
Digital Object Identifier (DOI) 10.1007/s00220-003-0964-8
Commun. Math. Phys. 243, 343–387 (2003) Communications in

Mathematical
Physics

Instanton Expansion of Noncommutative Gauge Theory
in Two Dimensions

L.D. Paniak1, R.J. Szabo2

1 Michigan Center for Theoretical Physics, University of Michigan, Ann Arbor, MI 48109-1120, USA.
E-mail: paniak@umich.edu

2 Department of Mathematics, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, UK.
E-mail: R.J.Szabo@ma.hw.ac.uk

Received: 3 April 2002 / Accepted: 23 July 2003
Published online: 21 October 2003 – © Springer-Verlag 2003

Abstract: We show that noncommutative gauge theory in two dimensions is an exactly
solvable model. A cohomological formulation of gauge theory defined on the noncom-
mutative torus is used to show that its quantum partition function can be written as
a sum over contributions from classical solutions. We derive an explicit formula for
the partition function of Yang-Mills theory defined on a projective module for an arbi-
trary noncommutativity parameter θ which is manifestly invariant under gauge Morita
equivalence. The energy observables are shown to be smooth functions of θ . The con-
struction of noncommutative instanton contributions to the path integral is described in
some detail. In general, there are infinitely many gauge inequivalent contributions of
fixed topological charge, along with a finite number of quantum fluctuations about each
instanton. The associated moduli spaces are combinations of symmetric products of an
ordinary two-torus whose orbifold singularities are not resolved by noncommutativity.
In particular, the weak coupling limit of the gauge theory is independent of θ and com-
putes the symplectic volume of the moduli space of constant curvature connections on
the noncommutative torus.
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1. Introduction and Summary

Quantum field theories on noncommutative spacetimes provide field theoretical contexts
in which to study the dynamics of D-branes, while at the same time retaining the non-
locality inherent in string theory (see [1–3] for reviews). Recent studies of these field
theories have raised many questions regarding their existence and properties, and even
after extensive study there remain numerous questions concerning the new phenom-
ena they exhibit even in the simplest cases. Of particular interest is Yang-Mills theory
defined on a noncommutative torus which serves as an effective description of open
strings propagating in flat backgrounds. In particular, noncommutative gauge theory on
a two-dimensional torus describes codimension two vortex bound states of D-branes
inside D-branes. In this paper we will show that this quantum field theory is exactly
solvable and explicitly evaluate its partition function. Various non-trivial aspects of non-
commutative gauge theories in two dimensions may be found in [4–10]

The commutative version of this theory has a well-known history as an exactly solv-
able model, which gives the first example of a confining gauge theory whose infrared
limit can be reformulated analytically as a string theory (see [11, 12] for reviews). The key
feature of two dimensions is that there are no gluons and the theory must be investigated
on spacetimes of non-trivial topology or with Wilson loops in order to see any degrees
of freedom. This suppression of degrees of freedom owes to the fact that the group of
local symmetries of two-dimensional Yang-Mills theory contains not only local gauge
invariance, but also invariance under area-preserving diffeomorphisms. Of the several
different methods for solving this quantum field theory, a particularly fruitful approach
is provided by the lattice formulation [13]. Using the area-preserving diffeomorphism
invariance, the heat kernel expansion of the disk amplitude may be interpreted as a wave-
function for a plaquette. The fusion rules for group characters allow one to glue together
disconnected plaquettes. The basic plaquette Boltzmann weight in this way turns out
to be renormalization group invariant [14], so that the lattice gauge theory reproduces
exactly the continuum answer.

While a lattice formulation of noncommutative Yang-Mills theory does exist [15],
it does not exhibit an obvious self-similarity property as its commutative counterpart
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does. The non-locality of the star-product mixes the link variables in the lattice action
and the theory no longer has the nice Gaussian form that its commutative limit does.
While under certain circumstances Morita equivalence can be used to disentangle the
lattice star-product by mapping the noncommutative lattice gauge theory onto a com-
mutative one, the continuum limit always requires a complicated double scaling limit to
be performed with small lattice spacing and large commutative gauge group rank N , in
order that the scale of noncommutativity θ remain finite in the continuum limit. A simi-
lar approach to solving gauge theory on the noncommutative plane has been advocated
recently in [10]. Nevertheless, the lattice theory at finite N can be solved explicitly by
mapping it onto a unitary two-matrix model [16], whose path integral can be reduced
to a well-defined sum over integers [17]. This proves that the lattice model is exactly
solvable, and thereby gives a strong indication that noncommutative gauge theory in two
dimensions is a topological field theory (with no propagating degrees of freedom).

However, such an approach, like canonical quantization in the commutative case, is
based almost entirely on the representation theory of the gauge group. This group is
a somewhat mysterious object in noncommutative gauge theory whose full properties
have not yet been unveiled. This infinite-dimensional Lie group is analyzed in [18–27]
and it involves a non-trivial mixing of colour degrees of freedom with spacetime diffe-
omorphisms. A related difficulty arises in the diagonalization approach which requires
fixing a gauge symmetry locally [28]. The resulting Faddeev-Popov functional deter-
minants are difficult to analyze in the noncommutative setting. Hamiltonian methods
are likewise undesirable because of problems associated with non-localities in time. An
approach which doesn’t rely on the (unknown) features of the noncommutative gauge
group is thereby desired. We will see, however, that the basic geometric structure under-
lying this gauge group implies that the noncommutative theory is still invariant under
area-preserving diffeomorphisms of the spacetime (though in a much stronger manner)
and is thereby an exactly solvable model.

As we shall demonstrate, one technique of solving commutative U(N)Yang-Mills
theory which continues to be useful in the noncommutative case is that of non-
Abelian localization [29]. This method takes advantage of the fact that in two dimensions
a gauge fixed Yang-Mills theory is essentially a cohomological quantum field theory. A
judicious deformation of the action by cohomologically exact terms allows one to reduce
the quantum path integral defining the partition function to a sum over a discrete set of
points which are in one-to-one correspondence with the critical points of theYang-Mills
action. Of course, these critical points are given by gauge field configurations which
solve the classical equations of motion. Even though these solutions may be unstable,
we will refer to any such configuration as an instanton. As a consequence, the quantum
partition function can be evaluated as a sum over all instanton configurations of the
gauge theory. In other words, the semi-classical approximation to this field theory is
exact, provided that one sums over all critical points of the action. The feature which
makes this approach work is the interpretation of noncommutative Yang-Mills theory as
ordinary Yang-Mills theory (on a noncommutative space) with its infinite dimensional
gauge symmetry group that is formally some sort of large N limit of U(N).

In what follows we will derive an exact, nonperturbative expression for the partition
function of quantumYang-Mills theory defined on a projective module over the noncom-
mutative two-torus. Using a combination of localization techniques and Morita duality,
we are able to give an explicit formula written as the sum of contributions from the vicin-
ity of instantons. The instantons themselves are parameterized by a collection of lists of

pairs of integers ( �p , �q ) ≡
{
(pk, qk)

}
k≥1

which arise from partitions of the topological
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numbers (p, q) of the projective module on which the gauge theory is defined. The
result for the partition function Zp,q is then given as a sum, over all partitions, of terms
involving the Boltzmann weights of the noncommutative Yang-Mills action S( �p , �q ; θ)
evaluated at its extrema, along with prefactorsW( �p , �q ; θ) which describe the quantum
fluctuations about each instanton configuration. Schematically, we have

Zp,q =
∑

partitions

W( �p , �q ; θ) e −S( �p ,�q ;θ) . (1.1)

We will show that the full expression (1.1) is explicitly invariant under gauge Morita
equivalence and that it is a smooth function of the noncommutativity parameter θ .

The formalism which we develop in this paper gives the tools necessary to explore
and answer all questions about two-dimensional noncommutative Yang-Mills theory,
and it gives a model which should capture some features of the more physical higher-
dimensional theories, but within a much simplified setting. For example, the techniques
developed here can be used to learn more about the observables of Yang-Mills the-
ory on the noncommutative torus. The evaluation of the partition function as a sum of
contributions from instantons is of course familiar from commutative Yang-Mills the-
ory [30–33]. In that case there exists an equivalent expression via Poisson resummation
which is interpreted as a sum over irreducible representations of the gauge group. For
Yang-Mills theory on a noncommutative torus we have not been able to find an analogous
group theoretical expansion though we believe it would give great insight into the repre-
sentation theory of the noncommutative gauge group on the two-dimensional torus. The
Yang-Mills action can be thought of as defining invariants of the star-gauge group, and
the discrete sums over instantons as labelling its representations. The discrete nature of
the action is necessary for it to be a Morse function and hence a candidate for the locali-
zation formalism [34], and it suggests that the noncommutative gauge group is compact.
We expect to report on progress in understanding the details of the noncommutative
gauge group on the torus in the near future.

1.1. Outline and summary of results. In the next section we shall begin with a review
of the construction of gauge connections andYang-Mills theory on the two-dimensional
noncommutative torus. We include a brief discussion on the area-preserving nature of
the noncommutative gauge symmetry which suggests that there are no local degrees of
freedom in the noncommutative gauge theory, only global ones as in the commutative
case. In Sect. 3 we give an overview of non-Abelian localization and how it applies to
the evaluation of the quantum partition function of two-dimensional Yang-Mills theory
on the noncommutative torus. We pay particular attention to rewriting the formalism in a
manner which does not rely on the details of the noncommutative gauge group. We show
in detail how the Yang-Mills action defines a system of Hamiltonian flows which coin-
cide with the Lie algebra action of the group of noncommutative gauge transformations.
This compatibility allows us to formally reduce the path integral defining the quantum
partition function to a discrete sum. The procedure is applicable to Yang-Mills theory
defined on a noncommutative torus with any value of the noncommutativity parameter
θ , including vanishing, rational or irrational θ .

The localization of the path integral is onto gauge field configurations which are
solutions of the classical equations of motion and provide critical points of the Yang-
Mills action. In order to characterize these solutions and the spaces in which they are
defined, in Sect. 4 we begin by giving a brief description of finitely-generated projective
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(Heisenberg) modules over the noncommutative torus. We characterize all such clas-
sical solutions of Yang-Mills theory defined on a projective module for any value of
the noncommutativity parameter in terms of partitions of the topological numbers of
the projective module. These results serve to bridge previous constructions of classical
solutions for two-dimensional Yang-Mills theory in the commutative case [33, 35] and
in the noncommutative case for irrational θ [36].

In order to obtain explicit results for the partition function, in Sect. 5 we revisitYang-
Mills theory on the commutative torus and re-interpret the well-known evaluation of
the quantum partition function in this case in terms of projective modules. In doing so
we will find it necessary to make a distinction between the commonly known “physi-
cal” definition of two-dimensional Yang-Mills theory and a “module” definition where
we restrict gauge field configurations to have a particular Chern (twist) number. The
physical theory can then be recovered by summing over all such cohomological sectors.
Given the partition function of ordinary Yang-Mills theory on the torus written in terms
of projective modules, in Sect. 6 we use Morita equivalence to construct a mapping from
the commutative theory to one with rational values of the noncommutativity parameter
θ . Discarding the scaffolding of Morita equivalence, the result is an explicit expression
for the quantum partition function of noncommutative Yang-Mills theory defined on a
projective module with rational θ purely by the topological numbers of the module. Our
construction also provides a more transparent interpretation of the Morita equivalence
of Yang-Mills theories on commutative tori and ones with rational values of θ .

By exploiting the fact that the localization arguments hold irrespective of the partic-
ular value of θ , in Sect. 7 we propose a formula for the partition function at irrational
values of θ by natural extension of the rational case. We give strong arguments in favour
of this conjecture. The two independent constructions of this formula come from Morita
equivalence, whereby the Morita invariant commutative partition function determines
exactly the rational noncommutative one, and localization theory, which proves that the
partition function is given by a sum over classical solutions for any θ . Further support for
this proposal is provided by rational approximations to the irrational noncommutative
gauge theory. We will find that the schematic expression (1.1) may be written explicitly
as

Zp,q =
∑

partitions

∏
a≥1

(−1)νa

νa!

(
g2A

2π2

(
pa − qaθ

)3
)−νa/2

× exp


− 2π2

g2A

∑
k≥1

(pk − qkθ)

(
qk

pk − qkθ
− q

p − qθ

)2

 , (1.2)

where g is the Yang-Mills coupling constant and A is the area of the torus. The integer
νa is the number of partition components (pk, qk) which have the same distinct values
of the quantity pa − qaθ . The sign factor in (1.2) is determined by a Morse index which
measures the overall contribution from unstable modes in a given instanton configuration
( �p , �q ). The exponential prefactors are the Gaussian fluctuation determinants, weighted
with the appropriate permutation symmetry factors νa! associated with a partition. From
(1.2) we see that the area dependence of the noncommutative gauge theory is similar to
that of the commutative case. If A → ∞ for fixed g and θ , then the theory is exponen-
tially dominated by trivial instanton configurations. Essentially the energy of electric
flux in the noncommutative theory is still proportional to the length of the flux line, and
so the overall details of the dynamics (or lack thereof) are the same as in commutative
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Yang-Mills theory. Thus, in direct analogy to the commutative situation, the gauge theory
on the noncommutative plane is essentially trivial.

In Sect. 8 we develop a graphical method of analyzing the instanton contributions
to Yang-Mills theory which works for θ irrational, rational or vanishing. This graphical
approach is applied to the universal expression (1.2) for the partition function to show
that the vacuum energy, along with a certain class of topological observables, of Yang-
Mills theory on the noncommutative torus are smooth functions of θ . Finally, in Sect. 9
we end with a description of the moduli spaces of classical solutions of Yang-Mills
theory on the noncommutative torus. The partition function in the weak coupling limit
agrees with that of the commutative gauge theory, except that now it formally computes
the symplectic volume of the moduli space of all (not necessarily flat) constant curvature
gauge connections on the torus. The rearrangement of the series (1.2) into distinct gauge
inequivalent instanton configurations is described. They are determined by rearranging
the critical partition components (pk, qk) into distinct relatively prime pairs (p′

a, q
′
a) of

topological numbers with (pa, qa) = Na (p
′
a, q

′
a). We will see that the moduli space of

such gauge orbits is given by

Mp,q =
∏
a≥1

SymNa T̃
2
, (1.3)

where SymNa T̃2 is the symmetric product of a certain dual, ordinary two-torus T̃2. This
generalizes the moduli space SymN T̃2 of flat gauge connections in commutative U(N)
gauge theory. The instanton moduli space (1.3) has a natural physical interpretation
in terms of that for a collection of distinct configurations of Na free indistinguishable
D0-branes in codimension two. In particular, the point-like instanton singularities are
not resolved by noncommutativity. We will show how the orbifold singularities of (1.3)
can be used to systematically construct the gauge inequivalent contributions to Yang-
Mills theory. Such an explicit classification is only possible within the noncommutative
setting. We shall find that, like for the instanton contributions to ordinary Yang-Mills
theory, there are a finite number of quantum fluctuations about each gauge inequivalent
classical solution. In contrast to the commutative case, however, for irrational θ there
are infinitely many distinct instanton contributions to the path integral for fixed quantum
numbers (p, q).

2. Noncommutative Gauge Theory in Two Dimensions

To set notation and conventions, we will start by reviewing some well-known facts
about Yang-Mills theory on a noncommutative two-torus [1, 37, 38]. Our presentation
will exhibit the interplay between the physical, quantum field theoretical approach and
the mathematical approach within the framework of noncommutative geometry, as both
descriptions will be fruitful for our subsequent analysis in later sections. We will also
give the first indication that this theory is exactly solvable. For simplicity, we consider
a square torus of radii R.

2.1. The noncommutative torus. The noncommutative two-torus may be defined as the
abstract, noncommutative, associative unital ∗-algebra generated by two unitary opera-
tors Ẑ1 and Ẑ2 with the commutation relation

Ẑ1Ẑ2 = e 2π i θ Ẑ2Ẑ1 , (2.1)
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where θ is the real-valued, dimensionless noncommutativity parameter. Unless otherwise
specified, we will assume that θ ∈ (0, 1) is an irrational number. The “smooth” comple-
tion Aθ of the algebra generated by Ẑ1 and Ẑ2 consists of the power series

f̂ =
∞∑

m1=−∞

∞∑
m2=−∞

f(m1,m2)
e π i θ m1m2 Ẑ

m1
1 Ẑ

m2
2 , (2.2)

where the coefficientsf(m1,m2)
are Schwartz functions of (m1,m2) ∈ Z

2, i.e.f(m1,m2)
→

0 faster than any power of |m1| + |m2| as |m1| + |m2| → ∞. The phase factor in (2.2)
is inserted to symmetrically order the operator product.

There are natural, anti-Hermitian linear derivations ∂̂1 and ∂̂2 of the algebra Aθ which
are defined by the commutation relations

[
∂̂1 , ∂̂2

]
= i� · I , (2.3)

[
∂̂i , Ẑj

]
= i

R
δij Ẑj , i, j = 1, 2 , (2.4)

where � ∈ R can be interpreted as a background magnetic flux and I is the unit of Aθ .
From (2.3) it follows that the Heisenberg Lie algebra L� acts on Aθ by infinitesimal
automorphisms. This action defines a Lie algebra homomorphism X 	→ ∂̂X, X ∈ L�,

i.e.
[
∂̂X , ∂̂Y

]
= ∂̂[X,Y ], yielding a linear map

∂̂ : Aθ −→ Aθ ⊗ L∗
� . (2.5)

The unique normalized trace on Aθ is given by projection onto zero modes as

Tr f̂ = f(0,0) , (2.6)

which defines a positive linear functional Aθ → C, i.e. Tr f̂ †f̂ ≥ 0 for any f̂ ∈ Aθ .

The trace (2.6) satisfies Tr f̂ † = Tr f̂ , and it is invariant under the action of the Lie
algebra L� of automorphisms of Aθ , i.e.

Tr
[
∂̂i , f̂

]
= 0 . (2.7)

The conventional field theoretic approach employs a “dual” description to this analytic
one in terms of functions on an ordinary torus T2. Let x1, x2 ∈ [0, 2πR] be the coor-
dinates of T2. Then given any element f̂ ∈ Aθ with series expansion of the form (2.2),
we can use the Schwartz sequence f(m1,m2)

to define a smooth function on the torus by
the Fourier series

f (x) =
∞∑

m1=−∞

∞∑
m2=−∞

f(m1,m2)
e imixi/R . (2.8)

This establishes a one-to-one correspondence between elements of the abstract algebra
Aθ and elements of the algebra C∞(T2) of smooth functions on the torus. Under this
correspondence, the noncommutativity of Aθ is encoded in the multiplication relation

f̂ ĝ = f̂ � g , (2.9)
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where the star-product is given by

(f � g)(x) =
∞∑
n=0

(
−π iR2θ

)n n∑
r=0

(−1)r

(n− r)! r!

(
∂r1 ∂

n−r
2 f (x)

)(
∂n−r1 ∂r2g(x)

)
(2.10)

with ∂i = ∂/∂xi . In addition, the actions of the derivations (2.4) correspond to ordinary
differentiation of functions,

[
∂̂i , f̂

]
= ∂̂if , (2.11)

while the canonical normalized trace (2.6) can be represented in terms of the classical
average of functions over the torus,

Tr f̂ = 1

4π2R2

∫
d2x f (x) . (2.12)

Integration by parts also shows that
∫

d2x (f � g)(x) =
∫

d2x f (x) g(x) . (2.13)

Here and in the following, unless specified otherwise, all coordinate integrations extend
over T2.

2.2. Gauge theory on the noncommutative torus. In the noncommutative setting, the
generalizations of vector bundles are provided by projective modules, which are vec-
tor spaces on which the algebra is represented. Let E be a finitely-generated projective
module over the algebra Aθ . We consider only right modules in the following. The free
module AM

θ = Aθ ⊕ · · · ⊕ Aθ consists of M-tuples ξ̂ = (f̂1, . . . , f̂M) of elements
f̂a ∈ Aθ . It is the analog of a trivial vector bundle. Let P ∈ MM(Aθ ) be a projector with

E = P AM
θ , P2 = P = P† , (2.14)

where MM(Aθ ) = Aθ ⊗ MM is the algebra of M × M matrices with entries in the
algebra Aθ , whose multiplication is the tensor product of the multiplication in Aθ with
ordinary matrix multiplication. Alternatively, we may consider E as the subspace of
elements ξ̂ ∈ AM

θ with P ξ̂ = ξ̂ .
The endomorphism algebra EndAθ

(E) = E∗ ⊗Aθ
E of the module E is the algebra

of linear maps E → E that commute with the right action of Aθ on E . It is isomorphic
to the subalgebra of Aθ -valued matrices Â ∈ MM(Aθ ) which obey P ÂP = Â. This
means that the identity operator on E can be identified with the projector, IE = P. To
simplify some of the formulas which follow, we shall frequently refrain from writing IE
explicitly. Let N ≤ M be the largest integer such that the module E can be represented
as a direct sum E = E ′ ⊕· · ·⊕E ′ ofN isomorphic Aθ -modules. Then EndAθ

(E ′) ∼= Aθ ′
is also a noncommutative torus [37], where θ ′ is the dual noncommutativity parameter
which depends on θ and the projective module E , so that

EndAθ
(E) ∼= MN(Aθ ′) . (2.15)
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The derivations ∂̂i naturally extend to operators on AM
θ via the definition

[
∂̂i , ξ̂

]
=
([
∂̂i , f̂1

]
, . . . ,

[
∂̂i , f̂M

])
(2.16)

for ξ̂ = (f̂1, . . . , f̂M) ∈ AM
θ . Then P ◦ ∂̂i ◦ P is a linear derivation on E . The trace Tr

on Aθ also naturally extends to a trace on EndAθ
(E) defined by

Tr E = Tr ⊗ tr M , (2.17)

where tr M is the usualM×M matrix trace. On E there is a natural Aθ -valued inner prod-
uct which is compatible with the Aθ -module structure of E and is defined on M-tuples
ξ̂ = (f̂1, . . . , f̂M) and η̂ = (ĝ1, . . . , ĝM) by

〈
ξ̂ , η̂

〉
Aθ

=
M∑
a=1

f̂ †
a ĝa . (2.18)

The object
〈
ξ̂ , η̂

〉
= Tr

〈
ξ̂ , η̂

〉
Aθ

(2.19)

then defines an ordinary Hermitian scalar product E ×E → C. This turns E into a sepa-
rable Hilbert space. We will present the explicit classification of the projective modules
over the noncommutative torus in Sect. 4.1.

We now define a connection on a module E over the noncommutative torus to be a
pair of linear operators ∇̂1, ∇̂2 : E → E satisfying

[
∇̂i , Ẑj

]
= i

R
δij Ẑj , i, j = 1, 2 , (2.20)

where in this equation the Ẑj are regarded as operators E → E representing the right
action on E of the corresponding generators of Aθ . When acting on elements of E , the
requirement (2.20) is just the usual Leibnitz rule with respect to the derivations ∂̂1 and
∂̂2. In an analogous way to these operators, there is a linear map X 	→ ∇̂X, X ∈ L�,
which defines a vector space homomorphism

∇̂ : E −→ E ⊗C L∗
� . (2.21)

This definition makes use of the bimodule structure on Aθ ⊗ L∗
�. From the definitions

(2.4) and (2.20) it follows that an arbitrary connection ∇̂i can be expressed in the form

∇̂i = ∂̂i + Âi , (2.22)

where Âi ∈ EndAθ
(E) are N × NAθ ′ -valued matrices which we will refer to as gauge

fields. We stress that here, and below, the quantity ∂̂i is implicitly understood as the
operator P ◦ ∂̂i ◦ P on AM

θ → E . The same is true of similarly defined objects.
In the following we shall work only with connections which are compatible with the

inner product (2.18), i.e. those which satisfy

〈
∇̂i ξ̂ , η̂

〉
Aθ

+
〈
ξ̂ , ∇̂i η̂

〉
Aθ

=
[
∂̂i ,

〈
ξ̂ , η̂

〉
Aθ

]
(2.23)
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for any ξ̂ , η̂ ∈ E . The compatibility condition (2.23) implies that ∇̂i is an anti-Hermitian
operator with respect to the scalar product (2.19). It also implies that its curvature[
∇̂1 , ∇̂2

]
, which is a two-form on the Heisenberg algebra L� with values in the space of

linear operators on E , commutes with the action of Aθ on E , and hence takes values in the
space EndH

Aθ
(E) of anti-Hermitian endomorphisms of E .1 The space of all compatible

connections on a module E will be denoted by C(E). From (2.20) and (2.23) it follows
that C(E) is an affine space over the vector space of linear maps L� → EndH

Aθ
(E).

In this paper we will be interested in evaluating the partition function of two dimen-
sional quantum Yang-Mills theory on the noncommutative torus, which is defined for-
mally by the infinite-dimensional integral

Z(g2, θ,�, E) = 1

vol G(E)
∫

C(E)
DÂ e −S

[
Â
]
, (2.24)

where the Yang-Mills action on C(E) is defined for an arbitrary connection (2.22) by

S
[
Â
]

= S
[
∇̂
]

= 2π2R2

g2 Tr E
[
∇̂1 , ∇̂2

]2
, (2.25)

with g theYang-Mills coupling constant of unit mass dimension. The area factor 4π2R2

is inserted to make the action dimensionless. Here G(E) is the group of gauge transfor-
mations, which will be described in the next subsection, and vol G(E) is its volume. The
measure DÂ, and also the volume vol G(E), will be defined more precisely in Sect. 3.
By using the operator-field correspondence of the previous subsection, we can express
(2.24) in a more standard quantum field theoretical form as the Euclidean Feynman path
integral

Z(g2, θ,�, E) = 1

vol G(E)
∫

C(E)
DA e −S[A] , (2.26)

where

S[A] = 1

2g2

∫
d2x tr N

(
FA(x)+� · IE

)2
(2.27)

with

FA = ∂1A2 − ∂2A1 + A1 �
′ A2 − A2 �

′ A1, (2.28)

the noncommutative field strength of the anti-HermitianU(N) gauge fieldAi . The mul-
tiplication in (2.28) is the tensor product of the associative star-product (2.10), defined
with θ replaced by its dual θ ′, and ordinary matrix multiplication. This extended star-
product is still associative.

1 Usually one would define the curvature to be a measure of the deviation of the mapping X 	→ ∇̂X
from being a homomorphism of the Lie algebra (2.3) of automorphisms of Aθ . This means that the

curvature should be defined as
[
∇̂1 , ∇̂2

]
−� · IE . However, later on we will wish to work with an action

which is explicitly invariant under Morita duality, which can only be accomplished with the definition of
curvature given in the text. This change of convention is mathematically harmless since it corresponds
to a shift of the curvature by the central element of the Heisenberg algebra. Physically, it will only add
constants to the usual gauge theory action and so will not affect any local dynamics, only topological
aspects.
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2.3. Gauge symmetry and area preserving diffeomorphisms. Let us now describe the
symmetries of the noncommutative Yang-Mills action (2.25). It is invariant under any
covariant transformation of the gauge connection of the form

∇̂i 	−→ Û ∇̂i Û† , (2.29)

where Û ∈ EndAθ
(E) is a unitary endomorphism of the projective module E ,

Û† Û = Û Û† = IE , (2.30)

which determines an inner automorphism of the right action of Aθ on E . In other words,
Û ∈ UN(Aθ ′), where UN(Aθ ′) is the group of unitary elements of the algebra MN(Aθ ′).
These gauge transformations comprise operators of the form

Û = IE + K̂ , (2.31)

where K̂ lies in an appropriate completion of the algebra of finite rank endomorphisms
of E [24, 25]. These latter endomorphisms are defined as follows. For any η̂, η̂′ ∈ E , let∣∣η̂〉 〈η̂′∣∣ be the operator defined by

∣∣η̂〉 〈η̂′∣∣ ξ̂ = η̂
〈
η̂′ , ξ̂

〉
Aθ

(2.32)

for ξ̂ ∈ E , with adjoint
∣∣η̂′ 〉 〈η̂∣∣. The Aθ -linear span of endomorphisms of the form (2.32)

forms a self-adjoint two-sided ideal in EndAθ
(E). Since, as mentioned before, E is a sep-

arable Hilbert space, this ideal is isomorphic to the infinite-dimensional algebra M∞
of finite rank matrices. Its operator norm closure is the algebra End∞

Aθ
(E) of compact

endomorphisms of the module E .
The Schwartz restriction on the expansion (2.2) implies that elements f̂ ∈ Aθ act

as compact operators on E [26]. Therefore, in (2.29) we should restrict to those unitary
endomorphisms (2.31) with K̂ ∈ End∞

Aθ
(E). We denote this infinite dimensional Lie

group by U∞(E). It is the operator norm completion of the infinite unitary group U(∞)

obtained by taking K̂ to be a finite rank endomorphism. 2 By Palais’ theorem [39],
these two unitary groups have the same homotopy type, and their homotopy groups are
determined by Bott periodicity as

πk

(
U∞(E)

)
= πk

(
U(∞)

)
=
{

Z , k odd ,
0 , k even . (2.33)

In particular, the gauge symmetry group is connected. It should be pointed out here that
this is only a local description of the full gauge group of noncommutativeYang-Mills the-
ory. The group of connected components of G(E) acts on the gauge orbit space, obtained
by quotienting C(E) by the action of the group G0(E) of smooth maps T2 → U∞(E),
as a global symmetry group [1, 25, 27].

By using (2.22), one finds that the infinitesimal form of the gauge transformation rule
(2.29) is Âi 	→ Âi + δ

λ̂
Âi , where

δ
λ̂
Âi = −

[
∂̂i , λ̂

]
+
[
λ̂ , Âi

]
(2.34)

2 The gauge group can also be chosen to be smaller than U∞(E) by completing U(∞) in other Sch-
atten norms [25–27]. The various choices all have the same topology and group theory, and so we shall
work for definiteness with only the compact unitaries defined above.
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and λ̂ is an anti-Hermitian compact operator on E . In terms of gauge potentials on the
ordinary torus T2 this reads

δλAi = −∂iλ+ λ �′ Ai − Ai �
′ λ , (2.35)

where λ(x) is a smooth, anti-HermitianN ×N matrix-valued field on T2. The noncom-
mutative gauge transformations (2.35) mix internal, U(N) gauge degrees of freedom
with general coordinate transformations of the torus. Their geometrical significance
has been elucidated in [26] by exploiting the relationship between appropriate com-
pletions of U(∞) and canonical transformations. The Lie algebra of noncommutative
gauge transformations (2.35) is equivalent to the Fairlie-Fletcher-Zachos trigonometric
deformation [40] of the algebra w∞(T2) of area-preserving diffeomorphisms of T2.

Therefore, the gauge symmetry group of noncommutative Yang-Mills theory in two-
dimensions consists of area-preserving diffeomorphisms, which “almost” makes it a
topological field theory. Its gauge symmetry “almost” coincides with general covari-
ance, thereby killing most of its degrees of freedom. From this feature we would expect
the theory to contain no local propagating degrees of freedom, and hence to be exactly
solvable. This reasoning is further supported by the Seiberg-Witten map [41] and the
exact solvability of ordinary, commutative Yang-Mills gauge theory in two dimensions.
Note however that the topological nature here is quite different than that of the commu-
tative case, because in the noncommutative setting it arises due to the gauge symmetry of
the theory, i.e. an inner automorphism of the algebra of functions, while in the commuta-
tive case it corresponds to an outer automorphism which preserves the local area element
4π2R2 d2x. For this reason, the partition function will only depend on the dimensionless
combination 4π2 g2 R2 of the Yang-Mills coupling constant and the area of the surface.
This fact makes it difficult to make sense of the theory on a non-compact surface.

In contrast, this argument breaks down for noncommutative tori of dimension larger
than two. In any even dimension the transformations (2.35) generate symplectic diffe-
omorphisms [26], i.e. coordinate transformations which leave the symplectic two-form
of the torus invariant. These are the diffeomorphisms which preserve the Poisson bi-
vector defining the star-product in (2.10). In general, these transformations generate a
group that is much smaller than the group of volume-preserving diffeomorphisms. In the
D-brane interpretation, this latter group would be the natural worldvolume symmetry
group of a static brane. However, particular to the two-dimensional case is the fact that
canonical transformations and area-preserving diffeomorphisms are the same.

3. Localization of the Partition Function

The path integral (2.24) for quantum Yang-Mills theory on the noncommutative torus
has several features in common with non-Abelian gauge theory defined on an ordinary,
commutative torus. Formally, it can be regarded as a certain “large N limit” of ordinary
U(N)Yang-Mills where we have generalized the gauge fields to measurable operators.
In this section we will exploit these similarities to show how one may compute exactly
the partition function for noncommutative gauge theory on the torus via the technique
of non-Abelian localization [29]. The first key observation we shall make is that the
integration measure DÂ in (2.24) may be naturally identified with the gauge invariant
Liouville measure induced on the infinite dimensional operator space of compatible
connections C(E) by a symplectic two-form ω[·, ·]. Moreover, the volume of the gauge
group vol G(E) is determined formally from the volume form on G(E) associated with
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the metric
(
λ̂ , λ̂

)
= Tr E λ̂

2 on EndH,∞
Aθ

(E). This metric also induces an invariant qua-

dratic form (·, ·) on the dual Lie algebra
(

EndH,∞
Aθ

(E)
)∗

, such that the noncommutative

Yang-Mills action (2.25) is proportional to the square of the moment map µ correspond-
ing to the symplectic action of G(E) on C(E). Equivalently, the Lie algebra action of
the group of gauge transformations G(E) coincides with a system of Hamiltonian flows
defined by the Yang-Mills action. In particular, this implies that the action (2.25) is a
gauge-equivariant Morse function on C(E) [35, 36].

Consequently, the partition function ofYang-Mills theory defined on the noncommu-
tative torus can be expressed formally as an infinite-dimensional statistical mechanics
model

Z(g2, θ,�, E) = 1

vol G(E)
∫

C(E)
exp

[
ω − β

2

(
µ , µ

)]
, (3.1)

where

β = 4π2R2

g2 . (3.2)

As shown in [29], path integrals of the form (3.1) are formally calculable through a
generalized non-Abelian localization technique. Here “localization” refers to the fact
that the path integral (3.1) is given exactly by the sum over contributions from neigh-
bourhoods of stationary points of the Yang-Mills action (2.25). If we denote the discrete
set of all such critical points by P(θ, E), then

Z(g2, θ,�, E) =
∑

Âcl∈P(θ,E)
W
[
Âcl
]

e − β
2

(
µ[Âcl] , µ[Âcl]

)
, (3.3)

where the function W gives the contributions due to the quantum fluctuations about the
stationary points. In the remainder of this section we will derive all of these properties
in some detail.

3.1. Symplectic structure. Let E be a finitely-generated projective module over the non-
commutative torus, and consider the space C(E) of compatible connections on E intro-
duced in Sect. 2.2. The group of gauge transformations G(E) acts on C(E) and it has
Lie algebra EndH,∞

Aθ
(E) consisting of anti-Hermitian compact operators on E . On this

Lie algebra we introduce a natural invariant, non-degenerate quadratic form by
(
λ̂ , λ̂′

)
= Tr E λ̂ λ̂

′ , λ̂, λ̂′ ∈ EndH,∞
Aθ

(E) . (3.4)

The infinitesimal gauge transformations (2.34) define a group action on C(E) because
[
δ
λ̂
, δ

λ̂′
]
Âi = δ[

λ̂ , λ̂′
]Âi . (3.5)

Consider the representation (2.3) of the Heisenberg algebra L� in the Lie algebra of
derivations of Aθ , and let 
(L∗

�) = ⊕n≥0

n(L∗

�) be the Z+-graded exterior algebra
of L�. To this representation there corresponds the graded differential algebra

�(E) =
⊕
n≥0

�n(E) , �n(E) = EndH,∞
Aθ

(E)⊗C 

n
(L∗

�

)
(3.6)
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of left-invariant differential forms on exp(L�) with coefficients in EndH,∞
Aθ

(E). For

instance, the curvature
[
∇̂1 , ∇̂2

]
= F̂

Â
+� · IE ∈ �2(E) with G(E) acting infinitesi-

mally through

δ
λ̂
F̂
Â

=
[
λ̂ , F̂

Â

]
(3.7)

with the usual product on the differential algebra (3.6) implicitly understood. Functional
differentiation at a point Â ∈ C(E) is then defined through

δ

δÂ
f
[
â
] ≡ d

dt
f
[
Â+ t â

]∣∣∣∣
t=0

, â ∈ �1(E) . (3.8)

As mentioned in Sect. 2.2, C(E) is an affine space over the vector space EndH,∞
Aθ

(E)⊗C

L∗
� of linear maps L� → EndH,∞

Aθ
(E), whose tangent space can be identified with the

cotangent space EndH,∞
Aθ

(E)⊗C

1(L∗

�) = �1(E). A natural symplectic structure may
then be defined on C(E) by the two-form

ω
[
â, â′] = Tr E â ∧ â′ , â, â′ ∈ �1(E) , (3.9)

where3

â ∧ â′ = â1 â
′
2 − â2 â

′
1 . (3.10)

Since (3.9) is independent of the point Â ∈ C(E) at which it is evaluated, it is closed,
i.e. δω/δÂ = 0, and it is also clearly non-degenerate. In fact, because of the identities
(2.12), (2.13) and (2.17), the symplectic two-form (3.9) coincides with the canonical,
commutative one that is usually introduced in ordinary two-dimensional U(N) Yang-
Mills theory [35]. Its main characteristic is that it is invariant under the infinitesimal
action

δ
λ̂
âi =

[
λ̂ , âi

]
(3.11)

of the gauge group G(E) on C(E),
ω
[
â, δ

λ̂
â′]+ ω

[
δ
λ̂
â, â′] = 0 . (3.12)

3.2. Hamiltonian structure. Since C(E) is contractible and G(E) acts symplectically on
C(E) with respect to the symplectic structure (3.9), there exists a moment map

µ : C(E) −→
(

EndH,∞
Aθ

(E)
)∗

(3.13)

which naturally generates a system of Hamiltonians H
λ̂

: C(E) → R by
(
µ
[
Â
]
, λ̂
)

= H
λ̂

[
Â
]
. (3.14)

3 Note that components associated with the central elements of the Heisenberg algebra L� trivially
drop out of all formulas such as (3.10), and hence will not be explicitly written in what follows.
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To determine the moment map explicitly in the present case, we use the Hamiltonian
flow condition

δ

δÂ
H
λ̂

[
â
] = −ω

[
δ
λ̂
Â , â

]
, â ∈ �1(E) , (3.15)

which is equivalent to the G(E)-invariance (3.12). Using (2.34) and (3.9), the condition
(3.15) reads

δ

δÂ
H
λ̂

[
â
] = − Tr E

[
∇̂ , λ̂

]
∧ â . (3.16)

Since the trace is invariant under the natural action of the connection on EndAθ
(E), i.e.

Tr E
[
∇̂i , λ̂

]
= 0 , (3.17)

using the Leibnitz rule we can write (3.16) equivalently as

δ

δÂ
H
λ̂

[
â
] = Tr E

[
∇̂ ∧, â

]
λ̂ . (3.18)

Let us now compare (3.18) with the first order perturbation of the shifted field strength
in a neighbourhood of a point Â ∈ C(E), which is easily computed to be

F̂
Â+t â +� · IE = F̂

Â
+� · IE + t

[
∇̂ ∧, â

]
+O

(
t2
)
. (3.19)

By using (3.8) we may thereby write (3.18) as

δ

δÂ
H
λ̂

[
â
] = δ

δÂ
Tr E

(
F̂
Â

+� · IE
)
λ̂ , (3.20)

which is equivalent to

H
λ̂

[
Â
]

=
(
F̂
Â

+� · IE , λ̂
)

(3.21)

in the quadratic form (3.4). Comparing with (3.14) we see that the moment map for the
action of the noncommutative gauge group on the space C(E) is the shifted noncommu-
tative field strength,

µ
[
Â
]

= F̂
Â

+� · IE . (3.22)

Since π2

(
U∞(E)

)
= 0, the map λ̂ 	→ H

λ̂
determines a homomorphism from the Lie

algebra EndH,∞
Aθ

(E) to the infinite-dimensional Poisson algebra induced on the space of
functions C(E) → R by the symplectic two-form (3.9).
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3.3. Cohomological formulation of noncommutative Yang-Mills theory. The fact that
noncommutative gauge theory is so naturally a Hamiltonian system leads immediately
to the localization of the path integral (2.24) onto the critical points of the action (2.25).
We will now sketch the argument. First of all, the integration measure appearing in (2.24)
is defined to be the Liouville measure corresponding to the symplectic two-form (3.9),4

DÂ = dÂ
∫

��1(E)
dψ̂ e − iω

[
ψ̂ , ψ̂

]
, (3.23)

where dÂ is the “ordinary” Feynman measure which may be defined by using the iden-
tification (2.15) and the operator-field correspondence as

dÂ =
N∏
a=1

N∏
b=1

∏

x∈T2

dAab1 (x) dAab2 (x) . (3.24)

In (3.23),� denotes the parity reversion operator, ψ̂ are the odd generators of functions
on the infinite dimensional superspace

�(E) = C(E)⊕��1(E) , (3.25)

and dÂ dψ̂ is the corresponding functional Berezin measure.
The result of the previous subsection shows that the noncommutative Yang-Mills

action (2.25) is proportional to the square of the moment map, in the quadratic form
(3.4), for the symplectic action of the gauge group G(E) on C(E),

S
[
Â
]

= 2π2R2

g2

(
µ
[
Â
]
, µ
[
Â
])

. (3.26)

We can linearize the action (3.26) in µ via a functional Gaussian integration over an
auxiliary field φ̂ ∈ �0(E), and by using (3.14) we can write the partition function (2.24)
as

Z(g2, θ,�, E) = 1

vol G(E)
∫

�0(E)
dφ̂ e − 1

2β

(
φ̂ , φ̂
)

×
∫

�(E)
dÂ dψ̂ e − i

(
ω[ψ̂,ψ̂]−H

φ̂
[Â]
)
, (3.27)

with the measure dφ̂ defined analogously to (3.24). Note that the operator φ̂ appears
only quadratically in (3.27) and thereby essentially corresponds to a commutative field.
Because the functional integration measures in (3.27) are the same as those which occur
in the corresponding commutative case, the only place that noncommutativity is present

4 To prove this formula, one needs to carefully study the gauge-fixed path integral measure. Since
the gauge-fixed quantum action in two dimensions is Gaussian in the Faddeev-Popov ghost fields, and
(3.9) coincides with the symplectic structure of the commutative case, the same arguments as in the
commutative case [14] apply here and (3.23) is indeed the appropriate gauge-invariant measure to use
on C(E).
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is in the field strength which appears in the moment map (3.22). Indeed, it is essen-
tially this feature that leads to the exact solvability of the model, in parallel with its
commutative limit.

The representation (3.27) of noncommutative gauge theory is the crux of the matter.
Notice first that in the weak coupling limit g2 = 0 (β = ∞), the noncommutative field

φ̂ appears linearly in (3.27), and its integration yields the constraint µ
[
Â
]

= 0 which

localizes the path integral onto gauge connections Â of constant curvature F̂
Â

= −�·IE .
The partition function in this limit then formally computes the symplectic volume of the
moduli space of constant curvature connections modulo noncommutative gauge trans-

formations. The key property which enables this localization is that Â 	→ µ
[
Â
]

is a

complete Nicolai map which trivializes the integration over C(E). In this respect, the
g2 = 0 limit of (3.27) is a topological gauge theory, and indeed it coincides with a non-
commutative version of BF theory in two dimensions [42]. What is remarkable though
is that the same Nicolai map appears to trivialize to the full theory (3.27) at g2 �= 0 to
a Gaussian integral over C(E). This works up to the points in C(E) where this map has
singularities, which coincide with the solutions of the classical equations of motion of
noncommutative gauge theory. Thus in the generic case the partition function receives
only contributions from the classical noncommutative gauge field configurations.

To make these arguments precise, we first observe that the integral over the superspace
�(E) in (3.27) is formally the partition function of an infinite dimensional statistical
mechanics system, and, in the present situation whereby there is a symplectic group

action generated by the HamiltonianH
φ̂

[
Â
]
, it is known that such integrals can be typ-

ically reduced to finite dimensional integrals, or sums, determined by the critical points

of H
φ̂

[
Â
]

[34]. The main difference here is that there is no temperature parameter in

front of the Hamiltonian through which to expand, but rather the noncommutative field
φ̂. The argument for localization can nonetheless be carried through by adapting the
non-Abelian localization principle [29] to the present noncommutative setting. This is
achieved through a study of the cohomology of the infinite dimensional operator

Q
φ̂

= Tr E
(
ψ̂i

δ

δÂi
+
[
∇̂i , φ̂

] δ

δψ̂i

)
(3.28)

which is defined on the space

�G(E) = Sym�0(E)⊗
(
C(E)⊕��(E)

)
, (3.29)

where Sym�0(E) is the algebra of gauge-covariant polynomial functions on EndH,∞
Aθ

(E).
The linear derivation (3.28) acts on the basic multiplet

(
Âi , ψ̂i , φ̂

)
of the noncommu-

tative quantum field theory (3.27) through the transformation laws

[
Q
φ̂
, Âi

]
= ψ̂i ,

{
Q
φ̂
, ψ̂i

}
=
[
∇̂i , φ̂

]
,

[
Q
φ̂
, φ̂
]

= 0 , (3.30)
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and its square coincides with the generator of an infinitesimal gauge transformation with
gauge parameter φ̂,

(
Q
φ̂

)2 = δ
φ̂
. (3.31)

The key property of the operator (3.28) is that the Boltzmann weight over �(E) in
(3.27) is annihilated by it,

Q
φ̂

(
Tr E ψ̂ ∧ ψ̂ −H

φ̂

[
Â
])

= 0 , (3.32)

where we have used the Hamiltonian flow equation (3.16). Via integration by parts over
the superspace �(E), this implies that the partition function (3.27) is unchanged under
multiplication of the Boltzmann factor by Q

φ̂
α for any gauge-invariant α ∈ �G(E), i.e.

(
Q
φ̂

)2
α = 0 . (3.33)

In particular, we may write (3.27) in the form

Z(g2, θ,�, E) = 1

vol G(E)
∫

�0(E)
dφ̂ e − 1

2β

(
φ̂ , φ̂
)

×
∫

�(E)
dÂ dψ̂ e − i

(
ω[ψ̂,ψ̂]−H

φ̂
[Â]−t Q

φ̂
α[Â,ψ̂]

)
. (3.34)

That the right-hand side of (3.34) is independent of the parameter t ∈ R for gauge invari-
ant α follows by noting that its derivative with respect to t vanishes upon integrating
by parts over �(E), and using (3.32) and (3.33) along with the Leibnitz rule for the
functional derivative operator (3.28). This will be true so long as the perturbation by
Q
φ̂
α yields an effective action which has a nondegenerate kinetic energy term, and that it

does not allow any new Q
φ̂

fixed points to flow in from infinity in field space. The t = 0
limit of (3.34) coincides with the original partition function of noncommutative gauge
theory, while its t → ∞ limit yields the desired reduction for appropriately chosen α.

At this stage we will choose

α
[
Â , ψ̂

]
= 4π2R2 Tr E ψ̂

i
[
∇̂i , µ

[
Â
]]
. (3.35)

Substituting (3.35) into (3.34) using (3.28), performing the Gaussian integral over φ̂ ∈
�0(E), and taking the large t limit, we arrive at

Z(g2, θ,�, E)
= 1

vol G(E)
∫

�(E)
dÂ dψ̂ e − Tr E

(
i ψ̂∧ψ̂+ β

2 µ[Â]2
)

× lim
t→∞ exp

(
− (4π

2R2)3

2g2 t2 Tr E
[
∇̂i ,

[
∇̂i , µ

[
Â
]]]2

)

× exp
{

4π2 iR2 t Tr E
(
µ
[
Â
] [
ψ̂i , ψ̂

i
]

−
[
∇̂i , ψ̂ i

] [
∇̂ ∧, ψ̂

])}
, (3.36)
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where we have further applied the Leibnitz rule along with (3.17), and also dropped
overall constants for ease of notation. The ψ̂ integrations in (3.36) produce polyno-
mial functions of the parameter t , and the Â integration is therefore suppressed by the
Gaussian term in t as t → ∞. Nondegeneracy of the quadratic form (3.4) implies that
the functional integral thereby becomes localized near the solutions of the equation

[
∇̂i ,

[
∇̂i , µ

[
Â
]]]

= 0 , (3.37)

and it can be written as a sum over contributions which depend only on local data near
the solutions of (3.37). Along with (3.17) and the Leibnitz rule, Eq. (3.37) implies

0 = Tr E µ
[
Â
] [

∇̂i ,
[
∇̂i , µ

[
Â
]]]2

= − Tr E
[
∇̂i , µ

[
Â
]]2

, (3.38)

which again by the non-degeneracy of (3.4) is equivalent to
[
∇̂i , µ

[
Â
]]

= 0 . (3.39)

Sinceµ
[
Â
]

=
[
∇̂1 , ∇̂2

]
, Eqs. (3.39) coincide with the classical equations of motion of

the action (2.25), i.e. δS
[
Â
]
/δÂ = 0. This establishes the localization of the partition

function (2.24) of noncommutative gauge theory in two dimensions onto the space of
solutions of the noncommutative Yang-Mills equations. This space will be studied in
detail in the next section.

Although the above technique leads to a formal proof of the localization of the parti-
tion function onto classical gauge field configurations, it does not yield any immediate
useful information as to the precise form of the function W in (3.3) encoding the quan-
tum fluctuations about the classical solutions. The infinite-dimensional determinants that
arise from (3.36) have very large symmetries and are difficult to evaluate. The fluctuation
determinants W will be determined later on by another technique. From a mathemat-
ical perspective, the action in (3.27) over �(E) is the G(E)-equivariant extension of
the moment map on C(E), the integration over �(E) defines an equivariant differential
form, and the integral over φ̂ ∈ �0(E) defines equivariant integration of such forms.
The operator (3.28) is the Cartan differential for the G(E)-equivariant cohomology of
C(E) [34]. The localization may then also be understood via a mapping onto a purely
cohomological noncommutative gauge theory in the limit t → ∞. These aspects will
not be developed any further here.

4. Classification of Instanton Contributions

In the previous section we proved that the partition function is given by a sum over
contributions localized at the classical solutions of the noncommutative gauge theory.
In this section we will classify the instantons of two-dimensional gauge theory on the
noncommutative torus, and later on explicitly evaluate their contribution to the parti-
tion function. By an “instanton” here we mean a solution Ai = Acl

i of the classical
noncommutative field equations

∂iFA + Ai �
′ FA − FA �

′ Ai = 0 (4.1)
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which is not a gauge transformation of the trivial solution Ai = 0. Here FA is the non-
commutative field strength (2.28). Note that this definition also includes the unstable
modes. In the commutative case, instanton contributions have a well-known geometrical
classification based on the fundamental group of the spacetime [35]. In the noncommu-
tative setting, however, the role of homotopy groups is played by the K-theory of the
algebra and one must resort to an algebraic characterization of the contributing projective
modules. For irrational values of the noncommutativity parameter θ , an elegant classi-
fication of the stationary points of noncommutative Yang-Mills theory has been given
in [36]. In what follows we shall modify this construction somewhat to more properly
suit our purposes.

4.1. Heisenberg modules. In order to classify the instanton solutions of gauge theory
on the noncommutative torus, we need to specify the topological structures involved.
This requirement leads us into the explicit classification of the projective modules over
the algebra Aθ [1, 38]. They are classified by the K-theory group [43]

K0(Aθ ) = π1

(
U∞(Aθ )

)
= Z ⊕ Z . (4.2)

The cohomologically invariant trace Tr : Aθ → C induces an isomorphism K0(Aθ ) →
Z + Z θ ⊂ R of ordered groups. To each pair of integers (p, q) ∈ K0(Aθ ) there cor-
responds a virtual projector Pp,q with Tr ⊗ tr M Pp,q = p − qθ . However, given
a projective module E determined by a Hermitian projector P, positivity of the trace
implies

dim E = Tr E IE = Tr ⊗ tr M P = Tr ⊗ tr M P P† ≥ 0 , (4.3)

and so the stable (rather than virtual) projective modules are classified by the positive
cone of K0(Aθ ). Thus to each pair of integers (p, q) we can associate a Heisenberg
module Ep,q [44] of positive Murray-von Neumann dimension

dim Ep,q = p − qθ > 0 . (4.4)

Such pairs of integers parameterize the connected components of the infinite dimen-
sional manifold Grθ of Hermitian projectors of the algebra Aθ . In what follows we will
be interested in studying the critical points of the noncommutative Yang-Mills action
within a given homotopy class of Grθ . The integer

q = 1

2π i
Tr ⊗ tr M Pp,q

[
∂̂ , Pp,q

]
∧
[
∂̂ , Pp,q

]
(4.5)

is the Chern number (or magnetic flux) of the corresponding gauge bundle [45]. In the
case of irrational θ , any finitely generated projective module over the noncommutative
torus is either a free module or it is isomorphic to a Heisenberg module [46]. We will
view free modules as special instances of Heisenberg modules obtained by setting q = 0.
Any two projective modules representing the same element of K-theory are isomorphic.

The main property of Heisenberg modules that we will exploit in the following is
that they always admit a constant curvature connection ∇̂c ∈ Cp,q = C(Ep,q),

[
∇̂c

1 , ∇̂c
2

]
= i f · IEp,q , (4.6)
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where f ∈ R is a constant. In this subsection we shall set � = 0, as the background
magnetic flux can be reinstated afterwards by the shift f 	→ f +�. In the presence of
supersymmetry, such a field configuration gives rise to a BPS state [47, 48]. It also leads
to an explicit representation of the Heisenberg module Ep,q as the separable Hilbert
space [38]

Ep,q = L2(R)⊗ C
q
, q �= 0 . (4.7)

The Hilbert space L2(R) is the Schrödinger representation of the Heisenberg commu-
tation relations (4.6). By the Stone-von Neumann theorem, it is the unique irreducible
representation. The factor C

q defines the q × q representation of the Weyl-’t Hooft
algebra in two dimensions,

�1 �2 = e 2π ip/q �2 �1 , (4.8)

which may be solved explicitly by SU(q) shift and clock matrices. The generators of
the noncommutative torus are then represented on (4.7) as

Ẑi = e i f−1 ∇̂c
i /R ⊗ �i , (4.9)

and computing (2.1) using (4.6), (4.8) and the Baker-Campbell-Hausdorff formula
thereby leads to a relation between the noncommutativity parameter θ and the constant
flux f through

θ = − 1

2πR2f
+ p

q
. (4.10)

The Aθ -valued inner product on Ep,q is given by

〈
ξ̂ , η̂
〉
Aθ

=
∞∑

m1=−∞

∞∑
m2=−∞




∞∫

−∞
ds

[
�
m1
1 �

m2
2 ξ

(
s − m1

2πR2f

)]†
η(s) e 2π im2




× Ẑm1
1 Ẑ

m2
2 . (4.11)

For q = 0 we define Ep,0 to be the free module of rank p, i.e.

Ep,0 = L2(T2)⊗ C
p
. (4.12)

The Heisenberg module Ep,q so constructed coincides, in the D-brane picture, with the
Hilbert space of ground states of open strings stretching between a single Dr-brane and
p Dr-branes carrying q units of D(r − 2)-brane charge [41]. It is irreducible if and only
if the integers p and q are relatively prime. The Weyl-’t Hooft algebra (4.8) has a unique
irreducible representation (up to SU(q) equivalence) of dimension q/gcd(p, q) [49,
50], and so the rank N of the resulting gauge theory as defined in Sect. 2.2 is given by

N = gcd(p, q) . (4.13)

Furthermore, the commutant MN(Aθ ′) of Aθ in EndAθ
(Ep,q) is Morita equivalent to

the noncommutative torus with dual noncommutativity parameter θ ′ determined by the
SL(2,Z) transformation [38]

θ ′ = n− sθ

p − qθ
N , (4.14)

where n and s are integers which solve the Diophantine equation

ps − qn = N . (4.15)
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4.2. Stationary points of noncommutative gauge theory. We will now describe the crit-
ical points of the noncommutative Yang-Mills action (2.25). Let us fix a Heisenberg
module Ep,q over the noncommutative torus, which is labelled by a pair of integers
(p, q) obeying the constraint (4.4). From (4.6) and (4.10) it follows that this projective
module is characterized by a connection ∇̂c ∈ Cp,q of constant curvature

F̂
Âc = 1

2πR2

q

p − qθ
· IEp,q . (4.16)

Such constant curvature connections are of fundamental importance in finding solu-
tions of the noncommutative Yang-Mills equations because they not only solve (4.1),
but they moreover yield the absolute minimum value of the Yang-Mills action on the
module Ep,q [15, 37]. This follows by using (3.19) to compute the infinitesimal variation
F̂
Âc+t â about a constant curvature connection to get

S
[
∇̂c + t â

]
= 2π2R2

g2 Tr Ep,q
(
F̂
Âc+t â +� · IEp,q

)2

= S
[
∇̂c
]

+ 2π2R2 t2

g2 Tr Ep,q
[
∇̂c ∧, â

]2 +O
(
t4
)
. (4.17)

The cross terms of order t in (4.17) vanish due to the property (3.17) and the fact that
the field strength (4.16) is proportional to the identity operator on Ep,q . Since the qua-

dratic term in t is positive definite, we have S
[
∇̂c + â

]
≥ S

[
∇̂c
]

∀â ∈ �1(Ep,q).
To establish that ∇̂c is a global minimum, we can exploit the freedom of choice of the
background flux� (see Sect. 6.1) to identify it with the constant curvature (4.16). Then

S
[
∇̂c
]

= 0, and since (2.25) is a positive functional, the claimed property follows. This

shifting of the curvature will be used explicitly below.
In addition to yielding the minimum of the Yang-Mills action, constant curvature

connections can also be used to construct all solutions of the classical equations of
motion [36]. The main observation is that insofar as solutions of theYang-Mills equations
are concerned, the module Ep,q may be considered to be a direct sum of submodules [35].
To see this, we note that the equations of motion (3.39) imply that, at the critical points

∇̂ = ∇̂cl, the moment mapµ
[
Â
]

is invariant under the induced action of the Heisenberg

algebra L� of automorphisms on the algebra EndAθ
(Ep,q). In particular, it corresponds

to the central element of the Heisenberg Lie algebra generated by ∇̂cl
1 , ∇̂cl

2 and µ
[
Âcl
]
.

This feature provides a natural direct sum decomposition of the module Ep,q through
the adjoint action of the moment map on �p,q = �(Ep,q). For this, we consider the
self-adjoint linear operators �∇̂ : �p,q → �p,q defined for each connection ∇̂ ∈ Cp,q
by

�∇̂(α̂) =
[
µ
[
Â
]
, α̂
]
, α̂ ∈ �p,q . (4.18)

From the equations of motion (3.39) it follows that the Aθ -valued eigenvalues ĉk of�∇̂
are constant in the vicinity of a critical point ∇̂ = ∇̂cl, and so there is a natural direct
sum decomposition of the module Ep,q into projective submodules Epk,qk ,

Ep,q =
⊕
k≥1

Epk,qk , (4.19)
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corresponding to the eigenspace decomposition �p,q = ⊕
k≥1�pk,qk with respect to

�∇̂ .5 On each �pk,qk the operator �∇̂ acts as multiplication by a fixed scalar ck . Since

µ
[
Âcl
]

commutes with ∇̂cl, the connection ∇̂cl is also a linear operator on each Epk,qk →
Epk,qk , and its restriction ∇̂c

(k) = ∇̂cl
∣∣∣Epk,qk

has constant curvature µ
[
Âcl
]∣∣∣Epk,qk

.

Given such a direct sum decomposition6 of the module Ep,q , we can define a con-
nection ∇̂ on Ep,q by taking the sum of connections on each of the submodules,
∇̂ = ⊕

k≥1 ∇̂(k). The noncommutative Yang-Mills action is additive with respect to
this decomposition,

S


⊕
k≥1

∇̂(k)


 =

∑
k≥1

S
[
∇̂(k)

]
. (4.20)

It follows that for the particular choice of constant curvature connections ∇̂c
(k) on each

of the submodules Epk,qk , the Yang-Mills action has a critical point

∇̂cl =
⊕
k≥1

∇̂c
(k) (4.21)

on Ep,q . Moreover, from the above arguments it also follows that every Yang-Mills
critical point on Ep,q is of this form.

This construction thereby exhausts all possible critical points, and is essentially the
noncommutative version of the bundle splitting method of constructing classical solu-
tions to ordinary, commutative gauge theory in two dimensions [35]. While there are
many possibilities for the decomposition (4.19) of the given module Ep,q into submod-
ules, there are two important constraints that must be taken into account. First of all, the
(positive) Murray-von Neumann dimension of the module is additive with respect to the
decomposition (4.19),

dim Ep,q =
∑
k≥1

dim Epk,qk =
∑
k≥1

(pk − qkθ) . (4.22)

Secondly, since a module over the noncommutative torus is completely and uniquely
determined (up to isomorphism) by two integers, we need an additional constraint. This
is the requirement that the Chern number of the module be equal to the total magnetic
flux of the direct sum decomposition. For the module Ep,q this gives the relation

q =
∑
k≥1

qk . (4.23)

5 It should be stressed that (4.19) is not the statement that the given Heisenberg module is reducible.
It simply reflects the behaviour of connections near a stationary point of the noncommutativeYang-Mills
action, in which one may interpret the eigenspaces �pk,qk = �(Epk,qk ) as the differential algebras of
submodules Epk,qk ⊂ Ep,q . For more technical details of the decomposition (4.19) as an Aθ -module,

we refer to [36]. Notice also that here we abuse notation by making no distinction between ∇̂c acting on
�p,q or Ep,q . Only the latter operator will be pertinent in what follows.

6 In Sect. 7 we will give an elementary proof that such decompositions necessarily contain only a
finite number of direct summands. See [36] for a functional analytic proof.
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For irrational values of the noncommutativity parameter θ it is clear from (4.4) that
the constraint (4.23) follows from (4.22). This is not the case for rational θ and the
constraint on the Chern class makes necessary a distinction between physical noncom-
mutative Yang-Mills theory and Yang-Mills theory defined on a particular projective
module Ep,q . The latter field theory imposes a K-theory charge conservation law for
submodule decompositions (4.19), (p, q) =∑k≥1(pk, qk). This distinction will be dis-
cussed further when the partition function forYang-Mills theory on the noncommutative
torus is calculated explicitly.

We can now summarize the classification of the critical points of the noncommuta-
tive Yang-Mills action as follows. For any value of the noncommutativity parameter θ ,
any solution of the classical equations of motion of Yang-Mills theory defined on the
Heisenberg module Ep,q is completely characterized by a collection of pairs of integers{
(pk, qk)

}
k≥1

obeying the constraints

pk − qkθ > 0 ,∑
k≥1

(pk − qkθ) = p − qθ ,

∑
k≥1

qk = q . (4.24)

We will call such a collection of integers a “partition” 7 and will denote it by ( �p , �q ) ≡{
(pk, qk)

}
k≥1

. In order to avoid overcounting partitions which will contribute to the

Yang-Mills partition function, we also need to introduce a partial ordering for submod-
ules in a given partition based on the dimension of each submodule,

0 < p1 − q1θ ≤ p2 − q2θ ≤ p3 − q3θ ≤ . . . . (4.25)

Any number of partitions which are identical after such an ordering will be regarded as
equivalent presentations of the same partition. The set of all distinct partitions associated
with the Heisenberg module Ep,q will be denoted Pp,q(θ) = P(θ, Ep,q).

It remains to evaluate theYang-Mills action at a solution of the classical equations of
motion, which, by the arguments of the previous section, is one of the key ingredients in
the computation of the partition function of noncommutative gauge theory. At a critical
point, i.e. a partition ( �p , �q ), according to (4.20) it is just the sum of contributions from
constant curvature connections on each of the submodules of the partition,

S( �p , �q ; θ) = S


⊕
k≥1

∇̂c
(k)




= 1

2g2R2

∑
k≥1

(pk − qkθ)

(
qk

pk − qkθ
− q

p − qθ

)2

, (4.26)

7 This definition of partition is more general than that of [36]. It is the one that is the most useful
for the computation of the noncommutative gauge theory partition function in the following. In particu-
lar, it contains contributions from reducible connections, as these will also turn out to contribute to the
Yang-Mills partition function. These connections are in fact responsible for the orbifold singularities that
appear in the instanton moduli spaces. These points, as well as how to avoid the overcounting of critical
points through combinatoric factors in the partition function, will be described in detail in Sect. 9.
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where we have used Tr Epk,qk IEpk,qk = pk − qkθ and fixed the value of the background

field � to be [15]

� = �p,q = − q

2R2(p − qθ)
. (4.27)

This value ensures that the constant curvature connection ∇̂c on the module Ep,q , which
corresponds to a solution of the equations of motion parameterized by the trivial parti-
tion (p, q), gives a vanishing global minimum of the action, S(p, q; θ) = 0. This is the
natural boundary condition, and generally the inclusion of � ensures that the classical
action is invariant under Morita duality [15, 41, 48, 51, 52].

5. Yang-Mills Theory on a Commutative Torus

As we mentioned in Sect. 3, while we can prove that noncommutative gauge theory on
a two-dimensional torus is given exactly by a sum over classical solutions (instantons),
evaluating directly the fluctuation factors, which multiply the Boltzmann weights of the
corresponding critical action values computed in the previous section, is a difficult task.
We will therefore proceed as follows. We start with the well-known exact solution for
Yang-Mills theory on a commutative torus and identify quantities which are invariant
under gauge Morita equivalence. This will yield the partition function of noncommu-
tative Yang-Mills theory for any rational value of the noncommutativity parameter θ .
From this expression we will then be able to deduce the corresponding expression for
Yang-Mills theory defined on a noncommutative torus with arbitrary θ . In this section
we will analyze the instanton contributions to commutative Yang-Mills theory in order
to set up this construction.

The physical Hilbert space Hphys of ordinary U(p) quantum gauge theory defined
on a (commutative) two-torus is the space of class functions

Hphys = L2
(
U(p)

)Ad
(
U(p)

)
(5.1)

in the invariant Haar measure on the U(p) gauge group. By the Peter-Weyl theorem,
it has a natural basis |R〉 determined by the unitary irreducible representations R of
the unitary Lie group U(p). The Hamiltonian is essentially the Laplacian on the group
manifold ofU(p), and so the corresponding vacuum amplitude has the well-known heat
kernel expansion [14, 53, 54]

Z(g2, p) =
∑
R

e −2π2R2g2 C2(R) , (5.2)

where the Boltzmann weight contains the quadratic Casimir invariant C2(R) of the
representation R. This concise form does not have a direct interpretation in terms of a
sum over contributions from critical points of the classical action that we expect from
the arguments of Sect. 3. In order to find a more appropriate form, it is useful to make
explicit the sum over irreducible representations as a sum over integers and perform a
Poisson resummation of (5.2) [33].

The representations R of U(p) can be labelled by sets of p integers

+∞ > n1 > n2 > · · · > np > −∞ (5.3)
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which give the lengths of the rows of the corresponding Young tableaux. In terms of
these integers the Casimir operator is given by

C2(R) = C2(n1, . . . , np) = p

12

(
p2 − 1

)
+

p∑
a=1

(
na − p − 1

2

)2

, (5.4)

and by using its symmetry under permutations of the integers na we can write (5.2) as

Z(g2, p) = 1

p!

∑
n1 �=···�=np

e −2π2R2g2 C2(n1,...,np) . (5.5)

One can extend the sums in (5.5) over all integersn1, . . . , np by inserting the determinant

det
1≤a,b≤p

(
δna,nb

) =
∑
σ∈�p

sgn(σ )
p∏
a=1

δna,nσ(a) , (5.6)

where�p is the group of permutations on p objects. The permutation symmetry of (5.4)
implies that all elements in the same conjugacy class of �p yield the same contribution
to the partition function. The sum over permutations (5.6) thereby truncates to a sum over
conjugacy classes of �p. They are labelled by the sets of p integers 0 ≤ νa ≤ [p/a],
each giving the number of elementary cycles of length a in the usual cycle decomposition
of elements of �p, and which define a partition of p, i.e.

ν1 + 2ν2 + · · · + pνp = p . (5.7)

The parity of the elements of a conjugacy class C[�ν ] = C[ν1, . . . , νp] is

sgnC[�ν ] = (−1)
∑
a′ ν2a′ (5.8)

and it contains
∣∣∣C[�ν ]

∣∣∣ = p!
p∏
a=1

aνa νa!

(5.9)

elements.
The sum over the na’s in (5.5) then yields a theta-function, and the corresponding

Jacobi inversion formula can be derived in the usual way by means of the Poisson
resummation formula

∞∑
n=−∞

f (n) =
∞∑

q=−∞

∞∫

−∞
ds f (s) e 2π i qs . (5.10)

The Fourier transformations required in (5.10) are all Gaussian integrals in the present
case, and after some algebra the partition function (5.5) can be expressed as a sum over
dual integers qk as [33] 8

8 We have corrected here a few typographical errors appearing in Eqs. (13)–(15) of [33].
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Z(g2, p) = e − π2g2R2

6 p(p2−1)
∑

�ν :
∑
a aνa=p

∞∑
q1=−∞

· · ·
∞∑

q|�ν |=−∞
e iπ

(∑
a′ ν2a′+(p−1)

∑
k qk

)

×
p∏
a=1

(
2g2R2a3

)−νa/2
νa!

e −S�ν (q1,... ,q|�ν |) . (5.11)

Here

|�ν | = ν1 + ν2 + · · · + νp (5.12)

is the total number of cycles contained in the elements of the conjugacy class C[�ν ] of
�p, and the action is given by

S�ν (q1, . . . , q|�ν |) = 1

2g2R2




ν1∑
k1=1

q2
k1

1
+

ν1+ν2∑
k2=ν1+1

q2
k2

2
+

ν1+ν2+ν3∑
k3=ν1+ν2+1

q2
k3

3

+ · · · +
|�ν |∑

kp=ν1+···+νp−1+1

q2
kp

p


 . (5.13)

It is understood here that if some νa = 0, then qν1+···+νa−1+1 = · · · = qν1+...νa−1+νa = 0.
The remarkable feature of this rewriting is that the action (5.13) is precisely of the

general form (4.26). Since K0

(
C∞(T2)

)
= Z ⊕ Z, any finitely-generated projective

module E = Ep,q over the algebra A0 = C∞(T2) is determined (up to isomorphism) by
a pair of relatively prime integers (p, q) ∈ Z+ ⊕ Z with dimension given by p and con-
stant curvature q/p [44]. Geometrically, Ep,q is the space of sections of a vector bundle
over the torus T2 of rank p, topological charge q, and with structure group U(p). Con-
sider a direct sum decomposition (4.19) of this module. We will enumerate submodules
in a partition according to increasing dimension. Let νa be the number of submodules
of dimension a, corresponding to the splitting of the bundle into sub-bundles of rank a,
so that

dim Ep,q = ν1 + 2ν2 + · · · + pνp . (5.14)

This condition is simply the constraint (4.22) on the total dimension of the sum of sub-
modules in this case, i.e. p = ∑

k≥1 pk with 1 ≤ pk ≤ p. Therefore, the expression
(5.11) is nothing but the localization of the partition function of commutativeYang-Mills
theory onto its classical solutions. Note that here the magnetic charges qk are dual to the
lengths of the rows of the Young tableaux of the unitary group U(p).

There are, however, two important differences here. First of all, the action (5.13) is
evaluated for a topologically trivial bundle, i.e. q = 0, which yields a vanishing back-
ground flux �p,q . Consequently, (5.11) is not the most general result. Secondly, and
most importantly, the sum over Chern numbers q1, . . . , q|�ν | in the partition function
is not constrained to satisfy (4.23), which in view of our first point is the restriction∑
k qk = 0. In fact, the partition function (5.11) for physical U(p) Yang-Mills gauge

theory on the commutative torus is a sum of contributions from topologically distinct
bundles (of different Chern numbers) over the torus. In order to generalize the calculation
of the partition function to the case of Yang-Mills theory defined on a projective mod-
ule, we need to separate out of (5.11) the terms which are well-defined on a particular
isomorphism class Ep,q of modules.
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In order to facilitate the identification of such a module definition of Yang-Mills
theory, we write the partition function (5.11) in terms of the topological numbers of
the module Ep,q . We will first enforce the constraint (4.23) on the magnetic charges.
It is also useful for further calculations to re-interpret the parity factors (−1)

∑
a′ ν2a′

in terms of the rank p and the total number |�ν | of submodules in a given partition

( �p , �q ) =
{
(pk, qk)

}|�ν |
k=1

labelling a critical point of the action. If p is odd (even) then

there is an odd (even) number of submodules Epk,qk with pk odd. By considering all
possible cases one can show that

[p/2]∑
a′=1

ν2a′ = p + |�ν | (mod 2) . (5.15)

With these adjustments we are led to the module Yang-Mills theory with partition func-
tion Zp,q which is well-defined on Ep,q ,

Z(g2, p) = e − π2g2R2

6 p(p2−1)
∞∑

q=−∞
(−1)(p−1)q+p Zp,q(g2, θ = 0) , (5.16)

where the module partition function is given by a sum over partitions associated with
the module Ep,q ,

Zp,q(g
2, θ = 0) = Z(g2, θ = 0,�p,q, Ep,q)

=
∑

( �p ,�q )∈Pp,q (θ=0)

(−1)|�ν |
p∏
a=1

(
2g2R2a3

)−νa/2
νa!

e −S( �p ,�q ;θ=0).

(5.17)

Note that the critical points of the action are defined by partitions obeying the constraints
(4.24), including a restriction to submodules with total Chern number q. We have also
generalized to the correct action (4.26) for Yang-Mills theory on a bundle with Chern
number q which contains the non-vanishing value (4.27) for the background magnetic
field �. Again, this latter change is equivalent to adding boundary terms to the action
which do not contribute to the classical dynamics of the theory and hence are not relevant
to our analysis based on instanton contributions. The only essential role of � is, as we
will see, to set the zero-point of theYang-Mills action in the instanton picture. Therefore,
a shift in � will at most result in multiplying the fixed module partition function (5.17)
by overall constants dependent only on the topological numbers (p, q).

6. Yang-Mills Theory on a Noncommutative Torus: Rational Case

Given the partition function (5.17) for Yang-Mills theory which is well-defined on a
given module Ep,q of sections of some bundle, we can now use Morita equivalence to
obtain an explicit formula for Yang-Mills theory on a torus with rational noncommut-
ativity parameter θ from the commutative case. Morita equivalence in this case refers
to the mapping between noncommutative tori which is generated by the infinite discrete
group SO(2, 2,Z) ∼= SL(2,Z)×SL(2,Z), where one of the SL(2,Z) factors coincides
with the discrete automorphism group of the ordinary torus T2. It provides a one-to-one
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correspondence between modules associated with different topological numbers and
noncommutativity parameters. Here we will be interested in the transformations from
modules corresponding to rational values of θ to modules with vanishing θ . In fact, there
is an extended version of the correspondence known as gauge Morita equivalence [41,
48] which augments the mapping of tori with transformations of connections between
modules, and leads to a rescaling of the area and coupling constant to give a symmetry of
Yang-Mills theory as we have defined it in (2.26). The entire noncommutative quantum
field theory is invariant under this extended equivalence [15] which coincides with the
standard open string T-duality transformations [41, 51]. We will use this invariance prop-
erty to construct the noncommutative gauge theory for rational values of the deformation
parameter θ .

6.1. Gauge Morita equivalence. We begin by summarizing the basic transformation
rules of Morita equivalence of noncommutative gauge theories [1, 3, 44]. In two dimen-
sions, Morita equivalences of noncommutative tori are generated by the group elements

(
m n

r s

)
∈ SL(2,Z) , (6.1)

where we concentrate on the SL(2,Z) subgroup which acts only on the Kähler modulus
of T2. The full duality group acts on the K-theory ring K0(Aθ ) ⊕ K1(Aθ ) in a spinor
representation of SO(2, 2,Z) and the topological numbers (p, q) of a module E = Ep,q
transform as

(
p′
q ′
)

=
(
m n

r s

)(
p

q

)
. (6.2)

The noncommutativity parameter θ transforms under a discrete linear fractional trans-
formation

θ ′ = mθ + n

rθ + s
. (6.3)

From these rules it follows that under the gauge Morita equivalence parameterized by
(6.1) the dimensions of modules are changed according to

dim E ′ = dim E
|rθ + s| . (6.4)

The invariance of the noncommutative Yang-Mills action (2.27) then dictates the cor-
responding transformation rules for the area element of T2, the Yang-Mills coupling
constant, and the magnetic background as

R′ = |rθ + s|R ,
g′2 = |rθ + s| g2 ,

�′ = (rθ + s)2�− r(rθ + s)

2πR2 . (6.5)
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6.2. The partition function for rational θ . Let us now consider the effect of such trans-
formations on the module partition function defined in (5.17). Under the gauge Morita
equivalence parameterized by (6.1), the ordinary Yang-Mills gauge theory (5.17) is
mapped onto a noncommutative gauge theory with rational-valued noncommutativity
parameter θ = n/s. The classical action of the theory is invariant, and constant curvature
connections are mapped into one another [1, 48]. Thus Morita equivalence maps solu-
tions of the equations of motion between the commutative and rational noncommutative
cases. The localization of the partition function onto classical solutions is therefore not
affected by the transformation. The topological numbers of the submodules comprising
partitions which define solutions of the classical equations of motion also map into each
other in the two cases. In particular, the total number |�ν | of submodules in a partition is
invariant under the Morita duality.

The only component of the partition function (5.17) we have left to examine is the
pre-exponential factor

∏
a≥1 (2g

2R2a3)−νa/2/νa!. The symmetry factors νa! associated
with a partition are preserved, and so from the transformation rules (6.5) for θ = 0 it
follows that this component is invariant only if the integer a3 appearing here transforms
according to the scaling

a′ = a

|s| (6.6)

under the Morita equivalence. But (6.6) is exactly the rescaling (6.4) of the dimension
of a projective module in this case. It follows that the indices a in the pre-exponential
factors of (5.17) should be interpreted as the (integer) dimensions of submodules in the
commutative gauge theory, and this fact provides a Morita covariant interpretation of
these indices which leads immediately to the appropriate generalization of the formula
(5.17) to rational-valued θ �= 0.

We are now in a position to write down an explicit expression for the partition function
of quantumYang-Mills theory on the module Ep,q corresponding to a rational, non-inte-
ger noncommutativity parameter θ . The only modifications required are the counting and
dimensions of modules which, in contrast to the commutative case, are no longer inte-
ger-valued. We order the submodules in a given partition ( �p , �q ) according to increasing
dimension,

0 < dim Ep1,q1 ≤ dim Ep2,q2 ≤ dim Ep3,q3 ≤ . . . . (6.7)

Let νa be the number of submodules in this sequence that have the ath least dimension,
which we denote by dima . Then the integer

|�ν | =
∑
a≥1

νa (6.8)

still gives the total number of submodules in a partition, and we may write the partition
function for rational θ as

Zp,q(g
2, θ) =

∑
( �p ,�q )∈Pp,q (θ)

(−1)|�ν | ∏
a≥1

(
2g2R2 (dima)

3
)−νa/2

νa!
e −S( �p ,�q ;θ) . (6.9)

This expression provides a direct evaluation ofYang-Mills theory on a torus with rational
noncommutativity parameter θ , without recourse to Morita equivalence with the com-
mutative theory. Note that in the case when all submodules in the partitions have integer
dimension, the formula (6.9) reduces to that for the partition function of Yang-Mills
theory on a commutative torus in (5.17).
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6.3. Relation between commutative and rational noncommutative gauge theories. The
arguments which led to the expression (6.9) give an interesting way to see the well-known
connections betweenYang-Mills theory on a noncommutative torus with rational-valued
θ and Yang-Mills theory defined on a commutative torus. Consider the gauge theory
defined on the Heisenberg module Ep,q over the noncommutative torus with deforma-
tion parameter θ = n/s, where n and s are relatively prime positive integers. It can
be verified from the definition (4.4) that any projective module over such a torus has a
Murray-von Neumann dimension of at least 1/s. Since the total dimension of the module
Ep,q is p − nq/s in this case, a partition ( �p , �q ) which obeys the constraints (4.24) and
which consists of submodules of dimensions greater than or equal to 1/s has at most

p − nq/s

1/s
= ps − qn (6.10)

components. Since Morita equivalence preserves the number of submodules in a parti-
tion, any gauge theory which is dual to this rational noncommutative one must admit
partitions with ps − qn components. On the other hand, for U(N)Yang-Mills theory
defined on a commutative torus, we know that due to the constraints (4.24), the maximum
number of submodules in a partition isN (corresponding to ν1 = N and νa = 0 ∀a > 1).
We conclude that Yang-Mills theory on a Heisenberg module Ep,q over the noncommu-
tative torus with θ = n/s is Morita equivalent to a U(N) commutative gauge theory of
rank N = ps − qn. This result agrees with how the rank of the noncommutative gauge
theory appeared at the end of Sect. 4.1.

Notice that Morita equivalence maps submodules of the U(ps − qn) commutative
gauge theory, as defined in the previous section, onto submodules of the noncommutative
gauge theory on the Heisenberg module Ep,q as defined in Sect. 4.1. The effect of this
mapping on dimensions of projective modules is to divide by s. This includes the irre-
ducible finite-dimensional representation of the Weyl-’t Hooft algebra generated by the
Ẑi in (2.1) as follows. The infinite-dimensional center of the algebra An/s is generated by
the elements zi = (Ẑi)

s , i = 1, 2 which, in an irreducible unitary representation, can be
taken to be complex numbers of unit modulus. The center can thereby be identified with
the commutative algebraC∞(T2) of smooth functions on the ordinary torus T2, i.e. An/s

may be regarded as a twisted matrix bundle overC∞(T2) of topological charge nwhose
fibers are s × s complex matrix algebras Ms . In particular, there is a surjective algebra
homomorphism π : An/s → Ms , sending the Ẑi to the corresponding SU(s) shift and
clock matrices, under which the entire center of An/s is mapped to C. In the language of
Heisenberg modules this representation corresponds to the finite-dimensional factor C

s

of the separable Hilbert space Es = L2(T2) ⊗ C
s , which allows for twisted boundary

conditions on functions of the ordinary torus T2 leading to the appropriate Weyl-’t Hooft
algebra in this case. The irreducible finite-dimensional representation of the algebra is
thereby associated with a free module Es = Es,0 of vanishing Chern class. Therefore,
the localization of the partition function of quantum Yang-Mills theory on a rational
noncommutative torus is determined entirely by contributions from classical solutions
associated with Heisenberg modules as we have described them above. By construction,
this includes the Morita equivalent projective modules over the ordinary torus.

7. Yang-Mills Theory on a Noncommutative Torus: Irrational Case

Finally, we come to the case of irrational θ . We claim that the formula (6.9) gives the
Yang-Mills partition function as a sum over partitions ( �p , �q ) consisting of pairs of
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integers satisfying the constraints (4.24). Before justifying this claim, let us describe the
quantitative differences in the formula (6.9) between the rational and irrational cases.
In fact, the analytical structure of the partition functions in the two cases is very dif-
ferent due to the drastic differences of the partitions in Pp,q(θ) which contribute to
the functional integral. Recall from the previous section that in the case of rational θ ,
all modules have dimension at least 1/s, and this fact was the crux of the existence of
the mapping between the rational and commutative gauge theories. In contrast, when θ
is irrational, submodules with arbitrarily small dimension can contribute to a partition
which characterizes a critical point of theYang-Mills action. As such, there is no a priori
upper bound on the number of submodules in a partition of Pp,q(θ). While for defor-
mation parameter θ = n/s all partitions contain at most ps − qr submodules of Ep,q
of dimension at least 1/s, in the irrational case there are no such global bounds on the
elements of Pp,q(θ). It is this fact that preventsYang-Mills theory on a noncommutative
torus with irrational-valued θ from being Morita equivalent to some commutative gauge
theory of finite rank, and indeed in this case the algebra Aθ has a trivial center.

As a consequence, in contrast to the rational case, the Yang-Mills partition function
on an irrational noncommutative torus receives contributions from partitions contain-
ing arbitrarily many submodules. However, it is possible to show that any partition
corresponding to a fixed finite action solution of the noncommutative Yang-Mills equa-
tions of motion contains only finitely many components. By using a Morita duality
transformation (6.5) we can transform the action so that � = 0. Consider a partition
( �p , �q ) ∈ Pp,q(θ) on which the Yang-Mills action has the value S( �p , �q ; θ) = ξ ∈ R+.
Since (4.26) is a sum of positive terms, this implies that q2

k ≤ ξ (pk − qkθ) for each
k ≥ 1. But the constraints (4.24) imply

0 < pk − qkθ ≤ p − qθ (7.1)

for each k ≥ 1, and hence

q2
k ≤ ξ (p − qθ) . (7.2)

From (7.2) it follows that qk can range over only a finite number of integers, and hence
from (7.1) the same is also true of pk , which establishes the result. In particular, we can
pick out the minimum dimension submodule Ep1,q1 in a given partition ( �p , �q ) and order
the submodules according to increasing Murray-von Neumann dimension as in (6.7).
The definition (6.8) still makes sense and hence so does the expression (6.9) for the
partition function, provided that one now allows for partitions with arbitrarily large (but
finite) numbers of submodules. Incidentally, this line of reasoning also shows that the
set of values of the noncommutative Yang-Mills action on the critical point set Pp,q(θ)
is discrete, as is required of a Morse function [36].

Let us now indicate the reasons why (6.9) is the correct result for the partition function
ofYang-Mills theory on a noncommutative torus with irrational θ . First of all, notice that
the localization arguments of Sect. 3 which give the functional integral as a sum over
critical points of the Yang-Mills action are independent of the particular value of θ . In a
direct evaluation, the pre-exponential factors in (6.9) would be determined by performing
the functional Grassmann integrations and taking the t → ∞ limit in the localization
formula (3.36). In this formula, θ is a continuous parameter and we do not expect the
calculation of contributions from Gaussian fluctuations to depend on the rationality of
θ . Thus the pre-exponential factors in (6.9) yield the value of the fluctuation determinant
at each critical point in the semi-classical expansion of the partition function. Moreover,
as emphasized in Sect. 6.3, the contributing submodules to this expansion are always
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Heisenberg modules, which are the only projective modules in the irrational case. In this
regard it is interesting to note the role of the alternating sign factors (−1)|�ν | in (6.9).
The global minimum of the action, which has |�ν | = 1, is the only stable critical point
of the theory. According to general stationary phase arguments [34], a classical solution
with n unstable modes is always weighted with a phase − e π i n/2 in our normalization.
Thus each submodule in a partition which defines a critical point corresponds to a local
extremum of the noncommutativeYang-Mills action which is unstable in two directions.
Going back to the topological sum (5.16), we see that, as is the usual case in U(p)
gauge theory, each unit charge instanton configuration yields 2p − 2 negative modes.
The instanton configurations will be studied in more detail in Sect. 9.

Secondly, consider an approximation to the partition function for irrational θ by
rational theories. Formally, this requires a limit θ = limm nm/sm with both nm → ∞
and sm → ∞ as m → ∞. As we have seen in the previous section, the minimum
dimension of a submodule which is permitted over the noncommutative torus Anm/sm is
1/sm. Consequently, any rational approximation to the partition function would contain
partitions of arbitrarily small dimension, as we expect to see for irrational values of
the noncommutativity parameter θ . With these pieces of evidence at hand, we thereby
propose that the partition function of noncommutative gauge theory on a Heisenberg
module Ep,q over a two-dimensional torus is given for all values of the deformation
parameter θ by the expression

Zp,q(g
2, θ) =

∑
( �p ,�q )∈Pp,q (θ)

(−1)|�ν | ∏
a≥1

(
2g2R2 (pa − qaθ)

3
)−νa/2

νa!

×
|�ν |∏
k=1

exp

[
− 1

2g2R2

(
pk − qkθ

)( qk

pk − qkθ
− q

p − qθ

)2
]
, (7.3)

where the integer a labels the νa submodules of dimension dima = pa − qaθ . This for-
mula exhibits the anticipated universality between the irrational and rational cases [37], a
feature which we will see more of in the following. Note that the contributions from clas-
sical solutions containing submodules of very small Murray-von Neumann dimension
are exponentially suppressed in (7.3). In what follows we will explore some applications
of this formalism.

8. Smoothness in θ

An important issue surrounding noncommutative field theories in general is the behav-
iour of the partition function and observables as functions of the noncommutativity
parameter θ . For example, the poles at θ = 0 which arise from perturbative expansions
are the earmarks of the UV/IR mixing phenomenon [55]. However, it is not yet clear
in the continuum field theories whether this is an artifact of perturbation theory or if
it persists at a nonperturbative level.9 A clearer understanding of the behaviour of the
nonperturbative theory as a function of θ is therefore needed to fully address such issues.
Related to this problem is the question of approximation of irrational noncommutative
field theories by rational ones. If the quantum field theory is at least continuous in θ

9 In the lattice regularization of noncommutative field theories [15], UV/IR mixing persists at a fully
nonperturbative level as a kinematical effect.
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then it can be successively approximated by rational theories. In particular, this would
lead to a hierarchy of Morita dual descriptions in terms of quasi-local degrees of free-
dom [56] and also finite-dimensional matrix model approximations to the continuum
noncommutative field theory [16]. It has also been suggested that smooth behaviour of
physical quantities in θ could, by Morita equivalence, imply very stringent constraints
on ordinary largeN gauge theories on tori [57]. These issues have been further addressed
recently in [58].

While physically one would not expect to be able to measure a distinction between
rational-valued and irrational-valued observables, it has been observed that in certain
examples and at high energies, generic non-BPS physical quantities exhibit discontinu-
ous effects as functions of the deformation parameter, due to the multifractal nature of
the renormalization group flows in these cases [59]. For instance, when θ is an irrational
number, the cascade of Morita equivalent descriptions is unbounded as the energy of
the system increases and no quasi-local description of the theory is possible beyond
a certain energy level. To provide some different insight into these problems, in this
section we will analyze the behaviour of quantumYang-Mills theory on the noncommu-
tative two-torus as a function of θ , using its representation (7.3) as a sum over partitions
associated with the Heisenberg module Ep,q . As we have seen, each critical point of
the Yang-Mills action is determined by a partition which is a list of pairs of integers

( �p , �q ) =
{
(pk, qk)

}|�ν |
k=1

labelling submodules that obey the constraints (4.24) on their

dimensions and Chern numbers. We will now develop a graphical technique for con-
structing solutions of these constraints which will serve as a useful method for obtaining
solutions of the noncommutative Yang-Mills equations of motion. This method makes
no distinction between rational or irrational θ and smoothly interpolates between the
two cases. We will then use it to prove the smoothness of the Yang-Mills partition func-
tion (7.3) as a function of the noncommutativity parameter θ . This continuity result
is in agreement with an analysis, based on continued fraction approximations, of the
behaviour of classical averages on a fixed projective module [60].

8.1. Graphical determination of classical solutions. Consider the integral lattice K0(Aθ )

of K-theory charges, which we will view as a subset of the plane R
2. Each point (pk, qk)

on this lattice corresponds to an isomorphism class Epk,qk of projective modules over
the noncommutative torus. Through each such point we draw a line in R

2 of constant
(positive) dimension according to the equation

p − qθ = pk − qkθ , k = 1, 2, 3, . . . . (8.1)

These lines all have slope θ−1. For irrational values of θ , there is a unique solution,
(p, q) = (pk, qk), to (8.1) for each k, and hence there is only one point of the integer
lattice on each line. Consequently there is an infinite number of parallel lines of constant
dimension in any region of the K-theory lattice. On the other hand, if θ = n/s is a
rational number, then there are infinitely many solutions (p, q) of Eq. (8.1) for each k
and hence a large degeneracy of lattice points lying on each line. In this case there are
only a finite number of lines of constant dimension in any region of the K-theory lattice.

For a given Heisenberg module En,m, there are two important lines of constant dimen-
sion which will enable the enforcing of the constraints (4.24). These are the linesp−qθ =
0 and p − qθ = n − mθ . A partition which yields a critical point of the Yang-Mills
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Fig. 1. Graphical representation of the partition
{
(1, 1) , (1,−1) , (2, 3) , (1, 0)

}
∈ P5,3(θ) which

defines a solution of the noncommutative Yang-Mills equations of motion on the projective module E5,3.
The sequence of lines in R

2 of constant dimension for the case θ = 1/2 is depicted. The dashed line goes
through the sequence of points whose successive differences make up the elements of the partition

action on En,m is found by taking a sequence of points lying on lines of strictly increas-
ing dimension, beginning at the origin (0, 0) and terminating at the point (n,m). Taking
the difference of the coordinates of successive points gives the topological numbers
(nk,mk) of the submodules in the partition. The choice of a sequence of points which lie
on lines of strictly increasing dimension guarantees that each submodule is of positive
dimension. Fixing the initial and final points ensures that the constraints on the total
dimension and Chern number are satisfied. An illustrative example of this procedure
for the module E5,3 is depicted in Fig. 1. All finite sequences of points obeying these
rules give all possible solutions of the constraints (4.24), and hence all critical points of
the noncommutativeYang-Mills action corresponding to all solutions of the equations of
motion. Note that the integer |�ν |, counting the total number of submodules in a partition,
may in this way be regarded as a topological invariant of the associated graphs.

8.2. Proof of θ -smoothness. Having determined all partitions graphically for fixed θ ,
we can now study how semi-classical quantities vary with a change of θ . From n−mθ =
dim En,m, we see that θ is the inverse slope of lines of constant dimension in the (p, q)
plane. Thus a change in θ amounts to a change in slope of the lines of constant dimen-
sion. For partitions a small change in θ leads to a small change in the dimensions of
submodules in a partition but leaves the number |�ν | of submodules and their topological
numbers unchanged. The partition function (7.3) clearly varies smoothly under such
variations of the noncommutativity parameter. This smooth behaviour terminates when
a change in θ leads to a violation of the requirement that each submodule of a partition
be of positive dimension. Such a condition can occur when a submodule of very small
dimension to the right of the line p − qθ = 0 is pushed through to negative dimension
by an infinitesimal variation of θ . For example, the partition depicted in Fig. 1 represents
a valid solution of Yang-Mills theory on the module E5,3 for all θ < 1. As θ approaches
unity, the dimension of the first submodule E1,1 vanishes. Thus at θ = 1, the constraints
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(4.24) defining partitions are violated and this partition is abruptly removed from the
list P5,3(θ) of partitions which contribute to the partition function. Of course such an
elimination occurs for any partition containing a submodule of vanishing dimension10

and it would appear in general that this leads to a discontinuity in the partition func-
tion as a function of θ . There are also various “degenerate” cases that appear to lead to
discontinuities, such as those partitions for which the dimension of a component which
doesn’t appear first in the list vanishes, or those where the dimensions of two submodules
become equal when θ is varied. This leads to a reordering of the submodules and there-
fore a discontinuous change in the graphical representation of the previous subsection.
However, these latter cases do not affect the partition sum in a discontinuous way, and
thus only the former types of discontinuities appear to remain.

In fact this is not the case and the partition function is smooth in θ . The reason is
that the contribution to the partition function (7.3) from partitions with submodules of
vanishing dimension are exponentially suppressed, since the Boltzmann weight associ-
ated with such topological numbers (n,m) is of order e −1/ dim En,m . Consequently, the
partition function has already exponentially damped any contribution from a partition
before it is discontinuously dropped due to the positive dimension constraint. It is easy to
see that even though derivatives of the partition function with respect to θ will generate
singular pre-exponential factors when submodule dimensions vanish, these singularities
are all trumped by exponential suppression from the action. Thus all derivatives of the
partition function with respect to θ are also finite and continuous. Note that, in the con-
text of rational approximations to irrational values of the noncommutativity parameter,
this analysis also shows that perturbations about any rational value of θ will miss expo-
nentially small contributions to the partition function, which may be related to some of
the peculiarities observed in the rational approximations of irrational noncommutative
gauge theories [59].

The θ -smoothness proof can also be extended to physical (gauge invariant) observ-
ables which are at most polynomially singular in θ for modules of vanishing dimension.
One such class of observables are the “topological” observables obtained by differenti-
ating the partition function (3.27) with respect to the Yang-Mills coupling constant,

(
∂

∂g2

)n
lnZp,q(g

2, θ) =
(

1

8π2R2

)n 〈(
φ̂ , φ̂

)n〉
conn

=
(

1

8π2R2

)n 〈 n∏
r=1

tr N φ(xr)
2

〉

conn

, (8.2)

where the brackets 〈· · · 〉conn denote connected correlation functions with respect to
the functional integral (3.27), and x1, . . . , xn are arbitrary points on T2. For n = 1

this observable is proportional to the average energy of the system
〈

Tr Ep,q F̂
2
Â

〉
on the

Heisenberg module Ep,q .

9. Instanton Moduli Spaces

The expansion (7.3) of the partition function of gauge theory on a noncommutative torus
has a natural interpretation as a sum over noncommutative instantons in two dimensions,

10 Recall that the components of a partition are partially ordered according to increasing submodule
dimension.
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in the sense that we have defined them at the beginning of Sect. 4. They are classified
topologically by the homotopy classes (p, q) of the space of Hermitian projectors Grθ ,
and they are inherently nonperturbative since their action contribution to the path inte-
gral is of order e −1/g2

. However, the semi-classical expansion does not organize the
contributions from classical solutions into gauge orbits. Different partitions ( �p , �q )may
give contributions which should be identified as coming from the same instanton. In
this section we will discuss the rearrangement of the series (7.3) into a sum over gauge
inequivalent critical points and describe the structure of the moduli spaces of instantons
that arise, comparing them with those of ordinary Yang-Mills theory in two dimensions.

9.1. Weak coupling limit. We will begin with the weak coupling limit g2 → 0 of non-
commutative gauge theory as it is the simplest case. Due to the invariance property (3.12),
the moduli space Mp,q(θ) of constant curvature connections on the Heisenberg module
Ep,q modulo noncommutative gauge transformations has a natural symplectic structure
inherited from the symplectic two-form (3.9) on Cp,q . As shown in Sect. 3.3, the parti-
tion function Zp,q(g2 = 0, θ) formally computes the symplectic volume of Mp,q(θ).
Let us first describe this moduli space [37]. By using a Morita duality transformation
(6.5) of the background magnetic flux� if necessary, we can assume that f �= 0 in (4.6)
without loss of generality. We therefore need to classify the irreducible representations
determined by the Heisenberg module (4.7). As discussed in Sect. 4.1, the Weyl-’t Hooft
algebra (4.8) hasN irreducible components, whereN is the rank of the noncommutative
gauge theory given by (4.13). On the other hand, in Sect. 6.3 we saw that each such
irreducible representation has a pair of complex moduli (z1, z2) generating the center
of the Weyl-’t Hooft algebra. Thus the inequivalent irreducible representations of the
matrix algebra (4.8) are labelled by a pair of complex numbers ζ = (z1, z2) ∈ T̃2 which
live on a commutative torus dual to the original noncommutative torus.

If Wζ ⊂ C
q , ζ ∈ T̃2 are the corresponding irreducible representations, then the

Heisenberg module (4.7) decomposes into irreducible Aθ -modules according to

Ep,q = L2(R)⊗ (Wζ1 ⊕ · · · ⊕ WζN

)
. (9.1)

Gauge transformations which preserve the constant curvature condition (4.6) are finite-
dimensional unitary matrices in U(q). Central elements of the Weyl-’t Hooft algebra
are represented by diagonal matrices with respect to the decomposition (9.1). There is a
residual gauge symmetry which acts by permutation of the N summands in (9.1) as the
permutation group �N , and therefore the moduli space of constant curvature connec-
tions associated with the module Ep,q over the noncommutative torus is the symmetric
orbifold [37]

Mp,q(θ) = SymN T̃2 ≡
(

T̃2
)N

/�N (9.2)

of dimension 2N . This space is identical to the moduli space of flat bundles for commu-
tativeYang-Mills theory on an elliptic Riemann surface with structure groupU(N) [35],

i.e. MN(θ = 0) = Hom
(
π1(T

2) , U(N)
)
/U(N), since the maximal torus of U(N)

is U(1)N consisting of diagonal matrices and its discrete Weyl subgroup is precisely
the symmetric group �N . The standard symplectic geometry on (9.2) possesses conical

singularities on the coincidence locus, i.e. the “diagonal” subspace of
(

T̃2
)N

.
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Let us now consider this result in light of the instanton expansion. We take � = 0
without loss of generality. The g2 → 0 limit of the Boltzmann factor in the partition
function (7.3) is non-vanishing only in the zero instanton sector qk = 0 ∀k ≥ 1. But the
constraints (4.24) with all qk = 0 are just equivalent to those we encountered in Sect. 5
in the commutative limit θ = 0, with rank N = p. The same is true of the fluctuation
determinant factors in (7.3), and hence the partition function at weak coupling is given
by

Zp,q(g
2 = 0, θ) = lim

g2→0

∑
�ν :
∑
a aνa=N

N∏
a=1

(−1)νa

νa!

(
2g2R2a3

)−νa/2
, (9.3)

where we have eliminated the (constant) exponential factor by a suitable renormalization
of the quantum field theory [29]. The independence of (9.3) in the noncommutativity was
observed in Sect. 3.3, where we saw that the auxiliary field φ in (3.27) was essentially
a commutative field. In this way, the theory at g2 = 0 eliminates all dependence on the
parameters θ andR, and it is identical to topologicalYang-Mills theory on the commuta-
tive two-torus [29]. This feature of the weakly coupled gauge theory is in agreement with
the coincidence of the moduli space of the zero instanton sector in the commutative and
noncommutative cases. It should be stressed though that, in contrast to the commutative
case, by Morita equivalence the expressions for the moduli space (9.2) and partition
function (9.3) over the noncommutative torus hold generically for all (not necessarily
flat) constant curvature connections. In other words, in the noncommutative case the
gauge quotiented level sets of the moment map µ on Cp,q are all equivalent.

The partition function has non-analytic behaviour in theYang-Mills coupling constant
as g2 → 0, with a pole of order |�ν | in g for each partition. We can relate the singularities
arising in (9.3) in a very precise way to the orbifold singularities of the moduli space
(9.2) which appear whenever the Heisenberg module Ep,q is reducible. The latter singu-
lar points come from the fixed point set of the action of the permutation group �N on(

T̃2
)N

, which is straightforward to describe. As in Sect. 5, let C[�ν ] = C[ν1, . . . , νN ]

be the conjugacy class of a given element σ ∈ �N . An elementary cycle of length a

leaves an N -tuple (ζ1, . . . , ζN) ∈
(

T̃2
)N

invariant only if the a points on which it acts

coincide. It follows that the fixed point locus of any permutation σ in the conjugacy
class C[�ν ] is given by

[(
T̃2
)N]C[�ν ]

=
N∏
a=1

(
T̃2
)νa

. (9.4)

On each such fixed point set there is still the action of the stabilizer subgroup C(�ν ) of
�N , which consists of all elements σ ′ ∈ �N that commute with σ and is given explicitly
in terms of semi-direct products as

C(�ν ) =
N∏
a=1

�νa � Z
νa
a . (9.5)

Here the symmetric group �νa permutes the νa cycles of length a, while each cyclic
group Za acts within one particular cycle of length a. Distinct singular points of the
symmetric orbifold (9.2) then arise at the C(�ν ) invariants of the fixed point loci (9.4).
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Only the subgroups �νa of the centralizer (9.5) act non-trivially on (9.4). The singular
point locus of the moduli space of constant curvature connections is thereby obtained as
the disjoint union over the conjugacy classes C[�ν ] of �N of the strata

[(
T̃2
)N]C[�ν ]

/ C(�ν ) =
N∏
a=1

Symνa T̃2 . (9.6)

Given the result (9.6), the interpretation of the singularities in the formal orbifold
volume (9.3) is now clear. It is a sum over the connected components, labelled by conju-
gacy classes in �N , of the total singular locus of the orbifold symmetric product (9.2).
Within each conjugacy class (partition)C[�ν ], the contribution from a gauge equivalence

class of connections associated with a toroidal factor
(

T̃2
)νa

in (9.6) is weighted by a

singular fluctuation determinant (−1)νa (2g2R2a3)−νa/2. Recall from Sect. 6.2 that the
module dimension factor a3 here ensures invariance under Morita duality. Gauge invari-
ance dictates that the total contribution from the νa cycles of length a (submodules of
rank a) be divided by the appropriate residual symmetry factor νa! which is the order
of the local orbifold group �νa acting in (9.6). Thus the conical singularities of the
zero instanton sector are not smoothed out by the noncommutativity, as one might have
naively expected [61, 63], and the moduli spaces of flat connections are the same in both
commutative and noncommutative cases. The corresponding partition functions (9.3)
represent the contribution of the global minimum µ−1(0) to the localization formula for
the functional integral. We shall now analyze how these properties change as one moves
away from the weak coupling limit of the noncommutative gauge theory. As we will
see, the orbifold singularities for coincident instantons on the moduli space still persist.
Geometrically, the noncommutative instantons of two dimensional gauge theory on a
torus remain point-like and hence have no smoothing effect on the conical singularities
that occur on SymN T̃2 where two or more points come together.

9.2. Instanton partitions. To count instantons labelled by a generic partition ( �p , �q )
consisting of non-zero Chern numbers qk , we need to arrange the expansion (7.3) into a
sum over gauge inequivalent classical solutions. The essential problem which arises is
the isomorphism Emp,mq ∼= ⊕mEp,q of projective modules. Partitions of either side of
this isomorphism lead to gauge equivalent contributions to the partition function and,
in particular, from (4.16) it follows that the minimizing connections on Emp,mq and
Ep,q have the same constant curvature. Thus we need to refine the definition of partition
given in Sect. 4.2 somewhat so as to combine submodules which yield the same constant
curvature and hence prevent the over-counting of distinct noncommutative Yang-Mills
stationary points [36]. This we do by writing any submodule dimension in the form

pk − qkθ = Nk
(
p′
k − q ′

kθ
)
, (9.7)

where Nk = gcd(pk, qk), and the integers p′
k and q ′

k are relatively prime. The corre-
sponding curvature (4.16) is independent of the noncommutative rank Nk , and so we
should also restrict to submodules for which each K-theory charge (p′

k, q
′
k) is distinct.

Therefore, we restrict the counting of critical points of the noncommutative Yang-Mills

action to the sets of integers ( �N, �p ′, �q ′) ≡
{
(Na, p

′
a, q

′
a)
}
a≥1

which satisfy, in addition

to the constraints (4.24), the requirements that Na > 0, p′
a and q ′

a are relatively prime,
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and the pairs of integers (p′
a, q

′
a) are all distinct. We shall refer to such a collection of

integers as an “instanton partition”. The additional constraints imposed on an instanton
partition guarantee that we do not count as distinct those partitions which contain some
submodules that can themselves be decomposed into irreducible components.

Let us look at the structure of the moduli space Mp,q( �N, �p ′, �q ′; θ) associated with
an instanton partition ( �N, �p ′, �q ′) [36]. We want to determine the space of gauge orbits
of the associated critical point connections ∇̂cl = ⊕a≥1 ∇̂c

(a) on submodule decompo-
sitions

Ep,q =
⊕
a≥1

ENap′
a,Naq

′
a
. (9.8)

Since each constant curvature on ENap′
a,Naq

′
a

is distinct and any gauge transformation

Û ∈ G(Ep,q) preserves the constant curvature conditions, every Û is also a unitary
operator on each instanton submodule ENap′

a,Naq
′
a

→ ENap′
a,Naq

′
a
. It follows that the

instanton moduli space is given by

Mp,q( �N, �p ′, �q ′; θ) =
∏
a≥1

MNap′
a,Naq

′
a
(θ) , (9.9)

where each MNap′
a,Naq

′
a
(θ) is the moduli space of constant curvature connections on

the Heisenberg module ENap′
a,Naq

′
a
. From (9.2) we thus find that (9.9) can be written in

terms of a product of symmetric orbifolds as [36]

Mp,q( �N, �p ′, �q ′; θ) =
∏
a≥1

SymNa T̃2 . (9.10)

This result generalizes the instanton moduli space (9.2) which corresponds to the global
minimum of the noncommutative Yang-Mills action on Ep,q .

9.3. Examples. To get a feel for how the moduli spaces (9.10) classify the reorganiza-
tion of the partition function (7.3) into a sum over distinct instanton contributions, let us
consider two very simple examples [33]. For θ = 0 and p = 2 the partition function is
easily written in the form

Z2,q(g
2, 0) = − e −q2/4g2R2

√
16g2R2

+ 1

4g2R2

∞∑
q1=−∞

e
− 1

2g2R2

(
q2

1 +(q−q1)
2
)
. (9.11)

When the Chern number q is odd, this is a sum over inequivalent instanton configura-
tions, and the two terms in (9.11) are associated respectively with the smooth moduli
spaces

M2,q(1, 2, q; 0) = T̃2 , (9.12)

M2,q

(
(1, 1, q1) , (1, 1, q2) ; 0

)
= T̃2 × T̃2 . (9.13)

Heuristically, with the appropriate symmetry factors, each factor T̃2, representing the
single instanton moduli space, contributes a mode with fluctuation determinant
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−1/
√

16g2R2. On the other hand, when q = 2q ′ is even there is a term in the infi-
nite series in (9.11) which yields the same Boltzmann weight as the first term, and so
these two terms should be combined to give

Z2,2q ′(g2, 0) = e −q ′2/g2R2

(
− 1√

16g2R2
+ 1

4g2R2

)

+ 1

4g2R2

∑
q1 �=q ′

e
− 1

2g2R2

(
q2

1 +(2q ′−q1)
2
)
. (9.14)

Again the last term in (9.14) may be attributed to contributions from instantons in the
smooth moduli space (9.13) with q = 2q ′ and q1 �= q2. The two gauge equivalent
instanton contributions to the first term are attributed with the singular moduli space in
this case,

M2,2q ′(2, 1, q ′; 0) = Sym2 T̃2 . (9.15)

The singular locus of the symmetric orbifold (9.15) is Sym2 T̃2 � T̃2 with the disjoint
sets corresponding to the identity and order two elements of the cyclic group Z2, respec-
tively. As in Sect. 9.1, the sum of contributions to the first term in (9.14) are readily seen
to be those associated with the components of the total singular point locus of (9.15).

For θ = 0 and p = 3 the partition function is given by

Z3,q(g
2, 0) = − e −q2/6g2R2

√
54g2R2

+ 1

32g2R2

∞∑
q1=−∞

e
− 1

4g2R2

(
2q2

1 +(q−q1)
2
)

− 1

6(2g2R2)3/2

∞∑
q1=−∞

∞∑
q2=−∞

e
− 1

2g2R2

(
q2

1 +q2
2 +(q−q1−q2)

2
)
. (9.16)

For any q /∈ 3 Z the expression (9.16) can be written as a sum over distinct instanton
contributions as

Z3,q(g
2, 0)

= − e −q2/6g2R2

√
54g2R2

+
(

1

32g2R2 − 1

6(2g2R2)3/2

) ∞∑
q1=−∞

e
− 1

4g2R2

(
2q2

1 +(q−q1)
2
)

− 1

6(2g2R2)3/2

∞∑
q1=−∞

∑
q2 �=q1

e
− 1

2g2R2

(
(2q1−q)2+(2q1−q2)

2+q2
2

)

− 1

6(2g2R2)3/2

∑
q1 �=q mod 2

∞∑
q2=−∞

e
− 1

2g2R2

(
q2

1 +q2
2 +(q−q1−q2)

2
)

(9.17)

corresponding respectively to the instanton moduli spaces

M3,q(1, 3, q; 0) = T̃2 , (9.18)

M3,q

(
(1, 1, q1) , (2, 1, q2) ; 0

)
= T̃2 × Sym2 T̃2 , (9.19)



384 L.D. Paniak, R.J. Szabo

M3,q

(
(1, 1, q1) , (1, 2, q2) ; 0

)
= T̃2 × T̃2 , (9.20)

M3,q

(
(1, 1, q1) , (1, 1, q2) , (1, 1, q3) ; 0

)
= T̃2 × T̃2 × T̃2 . (9.21)

Note again how the fluctuation determinants in (9.17) weight each factor of T̃2 in the
corresponding moduli space, and how the second term incorporates the sum over sin-
gularities of the symmetric orbifold Sym2 T̃2 in (9.19). For q = 3q ′, the second term in
(9.17) yields a contribution to the global minimum for q1 = q ′, and we have

Z3,3q ′(g2, 0) = e −3q ′2/2g2R2

(
− 1√

54g2R2
+ 1

32g2R2 − 1

6(2g2R2)3/2

)

+
(

1

32g2R2 − 1

6(2g2R2)3/2

) ∑
q1 �=q ′

e
− 1

4g2R2

(
2q2

1 +(3q ′−q1)
2
)

− 1

6(2g2R2)3/2

∞∑
q1=−∞

∑
q2 �=q1

e
− 1

2g2R2

(
(2q1−3q ′)2+(2q1−q2)

2+q2
2

)

− 1

6(2g2R2)3/2

∑
q1 �=3q ′ mod 2

∞∑
q2=−∞

e
− 1

2g2R2

(
q2

1 +q2
2 +(3q ′−q1−q2)

2
)
.

(9.22)

The last three terms in (9.22) may again be attributed to contributions associated with the
instanton moduli spaces (9.19)–(9.21), respectively, withq = 3q ′ andq1 �= q2 �= q3. The
first term represents the gauge equivalent instanton contributions coming from replacing
the smooth moduli space (9.18) by the singular one

M3,3q ′(3, 1, q ′; 0) = Sym3 T̃2 , (9.23)

with each fluctuation determinant associated with the singular points of the orbifold
(9.23) corresponding to the three conjugacy classes of the symmetric group �3.

These two simple examples illustrate the general technique involved in reorganiz-
ing the sum (7.3) over critical points into distinct instanton contributions. They can be
deduced, as above, from the singularity structures of the totality of instanton moduli
spaces (9.10) corresponding to a Heisenberg module. The Boltzmann weight associated
with an instanton partition ( �N, �p ′, �q ′) is given by

e −S( �N, �p ′,�q ′;θ) =
∏
a≥1

e
− 1

2g2R2 Naq
′2
a /(p

′
a−q ′

aθ)
, (9.24)

and about it there is a finite number of quantum fluctuations representing a finite, but non-
trivial, perturbative expansion in g−1. These fluctuations are determined by the singular
locus of the corresponding symmetric orbifolds in (9.10). The combinatorial problem
of summing over all such instanton partitions is in general quite involved, especially for
irrational values of θ when there are infinitely many partitions. However, repeating anal-
ogous arguments to those around (7.1,7.2) shows that an instanton partition contains
only finitely many components. Thus the perturbative expansion around each instan-
ton contribution contains only finitely many terms, although in the irrational case the
exponential prefactor is no longer a polynomial of set order. It is amusing that, within
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the class of noncommutative gauge theories, Morita equivalence allows such a moduli
space classification of the instanton contributions even in the commutative case. Such a
characterization is otherwise not possible because one only knows the structure of the
moduli space of flat connections of commutative gauge theory on T2. Notice also that
for θ �= 0 the instanton sums are no longer given by elementary theta-functions.

Finally, let us note that the instantons which contribute to the semi-classical expan-
sion of noncommutative gauge theory that we have developed are reminiscent of the
solitons on noncommutative tori which arise as solutions of open string field theory
describing unstable D-branes wrapping a two-dimensional torus in the background of
a constant B-field [64, 65]. An extremum of the tachyon potential is described by a
projector of the algebra Aθ , and leads to an effective gauge theory on the corresponding
projective module determined by the tachyon. The remaining string field equations of
motion are then solved by direct sum decompositions of the given Heisenberg module as
we have described them in this paper. A special instance of this are the fluxon solutions
which describe the finite energy instantons, carrying quantized magnetic flux, of gauge
theory on the noncommutative plane [4–7]. In the present setting these are the classical
solutions associated with partitions consisting of only the full module, giving the global
minimum of the Yang-Mills action. For the module Ep,q , these solutions have gauge
field strength (4.16) and partition function

Zfluxon
N,q (g2, θ̃ ) = e −Nq ′2/2g2R2(p′−q ′θ)

√
2g2R2N3(p′ − q ′θ)3

. (9.25)

In the large area limit R → ∞ with the dimensionful noncommutativity parameter
θ̃ = 2πR2 θ finite, this is the contribution to the functional integral, along with the
appropriate Gaussian fluctuation factor, from a fluxon of magnetic charge q = Nq ′ in
gauge group rank N . The sum over all q ∈ Z in this limit determines the expansion of
noncommutative gauge theory on R

2 in terms of fluxons [10].
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