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Abstract, The asymptotic behavior of the truncated vacuum expectation value of a 
product of N (unbounded) quasilocal operators, f (x)  = (Q1 (xl)... Qu(x~O) r, is investigated 
for some of the separations space-like. It is shown that unless all clusters {x h, .... x~j} are 
partially time-like (or light-like) separated from their complements {xij+ ~, .... xiN }, F(x) 
decreases faster than any inverse power of the diameter of the set {x~ ..... xN}. 

I. Introduction 

The asymptot ic  behavior  of the vacuum expectation value (VEV) 
of a p roduc t  of  field operators,  (01 q~(x0.,, q~(xN) t0), has been studied 
by many  authors  [1--5] for some of the separations, x i - xj ,  space-like. 
Al though rapid decrease of the t runcated VEV (after smearing with 
rapidly decreasing test functions) has been proved for x = ( x l  . . . . .  xu )  
in some regions of IR 4N, there does not  seem to be any general s tatement 
of the space-like asymptot ic  behavior  of this function available in the 
literature 1, In  this note we extend the method  of Ruelle [3] to show 
fast decrease in a much larger region of  1R 4N. 

II. Definitions and Results 

We consider a scalar W i g h t m a n  field [7],  ~p(x), and define the "quasi- 
local" operators  

Qi(O) = S Q~= l d4 y j) f~(y  1 . . . . .  yMi) q~(y O . . .  ~p(yM,) , (1) 

for i = 1 . . . . .  N. Here fi  s 5 ~, the Schwartz  space of infinitely differentiable 
functions which decrease (along with all derivatives) faster than any 

* This work was supported in part by the U.S, Atomic Energy Commission. 
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i We thank R. Haag for pointing out the work of H. Araki [6] whose results for the 
truncated VEV of bounded operators are essentially equivalent to our Theorem 1. We remark 
that Araki's proof does not generalize to unbounded operators. 
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inverse power of the distance. We denote the translated Qi(0) by Qi(x), 
In addition to the Wightman axioms [7] we assume there is a gap in the 
spectrum of pZ between the vacuum and a lowest mass. The object we 
wish to study is the truncated VEV [8] 

F(x) = (QI(x l ) . . .QN(xN))~ , ,  x = (x~ . . . . .  xN).  (2) 

In the following the notation A C B will mean that A = B but that A 
is neither empty nor equal to B. We will use a prime to designate the 
complement of a set, 

Define the set Y = { 1 . . . . .  N}. We will make use of the diameter, 
D(x)~ of the set {xl . . . . .  x~}: 

D(x) = Max { !l xi - x/I "i~j ~ Jr°}. (3) 

Here Ilzl! denotes the Euclidean norm of the vector z. For 2 > 0 we define 
the region 

Ts(2) = {x ~ IR4N: for each X C .X there exist i ~ X ,  
(4) 

j 6 X' such that ]Ix i - xjlE < 2 1 t i -  t~[}. 

Thus for 2 = 1, x ~ TN(2) means that every cluster {x~,, .... x~j} contains 
points which are time-like separated from points in its complement. 
It is in the complement of TN(2), SN(2)= T)(2) where we expect F(x) 
to be rapidly decreasing. Our main result is summarized in the following 
theorem: 

Theorem 1. For any 2 > t, there exist constants ck(2 ) such that for  
all x ~ SN(2 ) and all k 

IF(x)l < ck(2) (1 + O(x))-k.  (5) 

Thus as tong as at least one cluster of points separates in a space-like 
direction from its complement (even if the time-like separation within 
clusters increases) the truncated function is rapidly decreasing. 

It is also instructive to treat more explicitly the situation where 
individual clusters retain their identity as the space-like separation 
between them becomes large. In the case of two clusters we are thus led 
to consider the function 

= EoQk+l(xk+O...QN(xrOlO). (6) G(x) (OlOl(xO.. .Qk(xk)  1 

Here E~- = 1  -10 )  (01 and for all i e ~ 0  = {t . . . . .  k} and j  e Yd we have 

Hxi - xill > ;~lti - t~l. (7) 

The number 2 is fixed and > 1, In order to see how the behavior of G(x) 
is related to that of the truncated VEV we expand G(x) in truncated 
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VEV's. We first introduce the abbreviation 

(xsT = Qgx05T  (8) 

where X =  {il . . . . .  ij} and it is understood that the numbers il . . . . .  ij 
appear in numerical order in Eq. (8). Then we can write 

G(x)= ~ <Xa>r . . .<X, , ) r  (9) 
partitions 

where the sum is over a subset of the partitions {Xi~ . . . . .  Xi~ } of X into 
disjoint subsets. The partitions which do not appear in Eq. (9) are those 
which are subpartitions of { X  0, Y~}. 

Here both the limitations and strengths of Theorem 1 become 
apparent: Even when x satisfies condition (7), the right hand side of 
Eq. (9) contains factors of the form (8) with (xi~, .... x i )  ~ Tj(1), i.e., in a 
region where all clusters are partially time-like separated from their 
complements. If ( X ) r  is not bounded in this region it is easy to see that 
G(x) can grow even if the condition (7) is satisfied. 

In any reasonable theory of interactions, correlations should decrease 
with increasing time-like separation although at a much slower rate 
than in space-like directions. Thus on physical grounds we are certainly 
justified in assuming that for all ( X ) r  of the form (8) 

I(X)rl  < constant (10) 

although it is an open question whether (10) follows from the Wightman 
axioms. As an easy corollary of Theorem 1 we find the following: 

Theorem 2. I f  G(x) is as given in Eq. (6) and if (10) is satisfied, then with 

s 2 = Min{ - (xi - xj) 2 : i ~ Yo ,J  ~ Y~} (11) 

there exist constants c,(2) such that 

tG(x)l < c,()O (1 + s)-" (12) 

for all x satisfying condition (7). 

Ill. Proof of Theqrem i 

We first present a lemma concerning the structure of TN(2 ). In the 
following a superscript c will denote closure. 

Lemma 1. I f  21 > 2  2 then 

Tf~(2e) C TN().I)u{x ~ IR4N : D(x)=O} . (13) 

Proof. It is easy to see that x 6 T~(,~2) if and only if for each X C JU 
there exist i ~ X, j ~ X '  such that 

]l x i  - xj[I = )~2 It i  - t j l  . 



238 I. Herbst: 

Assuming x e T;(22) and D(x)>0  we consider a subset X C Y .  For 
each i we define the set 

d] = {j ~ .X  : x~ =x~} (14) 

and let X = U g*. Thus 2 is an enlarged X which contains all integers, 
ieX 

i, whose corresponding x i is equal to some x~ withj  s X. 
I fJ~c Y there exist k e X, j  ~ X' such that 

IIx~ - x~II =< ;~2 Irk - t)t < ;.1Irk - t i t .  ( t 5 )  

If )(  = ~g, we choose any j e X' and note the existence of a k e E~ such 
that the inequalities (15) are satisfied. In either case there is an i e X  
such that Xk = Xi. This shows that x e TN(21) and hence the lemma is 
proved. 

We now define two measures of the space-like separation between 
clusters in {x I . . . . .  XN}. Thus for X C A# let 

R x ( x ) = M i n { i l x i - x j H - ] t i - t j i : i e X ~ j e X '  },  (16a) 

S2(x)= M i n { l l x i - x j l l 2 - t t i - t j l 2 : i e X , j e X  '} (16b) 
and define 

R(x) = Max {Rx(x ) : X C ~ / } ,  

S2(x) = Max {S~(x) : X C ~ } .  

The next lemma summarizes the relevant relationships between R(x), 
D(x) and S(x): 

Lemma 2. For 2 > 1 there exists eN(2 ) > 0 such that for all x ~ SN(2) 

gN(,~) D(x) < R(x) < S(x) < D(x) . (18) 

Proof. The only part of (18) which does not follow directly from the 
definitions is the existence of eN()o). To show this we define the compact set 

CN(2 ) = SN(2 ) c~ {x ~ 1R 4N : x,  = O, D(x) = 1}. (19) 

Note that if x e CN(2 ), then R(x)> O, for if R(x)<=0 then by definition 
x e T~(1) and thus by virtue of Lemma 1, x E TN(),)- Since C~v0o) is compact 
and R(x) is a continuous function ofx  we must have 

R(x) > eN(,Z) > 0 

for all x e CN(2). The translation invariance and scale invariance of our 
definitions then imply (18). 

It is now a simple matter to prove Theorem 1 using the methods of 
Ruelle [3, 9] in conjunction with Lemma 2. The proof is omitted. 

Acknowledgements. It is a pleasure to thank Professor E. Wichmann for discussions 
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