller values of  h. So 
6o may be chosen to increase as h decreases. 

Finally, i f  u E cm([0, h), HAS), then i f  0 < t2 < tl, the curve v ~-+ u(x, t + z) with 
values in C([O, t2],HAS) is a C m curve for 0_<_z < tl - t2. Since the map u ~ (7,c) 
is analytic, and u(. ,  t + v) ~ (y(t + ~) - foC(S)ds, e(t + z)), it follows that (7, c) 6 
cm([0, t2],lR2). [] 

Proposit ion 5.2. (Continuation principle). There exist ao, 61 > 0 such that, f o r  any 
t > 0, i f  

eaXu E C([O, to],H s) with sup I le%( ' , t ) l lw_-<60/3,  (5.5) 
O < t < t  o 

where v(y , t )  -- u(x,t)  - Uc(t)(y),y = x - foC(S)ds + Y(O, and i f  

(7,c) c C([0,t0],lR 2) with sup [e(t) - c01 <31 , (5.6) 
o<_t<_t o 

and J-[u,7,c](t ) = O for  O<-t<to, then a unique extension o f  (7,c ) in C([0,t0 + t,], 
IR 2) exists for  some t, > O, with J [u ,7 ,c ] ( t  ) = O for  O<t<-to + t,. Moreover, i f  
eaXu C Cm([O, cx~),HS), then (7, c) E cm([O, to + t,),lR2). 

Proo f  Let 60 be given by Proposition 5.1 for some tl > 0, and suppose 31 is 
such that HUe, - ucoll,,: __<60/3 for Icl - col =_~51. Put g(x,t) = u(x,t  + to) ,and 2o = 

- fo~ + 7(to). Then by (5.5) and the choice of  as we have 

Ile~ o) - U~o(. + 7o)) l lw < 

Ileay(u( ", to) - Uc<,o>(Y))ll/~' + Iluc(,o~ - Uco I1": = < 2 & / 3 ,  

where y = x - fo~ + 7(to) = x + 70- It follows that ff satisfies the hypo- 
theses of  Proposition 5.1 for some sufficiently small tl = t, > 0. From if(x, t) one 
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obtains (](t), ((t)), which must satisfy (~7(0), 5 ( 0 ) ) =  (70, c(to)). Then the extension 
may be defined by (7(0, c(t))  = 07(t - to) - 7o + 7(t0), ~(t - to)) for to < t__< to + t,. 
The uniqueness and differentiability of  (y, c) may also be proved using the local 
result in Proposition 5.1. 

At this point, let us begin the proof  of  Theorem 1 and 3. Assume p = 1,2,3 
or 3 < p < 4. As discussed in Appendix A, the solution u(x, t) of  the initial value 
problem (1.2) - (1.8) satisfies, for any T > 0, 

u C C([0, T ] , H  2) A C1([0,  T ] , H - 1 ) ,  e~ E C([0, T ] , H  1) A C1([0, T] ,H-3) .  (5.7) 

Moreover, u is a classical solution of  (1.2) for t > 0. Given the initial data in (1.8), 
if ]lv01IHj is sufficiently small, it follows from Proposition 5.1 (taking s = 1 and 

s = - 3 )  that the decomposition (5.1) exists locally in t, with (7,c) E C1([0, tl), 1112) 
for some tl > 0. 

We now derive evolution equations for ~(t) ,c( t ) ,and 1)(y,t), which are valid 
pointwise for 0 < t < h. Substituting (5.1) into (1.2), we have 

0 = c~tu + 33x u + Oxf(U) 

= [a, + (~ - c ( t ) ) ~ y  + ~31(u~(o + 1)) + ~Af(.c(o + 1))) 

= [a, - ~oa~ + ~]1) + a, ff'(..o)1)) 
+ ( ~  + ~ay)Uc(,) + ay[ff  + c(O - co)1) + h(u~(,), 1))v], 

where 

1 
h(blc(t) , 1))1) = f [ f t  (blc(t) -~- 721)) -- f '  (Uco)]dr 1) = f (Uc(O + 1)) - f (uc(o) - f '  (U~o)1) . 

0 

Thus v(y, t) satisfies 

~,1) = eyL.o1) - (ea~ + ~ay)Uc~o 

- 0 y [ ( ~  + c( t )  - co)1) + h(u~(o, 1))v]. 

Now w(y,  t) = eOY1)(y, t) satisfies (recall Aa = e~YSyL~o e ~Y) 

(~tw = A~w - ~ ,  

where we write 

(5.8) 

g ( t )  = eay(dOc + 7y)Uc(O + ~eayOye-aYw + ff(t)  , 

(~(t) = eaYOy[c(t) - co + h(uc(o, v)]e-~Yw.  (5.9) 

Equation (5.8) holds pointwise, but also in C([O, t l ) , H  -3)  due to (5.7). The con- 
straint w E range(Q)  in (5.2) now yields the following system of  evolution equa- 
tions for (w, y, c), given v: 

8tw = Aaw + Q ~ ,  P @  = 0. (5.10) 

Written as an integral equation, the initial value problem for (5.10) becomes: 

t 
w(t)  = eA~ + f eA~ . (5.11) 

0 
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This equation is initially justified in C([0, q),H-3),  but also holds in C([0, tl),L2), 
since all terms lie in this space. The equation PW = 0 yields equations for ~, ~ as 
follows. Introduce the notation 

el (y, t) = eaY(OyUc(t)(y) -- 8yUco (y)) , 

e2(y, t) = eaY(acUc(t)(y) -- acUco(Y)) , 

and note that ((e~YOye-~Yw,~k)=-(v,  8ySk ) for k = 1,2, by integration by parts. 
Then by (2.18), the condition P~,~ = 0 is equivalent to 

O = { 9 ( { l + e l + ( O y - a ) w ) + ~ ( { 2 + e 2 ) + N , ~ k ) ,  k =  1,2. (5.12) 

Using the biorthogonality relations (~j,t/k) = 6jk, we obtain a system of equations 
for y(t) and c(t): 

d ( t ) ( ~ )  = ( ( ~ ,  t/~) (~, r/2))'~C(t)= ( 

The matrix ~ ( t )  satisfies 

= I + o @ ( t )  - col + 11 [l 2) 

1 + ( e l , / ~ l )  - (V,~y~]l) 
(el, t]2) - (/), ~y~2) 

@2' r/l) ) 
1 + @2, r/2) " 

(5.13) 

as I c ( t )  - c01 + IlVllL2 0 (5.14) 

Summarizing, we have that on some time interval [0, tl], the solution u(x, t) of 
(1.2) can be decomposed as in (5.1) - (5.2), where w(y, t), the weighted perturbation 
about the solitary wave, and c(t), 7(t), the modulating speed and phase, satisfy the 
coupled system of equations (5.11), (5.13). Finally, from (5.12) or (5.13) it can be 
seen that the equations for c(t) and 7(0 do not depend on the weight parameter a," 
that is, (5.12) can be expressed entirely in terms of c,7,v(.,t), and uc. 

6. A Priori Estimates and Asymptotic Behavior 

In this section we complete the proof of Theorems 1 and 3. What remains is 
to establish d priori estimates from the evolution equations in (5.11), (5.13). The 
d priori estimates will be seen to imply that the decomposition of solutions to (1.2), 
(5.1)-(5.2), persists for all time, with v(y, t), the perturbation, remaining small in 
H 1 and decaying exponentially as t ~ +oc in H~. 

Let 0 < b < a ( c -  a 2) so the conditions of Theorem 4.2 are satisfied. (b is 
arbitrary for p = 1 or 2, and in general, Re2 < - b  for nonzero 2 E a(Aa).) 

Proposition 6.1. There exist (5, > O, co > O, C > 0 such that, i f  the decompo- 
sition (5.1)-(5.2) exists for  O<_t<_T and satisfies 

ebt]]w(t)llH1 + l c ( t ) - c o l  + llv(., 0lira=<&, O<_t<_r, (6.1) 

and i f  IJvoll~1 + I[v0llHj < r in (1.8), then 

ebt[[w(t) llH1 +[c ( t ) - -CoI+I[V( .  , t)llHI<=C~ , O<_t<_T. (6.2) 

Proof  The proof is broken down into two types of estimates: 

(i) Local energy decay estimate, i.e. estimates of the weighted perturbation, 
w(y, t ) =  eaYv(y, t), in H 1, via the integral equation (5.11), and the modulation 
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equations (5.12). Here we use the linear semigroup estimates of  Theorem 4.2, which 
are valid provided p ~ E, i.e., provided OyLco has no nonzero eigenvalue. 

(ii) H 1 estimate. Here, a Lyapunov functional (for which the solitary wave is 
a constrained minimum) is used, together with local decay estimates to control 
IIv(', t)ll.~,. 
(i) Local Decay Estimate: If  3, is sufficiently small, then d ( t )  in (5.13) has 
bounded inverse, so we may estimate (5.13) to find 

l~>(t) I + l~(t) l ~clI~(t) IIL2 �9 (6.3) 

From (5.9), using that eayOye -ay = 3y - a, we obtain the estimates 

ll~-(t)ll~2 ~ c(191(I + llwll.1)+ I~I + ll~II~=)~ c(1 + IlwllH,) II~IIL~, 

ll~(t)llL~ -< C(Ic(t) - col + llvll~rl) IlwllH, ~C&llwll., �9 

Now, we may choose b' with b < b' < a (c - a2), such that b', as well as b, satis- 
fies the conditions of  Theorem 4.2. The remarks following the statement of  Theorem 
4.2 indicate how b is constrained for the case of  KdV and gKdV. We may then 
estimate (5.11) as follows, for O<t<T:  

t 
llw(t) Lira ~ Ce-b' tllw(O)II~ + c f (t - s)-I/2e -bt (t-s)[l~(s)IlL2 ds 

0 
t 

<Ce-~"llw(O) II~ + cf(t - s)-tlZe-'V(t-*)(l + a.)a.llw(s)II., d~. (6.4) 
0 

Now define 
Mw(T) = sup ebtl[w(t)[IHl. 

O<<_t<~T 

Then from (6.4) we find, for 0 < t < T, 

t 

ebtllw(t) II.~ ~ CL[w(0)11H1 + C6,M~(T)f (t - s ) - l / 2 e - ( b Z - b ) ( t - S )  ds  
0 

<Cllw(O)ll.1 + C6,M~(T).  

Taking the supremum over 0 --- t_< T, we find that if  c5, is sufficiently small, then 

M~(T) = sup ebtllw(t)NH 1 <Cllw(0)  llg~ �9 (6.5) 
O<_t<_T 

Next, we estimate I c ( t ) -  c0l. Using (5.13) and (6.3) we find 

t t 

Ic(t) - col ~ It(o) - col + f l~(s) l ds ~ Ic(o) - cob + r e &  IIw(s)IIH1 ds 
0 0 

< It(0) - Col + C6,M~ (T)<= Ic(0) - c01 + C6, Ilw(0)liar1 �9 

(6.6) 

(ii) H 1 Estimate: We make use of  the conserved quantity 

~ t  1 2 
g[U]  = Jd)[U] -}- C 0 J ~ [ g  ] = f ~ (0xU)  2 --  F(u) + -~cou dx,  
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where F' (u)=f (u) ,  see (1.7). This is the Lyapunov functional used in the H 1 
orbital stability results mentioned in the introduction. A key property o f  g is that 
Uc is a critical point. The key step in the Lyapunov stability analyses was to show 
that uc is a local minimizer of  g subject to the constraint of  fixed L 2 norm. This 
requires a careful spectral analysis of  the second variation of  g. Equipped with 
our local decay estimates v = e-aYw, the H 1 estimate is now considerably simpler. 
Since u~ o is a critical point of  the functional #, we have for any z E H 1 , 

oo 1 1 _ f ,  
o~[Uco @Z] -- ~'~ ] = f ~(OxZ)  2 .qt- ~ (C0  (Uco))Z 2 -- g(bleo , Z ) z 3 d x ,  (6.7) 

--OO 

where 

g(Uco, Z)Z3= i ~ (1-'c)2ftt(Uco +'cz)d'cz3 

1 ~ 2 
= F(uco + z) - F(uco) -f(Uco)Z - ~ f  (Uco)Z �9 

Now, we take z = u~(t)(y) + v(y, t ) -  u~o(y ) = u(x, t ) -  u~ o (y) above, and observe 
that 5~0 = g [ u ] -  #[Uc0] is constant in time. We estimate (6.7) as follows. Note 
]]u~(t) - U~ollLr~ <C]c( t ) ,  c0] for 8. sufficiently small. Then for some kl > 0, 

~ 1  1 2 
/oo 2 (Oyz)2 + ~CoZ dy >kl[[V[[21 -- Clc(t ) - col 2 . 

Since Iff(Uco(Y))[<=Cuco(Y)anda < x/~, e-'Yf'(U~o(y)) is bounded in y. So we 
may estimate 

c:<) 
] f f '  (Uco) z2 dYl < sup le-ayS (Uco (Y))I [fzllL2 lie%IlL2 
--oo y 

< c ( I c ( t )  - col + [ I v [ lLO( l c ( t )  - col + [IwllL=) 
1 2 

<= ~k111%~ + C(3c(t)  - col 2 + Ilwll~),  

where we have used the estimate ab<Sa2+ C(8)b 2 for a suitably small 8. Finally, 
since tlzll., < C ( I c ( t )  - col + IIv11.1)<c8., 

(X3 
[ f g(uco, z ) z ~ d Y l  5C[[z[[31 5 C S . ( I c ( t )  - Col 2 + I t v [ l ~ )  �9 
--OO 

Hence, if  6. is sufficiently small, (6.7) yields, with (6.5)-(6,6), 

~-k~ I1~11~ ~ o  + C ( Ic ( t )  - col 2 + I l w i l 2 L ~ ) ~ o  + C @ ( O )  - col 2 + Ilw(O)ll2gl), 

or  

II~ll.1 ~ c (  ~ r  + Ic(O)- col + IIw(0)IIH~) �9 (6.8) 
To finish the proof, it suffices to bound the right-hand side of  (6.8) by 

C(llVollH~ + IIV011Hj). Using (1.8) and z = v0 in (6.7) we have 
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To estimate the remaining terms, observe from (1.8) and (5.1) that 

u(x, o) = o (x + 7o) + vo(x) = u (o)(x + 7(0) )  + v(x + 7(o), o) .  

Applying Proposition 5.1 with tl = 0, we find that for [[e~ 1 sufficiently small, 
the. map u (. ,  0) ~-+ (7 (0), c (0)) is smooth on H~, for u (. ,  0) near Uco (" + 70). In 
particular, this map is locally Lipschitz, and uc 0 (. + 7o) ~ (70, co), so 

I (0) - 701 + I (O) - col cIl oll/ 2 

From this it also follows 

I[eaYv( �9 , 0)I[H~ ---= [[W(0)IIH~ < ClIVONH2 �9 

This completes the proof of  Proposition 6.1. [] 

We now complete the proof of  Theorems 1 and 3. Let t. be as in Proposition 
5.2. First note that there is an el > 0, such that if ]]V01[H1 + IIV0][~ < el, then for 
some tl > 0, 

e = u  E C([0, h], H 1) with sup Ilea('+~~ t) - Uco (" - cot + 7o))[]H1 < 6o. 
O<~t<_t 1 

Therefore, by Proposition 5.1, the decomposition (5.1)-(5.2) exists on the time 
interval [0, tl]. Since the function t ~ Ilu(t)llH1 + Ilu(t)l]H ~ is continuous, ~I can 
be chosen so that in addition (6.1) holds with T = h. 

We denote by Tmax the supremum of  the set of  all positive real numbers T, 
for which the solution u(x ,  t) has a decomposition (5.1)-(5.2) for t E [0, T] and 
such that the estimate (6.1) holds. By the previous remark, 0 < Tm~x<Oe. The 
proofs of  Theorem 1 and Theorem 3 will be complete if we establish that Tmax = 
+ec .  If  Tmax < -}-oo, then we let Co0 = �89 min{60/3, 61, ~., r }, where ~0, 61, &,  
and C are as in Propositions 5.1, 5.2 and 6.1. Then, for IIv0]]H~ + ]]v01IH~ < e<r  
Proposition 6.1 implies that 

ebt[[w(t)[[H~ + It(t) -- C01 + [Iv(., t)[[Hi < C e o ,  O < t < T m a x .  (6.9) 

The choice of  e0 and Proposition 5.2 implies that the decomposition can be contin- 
ued to yield a solution defined on the interval [irma• Tmax + t,]. By the definition of  
co, we have that the sum on the right-hand side of  (6.9) is dominated by 6 , /2 .  By 
continuity of  I Iw( t ) l lH1  , c ( t )  and I[v(., t)llH1, (6.1) holds with T replace by Tma x --}- "c, 
for some z with 0 < z. This contradicts the definition of  Tmax, and so Tmax = +e~. 

Continuing, we then have from (6.3), the estimate below it on ][N(t)IIL2, and the 
bound on ]lw(t)llH1 implied by (6.9), that [O(t)l < C e e  -bt.  Hence c+ = limt__+~c(t) 
exists, and Ic(t)  - c+[ __< Cce  -bt.  Similarly, ]~(t)l < C e e  -bt ,  and so 

7+ = lim 7( t )  - f ( c ( s )  - c+)ds  
t----~ o ~  0 

exists, and, defining ~(t) = 7(0  - fo (C(s )  - c+)ds  - 7+, 

t 

]~(t)l = lY(O - f c ( s ) d x  + c+t - y+] ~ C c e  -bt  . 
0 
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We claim finally that the estimates (1.9) hold. Indeed, 

u ( x  + c+t  - 7+, t)  - uc+ (x)  = uc(o(x  + f ( t ) )  - Uc+ (x)  + v ( x  + f ( t ) ,  t) . 

Now we have the estimates 

]l blc(t) (" Jr ~:(t)) -- Uc+ (')[]H, nH A < C (Ic (t)  - c+l + I~( t ) l )  < C e e  -b t  , 

Ilv(. + t)IIH2 <Cl[w(., t)llH1 < C e e  -b t  �9 

These estimates, together with the estimate [Iv(., t)l[H1 < CE from (6.2), imply the 
estimates (1.9). This finishes the proof of Theorems 1 and 3. [] 

7. Further Discussion 

In this paper we have studied solitary wave stability with respect to small perturba- 
tions in initial data, which are constrained to decay exponentially in space ahead of 
the wave, having small norm in H I ~ Ha 1. With such data, the solution asymptoti- 
cally approaches a nearby solitary wave, at an exponential rate in the "local" sense 
implied by the norm in H 2. While the result in Theorem 1 is far less general than 
results achieved via inverse scattering by Schuur [Sc], concerning the emergence 
of any number of solitons from general initial data, the method involved makes 
minimal use of the Hamiltonian structure of the system, meaning that it may be 
more broadly useful. 

One restriction that arises from our technical constraints on the initial pertur- 
bation concerns the possibility of small solitons emerging behind the main wave, 
in addition to any "dispersive radiation." In particular, consider the explicit N- 
soliton solutions of the KdV equation. In the large time limit, an N-soliton solution 
approaches a superposition of 1-solitons, arranged from left to right by order of in- 
creasing speed and amplitude, cl < . ' .  < CN. One may ask: if N -  1 of the wave 
speeds are sufficiently small, can the N-soliton be regarded as a small perturba- 
tion of a dominant 1-soliton to which Theorem 1 applies? The answer apparently 
must be no,  for the following reason: If an N-soliton solution UN (X, t) corresponds 
asymptotically to 1-solitons with speeds cl < " "  < cN, then the spa t ia l  rate of de- 
cay of the solution is dictated by the amplitude of the smallest 1-soliton it contains: 
In fact, UN(X, t) ~ c ~ ( t ) e - v ~ x  asx --+ +ec  (cf. [GGKM2]). Thus, when we fix a in 
Theorem 1, this imposes a minimum size on the amplitude of the smallest wave in 
the combination, since we must have v / ~  > a. But then there is no guarantee that 
the ordinary H I norm of the perturbation is small enough to meet the conditions of 
the theorem, since the constants involved do depend on a. We do, however, believe 
that by tracking the dependence of these constants on a, one ought to be able to 
improve the results to handle such initial data. 

We have mentioned that the issue of existence of an asymptotic (or scattered) 
state is not addressed by the existing H 1 orbital stability theory, which asserts only 
that the solution remains close to some (time-varying) translate of the unperturbed 
wave. Recently, Bona and Soyeur [BSo] have improved this theory, for a large class 
of equations including (gKdV) and nonlinear SchrSdinger equations, showing that 
the "wave speed" of the perturbed solution remains close to that of the unperturbed 
wave. For (gKdV), they identify this speed as the rate of change of the phase shift 
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~u (t) which minimizes the L2-distance from the solution to the solitary wave orbit, 
satisfying 

[ [ u ( . ,  t)  --  Uc(" --  ]u( t ) ) l l z2  = infllu(., t)  --  Uc(" --  ~))[[L 2 �9 
7 

They do not show that the wave speed becomes asymptotically constant, but it may 
be that this is not true for all perturbations small in H 1 . After all, such perturbations 
can decay slowly enough that the Schr/Sdinger operator -0~ 2 + u0 associated with the 
initial data can have an infinite number of discrete eigenvalues. In inverse scattering, 
this corresponds to the solution containing an infinite number of solitons. (The 
construction of such solutions has recently been announced by Gesztesy, Karwowski, 
and Zhao [GKZ].) Perhaps a t-soliton may be perturbed by an "infinite" number 
of small solitons, so that the wave interactions cause the phase of the main wave 
to drift forever, and fail to converge. 

Finally, we discuss two points connected with the decrease in the local decay 
rate e -bt as guaranteed by Theorem 3, when p approaches 4 (assuming 4 ~ E, as 
is supported by numerical evidence, see Sect. 3). As discussed in the introduction, 
for gKdV this rate is constrained by the inequality 

- a ( c - a  2) < 2#(p) < - b  < O, 

where 2# (p) is a resonance pole of the operator A0 = ~yLc, and an eigenvalue of 
Aa, which approaches 0 as p ~ 4. Indeed, in [PW2] it was proved that 2#(p) is 
analytic in p near p = Per = 4, and has the following expansion, for some constant 
/7 2 > 0: 

~# (19) = f i2 .d  y [Uc]/ dc  q- 0 ((,19 - pcr )2)  . 

(Here d.Ar[Uc]/dc depends implicitly on p.) Thus, the quantity d~U[uc]/dc, which 
arose in the H 1 orbital stability analysis as the quantity whose sign determines the 
stability of the wave, is also seen to have quantitative significance close to the 
transition to instability: It is proportional to the growth rate of the instability in 
the unstable regime p > 4, where ~.# (p) > 0 is an eigenvalue of ~3yLc, and it is 
proportional to the maximum local decay rate in the stable regime p < 4. 

Lastly, we believe that 2# (p) does represent the true rate of local decay of the 
solitary wave perturbation when p is close to 4. Although the associated "eigenfunc- 
tion" {#(y) (described in Sect. 2) is not bounded as y ---+ -oo ,  it is plausible that 
the "typical" perturbation may be asymptotically approximated, in the local sense 
of the norm in H i ,  by an expression of the form 

u(y  + c+t - 7+, t) - Uc+ (y) = fle&t~#(y) + o(e ~#t) as t ---+ oo.  

While the profile of ~# (y) is unbounded, nevertheless we expect the shape of the 
perturbation to better approximate the shape of ~# (v) in the limit of large time on 
compact sets in y, as the amplitude decays exponentially to zero. 

Appendix A. Existence Theory for Solutions 

For the KdV equation, it is well known that the initial value problem is globally 
well posed in H s for s >= 2, cf. [BSm, BSc, K3]. For gKdV with f '  (u) --- u p, p = 
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1, 2, or 3, global well posedness in H ~, s>2 ,  follows from the results of Kato 
[K3]. Kato also establishes well posedness in the space H~O L 2, where L] is the 
exponentially weighted space L~ = {wleaXw c &}, a > o. Kato showed that initial 
data in H s A L ] yield solutions of KdV which are C ~ in x and t for t > 0. For 
recent results on the well posedness of gKdV, see [KPV]. 

For the results in this paper, we require some variations of earlier existence 
results. First, we must study solutions in HsM HI; this is only slightly different 
from the case H s M L] studied by Kato. But also, we are interested in treating 
f t  ( u ) =  u p when u > 0, for noninteger values of p near 4, because of the influ- 
ence of  resonance poles as the transition to instability is approached. Because such 
nonlinearities are not smooth ( f  is only C 4 and not C 5 for 3 < p < 4), some care 
ought to be taken to determine for which s one obtains an H s N H j existence the- 
ory. We will obtain such a theory for s = 2 only, for p > 3 only; we collect the 
arguments necessary for this in this appendix. 

Our strategy is to: (1) use Kato's abstract existence theory to establish local well 
posedness in H 2 f o r f  E C 4, in particular whenf1(u) = u p for u > 0, w h e r e p > 3  is 
real; (2) obtain global existence for 3 < p  < 4 via standard d priori estimates (which 
are justified through regularization o f f ) ;  and (3) remark that Kato's arguments 
in [K3] apply to obtain a solution u E C([0, e~), H 2 C3Hal), f o r f '  E C 3, u0 E 
H 2 AHa 1. 

(1) Local  welI-posedness in H 2. First, we recall Kato's abstract existence and well 
posedness theorem in the form we will use, cf. [K3, CS]: Consider an abstract 
quasilinear equation of evolution 

du 
+ A ( u ) u = O ,  t>=O, u ( O ) = u o .  (A.1) 

Let X, Y be real Hilbert spaces (with norms 11. [Ix and [1.1[ r respectively), and assume 
Y C X is dense with continuous injection. Assume S : Y ~-+ X is an isomorphism 
of Y onto X. 

(H1) Assume A(y) ,  defined for y E Y, is a linear operator on X with domain 
D ( A ( y ) )  D Y, and A ( y )  is quasi-m-accretive, uniformly for ]IY]ly bounded, i.e., given 
R > 0 there exists fl such that for I[ylly <R, 

{A(y)v, v)x > - fll[vll~ for all v E D ( A ( y ) )  , 

and the range of A (y )+  2 is X for some (equivalently all) 2 > /~. 

(H2) Assume that for any R > 0, there exists CA such that 

11 (A(y)  - A(z))vl]x <--CA IlY - zllxIIvlly (a.2) 

for al ly,  z, v E Ywith IlYlIY, l lz l l r -  -<R- 

(H3) Fory  E Y, S A ( y ) S  -a D A(y)  + B(y) ,  where B ( y )  : X ~ X is a bounded linear 
operator, bounded uniformly for []Y[IY bounded. 

(H4) For any R > 0, there exists c8 such that 

IlB(y)v - B(z)vllx < cB IIY - z[[ y 1[ vl[x (A.3) 

for all y, z, v e Y with [[yl[y, IlzflY ~R. 
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The result of  Kato is the following. 

Theorem A.I.  Assume (H1)-(H4).  Then for any R > O, there exists T = 
T(R) such that for any Uo E Y with I[u0[Iy<R, there exists a unique solution 
u of  (A.1) with u E C([0, T], Y) N C 1 ([0, T], X). Also, the map uo ~-+ u from 
Y to C([0, T], Y) is continuous. 

In our application of  this result to gKdV, we will follow Kato and take 
Y = H  ~ with s -=2, X ~ H  s-3 = H  -1, a n d s  -- A 3 where A = (I - ~2W2 Fo rT  E ~ X - "  " 

Y, A(y)v is defined for v E Y = D(A (y)) by 

A (y)v = 03x v + f '  (y)Oxv. (A.4) 

We are interested in the case that f is C r with r > 4 only (corresponding to f~ (u) = 
u p for u > 0 w h e n p > 3  is real), and proceed to verify hypotheses (H1)- (H4)  in 
this case: 

1. To verify (H1), we follow Kato [K1]. Since the operator 83 in X with domain 
Y is skew-adjoint, by a perturbation theorem it suffices to show that for IlYl[y _=R, 
the operators f~ (y)0~ are uniformly quasi-accretive in X. It suffices to show 

I(A-~f '(y)Gv, A-~v)l </311A-~vl122, v E H 2 , (A.5) 

for some fl depending on R. Here (.,  .} denotes the inner product on L 2 (real 
valued functions). To verify (A.5), let z = A - i v  E H 3. Then, with the notation 
[A, B] -= A B -  BA, we have 

( A - l f '  (y)OxAz, z) = ( A - l [ f ' ( y ) ,  Ox]Az, z) + (A- l  Oxf' (y)Az, z) 

= - <z, A ( G f ' ( y ) ) A - t z }  - (~ ' (y) ,  Alz, axA-lz> 

+ ~ ((axf' (y))z, z} .  

It is clear that the first and third terms are bounded by [l~xf'(y)l114, I1z[122 . That the 
middle term is bounded by the same quantity is a consequence of  the following 
lemma. 

Lemma A.2. Let b E L ~176 with Oxb E H 1. Then 

Proof 

Since 
equality it follows that IMIL2 <CIIOxf'(Y)IIH1 IlzllL2. 

To complete the proof of  (A.5), observe that for 
IIDJ' (Y)LIm < C (R) since f '  is C a. 

II[b, A]zllL2_--<Cll xbll xllzllL2, z C 

Let p = [b, A]z and (~} = X/1 + ~2. Then 

= f ( ( . }  - - 

A 

I(r/) - (~)[ < 14 - r/[ and II ]e l f '  o g(~)IIL1 = C[[Oxf'(y)ll.~, by Young's in- 

Ilyllar2<=R, we have 

2. In order to verify (H2), it suffices to show 

II ( f ' (Y)  -f'(z))axvlIH-1 <cAllY -- zllH-1 ]lvllH2, v ~ g 2 (A.6) 
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for [[yIJLr2, [[zHH2 __<R. We estimate the H -1 norm by duality: Let h E H 1 with 
IlhllHt < 1. Define 

( ft (y)_ft (z) if y + z, 
r ( y , z ) = ( f " (Y~ Z 

i f y  =z .  

Then 

[ ( ( f ' ( y ) - f ' ( z ) )OxV,  h)] = [ ( y -  z, r(y,  z)(Oxv)h)l 

IlY -- ZHH1 HF(Y' Z)~XVIIH1 
< IlY- zllH11[0*V[fH I (llr(Y, z)Ut~ + [10*r(Y, z)HL2) �9 

Now (A.6) follows from the following lemma. 

Lemma A.3. I f  f '  is C 2, and [[y[[H1, HZI[HI ~=R, then 

IIr(y, z)llL~ + IfOxr(y, z)llL2 <CR. 

Proo f  Use the representation r(y,  z) = f2 f " ( ( 1  - z)z + zy)dz. 

3. In order to verify (H3) it suffices to show that 

IllS, A(y)]zHx <CeHzl[Y, z E s - ~ Y ,  

since S - 1 y  = H 6 is dense in Y. Thus we must show 

II[A3,f'(y)]OxzllH_~ <=CaHZllH2, z c H 6 . (A.7) 

Since for f '  in C 2, Hy][Lr2 <R implies II0xf'(y)][/~l <CR, (A.7) follows from this 
lemma: 

Lemma A.4. Let  b E L ~176 with Oxb E H 1. Then 

I[[A 3, b]~xzll~< <=CI[OxblIH1 I[c3xzl]H,, z E H 2 . 

Proo f  Let h c H 1 with Ilhllm _-< 1 Then 

[([A 3, bJaxz, h)l = [((A[A 2, b] + A[b, A]A + [d 2, b]A)gz ,  h)J 

< II[a a, b]~zlrL2 + II[b, A]Agz[IL2 + I(Aaxz, [A 2, b]h)] 

_-< CIl~xbl]H, II~xzllm, 
where we have used Lemma A.2 to estimate the middle term. 

4. In order to verify (H4), it suffices to check 

l[ [ A3, f '  (Y) - - f '  (Z)]OxZHH-I ~ CB Ily - zllH= IIzHH2. 

By Lemma A.4, this follows if we prove that for ILvIIH2, IlzllH2 ==R, 

H~x(ft (y) -- f '  (z))llHx <CRIly -- ZI[H2 . 

But since f~ is C 3, this is easily checked. (Note that when f ' ( u )  = up for u > 0 
with 3 < p < 4, f~ is C 3 but not C4.) 

This completes the verification of hypotheses (H1)-(H4) of Theorem A.1, yield- 
ing local well posedness for gKdV in H 2 with f '  in C 3. 
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(2) Global existence in H 2. In order to deduce from Theorem A.1 that solutions 
of (A.1) exist globally in t, when f ' ( u )  = u p for u > 0 with 3 < p < 4, it suffices 
to show that 

Ilu(t)llH= <-_C(T), O<<-t<-T, (A.8) 

for any T > 0. This dpriori estimate follows from Kato's arguments in [K3], which 
are based on the following energy identities for solutions of (1.2): 

f u  2 (x, t)dx = f u  2 (x)dx,  (A.9) 

~ [u ( t ) ]  = f l  (axU)2 _ F(u)dx = )F[uo], (A.10) 
Z 

f (•x u) - 3 f '  
~ 2 [ u ( t ) ]  = 2 2 (u)(axu)2 dx 

= 62 [uo] + f f l ~ f  (4) (u) (~xu) 5 + f '  (u ) f "  (u) (~xU) 3 dx dz.  (A.1 l) 
0 

We must establish the validity of these identities for the solutions u with u E 
C([0, T], H2), given by Theorem A.1. Kato's strategy for the proof of the energy 
identities (A.9)-(A.11) is to regularize the initial data, and to work with solutions 
which have sufficiently many derivatives, so that the formal derivation of (1 .9) -  
(A.11) is valid. We are unable to proceed directly in this manner due to the fact 
that f is only C 4. We therefore regularize the nonlinear function f as well. That is, 
we approximate (1.2) by a sequence of  approximate problems 

Otu n + Oxf n (u n) + ~3xun = 0 ,  (1.12) 

u" (x, o) = u'~ (x) ,  

where f "  C C ~176 and u~ C H s for all s, with ]If" - / l i e  4 ---+ 0 and Itu~ - UOl[H2 ---+ 0 
a s  n-----> oo .  

From [K1, Theorem 7], it follows that the problems (A.12) are locally well 
posed in H z uniformly in n, in the following sense. 

Theorem A.5. There exists T' > 0 such that for all n, problem (A.12) has a 
unique solution u" E C([0, U], H2). Moreover, 

u'( t)  ---+ u(t) in H 2 uniformly for t E [0, r ' ]  . (A.13) 

In order to verify the hypotheses of Theorem 7 in [K1], it is necessary to verify 
that (H1)-(H4) hold uniformly in n (i.e., the hypotheses hold with constants not 
depending on n), and in addition: 

II(A'(y) -A(y ) )v l l x  --~ 0 for all v E Y, (A.14) 

I[ (B" (y) -B(y ) )v i l x  --~ 0 for all v E X .  (1.15) 

To prove (A.14) it suffices to check that 

[[(fn, (y) _ f ,  (y))C~xVll,_ 1 __+ 0 as n --~ ec .  

This follows easily by duality. 
The proof of (A.15) is similar to the proof of (H4). One need only check that 
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II&(f"'(Y) -f'(Y))ll~/~ ---+ 0 as n ~ oc, fo ry  E H 2 . 

But this is true because f "  ~ f  in C 4. 
In fact the approximating solutions u n of (A.12) are smooth, with u E C([0, T'], 

H s) for all s [K3, Theorem 4.1]; in particular U is independent of s. It follows 
that the identities (A.9)-(A.11) hold for u n, with F, f ,  replaced by F n, F .  We 
now let n tend to infinity, and use (A.13) to conclude that (A.9)-(A.11) hold for 
the limit, u. 

From these considerations and Kato's arguments in [K3], the dpriori estimate 
(A.8) follows, and global existence of solutions in H 2 is proved. 

(3) Solutions in H 2 N Hla. Kato, in [K3], demonstrated that (1.2) is well posed 
on HSN L ] for any s >2,  assuming f~ is C ~ .  Furthermore, a smoothing property 
holds: If  uo E H s N L 2, then u E C([0, c~), H s n L2), and eaXu E C((O, ec), H s') for 
any s ~ < s + 2. These results were obtained by starting with the given solution 
u E C([0, ec), H s) and studying the properties of w = eaXu, which is shown to lie 
in L 2 and satisfy the integral equation 

t 

w(t)  = Ua(t)eaXuo + f G(t - r ) f l  (u(r))(Ox - a)w(r)dr , (A.16) 
0 

where Ua(t) = exp(-(0x - a)3t). 
If  we fix s = 2 and assume only f~ E C 3, Kato's arguments remain valid. Thus 

for uo E H 2 N L], we obtain a solution 

u E C([0, oc), H 2 N L2a), with w = eaXu E C((O, oo), H s') 

for all s I < 4. In particular, u is a classical solution of (1.2): Both ~?tu and 0x3u are 
continuous in x, t for t > 0. 

As a final remark, we note that if, in addition, eaXuo E H 1, then w = eaXu C 
C([0, oc), H1). This may be proved from (A.16) using the smoothing properties 
of U~ (t) and a bootstrap argument. Consequently, it is easy to see that the second 
term in (A.16) is in C([0, co), L2), and hence by standard arguments of semigroup 
theory [P], w E C 1 ([0, oo), H-3) .  

Appendix B. Evans' Function for KdV and mKdV 

Consider the Korteweg-de Vries equation 

~u  + uOxu + ~3u = 0,  (KdV) 

and the modified Korteweg-de Vries equation 

Otu + uZcgxU + ~3u = 0 ,  (mKdV) 

In this section we prove Theorem 3.1, which gives an explicit formula for Evans' 
function, D(2), associated with the linear eigenvalue problem 

= L c  = + c - u p ( y ) ,  ( B . 1 )  
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in the cases p = 1 (KdV) and p = 2 (mKdV) (see (1.2)). Since D(2) is analytic, it 
suffices to establish the formula in Theorem 3.1 for Re 2 > 0, where we know that 
the roots of/23 - c# + 2 = 0 satisfy 

Re/21()0 < 0 < Re#j(2), j = 2 , 3 .  

The main tools used in this section are: 
(i) the relationship between solution of the linearized KdV equation and the 

Jost solutions of an associated second order stationary SchrSdinger equation 
[GGKM2], 

(ii) the complex Miura transformation [M], which maps solutions of mKdV (p = 2) 
to solutions of KdV (p---- 1), and 

(iii) a trick of Darboux (1882), which gives a way of constructing solutions of a 
second order Schr6dinger equation with potential ~7(x), given solutions of some 
other such Schr6dinger equation with potential u(x). (See [T, Ke], for example. 
We thank R. Krasny for pointing this tool out to us.) 

In order to construct D (2) we must study the behavior, as y --+ - c o ,  of Y+ (y, 2), 
the solution of Eq. (2.1) with maximal decay as y ~ eo (see Sect. 2). Our object 
in this section is to show that for KdV (p = 1) and mKdV (p = 2), the construction 
of Y+ (y, 2) can be reduced to finding the solution of a second order Schr6dinger 
equation, 

02 - y f ( y ,  k) + ( -  z(y)  - k2)f(y,  k) = 0,  (B.2) 

with the asymptotic behavior 

e-ikyf(y,  k) -+ 1 asy  --~ + o c .  (B.3) 

A solution of (B.2) satisfying the asymptotic condition (B.3) is called a Jost solution 
[RS3]. 

Lemma B.1. Let z ( x -  ct) be a traveling wave solution of  KdV, i.e. z satisfies 
z(y)  --+ 0 as y --+ i o o  and the second order nonlinear ordinary differential equation 

- c z  + l-z2 - z" = 0 . (B.4) 
2 

Let f (y, k) denote a (Jost) solution of  the Schr6dinger equation (B.2) with the 
asymptotic behavior (B.3). Let/2 = 2ik and 2 = c/2 - #3, and suppose that Re2 > 
0 > Re#. Then, 

+ c - z) yv = , ( B . s )  

where V (y, k ) = f ( y ,  k) 2. 

Remark.  This proposition allows z to be real or complex valued. Our application to 
KdV will involve choosing z equal to the real solitary wave profile uc. For mKdV 
we shall apply Proposition B. 1 with z given by a complex solitary wave of KdV. 

Proof An explicit calculation gives 

1 [ 1 ( - 0 ~ + c - z ) S y V ]  ~ 0  - - k 2 )  
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Therefore 
1 2 

~9 (y) =-- y ( -  Oy + c - z) Oy V = a f  (y, k) + bg (y) , 

where a and b are constants, and g is a solution of (B.2) which is linearly inde- 
pendent o f f .  Now, by the theory of asymptotic behavior of solutions of ordinary 
differential equations, z ( y )  ~ 0 asy  --+ ~oc, and g(y) is unbounded, being asymp- 
totically proportional to e -iky as y --* +c~. Since it is also true that 

~Jyf(y, k) ~ (ik)Je iky asy --+ +ec f o r j  = 0, l, 2, 3 ,  

we find that 
(o (y) ~ e -iky (-(2ik) 3 + c2ik)e 2iky = )~e iky . 

It follows that b = 0 and a = 2, from which (B.5) follows. 

Differentiation of (B.5) yields the following for Re2 > 0. (For general 2, use 
analytic continuation.) 

Corollary B.2. Let  2 ~ f20 = C \ ( - c ~ ,  2.] (see Sect. 2), and let tq (2) denote the 
root o f  #3 _ c# + 2 = 0 with smallest real part. Then, 

Y+ (y, 2) =/~1 (2)-10y I f  (y, # 1  (2)/2i)2] �9 

At this stage we can complete the proof of Theorem 3.1 (a), by determining 
D(2) explicitly for KdV. For KdV we have z (y )  = 3csech2(�89 Corollary B.2 
implies that we need to solve the scattering problem 

1 c 2  1 - 0 2 f  - ~cse h (Sx /~y ) f  = k2 f  e - iky f (y ,  k) --* 1 asy --~ + o c ,  (B.6) 

for k = #1 (2)/2i. The solution of (B.6) is well-known to be 

[ 2 i k _  tanh (1 v,~y)l f (y, k) = Ae iky L x/~ (B.7) 

--I 
where the constant A = { 2ik __ 1 has been chosen to satisfy the asymptotic 

condition in (B.3). (For a derivation of this result see the remark concluding this 
appendix.) Part (a) of Theorem 3.1 now follows from examining the expression for 
Y+ (y, 2) given in Corollary B.2, in the limit y --+ -cx~, namely 

(B.8) 

The reduction to a second order Schr6dinger scattering problem for mKdV is 
more involved and requires the complex Miura transform, as originally given by 
Miura [M]. 

Lemma B.3. Let  p(x, t) be a solution o f  mKdV. Then Ip(x, t) is a solution o f  
KdV, where 

r = - i v ~ t x p  + p2 . (B.9) 
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Proo f  By explicit calculation, t~t + OOx + Oxxx = ( - iv /6Ox + 2p)(pt + p2px + 
px~) . 

If, in particular, we choose p (x, t) to be a solitary wave solution of (mKdV), 

P0 (x, t) = v/-~c sechv~(x - c t ) ,  03.10) 

then we have: 

Corollary B.4. The KdV equation admits the complex solitary wave solution 

~90 (y) -= 6c (sech<v/-Cy + i sechv/Ty tanh v/cy), 03.1 1) 

where y : x - ct, for  any c > O. 

To calculate D(2) for mKdV, we argue as follows, to reduce the problem to 
one for the complex KdV equation. Let Re2 > 0, and let Y+ (y, 2) be the solution 
of 

Oy(-~ 2 + c- p~) Y+ = 2Y + , 03.12) 

satisfying Y+(y, 2) ~ e uIy asy  --+ +oc. Recall that then D(,I) = l imy~_ooY+(y ,  2) 
e -~ly. We relate Y+ to a solution W + of the linearized complex KdV equation via 
the linearized Miura transformation, as follows. 

Lemlna B.5. Let  W + (y, 2) be defined by 

--iv/6kq (2).W+ (y, 2) = -#v/-6~yr+ (y, 2) + 2po(y)Y+ (y, 2).  03.13) 

Then 
ay(-0y 2 + c - 0o)W + = 2W + , 03.14) 

and we have 

W + (y, 2) ~ e Ixly as y ~ +oo, W + (y, 2) ~ D (2)e #Iy a s  y ~ - o o .  03.15) 

Proo f  By explicit computation, with c~ = - i v /6  we find 

(83y _ Oy(C - ~o) + 2)~W + = (eOy + 2p0)[~y 3 - Oy(C - p~) + 2] Y+ . 

The behavior in 03.15) follows since ~yY+ ~ #le  uly (resp. D(2)# le  ~ly) as y 7-4 +oo 
(resp. -oc ) ,  of. [PW2]. [] 

The significance of Lemma B.5 is that Evans' function D(2) for the linearized 
mKdV equation 03.12) is the same as the corresponding Evans function for the 
linearized complex KdV equation 03.14). To determine the latter, we will find the 
Jost solutions of the associated Schr6dinger equation with complex potential, and 
apply Lemma B. 1 and Corollary B.2 to identify W + (y, 2). 

The associated Schr6dinger equation we must study is 

_~2f  _ c(sech2v~y + i sechv/cy tanh ,v/cy)f = k 2 f .  03.16) 

The Jost solutions of this equation can be explicitly computed using a trick of 
Darboux (1882). Darboux observed that i fy (x)  is the general solution of 

y" + (k 2 - u(x))y = 0 ,  03.17) 

and w denotes a particular solution with k 2 : fl, satisfying 
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wt' + (fl -- u (x))w = 0 ,  03.18) 

then the general solution o f  an equation with different potential, namely 

z"  + (k 2 - u (x) + 2 ( lnw) ' ) z  = 0 ,  03.1 9) 

is given by 
z = y '  - y w l / w .  03.20) 

To solve (B.16), take u ( x ) =  0 in 03.17)-(B.19),  and observe that i f  w ( x ) =  
e x + ie-X, then (lnw)" = 2 (sechZ2x + i sech 2x tanh 2x). With this choice, 03.1 9) be- 
comes 

z"  + [k 2 + 4(sech22x + i sech2xtanh2x)]z  = 0 .  03.21) 

By now taking y(x)  = (ik - 1) - le  ikx in (B.20), we obtain a solution of  03.21) given 
by 

z (x) : (iN - 1)-  1 eikx [ik - tanh 2x - i sech 2x] .  (/3.22) 

This is easily related to the Jost solution of  03.16), via the change of  variables 
x = v/cy/2. This yields 

f ( y ,  k) = \ ~  - 1 e iky - tanh v/cy - i sechv/cy . 03.23) 

Now from Corollary B.2, we infer that the function W + in Lemma B.5 is given 
by 

W+(y, 2 ) 1 ~ [ ( l ~ l - v ~ ( t a n h x / ~ y + i s e c h v / ~ y ) )  2] 
= e ~y (13.24) 

By examining this expression in the limit y ~ - c o ,  we conclude that 

This completes the proof  o f  Theorem 3.1. _~ 

Remark.  Darboux 's  trick can also be used to solve the scattering problem 03.6) 
which yielded, via Corollary B.2, D (2) for KdV. In this case we choose u (x) = 0 
and w(x)  : cosh(x). The expression 03.7) for the Jost solution now follows easily 
after scaling. 
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