
Journal of Intelligent Information Systems, 9, 261–275 (1997)
c© 1997 Kluwer Academic Publishers. Manufactured in The Netherlands.

Knowledge-directed Adaptation in Multi-level
Agents

JOHN E. LAIRD, DOUGLAS J. PEARSON laird@umich.edu

Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109-2110

SCOTT B. HUFFMAN huffman@tc.pw.com

Price Waterhouse Technology Center, 68 Willow Road, Menlo Park, CA 94025

Abstract. Most work on adaptive agents have a simple, single layer architecture. However, most agent archi-
tectures support three levels of knowledge and control: a reflex level for reactive responses, a deliberate level
for goal-driven behavior, and a reflective layer for deliberate planning and problem decomposition. In this paper
we explore agents implemented in Soar that behave and learn at the deliberate and reflective levels. These levels
enhance not only behavior, but also adaptation. The agents use a combination of analytic and empirical learning,
drawing from a variety of sources of knowledge to adapt to their environment. We hypothesize that complete,
adaptive agents must be able to learn across all three levels.

Keywords: Learning, adaptation, Instruction, Error Correction, EBL, Multi-level agents, Soar

1. Introduction

Over the last ten years, there has been a convergence in the design of architectures for
constructing intelligent autonomous agents that must behave in complex environments.
Many architectures support three levels of knowledge with corresponding levels of control:
a reflex level made up of independent rules or a finite state machine, a deliberate level that
provides sequencing, simple decision making, and the ability to pursue multiple goals, and
a reflective layer for deliberate planning. In theory, each of these levels can draw from a
variety of sources of knowledge to adapt to their environment. However, the vast majority of
work on adaptive agents has emphasized only a single source of knowledge, reinforcement,
with improvement only at a single reflex layer. The advantage of these approaches is that
they can make use of simple feedback that is available in many environments; however, in
return, agents using these techniques are limited in the complexity of behavior that they can
generate and learn.

In order to extend adaptivity to more complex agents — agents with multiple levels
of knowledge and control — we have developed a more deliberate approach which has
been instantiated within two systems built within the Soar architecture (Laird, Newell and
Rosenbloom, 1997, Lehman, Laird and Rosenbloom, 1996, Laird and Newell, 1993, Rosen-
bloom, et al., 1996): Instructo-Soar (Huffman and Laird, 1995) and IMPROV
(Pearson, 1996, Pearson and Laird, 1996). We find that agents with multiple levels of
knowledge and control are not only more able to achieve complex goals, they also can
use these layers to adapt to their environment. These agents use analytic and empirical
learning techniques to draw on multiple sources of knowledge, including external instruc-
tion, internal domain theories, and past behavior.



262 LAIRD, PEARSON AND HUFFMAN

We have focused on systems that learn at the two higher levels, deliberate and reflective,
within agents which employ all three levels of control. This research complements the
work that has been done to combine empirical and analytic learning methods (such as EBNN
(Mitchell and Thrun, 1993), EBC (DeJong, 1995) and EBRL (Dietterich and Flann, 1995))
that typically focus on agents that use only a single level of control.

Although our approach is deliberate in many ways, it is distinguished from deliberate
approaches that treat the knowledge of the agent as a declarative structure that can be
examined and modified at will. Such first-order declarative access to the agent’s com-
plete knowledge base poses significant computational complexity problems as the agent’s
knowledge grows to cover complex environments. In contrast to our approach, these declar-
ative/deliberate methods are typically restricted to noise-free domains with instantaneous
action (Gil, 1991, Ourston and Mooney, 1990) which require relatively small domain the-
ories.

In the remainder of this paper, we present our general approach to agent design and
adaptation within the context of Soar. We then illustrate this approach by examining two
integrated systems; Instructo-Soar, which learns to extend its knowledge through situated
instruction; and IMPROV, which learns to correct errors in its knowledge through interaction
with its environment. Instructo-Soar uses analytic learning over problem solving at the
reflective level to acquire new task knowledge at the deliberate level. IMPROV uses largely
empirical learning at the reflective and deliberate levels to identify and correct knowledge
learned from either incorrect instructions or incorrect generalizations of correct instructions.
IMPROV’s recovery method can in turn be directed and guided by knowledge gained
from further instructions processed by Instructo-Soar. We have combined IMPROV and
Instructo-Soar to produce a single integrated system, so that instructions can speed up
empirical learning and empirical learning can correct errors learned from instruction.

2. Multi-Level Agent Structure

Architectures that support reactive and deliberate reasoning in complex environments are
typically composed of multiple levels of computational systems. The reason for this is that
reactive systems naturally have an emphasis on fast but limited responses which can be
realized by computational processes that do not lend themselves to the more deliberate and
open-ended computation of planning or reflective systems. Our discussion assumes that an
agent consists of the three levels as shown in Figure 1. Many architectures have structures
similar to this; however we will concentrate on Soar in our discussion because it is the basis
for both of our learning systems and it has some important properties that support the types
of learning we wish to demonstrate.

1. The reflex level: This is where knowledge is directly and automatically retrieved
based on the current situation. The processing is often limited to simple stimulus-
response activity, although sometimes this level is used to parse input into more abstract
descriptions that are used at the deliberate level. Most adaptive agents that learn have
only this level with the knowledge encoded in rules, finite-state automata, or similar fixed
network structures. These types of computational frameworks usually have bounded
computational time for responding to changes in the world, which make them suitable



KNOWLEDGE-DIRECTED ADAPTATION 263

Figure 1. Levels of Processing

for quick, compiled responses. A common approach is to create sets of modules that
perform specific low-level functions that require tight interaction with the world, such
as moving forward in a mobile robot. These modules are then dynamically strung
together by the deliberate level to generate more complex behavior that responds to
multiple, dynamic goals.

Soar’s knowledge for this level is encoded in rules. The conditions of these rules are
dynamically compiled into a discrimination network using the RETE match algorithm
(Doorehbos, 1993, Forgy, 1982). Most rule-based systems use a fixed conflict resolu-
tion scheme to select and fire a single rule on each cycle. In contrast, Soar fires all of
its newly matched rules in parallel. Thus, Soar uses its rules as a parallel associative
memory, and postpones all decision making to the next, higher level. This separation of
parallel memory access and decision making into two levels is important in supporting
learning because once a new rule is learned, there does not have to be any additional
learning as to when to use it in conjunction with other knowledge. The knowledge of
when to use a rule is already embedded in its conditions.

2. The deliberate level:This is where knowledge is used to decide what to do next based
on the current situation and goal, and is often called the sequencing level. This level
allows for the explicit comparisons of alternatives and for the integration of multiple
chains of reasoning, both of which are not possible at the reflex level. While the reflex
level will usually be built out of parallel, independent computational elements, the
deliberate level usually has sequential behaviors where there are data dependencies



264 LAIRD, PEARSON AND HUFFMAN

between the computational elements. The component behaviors that this level selects
are then the modules of the reflex level.

In Soar, this level consists of the selection, application, and termination of deliberate
operators. Instead of having a monolithic data structure representing the pre-conditions,
actions, and post-conditions of an operator, Soar uses its reflex level for these functions.
Thus, the pre-conditions of an operator are encoded in rules that match against the cur-
rent situation and propose the operator when it is appropriate. Additional rules can
compare proposed operators and test the current situation and goals, and createprefer-
enceswhich rate the alternative operators. A fixed decision procedure interprets these
preferences and decides on the best alternative. Once an operator is selected, additional
rules perform the actions of the operator. Finally a rule tests that all actions have been
completed and terminates the operator. Rules provide a rich language for supporting
deliberative reasoning. It is trivial to encode complex disjunctive and conjunctive con-
ditions for selecting, comparing, applying and terminating operators. Thus, conditional
execution of operators is supported, as well as operators that require multiple steps over
time.

So in contrast to most rule-based systems that select a single rule to fire using conflict
resolution, Soar uses its rules to select a single operator, and then additional rules to
apply it. Soar’s approach allows task-dependent knowledge to select its deliberative
acts, while other rule-based systems rely on a fixed conflict resolution scheme.

The deliberate level has some advantages for learning that are listed below:

(A) Selection knowledge (when and why to do something) can be learned and cor-
rected independently of implementation knowledge (what to do). This is possible
because the knowledge for selecting an operator is represented, and can be learned,
independently of the knowledge about how to perform the operator.

(B) Learning can be incremental, so that existing knowledge does not have to be
modified (Laird, 1988). This greatly simplifies learning so that it is not necessary to
identify which piece of knowledge is incorrect, only which decision was incorrect.

(C) Conflicts or gaps in the agent’s knowledge can be detected when there is insufficient
knowledge to decide which operator to select, or insufficient knowledge on how to
apply the current operator.

3. The reflective level: This is where arbitrary knowledge is used to either select the
next deliberate action, or decompose a complex action into smaller parts. In general,
this is where planning, analogical reasoning, internal explorations, and other meta-
level activities are performed. Many systems use a completely separate computational
system for the reflective level. This level may generate plans that are then dispatched
to the lower levels for execution.

In Soar, the reflective level is not a separate module. This level is invoked automatically
when the deliberate level reaches animpasseand cannot make progress, either because
there is insufficient knowledge to select or apply an operator. In response to an impasse,
Soar generates a new sub-problem, whose goal is to resolve the impasse. Instead of
using a different computational scheme, Soar once again uses rules and operators;



KNOWLEDGE-DIRECTED ADAPTATION 265

however, instead of working on a task, they are now being applied to the meta-level
problem of resolving the impasse.

The reflective level has some advantages for learning that are listed below:

(A) The agent can create hypothetical situations distinct from its current sensing that
it can reason about and learn from. These hypothetical situations may be com-
binations of previously encountered situations where the combination itself has
never been encountered. This is important in learning from instruction where
an instructor may describe potentially dangerous situations that the agent should
avoid.

(B) The agent can decompose a new problem into subproblems that have commonalities
with other, previously solved problems.

(C) The agent can incorporate more declarative, and expensive to interpret, forms of
knowledge, such as instruction.

(D) Complex, time-consuming behavior at the reflective level can be compiled into
rules for real-time processing at the deliberate and reflex levels.

The Soar architecture incorporates three levels in generating behavior. For a problem in
which it has extensive experience, or where extensive knowledge has been pre-programmed,
it will use only the reflex and deliberate levels to generate behavior. This approach has been
useful in many domains. One of the first applications was the control of a Hero mobile
robot with an arm (Laird and Rosenbloom, 1990). In Hero-Soar, the Soar program received
sensing information such as the position of all the joint angles and distance information
from a sonar sensor. Hero-Soar had reactive components to quickly stop it if it was about
to hit an obstacle. It relied mostly on deliberate selection and applications of operators,
such as opening and closing its gripper, moving forward, and turning. These operators were
implemented as rules, which gave it the ability to have conditional and robust execution
of the operators. It also had more complex operators such as clean the floor, pick-up a
cup, find a basket, and drop a cup. Each of these was dynamically decomposed into its
primitive operators. To perform new tasks, Hero-Soar would dynamically perform look-
ahead searches to generate plans. Learning would compile the planning process, so that
with experience, planning was needed less and less.

More recently, Soar has been used for a variety of domains including stick-level flying
of the SGI flight simulator in a program called Air-Soar (Perason, et al., 1993). It has also
been used for large-scale tactical aircraft control (Tambe, et al., 1995), simulated ground
vehicle control, and natural language understanding and generation (Lehman, et al., 1993).
In addition, this three-level approach has proven useful in modeling a variety of human
behaviors (Newell, 1990).

3. Adaptation

In our approach, adaptation is based on a cycle in which the agent attempts to first correct
or extend its reflective knowledge (which is essentially a multi-level domain theory used
for internal planning), and then use the reflective knowledge as a basis for correcting its



266 LAIRD, PEARSON AND HUFFMAN

Figure 2. Adaptation of Multi-Level Soar Agent

deliberate and reflex knowledge. Correction to its deliberate knowledge influences which
goals it can achieve in the world. The cycle continues because as the agent becomes more
capable, it may be given new problems and tasks, which in turn require extensions to its
reflective knowledge.

Figure 2 shows a simplified view of this cycle. In the first phase, information from the
environment flows into the reflex level where it is parsed and interpreted. In parallel, the
deliberate level is trying to make decisions so that the agent can pursue its goals. If the
agent is unable to make a decision, its deliberate and reflex knowledge must be incomplete
or incorrect in some way. When this happens, the reflective level is automatically invoked.
Automatic invocation is possible in Soar because of the well-defined processing of selection,
application, and termination of operators.

At the reflective level, the agent attempts to determine what part of the domain theory
is either missing or incorrect. We have focused on knowledge errors at the deliberate or
reflective levels. If knowledge is simply lacking then instruction might be appropriate.
However, if its experiences in the world suggest that its reflective knowledge is incorrect,
then it uses both analytic and empirical means to determine how to correct its reflective
domain theory (planning knowledge). For some errors, this can be a complex process that
involves multiple interactions with the environment that are not depicted in the figure. Once
the domain theory knowledge has been corrected, it then uses it to replan its behavior. The
results it produces are then compiled into knowledge that can be directly applied at the
deliberate level in similar situations in the future.



KNOWLEDGE-DIRECTED ADAPTATION 267

Throughout the rest of the paper, we use a running example to describe the integrated
instruction/recovery agent’s performance. For these simple examples, we have provided the
integrated agent with only enough domain knowledge to attempt the problems, so that we
can demonstrate the contributions both methods can make, individually and in combination.
First, we describe an instruction scenario using Instructo-Soar that introduces errors into
the agent’s knowledge at the deliberate and reflective levels. Next, we discuss IMPROV’s
recovery technique applied to the error, first with no instruction available, and then with
instruction directing each stage of the recovery process.

4. Instruction-based Adaptation: Instructo-Soar

Instructo-Soar was developed to study learning by instruction. Early work on learning
by instruction, such as SHRDLU (Winograd, 1972), did not lead to long-term learning
of complex procedures, and systems of this type were limited to very simple commands.
Instructo-Soar supports learner-driven instruction where the agent requests instruction only
when it needs it. As it learns from instruction, less and less interaction is required. Dur-
ing instruction, the instructor can provide many different types of instruction, including
direct commands, to hypotheticals, to negatives. Instructo-Soar uses a specialization of
explanation-based learning (EBL) (Mitchell, Keller and Kedar-Cabelli, 1986) calledsitu-
ated explanationto extend its domain theory based on instruction. Instructo-Soar learns new
procedures and extensions of procedures for novel situations, and other domain knowledge
such as control knowledge, knowledge of operators’ effects, and state inferences.

Instruction involves the following stages: First, Instructo-Soar requests instruction when-
ever its deliberate knowledge is insufficient to determine which action to take next. The
request for instruction is situated within its current task, and all Instructo-Soar asks for is
what step should it take next. Once it receives an instruction, Instructo-Soar determines
what situation (state and goal) the instruction applies to – either the current situation or a
hypothetical one specified in the language of the instruction. For example, if Instructo-Soar
requests help in stacking red blocks, and the instructor says:

“Pick up the red block.”

Instructo-Soar assumes that this instruction refers to the current situation and to the current
goal of stacking red blocks. If the instructor says,

“To stack the green blocks, pick up the biggest green block.”

Instructo-Soar assumes that the instruction is for a hypothetical goal of stacking green
blocks.

Once Instructo-Soar has parsed the instruction, Instructo-Soar attempts to generate a plan
(the explanation) at the reflective level, that is consistent with the instruction and leads
to the goal. If an explanation is found, the agent can learn general knowledge from the
instruction (as in standard EBL). If the explanation fails, it means the agent is missing some
knowledge required to complete the explanation. The missing knowledge can be acquired
either through further instruction, or in some cases through simple induction over the “gap”
in the incomplete explanation. However, either instructions or the agent’s inductions can
be incorrect and lead to learning errorful knowledge.



268 LAIRD, PEARSON AND HUFFMAN

Figure 3. (a) The example domain and (b) Instructions on how to push a button

Instructo-Soar’s domain includes a table with red and green buttons and a light on it (see
Figure 3 (a)). The red button turns the light on and off, but the agent does not know this.
Consider an example in which the agent is first taught a general procedure for how to push
buttons, using the instructions in Figure 3 (b). Some time later, the instructor says:

“To turn on the light, push the red button.”

To perform a situated explanation, the agent first determines that this instruction applies
to a situation where the goal is to turn on the light. Then, using its existing domain theory,
it forward projects the action of pushing the red button in that situation. However, since it
does not know that the button affects the light, this projection does not explain how pushing
the button causes the goal of turning on the light to be reached.

In this case, the agent makes a simple inductive leap to complete the explanation. It
guesses that since there is a single action specified to reach a goal, that action directly
causes the goal to be reached – e.g., pushing the button has the effect of turning on the light.
Its inductive bias specifies that in this type of induction, the types of objects involved and
their relationship to one another are important but other features, like the button’s color, are
not. Thus, the agent learns a rule that says “pushing any button on the same table as a light
causes the light to turn on.” This rule allows the agent to complete its explanation of the
original instruction, producing a control rule that applies at the deliberate level that says “if
the goal is to turn on a light on a table, choose the action of pushing some button on that
table.”

Previous versions of Instructo-Soar would ask the instructor to verify the inductive leap
– Instructo-Soar was a “paranoid” agent, afraid to learn any wrong knowledge. However,
as we will see, the addition of IMPROV allows this verification step to be skipped, with the
result being that errors in future performance will be corrected by the agent itself through
interaction with the environment.



KNOWLEDGE-DIRECTED ADAPTATION 269

5. Recovery from incorrect knowledge: IMPROV

In developing IMPROV, we studied how to use the reflective level to deliberately correct
domain knowledge based on experiences in a dynamic external environment where there
is noise. IMPROV corrects errors in planning knowledge (at the reflective level), and
then uses the corrected planning knowledge to correct errors in behavior at the deliberate
level. IMPROV can correct the conditions and actions of existing hierarchically organized
planning and execution knowledge; however, it cannot learn completely new operators.
Thus, IMPROV refines a system that has the potential to be correct. IMPROV has been
demonstrated in a dynamic blocks world, and a simulated driving domain.

Although previous systems have deliberately corrected their domain knowledge, they have
been limited to simple domains, where there was neither noise in sensing nor dynamics in the
external environment. They assume that actions are atomic and instantaneous and that there
is no uncertainty in sensing the environment. Both of these conditions greatly increase the
difficulty in determining that an error occurred, the reason for the error, and the correction
required for eliminating the error. Theory revision systems apply empirical techniques
directly to the domain theory, and although these approaches can work in environments
with noise, they are unable to use other sources of knowledge (such as instructions or other
domain knowledge) to improve the correction. In addition, these approaches only address
the correction of knowledge and must be embedded in a more complete system that uses
the knowledge, detects errors in behavior, localizes the error, and then corrects it. IMPROV
does all phases of knowledge correction and can learn in domains with noise and dynamics,
using many sources of knowledge if they are available.

IMPROV uses four principal stages to error recovery: (1) detecting an error, (2) finding
a plan from the current situation to the goal, (3) identifying the operator which led to the
error and (4) correcting the operator knowledge. IMPROV achieves these stages by: (1)
recognizing that the agent is no longer making progress in its problem solving, (2) searching
at the reflective level for a successful plan biased by knowledge acquired from previous
external interactions, (3) comparing successful and incorrect plans to identify the incorrect
operators and (4) training an inductive learner on the results of executing the plans, which
corrects the planning knowledge.

In our example, when the agent is asked to turn on the light, its overgeneral knowledge
(“pushing any button causes the light to turn on”) may lead it to push the wrong (green)
button. When it does, IMPROV detects the failure (the light doesn’t come on), searches
for the correct plan (pushing the red button) and then learns that to turn on the light, the
agent must push the red button, not the green one. Alternatively, at any (or all) stages of
the recovery process, the instructor can provide simple guidance that speeds up the process
by avoiding search.

5.1. Detecting an Error

IMPROV has two methods for detecting errors. One is to have domain-specific knowledge
that detects that the agent is in an invalid situation, one that the agent should never be in
if it is correctly performing the task. For example, in the driving domain, if the agent ever
goes off the road, there could be domain-dependent knowledge that signals that an error has



270 LAIRD, PEARSON AND HUFFMAN

occurred. More generally, IMPROV detects errors when executing a plan by recognizing
that it is unable to make progress towards its goals. This occurs when either it does not know
how to achieve a goal from the current situation, or because it has conflicting suggestions
as to what to do next. These conditions signify that an error has occurred because IMPROV
will only attempt to execute a task once it has internally planned out a solution, which in
turn leads it to have sufficient knowledge to make a decision at each step during execution.
In our example, IMPROV detects an error when no operator is proposed after the agent
pushes the wrong button and the light doesn’t come on. Note that detection may not be
possible until significantly after the incorrect knowledge was used, which complicates the
problem of discovering what changes must be made to correct the error.

5.2. Finding a plan that reaches the goal

After detecting an error in its deliberate knowledge, IMPROV temporally stops attempting
to directly perform the task. It shifts to the reflective level where it searches for a path from
the current situation to the goal. This search is controlled using all available knowledge,
be it acquired from prior experience, instruction, or from explicit programming. In our
example, plans that include the push-button operator are preferred over plans that do not
include operators associated with turning on lights because of the earlier instruction. If the
agent has no previous knowledge and no other guidance, this search defaults to exhaustive
iterative deepening.1

Once a plan is found that appears to solve the problem, the agent attempts to carry it out.
It is possible errors in planning will allow invalid plans to be generated. Therefore, the
agent successively generates alternative plans when errors arise, executing each in turn, to
find one that satisfies the current goal.

5.3. Identifying the cause of the error

Once a solution has been found, the agent attempts to identify which operator is incorrect.
As we will see in the next section, the agent is able to correct its behavior without identifying
which rule(s) in the operator’s proposal or application knowledge is incorrect.

IMPROV identifies which operator(s) have incorrect knowledge by comparing the suc-
cessful plan to the original (incorrect) plan. Ordering and instantiation differences between
the plans indicate potentially incorrect operators. In our simple light example, both the cor-
rect and incorrect plans contain a single operator (push-button) with different instantiations,
so it is identified as the erroneous operator. This is a trivial example used for illustration.
IMPROV can compare arbitrarily long plans, with arbitrary differences between the correct
and original plans. If the correct plan has an operator that is missing from the original plan,
then it is assumed that the operator’s preconditions are overly specific. If the original plan
has an operator that is missing from the correct plan, then it is assumed that the operator’s
preconditions are overly general. Out of order operators are treated as a combination of
overly specific and overly general conditions.



KNOWLEDGE-DIRECTED ADAPTATION 271

Figure 4. The stages of a recovery and how instruction can help.

5.4. Correcting the error

Once the operators with incorrect knowledge have been identified, IMPROV uses an ex-
tension of the incremental category learner, SCA (Miller, 1993, Miller and Laird, 1996),
to correct the operator. The category being learned is which operator to select for a given
state and goal. To avoid the error in future, the agent must decide which features of the
state or goal caused the operator to succeed or fail. In our example, the agent must learn
that the reason pushing the red button works is because the button is red, not because it is
the button on the right, or because the robot’s hand is open or closed etc.2 In its weakest
form, IMPROV simply relies on the empirical induction made by SCA to determine the
features that are responsible for the failure. If additional knowledge is available, IMPROV
will use it to focus on the most relevant features. IMPROV revises the reflective knowledge
by learning rules that add features if the operator’s preconditions were overly specific, or
it removes features if the operator’s preconditions were overly general. Once it corrects its
reflective knowledge, it then uses it to replan, which indirectly leads to the correction of the
original error in the agent’s deliberate knowledge. If the inductive guess was wrong, the
error may recur, as will the recovery process until the knowledge is correct.

6. Instruction to inform recovery

IMPROV alone is a weak learner, relying on only empirical accumulation of examples to
correct its errors. To strengthen its learning, we have augmented IMPROV by allowing an
instructor to interrupt the recovery process at any time and provide instructions that guide
the recovery.

Figure 4 lists how instructions can apply to each phase of recovery. In particular, instruc-
tions can be used to warn the agent that an error is about to happen, to help the agent find
the correct way to achieve its current goal or to help identify the reasons for the error.

6.1. Error detection and identifying the cause

IMPROV’s instructor can indicate that an error is about to happen by interrupting deliberate
processing with the command “Stop!”. Our agent assumes that this command means that



272 LAIRD, PEARSON AND HUFFMAN

the currently selected operator will lead to an execution error, instead of leading to the
current goal. In our example, if the agent chooses the wrong (green) button, the instructor
may say “Stop”, realizing an error is about to occur as the agent moves it’s hand over the
wrong button. IMPROV records the operator push-button(green), along with the state when
the operator was chosen, as a negative training instance for the inductive module and starts
a search for the correct way to turn on the light. Thus, this instruction not only helps the
agent detect the error, it also determines which operator had incorrect knowledge.

6.2. Finding a plan that reaches the goal

Once an error has been detected, IMPROV searches for a correct plan to achieve the current
goal. At any time during this search, the instructor may provide guidance in the form of
one or more steps in that plan. In our example, the instructor can interrupt the search by
saying:

“Push the red button.”

This leads the agent to prefer plans that include pushing the red button. As the agent
believes pushing any button turns on the light, it believes this plan will succeed and imme-
diately executes it. After it succeeds, the agent’s knowledge is corrected just as if it had
discovered the plan through search instead of instruction. In the event that the instructions
are incorrect, IMPROV will try the suggested path, see that it fails and continue searching
for a correct plan.

6.3. Correcting the error

Once a correct plan has been found (either through search or with the aid of instruction),
IMPROV needs to identify the cause of the error. IMPROV must determine the key dif-
ference(s) between the plan that succeeded and the plan that failed, which in general is a
difficult credit assignment problem. In our example, the green button is to the right of the
red button. Without help from the instructor, IMPROV must guess whether the reason push-
button(green) failed was because the button was on the right, or because it was green. If it
makes the wrong induction, the agent may fail later. However, the instructor can interrupt
the learning process and guide the choice of features for the induction. In our example, if
the instructor says:

“Think about color.”

this leads IMPROV to focus on the colors of the buttons (rather than their positions) and
ensures that the correct induction is made.

7. Discussion

The thrust of this paper has been to explore adaptation in multi-level agents. Our current
work has made some important inroads by demonstrating the feasibility of using analytic
and empirical processing at the reflective and deliberate level to improve the agents abilities



KNOWLEDGE-DIRECTED ADAPTATION 273

Figure 5. Matrix of Learning between Levels

at those levels. The agents learn new things about their environments that would not be
possible in a single level agent because they use their reflective domain knowledge in
addition to their direct experience with the environment. However, there is still more to
be done before we have agents that can adapt at all levels from all available sources of
knowledge.

Figure 5 is a matrix that attempts to classify current progress in learning across levels
using both analytic and empirical techniques. Each box contains representative systems,
with question marks (??) in boxes where there are no systems known to us that perform
learning between these levels. Each row contains the problems of transferring knowledge
from one specific level to another level. Implicit in these rows is that the knowledge in
that level is combined with knowledge from the external environment, thus learning from
the reflex level does not just use the agent’s current reflex knowledge at that level, but uses
that knowledge together with its experiences in its environment to improve that level. The
columns are the destination of the knowledge — where the learning happens.

Along the diagonal, there is learning within a level, which we label as refinement. This
region is well populated because learning often improves performance at the level where
the knowledge originates (although that need not be the case). In the lower left, there are
compilation approaches that move knowledge from the reflective level to the deliberate or
reflex level, or knowledge from the deliberate level to the reflex level. The sparest area is
the upper right, where synthesis is required to move knowledge up from reflex to deliberate
or reflective, or move deliberate knowledge up to reflective. This type of learning requires
detecting new patterns of behavior that is generated from the existing knowledge that can



274 LAIRD, PEARSON AND HUFFMAN

then be used more broadly — in one sense, capturing the emerging patterns of behavior in
a more deliberate or reflective representation. The one standout is Eurisko (Lenat, 1983).

Many systems appear in multiple columns because learning at one level immediately
transfers to the higher levels. That is true in both IMPROV and Instructo-Soar where
improvement in reflective planning knowledge transfers to improvement in the deliberate
execution knowledge. One weakness in this figure is that it does not identify specific
learning problems that cross all levels. For example, a particularly challenging area is the
learning of new representations for tasks. This is a problem at all levels, and a solution at
one level may immediately transfer to the others.

There are still some missing entries, and even when there is an entry, there are undoubtedly
many research issues. Furthermore, additional research is needed on how to create agents
that integrate methods from the complete matrix. However, overall the figure is more full
than empty, and suggests that we are well on our way to building adaptive, multi-level
agents.

Notes

1. We currently assume that a successful plan exists and therefore the agent does not have to determine when to
abandon an impossible task.

2. This explanation is limited by the agent’s representation language. To determine the real cause, that the red
button is electrically connected to the light, the agent would need a deeper domain theory than we provided in
this example.

References

DeJong, G. A case study of explanation-based control. InProceedings of the Twelfth International Workshop on
Machine Learning, pages 167–175, Los Altos, CA, 1995. Morgan Kaufmann Publishers, Inc.

Dietterich, T.G. and N. S. Flann. Explanation based learning and reinforcement learning: A unified view. In
Proceedings of the Twelfth International Workshop on Machine Learning, pages 176–184, Los Altos, CA, 1995.
Morgan Kaufmann Publishers, Inc.

Doorenbos, Robert B. Matching 100,000 learned rules. InProceedings of the Eleventh National Conference on
Artificial Intelligence, pages 290–296. AAAI Press, 1993.

Forgy, C.L. Rete: A fast algorithm for the many pattern / many object pattern match problem.Artificial
Intelligence, 19(1):17–38, 1982.

Gil, Yolanda. A domain-independent framework for effective experimentation in planning. InProceedings of the
International Machine Learning Workshop, pages 13–17, 1991.

Huffman, S.B. and J. E. Laird. Flexibly instructable agents.Journal of Artificial Intelligence Research, 3:271–324,
1995.

Laird, J.E. Recovery from incorrect knowledge in Soar. InProceedings of the Seventh National Conference on
Artificial Intelligence, pages 618–623, August 1988.

Laird, J.E., A. Newell, and P. S. Rosenbloom. Soar: An architecture for general intelligence.Artificial Intelligence,
33(1):1–64, 1987.

Laird, J.E. and P. S. Rosenbloom. Integrating execution, planning, and learning in Soar for external environments.
In Proceedings of the Eighth National Conference on Artificial Intelligence, pages 1022–1029, July 1990.

Lehman, J.F., J. E. Laird, and P. S. Rosenbloom. A gentle introduction to Soar, an architecture for human
cognition. InInvitation to Cognitive Science, Volume 4. MIT Press, 1996.

Lehman, J.F., A. Newell, T. Polk, and R. Lewis. The role of language in cognition: A computational inquiry. In
Conceptions of the Human Mind. Lawrence Erlbaum Associates, Inc, 1993.

Lenat, D.B. EURISKO: A program that learns new heuristics and domain concepts. The nature of heuristics III:
Program design and results.Artificial Intelligence, 20:61–98, 1983.



KNOWLEDGE-DIRECTED ADAPTATION 275

Miller, C.M. A model of concept acquisition in the context of a unified theory of cognition. PhD thesis, The
University of Michigan, Deptment of Electrical Engineering and Computer Science, 1993.

Miller, C.S. and J. E. Laird. Accounting for graded performance within a discrete search framework.Cognitive
Science, 20:499–537, 1996.

Mitchell, T.M., R. M. Keller, and S. T. Kedar-Cabelli. Explanation-based generalization: A unifying view.
Machine Learning, 1, 1986.

Mitchell, T.M. and S. B. Thrun. Explanation based learning: A comparison of symbolic and neural network
approaches. InProceedings of the Tenth International Workshop on Machine Learning, pages 197–204, Los
Altos, CA, 1993. Morgan Kaufmann Publishers, Inc.

Newell, A. Unified Theories of Cognition. Harvard University Press, Cambridge, Massachusetts, 1990.
Ourston, D. and R. J. Mooney. Changing the rules: A comprehensive approach to theory refinement. In

Proceedings of the National Conference on Artificial Intelligence, pages 815–820. AAAI/MIT Press, 1990.
Pearson, D.J.Learning Procedural Knowledge in Complex Environments. PhD thesis, Department of Electrical

Engineering and Computer Science, University of Michigan, 1996.
Pearson, D.J., S. B. Huffman, M. B. Willis, J. E. Laird, and R. M. Jones. A symbolic solution to intelligent

real-time control.Robotics and Autonomous Systems, 11:279–291, 1993.
Pearson, D.J. and J. E. Laird. Toward incremental knowledge correction for agents in complex environments. In

S. Muggleton, D. Michie, and K. Furukawa, editors,Machine Intelligence, volume 15. Oxford University Press,
1996.

Rosenbloom, P.S., J. E. Laird, and A. Newell.The Soar Papers: Research on Integrated Intelligence. MIT Press,
1993.

Rosenbloom, P.S., J. E. Laird, A. Newell, and R. McCarl. A preliminary analysis of the Soar architecture as a
basis for general intelligence.Artificial Intelligence, 47:75–111, 1991.

Tambe, M., W. L. Johnson, R. M. Jones, F. Koss, J. E. Laird, P. S. Rosenbloom, and K. Schwamb. Intelligent
agents for interactive simulation environments.AI Magazine, 16(1):15–39, 1995.

Winograd, T.Understanding Natural Language. Academic Press, New York, 1972.


