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Abstract: We consider the scalar wave equation in the Kerr geometry for Cauchy data
which is smooth and compactly supported outside the event horizon. We derive an inte-
gral representation which expresses the solution as a superposition of solutions of the
radial and angular ODEs which arise in the separation of variables. In particular, we
prove completeness of the solutions of the separated ODE:s.

This integral representation is a suitable starting point for a detailed analysis of the
long-time dynamics of scalar waves in the Kerr geometry.
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1. Introduction

In a recent paper [8], the long-term behavior of Dirac spinor fields in the Kerr-Newman
geometry, which describes a charged rotating black hole in equilibrium, was investi-
gated. It was shown that solutions of the Dirac equation for Cauchy data in L? outside

the event horizon and bounded near the event horizon, decay in Lﬁi ast — o00.In
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this paper, we turn our attention to the scalar wave equation in the Kerr geometry. Our
main result is to derive an integral representation for the propagator, similar to the one
obtained for the Dirac equation in [8]. In our next paper [9], we will use this integral
representation to analyze the long-time dynamics and the decay of solutions in Lp..

The analysis of the wave equation is quite different from that for the Dirac equation.
The main difficulty is that, in contrast to the Dirac equation, there is no conserved density
for the scalar wave equation which is positive everywhere outside the event horizon. This
is due to the fact that the charge density, which was positive for the Dirac equation, is not
positive for the wave equation. The other conserved density, the energy density, is non-
positive either: it is in general negative inside the ergosphere, a region outside the event
horizon in which the Killing vector corresponding to time translations becomes space-
like. For these reasons, it is not possible to introduce a positive scalar product which
is conserved in time. In more technical terms, we are faced with the difficulty that it is
impossible to represent the Hamiltonian (i.e. the operator generating time translations)
as a selfadjoint operator on a Hilbert space.

We remark that the existence of the ergosphere is a direct consequence of the fact
that the Kerr black hole has angular momentum [4]. Thus the ergosphere vanishes in the
spherically symmetric limit. This simplifies the analysis considerably.

A number of important contributions have been made to the rigorous study of the
scalar wave equation in black hole geometries. The current last word on the stability of
spherical black holes under scalar wave perturbations is the paper by Kay and Wald [14],
who proved using energy estimates together with a reflection argument that all solutions
of the wave equation in the Schwarzschild geometry are bounded in L°°. More recently,
Klainerman, Machedon, and Stalker [15] proved decay in L. of spherically symmetric
solutions. These papers use the spherical symmetry of the Schwarzschild metric in an
essential way. Whiting [21] proved the absence of exponentially growing modes for
the Teukolsky equation with general spin s = 0, % 1,... (the case s = 0 gives the
scalar wave equation). Whiting’s approach is based on interesting differential and inte-
gral transforms, which for a fixed angular momentum mode and fixed energy, convert the
reduced ODEs into an equation admitting a positive conserved energy. Beyer [2] stud-
ied the wave and Klein-Gordon equations in the Kerr metric, using an approach based
on C% semigroup theory. He proved that for each angular momentum mode, the Cau-
chy problem is well-posed, and he also obtained a stability result for the Klein-Gordon
equation, provided that the mass parameter in this equation is sufficiently large. Finally,
Nicolas [18] constructs a global solution for a non-linear Klein-Gordon equation in Kerr.

Since the Hamiltonian cannot be represented as a selfadjoint operator on a Hilbert
space, we are forced to employ methods which are quite different from those which
we used in [8]. More precisely, the conserved energy gives rise to an indefinite scalar
product, with respect to which the Hamiltonian is selfadjoint. By considering the sys-
tem in finite volume with Dirichlet boundary conditions, we can arrange that the scalar
product is positive on the complement of a finite-dimensional subspace. This allows us
to use the general theory of Pontrjagin spaces [3, 16]. In particular, the Hamiltonian is
essentially selfadjoint, and has a spectral decomposition involving a finite set of com-
plex spectral points, which appear in complex conjugate pairs, together with a discrete
spectrum of real eigenvalues. We write the projectors onto the invariant subspaces as
contour integrals of the resolvent. In order to obtain estimates for the resolvent, it is
useful to consider the Hamiltonian as a non-selfadjoint operator on a Hilbert space. This
procedure also works in the original infinite volume setting, and we derive operator
estimates which compare the resolvent in finite volume to that in infinite volume. Using
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these estimates, we can represent the spectral projector corresponding to the non-real
spectrum as integrals over contours which are not closed and lie inside a region of the
form [Imw| < ¢ (1 + |Rew|)~! around the real axis. At this point, we make use of
the fact that the scalar wave equation in the Kerr geometry is separable into ordinary
differential equations for the radial and angular parts [4]. For the angular equation, we
rely on the results of [10], where a spectral representation is obtained for the angular
operator, and estimates for the eigenvalues and spectral projectors are derived. For the
radial equation, we here derive rigorous estimates which are based on the semi-classi-
cal WKB approximation. Using these estimates, we can express the resolvent in terms
of solutions of the ODEs. Using furthermore Whiting’s result that the ODEs admit no
normalizable solutions for complex w, we can deform the contours onto the real line.
This finally gives an integral representation for the propagator in terms of the solutions
of the ODEs with w real.

To be more precise, recall that in Boyer-Lindquist coordinates (t, r, 9, ¢) withr > 0,
0<9 <m, 0<¢ < 2m,the Kerr metric takes the form [4, 12]

ds> = 8jk dx’ x*

A ar sin 9 dg)? — U dr | gy
A _ulé-
U ¢ A

sin? ®

(adt — (r* +a?) do)? (1.1)
with
U(r,®) = r>+a* cos’ 9, A(r) = r* —2Mr +d>,

where M and a M denote the mass and the angular momentum of the black hole, respec-
tively. We shall restrict attention to the case M 2 > 42, because otherwise there is a naked
singularity. In the non-extreme case M > a?, the function A has two distinct zeros,

o =M — VM? —a? and ro =M+ VM2 —a?,

corresponding to the Cauchy and the event horizon, respectively. In the extreme case
M? = a?, the Cauchy and event horizons coincide,

ro=1r =M.

We shall consider only the region r > r; outside the event horizon, and thus A > 0.
In order to determine the ergosphere, we consider the norm of the Killing vector

é;::

@

D

1°

L A —a? sin? ¢ r2 —2Mr + a*cos® ¥
gij§'8 = gn = U = i . (1.2)

This shows that £ is space-like in the open region of space-time where
r? —2Mr +a* cos’® < 0, (1.3)

the so-called ergosphere. It is a bounded region of space outside the event horizon, and
intersects the event horizon at the poles ¢ =0, 7.
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The scalar wave equation in the Kerr geometry is

O0®:=g"V,V,d = —— e =0, 14
g7 YiY ¢_8x1< g8 Bxl) (14)

where g denotes the determinant of the metric g;;. In Boyer-Lindquist coordinates this
becomes

UJNCNE N GRS 3 \* N
— A—+4+—|"+a)—4+a— | — sin
at ap dcos v dcos v

L, 0 0\
a sin ﬂ—t+— ® =0. (1.5)

In what follows, we denote the square bracket in this equation by O (although strictly
speaking, it is a scalar function times the wave operator in (1.4)).

A key property of the wave equation in the Kerr metric is that can be separated into
ordinary differential equations by making the usual multiplicative ansatz

O, r, 0, ) =e TR R(r) (), (1.6)

where w is a quantum number which could be real or complex and which corresponds
to the “energy”, and k is an integer quantum number corresponding to the projection
of angular momentum onto the axis of symmetry of the black hole. Substituting (1.6)
into (1.5), we see that

U = Rox +Aui)®, (1.7)
where R, x and A, ; are the radial and angular operators
da 0 1
Rok= =3 A = Z((r2 + a*)w + ak)?, (1.8)
A D sinty : S (awsin® 9 + k)’ (1.9)
= — sin aw sin .
ok d cos 1 d cos 19 @

We can therefore separate the variables r and ¢ to obtain for fixed w and k the system
of ODEs

Rok Ry = —ARy, -Aw,k@A = 1O, , (1.10)

where the separation constant A is an eigenvalue of the angular operator A, x and can
thus be regarded as an angular quantum number. In the spherically symmetric case (i.e.
a = 0), A goes over to the usual eigenvalues . = I(/ + 1) of total angular momentum.
Since the k-modes are obtained simply by expanding the ¢-dependence in a Fourier
series, we can in what follows restrict attention to one fixed k-mode and omit the index
k. We point out that for the A-modes the situation is more difficult because A as well
as the corresponding angular eigenfunction ®, () will in general depend on w. As a
consequence, it is at this point not clear how to decompose the initial data into A-modes.

We now reformulate the wave equation in first-order Hamiltonian form. The resol-
vent of this Hamiltonian will be one of the main ingredients in the statement of our main

theorem. Letting
P
\IJ:(ia[dD)’ (1.11)
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the wave equation (1.5) takes the form

i,V =HW, (1.12)

01
H= <aﬂ>. (1.13)

Here o and g are the differential operators

-1
(r2+a2)2 s .o .2 a? 1 2
= (-7 _ s —9,A 3y — eos ¥ 0cos — =195,
o < X a” sin A 0 — Ocosy SIN™ U 0coso + A snlo) %

2 2y2 -1, 2
ﬂ:—Za(%—azsinzﬁ) (r Za —1>i8¢.

where H is the Hamiltonian

‘We now state our main result.

Theorem 1.1. Consider the Cauchy problem
oo =0, (P,i0;9)(0,x) = Yp(x) (1.14)

for initial data Wy € C§°((r1, 00) x $2)2 which is smooth and compactly supported
outside the event horizon, in the slicing associated to the Boyer Lindquist coordinates.
Then there exists a unique global solution W(t) = (®(t), i0;D(¢)) which can be repre-
sented as follows,

W(t,r, 9, ¢)
1 —ik . —iwt k
=—5—) e oy ;1\1%(/0 —/C>dwe N Dk (@) Soo(@) W) (r, ). (1.15)
kel neN e &

2

Here the sums and integrals converge in L7, .

In the statement of this theorem we use the following notation. The function \IJ(])‘ is the
k™ angular Fourier component of W, i.e.

1 2 )
We(r,0) = o / R W (r, 0, ) do .
0

We consider w in the lower complex half plane {Imw < 0}, and C; is a contour which
joins the points @ = —oo with w = oo and stays in an ¢-neighborhood of the real line.
A typical example is

C. = {x—ise*x2 : x € RL

C; is the complex conjugated contour. Thus the integrals in (1.15) can be thought of
as a “contour integral around the real axis” (see Fig. 1), in analogy to the well-known
Cauchy integral formula for matrices

. 1 .
e—lAl — _2_ e—lwl (A _ C())_l da) ,
Tl JC
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Fig. 1. Integration contours

where A is a finite-dimensional matrix and C a contour which encloses the whole spec-
trum of A. For given w and k, the wave operator is a sum of a radial operator R, x and
an angular operator A, x. As shown in [10], the angular operator has for w near the
real line a purely discrete spectrum consisting of eigenvalues (1, ),eN (see Lemma 2.1).
The spectral projectors onto the corresponding eigenspaces, which are one-dimensional,
are denoted by Qg ,(w). Furthermore, we write the wave equation in the Hamiltonian
form (1.12, 1.13) and let Soo(w) = (H — w)~! be the resolvent (in a suitable Sobo-
lev space). The operator product Ok , Se can be expressed in terms of solutions of
the reduced ordinary differential equations (see Proposition 5.4 with g = s and s as
in Lemma 5.1). Relying on Whiting’s mode stability [21], we shall see below that the
integrand in (1.15) is well-defined and holomorphic in the lower half plane, and thus
the value of the integrals is indeed independent of the choice of C;. If the integrand
were continuous up to the real axis, we could in (1.15) take the limit ¢ N\ O to obtain an
integral along the real line. However, we do not know whether the integrand in (1.15)
is continuous on the real axis. Thus the integral in (1.15) can be regarded as an inte-
gral over the real axis, with an “ie-regularization procedure” of possible singularities
(if for instance the integrand had a simple pole at wy € R, this would give rise to a
§-contribution at wy).

We point out that the global existence and uniqueness of solutions of the Cauchy prob-
lem can be obtained more generally in globally hyperbolic space-times (see e.g. [17]).
The main point of Theorem 1.1 is that we give an explicit decomposition of the propaga-
tor as a superposition of solutions of the ODEs which arise in the separation of variables.
In particular, Theorem 1.1 shows completeness in the sense that the solutions of the cou-
pled ODEs for real w form a basis of the solution space. The explicit form of (1.15) is
useful for the study of the dynamics, because the time-dependence of W is related by a
simple Fourier transform to the w-dependence of the integrand in (1.15), which can in
turn be analyzed by getting suitable ODE estimates [9].

We finally remark that the case of the wave equation for a scalar field minimally
coupled to an electromagnetic field,

g/*(Vj —ieAj)(Vi —ieAy) D =0, (1.16)

could be treated by similar methods in the non-extreme Kerr-Newman geometry, where
now the metric is given by (1.1) with

U@r,®) = r*+a% cos’ v, A(r) = rP=2Mr+ad*+4%, (1.17)
and the electromagnetic potential is

Ajdxl = —% dt — a sin® 9 dg) (1.18)
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where g denotes the charge of the black hole, and the parameters M, a, g satisfy the
inequality M? > a? + ¢°.

2. Preliminaries

In this section we briefly recall the variational formulation of the wave equation and the
separation of variables. Furthermore, we bring the equation into a first-order Hamilto-
nian form. Finally, we introduce and discuss scalar products which are needed for the
construction of the propagator.

The wave equation (1.5) is the Euler-Lagrange equation corresponding to the action

00 00 1 b4
= / dt/ dr/ d(cosz?)/ do L(D, VD) | (2.1)
—0o0 r -1 0

where the Lagrangian L is given by

1 2
L=—A3®2+— ‘((r2 + a2)8, + aa(p)@‘

—sin® 9 Iacosﬁq)l — ‘(a sin® 90, +8¢,)d>‘ 2.2)

According to Noether’s theorem, symmetries of the Lagrangian give rise to conserved
quantities. The symmetry under local gauge transformations yields that the vector field

Jo = —Im(® V;d), (2.3)

called the (electromagnetic) current, is divergence free, and integrating the normal com-
ponent of this current over the hypersurface ¢t = const yields the conserved charge Q.

More precisely,
2 d
/ dr/ d(cosz?)/ ad Q,

where Q is the charge density

oL
=]— &
C=ig,
r*+a»)? aid,® s a1, i0,®
:RC{T 81d>+m —a“sin“ ¢ ® latq>+asin2ﬁ .

Moreover, since the Kerr metric is stationary, the Lagrangian is invariant under time
translations. The corresponding conserved quantity is the energy E,

00 1 21 d
- / dr/ d(cos ﬁ)/ e (2.4)
r -1 0 2w
where £ is the energy density
Y 2 242
g = L g = (O 22 ) 19,0 + A9 0P
oD, A

. 1 a? 2
+5in? 9 |dcos 9 I* + (sinzﬁ - X) |3,®]". (2.5
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One sees that all the terms in the energy density are positive, except for the coefficient
of |8¢,<I>|2, which is positive if and only if 2 —2Mr + a® cos? 9 > 0, i.e. outside the
ergosphere. As a consequence, E is in general not positive.

Our analysis is based on a few properties of the angular operator .4,,, which we now
state. For real w, the angular operator A,, clearly is formally selfadjoint on L?(S?).
However, this is not sufficient for our purpose, because we need to consider the case that
w is complex. In this case, A, is a non-selfadjoint operator. Nevertheless, we have the
following spectral decomposition, which is proved in [10].

Lemma 2.1. (Angular spectral decomposition). For any given ¢ > 0, we define the
open set U C C by the condition

Imw| < (2.6)

c
1+ |Rew|
Then there is an integer N and a family of operators Q, () defined for n € NU {0} and
w € U with the following properties:

(i) The Q, are holomorphic in w.

(ii) Qg is a projector onto an N -dimensional invariant subspace of A,. For n > 0,
the Q,, are projectors onto one-dimensional eigenspaces of A, with corresponding
eigenvalues A, (w). These eigenvalues satisfy a bound of the form

Ap(@)] = Cn) (1 + o)) 2.7)

for suitable constants C(n). Furthermore, there is a parameter ¢ > 0 such that for
alln e Nand w € U,

[Ap(w)| = ne. (2.8)
(iii) The Q,, are complete, i.e.
o0
Z Qn =1
n=0

with strong convergence of the series in L*>(S?).
(iv) The Q, are uniformly bounded in LZ(SZ), i.e. forall n € Ny,

10 = (2.9)

with ¢ independent of w and n.

If cis sufficiently small, c < ¢, orthe real part of w is sufficiently large, |Re w| > C(c),
one can choose N = 1, i.e. A, is diagonalizable with non-degenerate eigenvalues.

The proof of this lemma is outlined as follows. If |Im w| is sufficiently small, the imagi-
nary part of the potential can be treated as a slightly non-selfadjoint perturbation (see [13,
Chapter 5, § 4.5]), giving a spectral decomposition into one-dimensional eigenspaces. On
the other hand, for any fixed w € C, an asymptotic analysis of the resolvent (A, — )1
for large X (see e.g. [6, Chapter 12]) yields a spectral decomposition into invariant sub-
spaces which for large |A| are one-dimensional eigenspaces. Thus the difficult point in
the above lemma is to show that N and the constant ¢; can be chosen uniformly in
o € U.To this end, one must show that for real w, the eigenvalue gaps of the selfadjoint
operator A, become large as |w| — oco. These gap estimates are worked out in [10] by
analyzing the solutions of the corresponding complex Riccati equation.
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After separation (1.6), the reduced wave equation takes the form

AN 1((2+2)+k)2
aror A\ Ta)eTd

a 1
-2 .2 2
— s Y +k)|P = 0. 2.10
coso " Vacosw T sinzﬁ(aw sin” % + k) ] (210)

Under the separation, the above expressions for the charge and energy densities become
(r* +a*)? ak 5 .o k

= |02 {——" (Re ——— ] —a“sin“ 9 | Re , (2.11

2=l { A w+r2+a2 “ w+asin21§‘ @1

24 22 272 2
£ =02 {(r—i——a) <|w|2 L) —a%sin?p <|a)|2 _ k—>}

A (2 +a2)2 a?sint ¢
+A 18, @] + sin® 9 |0eos o @) - (2.12)

Itis a subtle point to find a scalar product <., .> which is well-suited to the analysis of
the wave equation. It is desirable to choose the scalar product such that the Hamiltonian
H is Hermitian (i.e. formally selfadjoint) with respect to it. Since H is the infinitesimal
generator of time translations, H is Hermitian w.r. to <., .> if and only if the inner prod-
uct <W, W> is time independent for all solutions ¥ = (P, i9; P) of the wave equation.
This can for example be achieved by imposing that < W, W > should be equal to the
energy E corresponding to W. This leads us to introduce a scalar product by polarizing
the formula for the energy, (2.4, 2.5). We thus obtain the so-called energy scalar product

[e’s) 1 2 2N\2
<, W = / dr/ d(cos ) {(M — a2 sin? ﬁ>a,_q>a,c1>’
ri -1

A

+A 0, D3, D + sin® D Deos 9 D Deosy D’

() o 2.13)
sin2g9 A) ¢ '

where again ¥ = (®, i9,®) and V' = (&’,i9;, D). If ¥ is a solution of the reduced
system of ODEs (1.10), ¥’ can be written as W' = (®, ., ©®®,, ;) with &, (r, ) =
R (r)®, (). Integrating by parts and dropping the boundary terms (which is certainly
admissible when we consider the system in finite volume or when W has compact sup-
port), we can substitute the radial and angular equations into (2.13) to obtain

00 1
<¥, Y, > = w/ dr/ d(cos?)
ri -1

2 2\2 2 2
N [(%—az sin2 19) (9 1@)® Doy 5 +2ak (r Z“ . 1) ) %,A] .

In the special case ¥ = ¥, this reduces to
00 1
Wy, Wy >= Zw/ dr/ d(cos®) | ;|
r —1

2., 2\2 2.2
X [(m — a?sin? z?) Rew + ak <r Za - 1)} (2.15)

A
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By construction, the Hamiltonian is Hermitian with respect to the energy scalar product.
However, the energy scalar product is in general not positive definite. This is obvious
in (2.13) because the factor (sin~2 9 — a®/A) is negative inside the ergosphere. Like-
wise, the integrand in (2.15) can be negative because the factor ak in the second term in
the brackets can have any sign.

Apart from the energy, also the charge Q gives rise to a conserved scalar product.
It is a natural idea to try to obtain a positive scalar product by taking a suitable linear
combination of these two scalar products. Unfortunately, comparing (2.12) and (2.11)
one sees that it is impossible to form a non-trivial linear combination of Q and £ which
is manifestly positive everywhere. One might argue that a suitable linear combination
might nevertheless be positive because the positive term A|8rd>|2 + sin? 19|8005§d>|2
might compensate the negative terms. However, comparing (2.15) with (2.11), one sees
that there is a simple relation between the energy scalar product and the charge,

<"I’[w,)w ‘Ija),)u> = 2w Q[\yw,)\] s

making it again impossible to form a linear combination such that the integrand of the
corresponding scalar product is everywhere positive. Stephen Anco showed that it is
indeed impossible to introduce a conserved density for the wave equation which gives
rise to a positive definite scalar product [1]. We conclude that if we want to consider H
as a selfadjoint operator, the underlying scalar product will necessarily be indefinite.

But we can clearly consider H as a non-selfadjoint operator on a Hilbert space, and
this point of view will indeed be useful for the estimates of Sect. 4. Our method for
constructing a positive scalar product is to simply replace the negative term —a?/A
in (2.13) by a positive term. More precisely, we introduce the scalar product (., .) by

00 1 2 252
(W, W) = / dr/ d(cos D) {(% a2 sinzz‘})&,_cbé),cb/
r —1

J— [ 1 —
+A 3, P 3, D'+ Sin® ¥ Teos 9 P deos» D + g 0P8
Sin
2 242
+% Eqn’}. (2.16)

We denote the corresponding Hilbert space by H and the norm by ||.||. This norm dom-
inates the energy scalar product in the sense that there is a constant ¢c; > 0 depending
only on the geometry such that the “Schwarz-type” inequality

| <P, W'> | < e W] W] 2.17)

holds for all ¥, ¥/ € H.
We finally bring the Hamiltonian and the above inner products into a more convenient
form. First, we introduce the Regge-Wheeler variable u by

du_ ’2“’2, o _rita 0 (2.18)
dr A or A u




Scalar Wave Equation in Kerr Geometry 267

The variable u ranges over (—oo, 00) as r ranges over (r1, 0c0). Furthermore, we intro-
duce the functions

A
p=r>+a® — da* sinzf}v, (2.19)
_ 2ak
. ( ) (2.20)
1 2k2
8= ; ( +a —|— ) (2.21)
as well as the operator
A 1 a(2+ 2)3 A a’k? 22
T op | du rTaN 2y YT 2ra) '

where A denotes the Laplacian on the 2-sphere (recall that the parameter k is fixed
throughout). Then, after integrating by parts, our inner products can on C*(R x 5%)2 be
written as

00 1 A0
<V, Uh> = / du/ dcosv p (¥, <0 1) W) 2, (2.23)
—0o0 -1
00 1
(wl,\pz)zf du/ dcosﬂp(xpl,<A5’8?> W)e .  (2.24)
—00 -1
and the Hamiltonian takes the form
01
H = (Aﬂ)' (2.25)
The functions p, B, and § satisfy for a suitable constant ¢ > 0 the bounds
1 o
Zfrz_l_—azSC, 181, 18] < c.

We abbreviate the integration measure in (2.23) and (2.24) by

du = pdudcos? . (2.26)

3. Spectral Properties of the Hamiltonian in a Finite Box

We saw in the preceding section that the energy inner product (2.13), with respect to
which the Hamiltonian is formally selfadjoint, is in general indefinite. This fact remains
true even when as in [8] we consider the system in a “finite box,” i.e. when the range of the
radial variable r is restricted to a bounded interval r € [rz, rg] withr; < r; < rgp < oo.
Accordingly, in order to derive a spectral representation for the propagator correspond-
ing to the wave equation (1.5), we will need to consider the spectral theory of operators
on indefinite inner product spaces. Since there is an extensive literature on this topic, we
here only recall the basic facts needed for our analysis, referring the reader to [3, 16] for
details.
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A Krein space is a complex vector space K endowed with a non-degenerate inner
product <., .> and an orthogonal direct sum decomposition

K=Ky®Kk_, 3.1)

such that (K4, <., .>) and (K_, — <., .>) are both Hilbert spaces. A selfadjoint
operator A on a Krein space K is said to be definitizable if there exists a non-constant
real polynomial p of degree k such that

<pA)x,x>> 0 (3.2)

for all x € D(AX). Definitizable operators have a spectral decomposition, which is sim-
ilar to the spectral theorem in Hilbert spaces, except that there is in general an additional
finite point spectrum in the complex plane (see [3, p. 180], [16, Thm 3.2, p. 34] and
Lemma 3.3 below). An important special case of a Krein space is when /C is positive
except on a finite-dimensional subspace, i.e.

Kk :=dim K_ < oo. (3.3)

In this case the Krein space is called a Pontrjagin space of index «. Classical results of
Pontrjagin (see [3, Thms 7.2 and 7.3, p. 200] and [16, p. 11-12]) yield that any selfad-
joint operator A on a Pontrjagin space is definitizable, and that it has a k-dimensional
negative subspace which is A-invariant.

We now explain how the abstract theory applies to the wave equation in the Kerr
geometry. In order to have a spectral theorem, the Hamiltonian must be definitizable.
There is no reason why H should be definitizable on the whole space (71, 00) x s2,
and this leads us to consider the wave equation in “finite volume” [rp, rg] X $2 with
Dirichlet boundary conditions. Thus setting ¥ = (®, i ®,) and regarding the two com-
ponents (W, W) of W as independent functions, we consider the vector space P, ,, =
(H"2 @ L?)([rr, rr] x S?) with Dirichlet boundary conditions

Vi(re) = 0 = Wi(rg) . (3.4)

Our definition of H'2([r, rr]x S?) coincides with that of the space W2 ((rp, rg) x §%)
in [11, Sect. 7.5]. Note that we only impose boundary conditions on the first compo-
nent W of ¥, which lies in H 12, According to the trace theorem [7, Part II, Sect. 5.5,
Theorem 1], the boundary values of a function in H'2([ry, rg] x $?) are in L2(5?),
and therefore we can impose Dirichlet boundary conditions. We endow this vector space
with the inner product associated to the energy; i.e. in analogy to (2.13),

R 1 ) o
U W' = / dr/ d(cos ) {(M —a? sin219> U W)
ry —1

A

+A B,V 3, W] + sin® 9 deos 9 U1 decos o V]

+( ! az)axyaxy’} (3.5)
sin2g A ) et '

Lemma 3.1. For every rg > ry there is a countable set E C (ry, rgr) such that for all
rr, € (r1,7R) \ E, the inner product space Py, ,. is a Pontrjagin space. The topology
on Py, rp is the same as that on (H" 2@ Lz)([rL, rr] x SZ).
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Proof. Since (3.5) involves no terms which mix the first component of W with the second
component, P, ,. clearly has an orthogonal direct sum decomposition P, ,, = Vi® V>
with Vip = {W € P, : Wy = 0}. Furthermore, it is obvious that the space
(V2, <., .>) has a positive scalar product and that the corresponding norm is equivalent
to the L2-norm. Hence it remains to consider Vi, 1.e. the space Hl’z([rL, rr] x S2) with
Dirichlet boundary conditions and the inner product

'R 1
<®, d'> :/ dr/ d(cos )
rr —1

x {A 39,® 9, ® + sin B Jogep D Deos s D’

(! ) 2o’ (3.6)
sin29¢ A ' ’

Transforming to the variable u, (2.18), and using the representation (2.23), one sees that
on the subspace C%([ur, ugr] x S?) the inner product (3.6) can be written as

<®d . q>,> = (q), AqD/)LZ([ML,MR]st,d,u) (37)

with A according to (2.22). Here we set u; = u(rr), ur = u(rgr), and du is the mea-
sure (2.26). A is a Schrodinger operator with smooth potential on a compact domain.
Standard elliptic results [20, Proposition 2.1 and the remark before Proposition 2.7] yield
that A is essentially selfadjoint in the Hilbert space H = Lz([u Loupl x §2,d w). It has
a purely discrete spectrum which is bounded from below and has no limit points. The
corresponding eigenspaces are finite-dimensional, and the eigenfunctions are smooth.

Let us analyze the kernel of A. Separating and using that the Laplacian on S? has
eigenvalues —/(I + 1),/ € Ny, A has a non-trivial kernel if and only if for some / € Np,
the solution of the ODE

d 5, 0 a2k2
[ 3u(r +a)8u+ Zra —— ll+1)— }gb(u)_O (3.8)
with boundary conditions ¢ (ug) = 0 and ¢'(ug) = 1 vanishes at u = uy . Since this
¢ has at most a countable number of zeros on (—o0, ug] (note that ¢ (1) = 0 implies
¢’ (1) # 0 because otherwise ¢ would be trivial), ¢ vanishes at u; only if u; € E; with
E; countable. We conclude that there is a countable set E = U; E; such that the kernel
of A is trivial unless u;, € E.

Assume that u; ¢ E. Then A has no kernel, and so we can decompose H into the
positive and negative spectral subspaces, H = H @ H_. Clearly, H_ is finite-dimen-
sional. Since its vectors are smooth functions, we can consider H_ as a subspace of
Py, .rr» and according to (3.7) it is a negative subspace. Its orthogonal complement in
Prp,rx 1s contained in H 4 and is therefore positive. We conclude that P;, . is positive
except on a finite-dimensional subspace.

It remains to show that the topology induced by <., .> is equivalent to the H'-2-
topology. Since on finite-dimensional spaces all norms are equivalent, it suffices to con-
sider for any Ao > O the spectral subspace for A > 1, denoted by H,,. We choose A

such that
1—X < V i a’k? 0
— = min | ————= ] <0.
0 =" [rr.rR] r2 4+ a2
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Then for every W € C2 N Hig»

(%)
<, U> = (W, AY) 24 = W30,
1 AQ

2
<\Il’ V> > E <lIJa A\IJ>L2((1/,L) + ?”\II”LZ(d’L)
2 B+ o 1+ 2 9 g 2 5o 19130

where in (%) we used that the coefficients of the ODE (3.8) are bounded from above and
below and that the zero order term is bounded from below by Vy. O

We always choose ry, and rg such that P,, ,. is a Pontrjagin space and that our initial
data is supported in [rz, rg] x s2.

‘We now consider the Hamiltonian (1.13) on the Pontrjagin space P,, ,, with domain
C®([rp, rrl x $?)% C ‘Pr, .rg- For clarity, we often denote this operator by H,, ,.

Lemma 3.2. H,, ., has a selfadjoint extension Py, rp.
Proof. On the domain of H,, ,., the scalar product can be written in analogy to (2.23) as

<WWU'> = (W, SY) 12000, up]xS2du) -

where the operator § acts on the two components of W as the matrix

AO
S=<Ol>, (3.9)

where A is again given by (2.22) and d i is the measure (2.26). As shown in Lemma 3.1,
S has a selfadjoint extension and is invertible. We introduce on C§°([ur, ug] x 52)2 the

operator B by B = |S|_% SH|S|_% . The fact that H is symmetric in P,, ,, implies that
B is symmetric in L2([uz, ug] x S%, dj). A short calculation shows that

1
B2 — [Al - |A]72AB
= o 5 -
BIAI"2A [Al+ B
Treating the terms involving 8 as a relatively compact perturbation, we readily find that
BZis selfadjoint on L%([up, ug] x 82, d ) with domain D(B?) = D(A). Consequently,

the spectral calculus gives us a selfadjoint extension of B with domain D(B) = D(A™ 3 ).

We extend H to the domain D(H) := |S|_%D(B).
We now show that with this new domain, H is selfadjoint on P, .. Suppose that
for some vectors W, & € Py, rp.

<V HY >=< d, ¥ > for all W' € D(H).
It then follows that
(ISI2W, BISP W) g = (SISIT2®, [SI2W) 2y, forall¥’ e D(H)

(note that the vectors W, ® € Py, . liein H'? @ L? and thus both |S|%\IJ, S|S|_%\IJ €
L?(dw)). By definition of the domain of H, this is equivalent to

1 ~ _1 ~ ~
(IS12W, BE) 24 = (SISIT2®, W) 2y, foralll € D(B).
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Since B is selfadjoint, it follows that the vector || 3 W lies in the domain of B and that
BIS|ZW = S|S|~®. This implies that ¥ € D(H) and that H¥ = &. O

‘We now prove a basic lemma on the structure of the spectrum of the Hamiltonian H,, .

Lemma 3.3. The spectrum of H,, y is purely discrete. It consists of finitely many com-
plex spectral points appearing as complex conjugate pairs, and of an infinite sequence
of real eigenvalues with no accumulation points.

Proof. Since the operator H,, ,, is essentially selfadjoint, there exists a negative definite
subspace L_ of P,, ,, of dimension k which is H,, ,.-invariant (see [16, p. 11]). Let
po denote the minimal polynomial of H,, ,, on L_, i.e.

pO(HrL,rR) L— == 0

with deg po < « minimal. Furthermore, we let p be the real polynomial of degree < 2«
defined by p = pg po. We claim that im p (H,, ,.) is a positive semi-definite subspace.
Indeed, we have for all x € Py, .,

<W(HrL,rR)X, L—> = <X, p() (HFL,}”R)L—> = O, (310)
so that
imp (Hyyrp) C imBo(Hy ) C (LY C (Prpng)es 3.11)

as claimed.
Next, since the square of the operator H,, ,., is elliptic it follows that

dimker (p (Hy, ) < 00, (3.12)

and from [16, Prp. 2.1], we know that for each eigenvalue & of H,, ,,, the corresponding
Jordan chain has finite length bounded by 2« + 1. It follows that p2<! (Hy, rg) has a
finite-dimensional kernel and no Jordan chains. This implies that

im p** (H,, ;) Nker p* T (H,, ;) = {0}. (3.13)

Furthermore, since the operator p2+! (H,, rg) is selfadjoint, its image and kernel are
clearly orthogonal.

The image of p?**!(H,, ,.) is contained in im p (H,, ,,) and is therefore positive
semi-definite. We shall now show that the space im p>+! (H,, rg) 1s actually positive
definite. To this end, we let N be its null space,

N :={x € im p**' (H,, ,,), <x, x>=0}. (3.14)
Forall x € N and y € D(H,, ), we have
<x, p* T (Hyy ) y>=0, (3.15)
which is equivalent to
<p*l (Hy, rg)x, y>=0, (3.16)
because p is real. Since the scalar product is non-degenerate, this implies that

p* N (H, ) x=0. (3.17)
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2k+1 ( 2k+1 (

But we have just shown that ker p H,, ;) andim p H,, ,.) have trivial inter-
section. It follows that x = 0 and therefore that im pz"“ (H,, rg) 1s positive definite,
as claimed.

Restricting H,, ,, to im p H,, ), we have a self-adjoint operator on a Hil-
bert space. Thus the spectral theorem in Hilbert space applies, and the ellipticity of
H? _ yields that the spectrum is purely discrete. On the finite-dimensional orthogonal

TL:TR
complement ker ( pz"+1 (Hy,u,)) we bring H,, .. into the Jordan canonical form. O

2k+1 (

as

4. Resolvent Estimates

In this section we consider the Hamiltonian H as a non-selfadjoint operator on the Hil-
bert space H with the scalar product (., .) according to (2.16). We work either in infinite
volume with domain of definition D(H) = C{°((r1, 00) x S?)? or in the finite box
r € [rr, rg] with domain of definition given by the functions in C*®°((rr, rg) X 52)2
which satisfy the boundary conditions (3.4). Some estimates will hold in the same way
in finite and infinite volume. Whenever this is not the case, we distinguish between finite
and infinite volume with the subscripts ,, . and ~, respectively. We always consider a
fixed k-mode.

The next lemma shows that the operator H — w is invertible if either |Im w| is large
or Imw| # 0 and |Rew| is large. The second case is more subtle, and we prove it
using a spectral decomposition of the elliptic operator A which generates the energy
scalar product. This lemma will be very useful in Sect. 7, because it will make it possi-
ble to move the contour integrals so close to the real axis that the angular estimates of
Lemma 2.1 apply. By a slight abuse of notation we use the same notation for H and its
closed extension.

Lemma 4.1. There are constants ¢, K > 0 such that for all ¥ € D(H) and w € C,

1 K
I(H —o)¥| = —(Imo| = ——— | V] .
c 1+ |Re w|

Proof. For every unit vector W € D(H),
I(H—o)¥| = [(V,(H—-o)V)| = [Im(¥, (H—-o)V)|

1
> Imw| — 3 |(V, (H— H")W)|. 4.1)

It is useful to work again in the variable u and the representation (2.24) of the scalar
product (., .) on Cg(R x §%)2. We introduce on Cg(R x §%)2 the operator Hy by

0 1
Hy = <A+8ﬂ)'

Comparing with (2.24) one sees that H is formally selfadjoint w.r. to the scalar product
(., .). Furthermore, one sees from (2.25) that Hy differs from H only by a bounded

operator,
00

< c.
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Thus on C2(R x §2)2,

|H — H*|| = |(H — Hy) — (H — Hp)*|
< |H — Hol +II(H — Ho)*| = 21|H — Hy|| < 2c,

and substituting this bound into (4.1), we conclude that
(H—o)¥| = (Imo|—oc) Y] .
In view of this inequality it remains to consider the case where |Re w] is large.

Using standard elliptic theory (see again [20, p. 86, Proposition 2.7] and [5]), the
operator A with domain D(A) = Cgo (R x §?) is essentially self-adjoint on the Hilbert
space Lz(du) = L2(R x S2, du), with d i according to (2.26). Clearly, A is bounded
from below, A > —c, and thus 0 (A) C [—c, 00). For given A > 1 we let Py and Py
be the spectral projectors corresponding to the sets [—c, A2) and [A2, 00), respectively.
We decompose a vector W € H in the form ¥ = Wy + W, with

(P O _(Pr O
w= (B0)e, = (5 0)
This decomposition is orthogonal w.r. to the energy scalar product,

A0
<Wp, Wo> = (W4, (0 1)‘D0>L2(du) =0.

However, our decomposition is not orthogonal w.r. to the scalar product (., .), because

A4+60 §0
(WA, Wo) = (W, ( 0 1>‘IIO>L2(dp,) = (Va, (0 0) Vo) 12y -

But at least we obtain the following inequality,
(WA, W) < c [ Woll 1WAl 12y - (4.2)

where \I/}\ denotes the first component of W . Using that

! I =iyl 1 2
(KDY = (WA, A" V) 2w = e WAl

2
”L2(du)
we can also write (4.2) in the more convenient form

c
(WA, Yo)| < n Woll WALl -
Choosing A sufficiently large, we obtain
IWI? = [IWAl® + 2Re(Wa, Wo) + [Wol® < 4(IWall + | Wol))
and thus

Wl < 2(Wall + [Woll) - (4.3)
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Furthermore, we can arrange by choosing A sufficiently large that

A0
<Wp, Wpr> = (Wy, (0 1) qu)Lz(du)

1 <A+80

S Wl 1) WA 12@ap)

v

1
= — WAl
3 WAl

Next we estimate the inner products <W,, HWo>, (Yo, HW ) and (W, HWYy). The
calculations

0A 00
<Wp, HYp> = (Y4, <A ,3> Vo) 2@ = (Wa, <O ﬂ) Vo) r2au)»

0A+4 06
(\IJO’ H\IIA) = <\Ij0’ (A IB >\I‘1A>L2(du) = (lp()’ <O IB) WA)Lz(du)a

0A+S

1ol 2y + 2 1AV 20,0 WG 1 2200,
2
1,2 A- 0
”A\IJOHLZ(dM) = (\IJO’ < 0 0) WO)LZ(d;L)

AQ
< A% (W, (0 1) Wo) 2y = A% 1%l

IA

give us the bounds

| <Wp, HYo> | < ¢ || WAl |[Woll.
|(Wo, HUA)| < ¢ [Woll [Wall,
|(Wo, HWo)| < (¢ + 2A) ||Wo* .

Using the above inequalities, we can estimate the inner product <W,, (H — 0)¥V>
by

| <Wa. (H —o)W> | = | <UA, (H —0)Wp> | = | <Wa, (H —0)¥o> |

[Tm o| 5
= = 1Al = ¢ [Woll [ WAl

Applying the Cauchy-Schwarz inequality | <Wp, (H —o)¥> | < c1 || VAl [|(H —o) V||
and dividing by ||\W, ||, we obtain (possibly after increasing c) that

IIm o

[(H—o)¥| = Wall = 1Yol - (4.4)

Next we estimate the inner product (¥, (H — w)W),
|(Wo, (H — 0)¥)| = |(Wo, (H — 0)¥o)| — [(Wo, (H — 0)W4)|
) Woll WALl .

||

> (lo] — ¢ = 2A) [|Woll* — ¢ (1 +
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We apply the Cauchy-Schwarz inequality (Wo, (H — w)W) < ||Vl ||(H — w)W¥]| and
divide by || W,

I(H —o)¥| = (jo| —c—=2A) [[Woll — ¢ (1 + %) WALl - (4.5)

Choosing A = (Jow| — ¢)/4 and increasing c, the inequalities (4.4) and (4.5) give for
sufficiently large |w| the bounds

I
I(H - wyw) = 1

WAl = Vol

||
I(H = o)Wl = == [1Woll — ¢ ¥l

Multiplying the second inequality by 4/|w| and adding the first inequality, we conclude
that

Imw| 4c
— — J WAl + [[Woll -
19]

2|(H —o)¥| = (

The result now follows from (4.3). O

With the last lemma at hand, we are ready to introduce the resolvent. Namely, we let

2K
Q=1lweC: |Imo| > ———— (4.6)
1+ [Rew

with K as in Lemma 4.1.

Corollary 4.2. If v € <2, the operator H — w is invertible. The corresponding resolvent
S(w) = (H—w)™!

satisfies the bound

IS = 4.7)

Im w|
with c independent of w € .

Proof. In view of the preceding lemma, it suffices to show that the image of H — w is
dense in H for any w € Q. Otherwise, there would exist a non-zero W € H such that

<(H—-w)¥,¥>=0 forall ¥ e D(H), (4.8)

that is a weak solution of the equation (H — w)¥ = 0. By the regularity theorem for
elliptic operators on manifolds with boundary (cf. [19, Chapter 5, Theorem 1.3]), every
weak solution of this equation is a solution in the strong sense. These have been ruled
out by the preceding lemma. 0O
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Using (4.6) in (4.7), we immediately get the bound
[S(@) < ¢+ Rew]). 4.9)

Since S(w) is a bounded operator, its domain of definition can clearly be chosen to be
the whole Hilbert space. We shall assume until the end of this section that w € Q.

The next lemma gives detailed estimates for the difference of the resolvents S, ,.
and S in finite and infinite volume, respectively. By Q; (w) we denote a given projec-
tor onto an invariant subspace of the angular operator .4, corresponding to the spectral
parameter A of dimension at most N (see Lemma 2.1 for details).

Lemma 4.3. For every W € C{°((rp, rg) X $2)2 and every p € N, there is a constant
C = C (¥, p) (independent of w) such that

C 1
14 |w? Imw|

|<W, [S,. k(@) — S (@) W>] < (4.10)

Furthermore, for every W € Cg°((r, rg) x $2)% and every p € Nand g > N, there is
a constant C = C(V, p, q) (independent of w and A) such that
C

1Qxll . (4.11)

Proof. By definition of the resolvent, (H — w) S(w)W¥ = W. This relation holds both in
finite and in infinite volume, and thus

((H — w) [SrL,rR (w) — Soo(a))] \I/) r,v) =0 ifrp <r <rg.
Iterating this identity and using the fact that H and S commute, we see thaton [ry, rg 1xS2,
WP T[S, rp (@) = Soc(@) | W =[S,z (@) — Ssc(@)| HPY W . (4.12)
Combining this identity with the Schwarz-type inequality (2.17), we obtain
|<W. [Sry.rk (@) = Soo@)] W] < €1 1S5, (@) = Sso(@) | W],
P ] | <W, [Sry 10 (@) — Sao(@)] W] < ‘<\y, [Sr, e (@) — Soo(@)] H”“\IJ>‘ ,
< 1 [1Sr,.rg (@) = S (@) | W[ [1HPF W]

Since W is smooth and has compact support, H?+1W also has these properties. The
estimate (4.9) gives (4.10).
In order to prove (4.11), we first combine (4.12) with (2.17) to obtain

(1 + |ol”T) [<W, 05.(Sy,.rp — So0) ¥>|
< 1Ol 1S, rp — Sooll W] (||\I/|| + ||HP+‘\IJ||). (4.13)

Since g is at least as large as the dimension of the invariant subspace corresponding to
A, (A, — 2)?Q; = 0. Therefore, for every W' € C5°([rz, rr] x 52)2,

0 =<V, (A, — MIV'> = <(A* — )1, 0, V> .

Expanding the power (A* — )7 and using (2.17), we obtain
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q
117 | <w, 030> < 3 e g A0 s @9
=

with combinatorial factors ¢; (here [, ] 1S the operator of multiplication by the char-
acteristic function). Since the angular operator A’ is according to (1.9) a polynomial in
 of degree two, the function (A*)'W is also polynomial in w, i.e.

21
1
(AW = Zw” v, ,
p=0

where the functions W, are composed of W and its angular derivatives, as well as the
coefficient functions of A}. This gives the estimate

21
IAD' W < > ol? Wyl < ¢+ o)
p=0
with a constant ¢ which depends only on W and /. We thus obtain

q
I | <w, 0W'>] < Y (W) M A+ o) X @09 -
=1

Young’s inequality allows us to compensate the lower powers of A,
M| <@, 029> < (g, ¥) L+ 101 | xpry ) Q2]

We now choose W’ equal to the left side of (4.12) with p = 0 and p = r and take the
sum of the resulting inequalities. Applying again the Schwarz inequality, we obtain

M9 (L4 |ol") | <®, Qa(Sryrp — Se) V> |
< c(1+10P) 1 Qall 1Sr,,re — Socll (NI + I1H ) .

By choosing r sufficiently large, we can compensate the factor (1 + |w|>?) on the right.
More precisely,

AT (L [l [<W, Q4 (Srpry = Soo)W>|
< NQu ISruur = Seoll (191 + I1HP P24 ).

Adding this inequality to (4.13) and substituting the estimate (4.9) gives (4.11). O

5. Separation of the Resolvent

In this section we fix @ & o (H), so that the resolvent S = (H — w)~! exists. As in the

previous section, we assume that Q; is a given projector onto a finite-dimensional invari-

ant subspace of the angular operator .4, corresponding to the spectral parameter A. Our

goal is to represent the operator product QS in terms of the solutions of the radial ODE.
According to (1.10) and (1.8), the radial ODE is

9 8 (2+a>)? ak \*
A - ——— ) +A|R() =0, 5.1
|: ar or A <w+r2+a2) + *) ©-1)

where A is the separation constant. We can assume that & > 0 because otherwise we
reverse the sign of w. We again work in the “tortoise variable” u, (2.18), and set
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o(r) = Vr2+a? R(r) . (5.2)

Then Eq. (5.1) can be written as

I 2) L _ak 2 A A ¢ 0. (53
r —_ = . .
r2+a2 du . T a2 r2+a»)?| Vr?¥ a2

Using that

1 1 0 0 1
s +a2) (r +a)1 = —5 (P +ah)7z 5(r2+a2> = —5(r2+a2>f,

(5.3) simpliﬁes to the Schrodinger-type equation

82
( P +V(u)> o) = 0 (5.4)

with the potential

ak \* AA
V) = — — 32Vr2+a2. (55
(u) <w+r2+a2) t eyt _r2+a re+a*. (5.5

We let ¢1 and ¢, be two solutions of (5.4) which are compatible with the boundary
conditions. More precisely, in finite volume we satisfy the Dirichlet boundary conditions
¢1(ur) = 0 and ¢ (ug) = 0 (again with u; = u(ry) and ug = u(rg)). Likewise, in
infinite volume we only consider the case Imw < 0 and let ¢; and ¢, be the funda-
mental solutions which decay exponentially at 1 = —oo and u = +00, respectively
(the existence of these fundamental solution will be established in Corollary 6.4). If the
solutions ¢ and ¢, were linearly dependent, they would give rise to a vector in the
kernel of H — w, in contradiction to our assumption w ¢ o (H). Thus the Wronskian

w(gr, ¢2) 1= ¢y () p2(u) — 1 (u) $5(u) (5.6)

is non-zero (note that w is by definition independent of u).
We begin by constructing the “Green’s function” corresponding to (5.4).

Lemma 5.1. The function

su,u') =

1 d1(w) po(u') ifu < u’
w1, ¢2) 8 {¢2(M) o) ifu>u (5.7

satisfies the distributional equation
82
( P + V(u))s(u,u’) = 8(u—u).
Proof. By definition of the distributional derivative,
o o
/ n@w) (=82 + V)s(u, u') du = / ((—33 + V)n(u)) s(u,u') du
—0o0 —0oQ

for every test function n € C§°(R). It is obvious from its definition that the function
s(., u") is smooth except at the point u = u’, where its first derivative has a discontinuity.
Thus after splitting up the integral, we can integrate by parts twice to obtain
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f_oo ((—83 + V)n(u)) s(u,u’) du

:f“ n(w) (=92 + V)s(u,u') du + ul%,n(u) 35 (u, u')

—0o0
o0
+/ n(u) (—aj + V)s(u, ') du — lim n(u) d,s(u,u’) .
u uN\u'

Since for u # u’, s is a solution of (5.4), the obtained integrals vanish. Computing the
limits with (5.7), we get

/ ((—a,f + V)n(u))s(u,u’) du = <lim — lim) 7(1) s, )
00 u/u uN\u’

-
— w(gr, ¢2)

where in the last step we used the definition of the Wronskian (5.6). O

n@) (¢ @) o) — ¢y ) 1)) = n@w),

In what follows we also regard s (u, u’) as the integral kernel of a corresponding operator
s, i.e.

P () = /du’ su,u’)y o) du’ .
If O, projects onto an eigenspace of A, we see from (1.10), (1.7), and (5.2) that
002 +a)77 00,9 s@.)) = (2 +a) 72 Q@) 8 —u) . (5.8)

Loosely speaking, this relation means that the operator product Q} s is an angular mode
of the Green’s function of the wave equation. Unfortunately, Q; might project onto an
invariant subspace of A, which is not an eigenspace. In this case, the angular operator
has on the invariant subspace the “Jordan decomposition”

Ao O = A+ N) Os (5.9)

with AV = N(w, A) a nilpotent operator. Lemma 5.3 extends (5.8) to this more general
case. In preparation, we need to consider powers of the operator s.

Lemma 5.2. For every | € Ny, the operator s' is well-defined. Its kernel (s')(u, u’) has
regularity C*' =2,

Proof. Writing out the operator products with the integral kernel, one sees that the
operator s is obtained from s by iterated convolutions,

sPH u,u) = /s(u,u“)sl’(u”,u/) du” . (5.10)

In the finite box, these convolution integrals are all finite because s(u, u”) is continuous
and the integration range is compact. In infinite volume, the function s(u, u’) decays
exponentially as u, u’ — 400 (see Corollary 6.4), and so the integrals in (5.10) are
again finite. Hence s is well-defined.

Let us analyze the regularity of the integral kernel of s'. By definition, s (u, u’) is con-
tinuous, and (5.10) immediately shows that the same is true for s? (u, u’). Differentiating
through (5.10) and applying Lemma 5.1, one sees that s? satisfies for p > 1 the distri-
butional equation
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2
( 0 +V<u>) MY, u') = P —u').

ou?
This shows that incrementing p indeed increases the order of differentiability by two. O

Lemma 5.3. For given X € o(Ay) we let g be the operator
o0
g = Y (=) s, (5.11)
=0

where N is the nilpotent matrix in the Jordan decomposition (5.9). Then

O(02+a)72 0.9 gw.u)) = (2 +a)72 010, 9) 5w —u).
(5.12)
Note that if Q; projects onto an eigenspace, A/ vanishes and thus g = s. Further-

more, since N is nilpotent, the series in (5.11) is actually a finite sum. Thus in view of
Lemma 5.2, (5.11) is indeed well-defined.

Proof of Lemma 5.3. Denoting the radial operator with integral kernel §(u — u’) by 1,,,
we can write the result of Lemma 5.1 in the compact form (—83 + V)s = 1,.. Hence on
the invariant subspace, we can do a Neumann series calculation,

2 +V)g = Y M =2+ V't = S5 =1, -Ng,
k=0

=0

to obtain that (—83 +V +N)g = 1,. According to (1.10), (1.7), and (5.2), this is
equivalent to (5.12). O

We come to the separation of the resolvent. In order to explain the difficulty, we point
out that H and @, do not in general commute, and thus

(H-w) 0y # Op(H—w) and 0,8 # S0,

Therefore, one must be very careful with the orders of multiplication; in particular, it
is not possible to simplify the operator product (H — w) Q, S. However, we know from
the separation of variables that for every solution W of the equation (H — w)W¥ = 0, its
projection Q; (w)W is again a solution. In other words, H and Q; do commute on the
kernel of (H — w). This fact will be exploited in the proof of the following proposition.

Proposition 5.4. For w € o (H) we let Q) be a spectral projector of the angular oper-
ator Ay,. Then the resolvent of H has the representation

0,8 = Oy T(w,2),

where T is the operator with integral kernel

TG 010, 0) = S(cos® —cos?) §(u —u') <(1) 8)

+8(cos 9 —cos ') (2 +a?) " g(u, u') (wfi‘(‘u’,f?ﬁ)/) w“f(‘u’,%)/D L (5.13)
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Here g is the Green’s function (5.11) (which depends on w and )\), and t, 0 are the
functions

o=@’ +02)_% ((7’2 +a®)? — A a?sin® 15‘) ,
T = 2ak (r2 +a2)7% ((r2 +a2) - A) + wé .

Proof. Letus compute the operator product (H —w) O, T . We first consider the first sum-
mand in (5.13), which we denote by T7. In this case, the operator product is particularly
simple because the second column in the matrix (1.13) involves no u- or ¥-derivatives.
We obtain

(H =) Qs T, 954/, 9") = 0x(9,9") 8(u, u) (ﬂ(u,;)_wg). (5.14)

Next we consider the second summand in (5.13), which we denote by 7>. Fixing
u’, ¥ and considering T» as a function of u, ©¥, we see from Lemma 5.3 that each col-
umn of QT is for u < u’ a vector of the form ¥ = (&, @®) with ® a solution of the
separated wave equation (1.7). The same is true for u > u’. Hence for u # u’, 0, T is
composed of eigenfunctions of the Hamiltonian,

(H=—w) Oy ) (u,%;u’,9) =0 ifu#u'.
It remains to compute the distributional contribution to (H — w)Q,T» at u = u’. Since
T5 is continuous at u = u’, we only get a contribution when both radial derivatives act

on the factor g. According to Lemma 5.2, the higher powers of s are in C2, and thus we
may replace g by s. Applying (1.13), (2.18), and Lemma 5.1, we obtain

(H =) 0y T)(u,%;u’,9")

! ! 1 0 0
= Py 0,0, 0")é(u—u) (r(u’, %) o, 19/)) . (5.15)

We add (5.14) to (5.15) and carry out the sum over A € o (A,). Since the spectral
projectors Q) are complete (see Lemma 2.1 (iii)), Y, Q1 (9, ¥') gives a contribution
only for = ©¥’. We thus obtain a multiplication operator,

7\ (00
Z (H—w) 0, T(\) = l—i—((ﬂ—a))—i-;) (1 0).
reo(Aw)

Using the explicit form of the functions 7, o, and B, one sees that the second term
vanishes. Thus

Y. H-0)0:TG) = 1.
reo(Aw)

Multiplying from the left by Q,/S and using the orthogonality of the angular spectral
projectors gives the result. O
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6. WKB Estimates
In this section we shall derive estimates for the radial ODE (5.4) in the regime
Rew| > 1 and Imw| <c. (6.1)

In this “high-energy regime”, the semi-classical WKB-solution should be a good approx-
imation. In order to quantify this statement rigorously, we shall make an ansatz for ¢
which involves the WKB wave function and estimate the error.

Our first lemma gives control of the sign of Re v/V.

Lemma 6.1. There is a constant C such that for all w with
Imw # 0, |Rew| > C
and all ) € 6(Ay), the function Re V'V has no zeros.

Proof. At a zero of Re AV, the function V is real and non-positive. Thus it suffices to
show that the imaginary part of V has no zeros.

We first estimate the imaginary part of the angular spectrum. For any A € o (A,) we
let @, be a corresponding eigenvector. Then

Im () (P, d),2 = zii(@, Ap®) 2 — (Ay®, ®);2) = 2il_<c1>, (Ap — A)D) 2,

where (., .>L2 is the L2-scalar product on S2. Hence, according to (1.9),

1
ma| < > Ao = A5 = sup
SZ

1
Im ( (aw sin ¥ + k)2>

sin? 9
<24? |Rew| [Imw| + |2ak Imo| . (6.2)
The imaginary part of (5.5) is computed to be
ImV = —2<Rea)+2a—k2)lma) R (6.3)
r*+a (r2 + a?)?
Using (6.2), the second summand is estimated by
A Im,\‘ <2 _aa <|Rew| + |k—|) Imol .
(,,2 +a2)2 (r2 +a2)2 a

The factor a®> A (r? 4 a®)~2 vanishes on the event horizon and at infinity and is always
smaller than one. Thus there is a constant ¢ with a2A(r% + a?)~2 < ¢ < 1. This shows
that after choosing |Re w| sufficiently large, the first summand in (6.3) dominates the
second, and so Im V has no zeros. O

In what follows, we assume that the assumptions of the above lemma are satisfied. We
choose the sign convention for the square root such that

Re/V(u), ReV)i > 0 for all u € R. 6.4)
Furthermore, we shall restrict attention to w in the range
— < Imw < 0, Rew| > C, (6.5)

where c is any fixed constant and C will be chosen depending on the particular appli-
cation. The next lemma, which we will need in Sect. 7, estimates AV inside the “finite
box” [ur, ug] uniformly in w for large Re w.
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Lemma 6.2. For every angular momentum mode n and every c, e > 0, there are con-
stants C and ¢’ such that for all u € [ur, ug] and all w in the range (6.5),

[Re V| < ¢, (6.6)

IIm+/V(®) —Im\/V[Rew)| <¢. 6.7)

Proof. We set wg = Rew, . = A(wp) and introduce for a parameter t € [0, 1] the
potential

. ak 2 A
W=-2iImw Rew—i—m + (Imw)” + (A — A0) (r2+a2)2 :

Then Vy = V(wp) and V| = V(). The mean value theorem yields that

(Re,/V(w)—Re,/V(wo)‘g sup Re( W ) 6.8)

t€[0.1] ZV V‘[
W
‘Im\/V(w) - Im,/V(wO)( < sup I (ﬁ) . (6.9)

By choosing C sufficiently large, we can clearly arrange that V(wp) < 0, and thus
Re /V (wp) = 0. Furthermore, one sees immediately from the explicit formulas for V,
W together with the estimate for the angular eigenvalue (2.7) that

ReW = O(Rew|?) , ImW = O(Rewl|"),
VV: —iRew = O(Re w|”) .
Using this in (6.8) and (6.9) gives the claim. 0O
We introduce the WKB solutions @ and & by

G(u) = VT exp (/ ﬁ) &) = ¢ VT exp (—/ ﬁ) (6.10)
0 0

where ¢ and ¢ are some normalization constants. A straightforward calculation shows
that these functions satisfy the Schrodinger equation

o« =Va with V=V-—-_—. (6.11)

We can hope that ¢ and & are approximate solutions of the radial equation (5.4). In order
to estimate the error, we first write (5.4) as a first order system,

v = (3(1))\11 with W= ((f) (6.12)

Next we make for W the ansatz

U= Ad with A= (‘3‘, ?‘,) (6.13)
o o

and ® a 2-component complex function. A is the fundamental matrix of the ODE (6.11)
and thus

, (01
A _<‘70>A. (6.14)
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Differentiating through the ansatz for (6.13) and using (6.12, 6.14), we obtain that

, (0 0
A<I>_<V_‘~/0 Ad. (6.15)

The determinant of A is a Wronskian and thus constant. A short computation using (6.10)
shows that det A = —2¢¢. Hence we can easily compute the inverse of A by Cramer’s
rule,

and multiplying (6.15) by A~! gives

1 - (e —&2
= (V—V)( hoaliie ><1>.
cc o oo

Finally, we put in the explicit formulas (6.11) and (6.10) to obtain the equation

1 _ 1
<I>/=W< } JI ><I>, (6.16)
where W and f are the functions
1 V// u
W= =—, f:exp<2/ ﬁ) 6.17)
cc V2 0

We shall now derive an estimate for the solutions of the ODE (6.16). The main diffi-
culty is that when the function f is very large or close to zero, the matrix in (6.16) has
large norm, making it impossible to use simple Gronwall estimates. Instead, we can use
that according to (6.4), the function

|f| = exp (2/0uReﬁ>

is monotone.
Theorem 6.3. Assume that the potential V in the Schrodinger equation (5.4) satisfies

the conditions (6.4) and that the function W defined by (6.17) is in L' (R). Then there is
a solution ® of the system of ODEs (6.16) with boundary conditions

—liIPoocp(u) = ((1)>

This solution satisfies for all u € R the bounds

‘Cbl(u) — exp <— fu W>

|D2 ()| < MW | f @)l

< AWy,
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Proof. We set p = | f| and introduce new functions a and b by
— CDQ’

= ? .
According to (6.16), they satisfy the following ODEs,

a= o and b (6.18)

ad =—-Wa— Wﬁb,

S
/

b/—i—p—bzwia—ka.
P Iy

This gives rise to the following differential inequalities,

’

d 1
la|' = —+@a = —Re(aa’) < —la|ReW + |b|‘W£
du |al f

/

.
b| = mRe(bb/) < —|b|% + lal

Wi‘ + |b|Re W .
P

Using that p is monotone and that | f| = p, we obtain the simple inequality
(lal +16D)" < 2IW| (lal + 1b]) .

Integrating this inequality from v to u, —00 < v < u < o0, gives the “Gronwall
estimate”

(lal + b)) < (lal + |b])(v) exp (2f |W|) < (lal + b)) VI (6.19)

We now let ®® be the solution of (6.16) with boundary conditions oW (v) = (1, 0).
In order to estimate ™), we rewrite (6.16) as

u / u CI)(U)
(efv w CI)EU)(M)) = —-W efu w L’
f

u / u
(e*fv w q>§”)(u)) =We L'V fo®.
We integrate and use (6.19) to obtain the inequalities

u u
‘efu Yo () — 1‘ < Wi / W1, (6.20)
v

u u

RV | < [Tpw < M pa [CiwrL 621)
v v

where in the last step we used the monotonicity of p.

The inequalities (6.20) and (6.21) yield that for every ¢ > 0, there is a u# such
that for all v, v’ < i, the exponential on the left side of (6.20) and (6.21) are arbi-
trarily close to one, and the integrals on the right can be made arbitrarily small. Thus
(@) — d>(“,))(12)| < ¢&. Due to the factor p(u) on the right of (6.21), we even know that
|6 — b@))(i)| < & (with b according to (6.18)). Since (6.16) is linear, @ — &)
is also a solution. Applying (6.19) for this solution and choosing v = #, we obtain that
for all u > i, |[(P™ — CD(”,))(u)| < ce with a constant ¢ being independent of . This
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shows that ®) (1) converges as v — —o0, and that the above estimates are still true
for v = —o0.
The theorem now follows from (6.20) and (6.21) if we set v = —o0o and pull out a

factor of e/~ W and e /= W respectively. O

The above theorem has two immediate consequences: First, it yields the existence
of solutions ¢ and ¢ which decay exponentially at minus and plus infinity, respectively.
Second, it gives very good control of the global behavior of these solutions if |Re w| is
large.

Corollary 6.4. For every angular momentum mode n and every o with Imw < 0, there

are solutions ¢> and (}3 of the Schrodinger equation (5.4) which satisfy the boundary
conditions

lim [e7'“" ¢(u)

u—>—00

=1 = lim |ei q‘s(u)’ .
u— 00

Proof. Tt suffices to construct ¢3, because qb is obtained in exactly the same way if one
considers the ODEs backwards in u (i.e. after transforming the radial variable according
tou — —u). We choose ® as in Theorem 6.3 and let ¢ = ¢ be the corresponding
solution of the Schrodinger equation given by (6.13) and (6.12). Note that the corollary
only makes a statement on the asymptotic behavior of ¢ as u — —oo, and thus the
behavior of qb on any interval [ug, 00), ug < 0 is irrelevant. Thus we may freely modify
the potential V on any such interval. In particular, we can change the potential V on
[ug, 00) such that it is constant for large u. For any ¢ > 0, we choose u so small and
modify V[, 00) such that Re+/V > 0and |W|; < &/3 (this is possible because V"
decays for large |u| at least at the rate ~ |u|~>). Then Theorem 6.3 applies, and we
obtain that

[®1—1] < &, P2 < e]|f].

Using these bounds in (6.13), one sees that |¢/a — 1| < ¢ and thus, after choosing the
normalization constants ¢ and ¢ in (6.10) appropriately,

lim sup |e /" él < 1+e and liminfle ¢ > 1—¢.
u——00 U——00

Since ¢ is arbitrary, the result follows. O

Proposition 6.5. For every n and c, ¢ > 0, there is a constant C > 0 such that for all
w in the range (6.5), the solutions (/) and ¢ of Corollary 6.4 are close to the (suitably
normalized) WKB wave functions & and «, (6.10), in the sense that for all u € R,

b ’
< ¢ and £—I+£—1
o Ol

< ¢.

The reason why we need to choose C large is that the functions V'/|V |3/ and W must
be sufficiently small. More specifically, one can choose C such that

V/
and Vi <

Wi < & !
N vig ~ 3
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Proof of Proposition 6.5. Using (2.7)in (5.5), one sees that in the strip —2¢ < Imw < 0,
the potential V satisfies the bound

V(@) +o?l < c1(1+ ) .

On t he other hand, differentiating (5.5) and using (2.18) and (2.7), one sees that in this
strip,

V'@l + V'l < 1+ o) g,
where g is a function which decays for large |u| at least at the rate ~ u 2. Putting these
estimates for V and V" into (6.17), one sees that by choosing C sufficiently large, we
can arrange that for all @ in the range (6.5), ||W||; < &/3. Theorem 6.3 yields that

[P -1 < &, 2| = e]f]. (6.22)

Dividing the first row in (6.13) by &, we obtain the identity

b &
a a
and using (6.22) gives
2 = e(1+|f| 7).
a

From the second row in (6.13) we obtain similarly,

N/

17
-
&

§s(l+|f|

).

Finally, we apply the elementary estimates for the WKB wave functions

o
O’t/

N 1
a/

d/

1

2
< —,
I

ViVeigv
VIVTi— Vi

_ b
1

_ L
TS

o

o

where in the last step we applied the above bounds for V/ and V and possibly increased C.
The solution ¢ is obtained similarly if one considers the Schrodinger equation (5.4)
backwards in u and repeats the above arguments. O

The next two propositions give estimates for composite expressions.

Proposition 6.6. Under the assumptions of Proposition 6.5,

w(g, $)

— 1
w(a, a)

< 4e.
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Proof. Rewriting the Wronskian as

;s Y

3 D 73 ,,\d)(f) ,\/¢¢
we,¢) = ¢—0¢¢p =ada— -—ad - -,
o o oo

we can put in the estimate of Proposition 6.5 to obtain

w(g, §) —w(d, &)| < 4de(|& &l +lad]). (6.23)
Furthermore, a short explicit calculation using (6.10) shows that
w(d, &) =23V aa, (6.24)
@ay =Y g4 Lyvivt e, @ (6.25)
aQ) = —— —oa = —— w(a, a), .
2V 4
and thus
N 1 PN Loy 1 PN r ., 3
aazz(w(a,a)—l—(oza)):Ew(a,oz) 1—ZVV2 ,

N 1 N N L I, 3
aa:—z(w(a,a)—(oza)) =—§w(oz,oz) 1+ZVV 2).

Here the left side only involves Wronskians and is thus independent of . Hence we may
on the right side take the limit u — oo. This gives the result. O

Substituting these relations into (6.23) gives

wg. ¢

w(a, o)

1y, 3
< 4¢ 1+Z‘V v

Foru; < ug we set

Plupug) = Bur) pur) — lug) ur), } 6.26)

Aupup) = @(ur) a(ug) —aug) our) .

Proposition 6.7. Under the assumptions of Proposition 6.5,

UR Upr
< 8¢ exp<2/ Reﬁ) sin(Z/ Imﬁ)
u ur

L
dur) ¢ug) dur) Ppur)

— a(up) a(ur) Gun) L)’

—1

Pluy.ug) _1

Olup,ug]

Proof. Rewriting ¢y, up] as

¢[ML,MR] = O5(ML) Ol(I/tR) d(uL) &(MR)

Proposition 6.5 yields that

|Blur url — g ugl| < 4e (1) G(ur)| + |d(ug) dur)l) (6.27)

Furthermore, it is obvious from (6.10) that
UR
G(ur) @(ug) = G(ug)a(ur) exp (—2/ «/7)
u

L
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and thus from (6.26),

Oupup) = GUR) a(ur) (GXp <—2fuR ﬁ) - 1)
ur
= (ur) a(ug) (1 —exp (2/” W)) (6.28)

L

Dividing (6.27) by ajy; 4, and putting in the last identities, we obtain

1+‘exp( 2f”R\/_)‘ R
Feo (2 @) 1| T e (2w

Pluy ug]

Xlug,ugl

— 1 <

where in the last step we used that Re +/V > 0. We finally estimate the obtained denom-

inator from above,
ug
Imexp <—2/ «/V)‘
ur

exp(—Z-/uij/V)—l
:exp( fML Ref) sm( /quIm«/V)‘. o

7. Contour Deformations

=

In this section we shall use contour integral methods to prove the main theorem. Recall
that in Sect. 3, we showed that the Hamiltonian H,, ,, in finite volume is a selfadjoint
operator on the Pontrjagin space Py, .. It has a purely discrete spectrum, and for each
w € o(Hy, u4), the projector E, onto the corresponding invariant subspace can be
expressed as the contour integral

1
E = —— S o do',
w 271 By ur g (@)

where ¢ is to be chosen so small that B, (w) contains no other points of the spectrum. The
theory of Pontrjagin spaces also yields that o (H,, ,,) Will in general involve a finite
number of non-real spectral points, which lie symmetrically around the real axis. We let
Ec be the projector onto the invariant subspace corresponding to all non-real spectral
points,

Ec := > E,. (7.1)

weo (Huy up)\R

Our first lemma represents E¢ as a Cauchy integral over an unbounded contour. More
precisely, we choose a contour C,; ,, in the lower half plane which joins the points 4-00
with —oo and encloses the spectrum in the lower half plane from above. Furthermore,
if Re w is outside the finite interval [w_, w4 ], w should be in the open set 2 (see (4.6))
and should approach the real axis as [Imw| ~ —|Re w| ™! (see Fig. 2).
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- o o (Huy ug)

Fig. 2. Unbounded contour representation of Ec

Lemma 7.1. The spectral projector corresponding to the non-real spectrum (7.1) has
the representation

L3
lim Im Sup g (@) do . (7.2)

1
Ec = —
c T L—oo (L +iw)?

CuL.uR

Proof. The Cauchy integral formula yields that

1

E(C = 27-[ SML MR(C()) dw + _% ur, uR(Cl))dCL) - _Im% ur, MR(w)dw

where C is a closed contour which encloses the spectrum in the lower half plane (see
Fig. 3). The dominated convergence theorem allows us to insert a factor L3 J(L+i a))3,

3

Iim ImQp —— Sy, up(w) do.

1
Ec = —
¢ T L—oo c (L +iw)’

The function L3 /(L +iw)? has no poles in the lower half plane and decays cubically for
large |w|. Furthermore, according to (4.9), the resolvent grows at most linearly for large
|w|. This allows us to deform the contour in such a way that C is closed in the lower half
plane on larger and larger circles || = R. In the limit R — oo the contribution along
the circle tends to zero. Thus we end up with the integral along the contour C,;; ,,. O

Our next goal is to get rid of the “convergence generating factor” L3/(L + iw)>
in (7.2). We shall use the fact that when we take the difference S, 4, — Sco and eval-
uate it with a test function, the resulting expression has much better decay properties
at infinity (see Lemma 4.3). We choose a contour C, Which coincides with C,,; ,, if
Rew ¢ [w—, w4 ] and always stays inside 2 (see Fig. 2).

Lemma 7.2. For every W € C°((ur, ug) x 52)2,

1
<V, Ec¥>= —Im (f
T C

<W, Sy, ux¥V> do —/

<W, SouW> da)) . (13)
Coo

uy . up
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G(HML,MR)

Fig. 3. Closed contour representation of E¢

Furthermore,

<W, Ec¥>=)Y I, with (7.4)
neN

<V, Qp Su; uzg V> do — / <V, 0,5 V> da))

1 /
i Cu!‘uR 00
1 /
27Ii (

— /7 <V, 0, S0 V> dw) . (7.5)

<W, On Supup V> do

up U

The series in (7.4) converges absolutely.

We point out that the above integrals are merely a convenient notation and are to be given
a rigorous meaning as follows. We formally rewrite the integrals in (7.3) (and similarly
in (7.5)) as

/ <V, (Suy g — Soo) V> dow + / —f <V, Su, ux V> do . (1.6)
Coo CuL,uR o]

Now the first summand is well-defined according to Lemma 4.3. In the second sum-
mand, the integrals combine to an integral over a bounded contour, and this is clearly
well-defined because the contour does not intersect the spectrum of Hy,; -

Note that in (7.5) we cannot combine the integrals over Cy; ,, and C,, ,, (and
similarly over Co, and Coo) to the imaginary part of one contour integral because Q,
in general does not commute with S, ,., and so the integrands in (7.5) need not be
real. For notational convenience, we abbreviate the second line in (7.5) by “—ccc” (for
“complex conjugated contours”).
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Proof of Lemma 7.2. According to Corollary 4.2, the resolvent S (w) is holomorphic
for win2 and grows at most linearly in |@|. Thus for all L > 0,

L3

Combining this identity with (7.2), we obtain the representation

1
<V, Ec¥> = — hm
T L—>oo
L3
x Im — <y, § U> d
/;“Lv“R (L + ia))3 UL, UR w

L3
Coo

We now rewrite the integrals according to (7.6). If we replace the contour C,, ,, by
Cwo, the integrands combine, and we obtain the expression

3

. L
; Lll)moo Im . m <l11, (SMLJIR — Soo)\ll> dw .

The estimate (4.10) allows us to apply Lebesgue’s dominated converge theorem and to
take the limit L — oo inside the integrand. The error we made when replacing Cy;
by Co 18

1 L
— 111’11 Im — m <‘IJ, SML,MR"II> dwy .
C Lw
MLUR o0

Now the contour is bounded, and since the factor <W, S, ,,¥> is bounded, we can
again apply Lebesgue’s dominated convergence theorem to take the limit L — oo inside
the integrand. This gives (7.3).

Note that our contours were chosen such that the condition (2.6) is satisfied for a
suitable constant ¢ > 0, and so Lemma 2.1 applies. Using completeness of the (Q;),eN
(see Lemma 2.1 (iii)), it immediately follows from (7.3) that

<V, Ec¥>
1
=5 </ Z <W, 0,80, g V> do — [ Z <WU, 0, SecU> da))
T C“L R neN Coo neN
—CCC .

Again replacing the contour C,; ,, by Coo, we obtain the expression

Z <V, Qn (SML UR Soo)“ll> dw —ccc.

27‘[1 Coo neN

According to (4.11), the summands decay faster than any polynomial in 1,,. Applying the
angular estimates (2.8) and (2.9), we conclude that the sum over n converges absolutely,
uniformly in @ € Cu. Thus the dominated convergence theorem allows us to commute
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summation and integration, and the series converges absolutely. It remains to consider
the expression

1
_2_7” <\/;ML,MR _[w> Z <\IJ’ QnSML’uR\IJ> o oce.

neN

Now the contours are compact, and thus the absolute convergence of the n-series is
uniform on the contour. Hence we can again apply Lebesgue’s dominated convergence
theorem to interchange the summation with the integration. O

We shall now deform the contours C,, ,, and Cs and analyze the resulting inte-
grals. Our aim is to move the contours onto the real axis such that they reduce to an
w-integral over the real line. It is a major advantage of (7.4) that the series stands in front
of the integrals, because this allows us to deform the contours in each summand /,, sep-
arately. Moreover, since our contour deformations will keep the values of the integrals
unchanged, Lemma 7.2 guarantees that the series over n will converge absolutely. Thus
we may in what follows restrict attention to fixed n.

For given n, we know from Sect. 3 that the function <W¥, Q,, S, «, ¥> is meromor-
phic, and all poles are points of o (Hy ., ). For the integrals over C in (7.5), we cannot
use abstract arguments because we have hardly any information on the spectrum of Hy,
(we only know from Lemma 4.1 that the spectrum lies outside the set €2, (4.6), but it
may be continuous and complex). But from the separation of the resolvent we know that
the operator Q) Seo is well-defined and bounded unless the Wronskian w(¢3, (;3) vanishes
(see Proposition 5.4 and (5.7)). If this Wronskian were zero and Im w < 0, this would
give rise to a solution ¢ of the reduced wave equation which decays exponentially as
u — Zoo. Such “unstable modes” were ruled out by Whiting [21]. We conclude that
<W, 0,8~ V> is analytic in the whole lower half plane {Imw < 0}.

Using the above analyticity properties of <W, 0,8y, 4,V > and <W¥, 0, Sec ¥ >,
we are free to deform the contours Cy, ,, and Cs in any compact set, provided that
Cu, up Dever intersects oy, (H,,; u,). In particular, choosing w_ and w real and outside
of o(Hy;,uz), we may deform the contours as shown in Fig. 4. We let E[,_ «,] be
the projector on all invariant subspaces of H,, ,, corresponding to real w in the range
w_ <w=<wy,

On E[w,,aur] = Z On(w) E, .

welo—,w4]

The next lemma shows that the integral over Cyyy U Cyyy equals Oy Efw_,w, 1, Whereas
the integrals over the contours II and IV can be made arbitrarily small by choosing |w4 |
sufficiently large.

U(HUL,MR)

11

_-0Q

Fig. 4. Contour deformation onto the real axis
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Lemma 7.3. Forevery ¥ € Cgo((uL, UR) X S2)2, n e N ande > Othereare w_, w4 €
R\ o (Hy, ug) such that

1
Li+ <V, OwEw_ 0 V> — =— (/ — f) <W, 0, S0 V>
2mi Cq C;

where I, are the integrals (7.5) and C; is any contour in the lower half plane which
joins w_ with w4 (see Fig. 4).

S 8 9

Proof. Lemma 4.3 yields that by choosing @ and —w_ sufficiently large, we can make
the contribution of the contour /'V arbitrarily small. The integrals over C;;; and Cyy;
combine to contour integrals around the spectral points on the real axis,

<V, 0, S V> do =
27” <~/;?111 /Cm> B

v, S U> d

where the sum runs over all o' € o (H,y; 4) N[w—, w+], and § must be chosen so small
that each contour contains only one point of the spectrum. If we let § — 0 and use
that Q, depends smoothly on w, one sees that the integrals over the circles converge to
—2mwi <V, O, E, ¥>. We conclude that

5 </ / )<\Il On Supug¥> do = — <V, 0 Ejy_ 0, 1¥V> .
wi Crii Crii

It remains to show that by choosing |w4 | sufficiently large, we can make the integral
over the contour /1 arbitrarily small. According to Lemma 2.1, for sufficiently large
|w+| the angular operator A, is diagonalizable for all @ on the contour /7. Thus we
can assume that the nilpotent matrices AV in the Jordan decomposition (5.9) all vanish.
Hence we can separate the resolvents according to Proposition 5.4 to obtain

<, Qu (Supug = Se)¥>= Y <W, Q) AT,W>
rEA,

where AT) is the operator with integral kernel
VN S N _ nf P, 9) oW, v)
AT (u;u',0") = (r"+a") 2 (SML,MR Soo) (U, u) (wp(u/’ 19/) a)c(u’, 19/)

Since the functions p and ¢ are smooth and the angular operators Q; are bounded (2.9),
it suffices to show that for every ¢ > 0 and g € C{°((ur, ug)), we can choose w+ such
that for all w on the contour /7,

o o0
/ du/ du' g(u) g(u") (Spupugl — Soo)(u,u') < ¢.
—00 —00

Letus derive a convenient formula for sy, u ] —Soc. Welet ¢y and ¢, be the two funda-
mental solutions which satisfy the Dirichlet boundary conditions ¢1 (#r) = 0 = ¢ (uR).
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Likewise, we let qb and q) be the two fundamental solutions in infinite volume as con-
structed in Corollary 6.4. Furthermore, assume thatu; < u < u’ < ug. Then, according
to (5.7),

1 / N
wign, gp) 1O R0D . seolu) = T $) W)

SuL,uR(“s u/) =

Expressing ¢; as a linear combination of ¢ and ¢,

P1(u) = Ppu) po(ur) — dlur) dau)

and substituting into the above formula for s, ,,, we obtain

(6@ 201) = () p2)) ()

Sup,up W, u')

1
B b2(ur) wip, $2)
_ - N b)) $aw) gaw)
TG P T e w@e

In the first summand, we can express ¢, in terms of ¢ and &,

() = du) p(ur) — pug) dpu) . (7.7)
This gives

1 p
——— W) () =

w(d, ¢2)

1 7 TN g 't P
s ud s P (96 ) — ) )
_ b dwdwy
¢ur) wio, )

We conclude that

C Bur) hrw) pou)  plug) $w) fu)

-

b2(uL)  w(d, ¢) dur) w(g,d)

and because of its symmetry in u and u’, this identity is also valid in the case u’ < u.
Using (7.7) and the notation (6.26), we get

$ur) o) o) Plur) $) $')
Plupur) PUR) W, §)  Plur) w(@, P)

(SML,MR - SOO)(Ms u/) =

(7.8)

(SML,MR - SOO)(ua M,) ==

We choose |w4 | such that

27, + 1
4

T .

UR
/ Im/V(wy) €

ur

According to the estimate (6.7) in Lemma 6.2, we can arrange that the function f””LR Im
+/'V is nearly constant on the contour II, and thus

sin (2 /: Im ﬁ)

1
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Propositions 6.5, 6.6, and 6.7 allow us to estimate each term in (7.8) by the correspond-
ing term in the WKB approximation. According to (7.9), the factor | sin(. .. )|~! which
appears in Proposition 6.7 is bounded. Choosing ¢ sufficiently small, we thus obtain the
estimate

}(SML,NR — So0) (1, u/)|

aur) oru) ar(u) ‘ exp <2 /uR Reﬁ)

Olup,ug] a(ug) w(a, a) ur,

<2

o
where we introduced the function
ar(u) = |a(u) a(pr)l + la@g) @) .
Using the explicit formulas (6.24, 6.28) together with (7.9), we get
lw(d. &) = |VV@)lldw) e, g upll = %Id(uR)d(uR)l- (7.11)

Substituting these bounds into (7.10), we get an estimate for |s,, 4, — Soc| in terms of
expressions of the form

; exp <2/MR RCW)
[V (@)l ur

with u;, v; € [ur,ugr]. The quotients of the WKB wave functions have according
to (6.10) the explicit form

o (ug)
a(vg)

a(ur)
a(vy)

(7.12)

a(u)
a(v)

_1 .
) exp <2/ Reﬁ) , (7.13)

ur

B ‘V(u)
T V)

and similarly for . The inequality (6.6) shows that the exponentials in (7.12) and (7.13)
are bounded uniformly in w. Furthermore, it is obvious from (5.5) that V (u)/V (v) is
close to one if |w] is large. We conclude that on the contour II,

' _c
|(SML,MR _SOO)(uau )| = |V(M)| )

and this can be made arbitrarily small by choosing |w+ | sufficiently large. O
We are now in the position to prove our main theorem.

Proof of Theorem 1.1. According to Lemma 7.3,

1
———  lim </ —f) <V, 0,5c¥> dw = I+ <V, Q, ER¥> ,
Cy Cy

2wl wtr—>Foo

where ERr denotes the projector onto the invariant subspace corresponding to the real
spectrum of H,, ,,. Here the w4 are to be chosen as in Lemma 7.3 and C; is again any
contour which joins w_ with w4 in the lower half plane. Suppose that the contour C,
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intersects the lines Re w = w4 in the points w4 —id4 and w_ — i§_, respectively. Then
we choose the contour Cj as follows,

C; = (w_ —i[0,8_1) U (Ce N (00—, wy) +iR) U (ws — i[0, 541 .

The first and last parts of the contour have lengths 5_ and &, respectively, and these
lengths clearly tend to zero as w4 — =00. Furthermore, it is obvious from Proposi-
tions 6.5 and 6.6 as well as (7.11) and (7.13) that the integrand is uniformly bounded
on these parts of the contour. Hence the contribution of these contours tends to zero
as w4y — +00. Thus

1
2mwi

CS &

According to Lemma 7.2 and Lemma 2.1, the right side of this equation is absolutely
summable in n and

> Ut <V, QuErY>) = <V, (Ec + Eg) ¥> .
n

Since the spectral projectors in the Pontrjagin space H,, ., are complete, Ec+Er = 1.
We conclude that

1
- (/ _/ ) <V, 0, S0¥> do = <V, U> .
2mi C, Ce.

n

Polarizing, we obtain for every W € C3°((ry, 00) x $2)2 the simple identity

v = —L, (/ —/ )QnSOO\IJda). (7.14)
2mi ~ C. C.

The integral and sum converge in L120c~
If we apply the Hamiltonian to the integrand in the above formula, we obtain accord-
ing to Proposition 5.4,

H 0nSeo¥ = (H — ) 0nSocV + © OnSec¥
= (holomorphic terms) + @ Q,SeoV .

The holomorphic terms are holomorphic in the whole neighborhood of the real axis
enclosed by C, and C; (see Lemma 2.1 (i)), and therefore the contour integral over them
drops out. We conclude that applying H reduces to multiplying the integrand by a factor
. Tteration shows that the dynamics of W is taken into account by a factor e ~/¢*

W(r) = _% (/ _/) e 0, SeoWo dov .

Comparing this expansion with (7.14), one sees that the integrand in the last expansion
is equal to the integrand in (7.14) if W is replaced by W (¢). Since W (¢) is smooth and by
causality has compact support, we conclude that the integral and sum again converge
in L2 . Finally, using that the contour integrals in this formula are all independent of ,

ioc
we n;)acly take the limit ¢ N\ O of each of them. O
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