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Abstract. We discuss the classical two-body scattering problem for potentials which 
decrease at infinity like r -~, 1 => c~ > 0. We prove existence and uniqueness theorems for 
scattering orbits parametrized by their asymptotic data. Wave operators are constructed 
and their properties discussed. We also discuss and prove cluster properties of the S-operator. 

I.  Introduction 

A few years ago, Buslaev and Matveev [1], following Dollard's [-2] 
example in the case of the Coulomb potential, constructed generalized 
wave operators for the quantum two-body potential scattering problem 
with potentials which decrease slowly at infinity (i.e. faster than r -" 
for some ~ > 0). (See also Ref. [3] for ~ > 3/4.) This problem has also been 
attacked by Alsholm a n d K a t o  [-4] who rederive the results in [1] with 
less restrictive assumptions. 

In this paper we examine the same problem in classical mechanics. 
We feel that a more fundamental appreciation of many aspects of the 
quantum mechanical situation can be gained through an understanding 
of the corresponding classical problem. 

Our formalism is essentially that of Simon [5] who considers the 
corresponding short range case. (See also Refs. [-6, 7] where another point 
of view is taken.) Thus we consider the time development of the system 
directly in phase space and define a scattering state as one in which the 
orbit in phase space is unbounded both as t ~ + ~ and t - - , -  ~ .  In 
Section II we prove existence and uniqueness of scattering solutions 
parametrized by certain asymptotic data. These are the asymptotic 
momentum and a three-vector describing how for apart the orbits are 
asymptotically. 

In Section III we introduce additional assumptions concerning the 
behavior of the derivatives of the potential, V(x), at infinity which enable 
us to construct a certain quasi-free time evolution U{ °). The operator 
U~ °) approximates the full dynamics, b~, well enough asymptotically so 
that the transformations Ot=U_tUt ~°) converge on phase space as 
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t ~ _ oe. This defines the wave operators f2_+ = lim f2 t. In contrast to 
t ~ _ + o o  

the short range case, U} °) is not an approximation to U~ which gives 
Utf2+ - - U } ° ) ~ O  for t--*__ oe. We make a conjecture about how this 
property will be mirrored in quantum mechanics. 

With the S-operator defined as S = f2+ 1 f2_, in Section IV we con- 
sider the large [al behavior of T ( -  a) ST(a), where T(a) translates the 
spatial coordinate of a point Q = (x, p) in phase space by an amount 
a" T(a) Q = (x + a, p). In the short range case, the expected result is that 
for directions, fi, away from the forward direction, [~, T ( -  a) ST(a) Q -,'.Q. 
These expectations are borne out as we show. In contrast, for the long 
range case this result is characteristically false. We derive an explicit 
formula for the limiting behavior for a large class of long range potentials 
and discuss the probable consequences in the quantum mechanical case. 

H. Existence and Uniqueness of Scattering Solutions 

In the following we are interested in solutions of Newton's equation 

£ (t) = F (x (t)) (II. 1) 

with forces satisfying the following conditions which we always will 
assume hold: 

F(x) = - ( V V ) ( x )  with lim V(x)=O, (II.2) 
x--~ oo 

F(x) < k(l+lx])  -1-~, ~ > o ,  ~ - l ¢ i n t e g e r ,  (11.3) 

c3Fi(x) < 
= k(1 + [xl) -2-~.  (II.4) 

If in Eq. (II.3), e > 1, results which are analogous to those for short 
range forces in quantum mechanics (Q.M.) follow if ( l + x )  -2-~ in 
Eq. (II.4) is replaced by (1 + x) -2-~ with ~ > 0 [5]. This is essentially the 
definition of short range force used in Ref. [5]. In the case c~ < 1 (which 
we consider in this paper), the fact that e in Eq. (II.3) is the same as in 
Eq. (II.4) entails no loss of generality but keeps the bookkeeping to a 
minimum (note that (11.4) along with lim F(x) = 0 implies (II.3)). This is 

x - - ~  

also the reason for demanding a - 1 ¢  integer, for here we avoid the 
appearance of logarithms in estimates which follow. The prototype force 
satisfying these conditions comes from the potential V(x) = (1 + x2) -~/z. 

Note that condition (II.4) certainly guarantees global existence and 
uniqueness for the initial value problem [8]. 

We now define the subsets 2;_+ ____R 6 corresponding to initial data 
which lead to scattering solutions of (II. 1). 
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Thus let U t be the time evolution operator for the system, i.e. 

U,(xo, po)--(x(t), p(t)) (II.5) 
where (x(0),~0))= (Xo, Po), p(t)--Jc(t)), and x(t) satisfies Eq. (II.1). Then 
we define 

22+_ = {(X0, P0) ~ R6 : V ( X o )  1 2 . + > o, (x(t), p(t)) 
(II.6) 

satisfies lim ]x(t)l = oe} 
t ~ , _ +  oo 

22s = 2: + ~ S _ .  (II.7) 

Thus 22+ contains initial data leading to orbits which are unbounded as 
t ~ -t- oo, while the scattering states, 2:~, correspond to orbits unbounded 
in both directions. (Note that conservation of energy implies that p(t) 
is always bounded.) The lemma which follows partially characterizes the 
asymptotic behavior of scattering solutions. 

Lemma II.1. Assume (11.2) through (11.4). Then (Xo, Po) e Z± if and 
only if (x(t), p(t))= Ut(x o, Po) satisfies: 

lira p(t) exists and is non-zero. 
t ~ +_ o z  

Proof. Certainly if p(t) ~ p 4= O, then (Xo, Po) ~ 2:-- Conversely if 

(Xo, Po) ~ 22-, it is easy to show that for some t o < 0 and all t N t o 

[x(t)l > cltl. (II.8) 

Since the proof of Eq. (II.8) in [5] needs only a slight modification to be 
applicable here, we do not reproduce it. But given Eq. 01.8) we note that 
the limit as t ~ - oe of 

t 

p(t) = po + dse (x (s ) )  
o 

exists and defines the asymptotic momentum, Pi., 

Pi,, = Po + ~o~ dse(x(s)). (11.9) 
o 

In fact we have 

t 

p( t ) -  pi ,= ~ dsF(x(s))= (9(Itl-~). (II.10) 

This proves the t ~ -  c~ part of the lemma. The proof for t ~ + ~ is 
exactly the same. 

The parameter, Pin, defines half of the asymptotic data at t = - ~ .  
A clue as to where to look for the rest comes from the next lemma, where 
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we examine the difference, x2(t)--Xl(t), between orbits with the same 
asymptotic momentum.  

Lemma II.2. Assume (II.2) through (II.4). Then if (xl(0), pl(0)) and 
(xz(0), p2(0)) are in ~ +_, and both satisfy 

lim pi(t) - p = 0; i = 1, 2 (II.11) 
t ~  -t- oo 

then as t ~ +_ oo 
pl(t) - p2(t) = O(It[-1 -~) (II.12) 

and there exists a three-vector a such that 

Ix1 (t) - x2(t) - a]-- (9(Itl-"). (II.t 3) 

I f  a = 0 ,  then x l ( t ) - x 2 ( t ) .  

Proof. We prove the lemma for (xi(0), p~(0)) e £ _ .  Let A(t) = x2(t) 
- x l ( t  ). Eqs. (II.10) and (II.11) tell us that IA(t)l--(9(ltl -~) and thus 
IA(t)] = (9(1 + [t[ 1 -~). Note that  

t 

f t ( t )= ~ ds(F(x2(s) ) -F(x l (s ) )  ) (II.14) 
- o o  

and thus for t sufficiently negative 

t 

IA(t)l__<fi ~ ds 
- -CO 

ta(s)l 
(1 +lsl) 2+~ " 

(II.15) 

Here we have used Eqs. (II.4) and (II.8). We now reason by induction to 
show I~t(t)l is bounded for t < 0 :  Assume IA(t)l--(9(Itl -"=) for t - o - o o  
with na < 1. (We already know this for n = 1.) Then [A (s)[ = (9(i + Isl 1-"~), 
and Eq. (II.15) implies tzl(t)l = (9([t1-("+1)~). This immediately gives the 
result that IA(t)l is bounded for t < 0 ,  and reference to Eq. (II.t5) then 
results in Eqs. (II.12) and (II. 13). The last statement of the lemma can be 
proved in the following way: Let IIAIIT----suplA(t)l. For T sufficiently 

t < T  

negative, and for t _< T Eq. (II.15) gives 

IA(t)l _-__/~(l + c0-1 IIA II T( l + Itl)- 1-~ (II. 16) 

and since by assumption A (t) ~ 0  as t --, - o% integration gives 

[]Al[r__<fle-l(t + a ) - i  ItA lIT(1 + ITI) -~ • (II.17) 

Thus if IT[ is large enough, ]]AIITNO IIAllT with @< 1 and thus A( t )=0  
if t ____ T. The last statement of the lemma then follows from the uniqueness 
of the initial value problem. 

This lemma has the consequence that if we know one orbit, (x0(t),po(t)), 
with initial values in Z_ and asymptotic momentum Pi,, then all other 



Classical Scattering 197 

orbits with the same asymptotic momentum are uniquely specified by the 
asymptotic difference, a = lim (x(t)-Xo(t)). However if the force is 

t ~ - - o O  

short range, it is not neccesary to subtract from x(t) another solution to 
Newton's equation with the same asymptotic momentum. It is well 
known that an approximate solution, namely a solution to the free 
equation, will do the job. Thus in this case, the limit 

lim (x(t)- pi, t) 
t ~  - -  c ~  

exists and along with pg, uniquely specifies the orbit [5]. Even though 
the above limit characteristically fails to exist in the long range case, 
a function z - (p, t), analogous to the function pt can be found for which 

lim (x(t) - z -  (Pi., t)) 

does exist and which along with Pi, also uniquely specifies the orbit. 
To find this function, it is enough to iterate Eq. (II.10). Thus let 

N = [1/o~] (II.18) 

and define for n = 1, 2 . . . .  , N and p ~ 0 

t 

~g(p, t )=p;  z,±(p, 0 ) = 0 ;  z~-(p, t )=p+ ~ dsF(z~_l(p,s)), (II.19) 
+_oo 

z ± (p, t) - z~ (p, t). (II.20) 

We now state the main results of this section. 

Theorem II.1. Assume (II.2) through (II.4). Then .for each (a, p) E X 
-- {(a, p) e R ° : p ~ 0} there exists a unique 

± + (xg, pg) ~ Z,± wish U,(xg, Po)= (x&,p)(t), Jc~,p)(t)) 

satisfying 
t r i m  {2(-+,,p)(t)- p{ = O, (II.21) 

l i m  {X&.p)(t)- z-+(p, t)-a{ = 0 .  (11.22) 

Conversely, if (x~ P~o)~ X+, then Ut(x0,± P6)+ = + + , _ ( x~ ,p~ ( t ) ,  x i a , . ~ ( t )  ) for 
some (a, p) ~ I:. 

Proof. We prove only the t - ,  - oo part of the theorem, omitting the 
superscript - for brevity. We first state without proof a property of the 
last two members of the sequence z., which we will need to prove the 
theorem: If Ipl > e > O, then there exist c, 6, t o all depending on e, such that 



198 

for t < t o 

I. W.  H e r b s t  

IZN(P, 0 - - Z N - I ( P ,  01 in---cltl I-N~ , ( 1 1 . 2 3 )  

IzN(p, t)l _>- a Itl. (11.24) 

These estimates can easily be proved by induction and hold uniformly in 
p for IPl > e. We now consider the integral equation 

y(t) = (Ip(y))(t)---- } dz i ds[F(ZN(P, s) + a + y(s) ) -  F(z N_ I(P, s))] 
- oo - • ( 1 1 . 2 5 )  

and the set C r of continuous functions y : ( - 0 %  T]--+R 3 satisfying 
IlYl[r = sup [y(t)l _-< 1. We will show that for T sufficiently negative, 

re(-- 0o,T] 

v2 is a contraction mapping of Cr  into itself. Thus consider the integrand 
of Eq. (II.25) for y e Cr: 

l (y,  s) -- F(ZN(p, s) q- a + y) -- F(zN + I (P, s)) 

= [F(zN( p, s) + a + y) -- F(zN( p, s))] + [F(zN( p, s) (II.26) 
- F(=N_,  (p, s))] .  

For s sufficiently negative, this can be estimated from Eqs. (I1.4), (I1.23) 
and (11.24) with the result 

I (y, s) < cl Isl- 1-(N+ 1)~ (II.27) 

Thus for T sufficiently negative, 

H~P(Y)[[ r < c2 [Tp-{N+ 1~. (11.28) 

Similarly for y , ,  Y2 ~ C r  

II ~p(y 2) - 'P(y 1)II T <= ca lT I -~  II Y I - y 2  II T. (II.29) 

Note that the estimates (I1.28) and (II.29) are uniform in (a, p) for [P[ > e, 
lal <ao.  If ITI is chosen large enough, then lp: C r - + C r  and is a con- 
traction. Thus by the contraction mapping theorem v2 has a unique fixed 
point y e Cr .  Defining 

x~,,p)(t) = zN(p, t) + a + y(t)  , (II.30) 
we note that 

x(a,p~(t) = P + i dsF(x(a,p)(s)),  (II.31) 
- o o  

and thus Eqs. (11.21) and (II.22) easily follow. Uniqueness follows from 
Lemma II.2 since if 2 ( t ) - p - - , O  and x ( t ) - z T v ( p , t ) - a - + O ,  then 
x(t) - x(,,p)(t) --+0. Finally if (Xo, Po) e S_,  then Ut(xo, Po) = (x(t), p(t)) 
satisfies p(t) -+p for some p ~= 0, and in addition, according to Lemma II.2, 
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for any a there exists b such that x( , ,v)( t  ) - x( t )  + b ~ 0 .  Thus if e = a + b, 
we easily see that 

Ix(t) - x(c,p)(t)I <= tx~e,p)(t) - X(a,p)(t ) - b I + [X(a,p)(t ) -- x ( t )  + b I "*0 

and thus again by Lemma II.2, x ( t ) -  x(c,~)(t). Hence the theorem is 
proved. 

In order to prepare for the construction of wave operators in the 
next section, we want to discuss the content of Theorem II.t in more 
formal terms: We have parametrized the orbits which are unbounded as 
t ~ _+ ~ using the approximate dynamics El °), 

E ~ ° ) ( ~ , ~ ) = ( e + z ± ~ , t ) , ~ ) ,  ± t > 0 .  (IL32) 

Note that El °) is a measure preserving transformation on phase space 
(it is a momentum dependent translation of the spatial coordinate) which 
does not change the momentum. It also commutes with the free 
dynamics S} °), 

Sl°)(e,/~) = (~ +/~t,/~). (II.33) 

For any (a, p) e Z, there is a unique (x0 ~ , pg) e Z_+ (this defines the maps 
W±(a, p )=  (xg, pg)) such that 

• + + 

hm (U , ( x6 ,  P6)  - E~°)( a, P)) = 0 (II.34) 
t'-* ~ oo 

or in other words, on S 

lim (D) W+ - El °)) = 0. (IL35) 
t ~  : k  o0 

The maps W+ : S ~ S + are 1 - 1 and onto; it is also straightforward to 
show that W± intertwines U, and S~°): 

U, W_+ = IV+ S~ °) . 

In addition, with a further restriction on the derivatives of F(x)  it can 
be shown that the W_+ preserve Lebesgue measure. (We do not give the 
proof of this fact.) 

We have introduced the transformations IV+ because if the forces 
are short range, the wave operators also satisfy (II.35) and (II.36) (with 
E~ °) replaced by S~ °)) and also preserve Lebesgue measure. Thus one 
might be tempted to call the W+ generalized wave operators. We do not 
follow this procedure for the following reasons. The operators El °) , 
while they are measure preserving, are not in general canonical trans- 
formations, i.e. they do not preserve Poisson brackets. This means that 
there is in general no unitary analog of E~ °) in Q.M. The fact that E~ °) 
is not in general a canonical transformation has the consequence that the 
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W e are also not canonical transformations and thus very likely have no 
isometric analogs in Q.M. 

In the next section we will construct wave operators which are 
canonical transformations, and which do have isometric analogs in Q.M. 
However, this will be accomplished only at the expense of additional 
restrictive assumptions on the potential. 

IH. The Existence of Wave Operators 

In analogy with Q.M. where for short range interactions the wave 
operators fa+ are defined as the strong limits of emte-m°t  as t--++ 0% 
we seek a "quasi-free" dynamics Ut (°) which approximates the full 
dynamics U t well enough so that 

will converge as t ~ _+ oe : 

fa, = U, -1 U~ °) (III.1) 

fa+ = lim fa t . (III.2) 
I--+ ± oo 

We impose two requirements on U~°): 

(i) U~ °) does not change the momentum. 

(ii) U} °) is a canonical transformation. 

The first requirement is the simplest way of guaranteeing that the 
parameter p in the expression fa_(a ,p)=(x0,  Po) is the asymptotic 
momentum (as t-~ - Go) associated with the orbit Ut(xo, Po) = (x(t), p(t)). 
The second requirement is a natural one which in Q.M. would guarantee 
the unitarity of U~ °). Note that ifH' = H o + U is the Hamiltonian associated 
with U, m), then because of the first requirement U must be x independent. 
Thus U = U(p, t). Hamilton's equations then become 

p = 0 ,  ~ = p + v p u ( p , O .  
Thus 

v~°)(a, p) = (a + x(p, t), p) (hi.3) 
where 

t 

x(p, t) = pt + ~ ds gp U(p, s). (III.4) 
o 

Perhaps the easiest way of finding an appropriate U(p, t) is to consider 
the transformation fa;- 1 which when applied to (xo, Po) ~ X_ should give a 
convergent result as t--+ - oo. The sequence of equalities 

W l(Xo, Vo) = c l  °)-1 V,(Xo, po) = v l  °~- ~(x(t), v(t)) 
(nI.5) 

= (x(t) - x(p(t), t), p(t)) 
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tells us that we are interested in the convergence of the function 

r ( t )  = x ( t )  - x ( v ( t ) ,  t) 

as t ~ -- oo. We have 

= ~[PJ ~c~xj ~SxJ 1 ~j(t) - (p, t) ri(x(t)) - (p, t)jp=p(t) 

or using Eq. (III.4) 

~j(t) = - (p, t) Fi(x(t)) + ~p~ (p, t) . (III.6) 
p=p(t) 

If we had U(p, t) = V(x(p, t)) then Eq. (tII.6) would become 

f ~xj 
- Fi(x(t))]l (III.7) i'j(t)--- ~ (p, t) [Fi(x(p , t)) 

l vPi J p=p(t) 

and this has a reasonable chance of decreasing fast enough as t ~ - oe 
to make lim r(t) exist. Specifically if for It[ large enough 

t ~ - - o O  

~xj t) -~-Pi (p' < c,  Itl, Ix(p, t)[ > c2 Itl, 

then Eq. (III.7) implies 

li(t)l < cl r(t)l ItI- 1 - 

which in turn means If(t)l= (9(It1-1-~), and this is certainly enough to 
guarantee the existence of lim r(t). Unfortunately Eq. (III.4) together 

with U(p, t) --- V(x(p, t)) imply we must solve the equation 

t 

x(p, t) = pt + Vp ~ ds V(x(p, s)) (III.8) 
0 

or in terms of U 
t 

U(p, t) = V(pt + ~ ds Vp U(p, s)). (III.9) 
0 

This is exactly the equation arrived at in Ref. [1] where the authors 
treat the Q.M. case. Because we do not know under what circumstances 
this equation has solutions, we follow the example of Ref. [1] and 
iterate Eq. (III.9). Thus we define for p + 0, 

Uo(p, 0 =0 
(III.10) 

Uk(P,t)=V p t+ JdsVpUk_,(p,s  ) k = l , 2  . . . . .  N + I  
0 
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where N = [l/c@ Also define 

t 

xk (p , t )=p t+  ~dsgpUk(p,s) k = 0 ,  1 , . . . ,N .  (III.11) 
0 

We thus have 

t 

xk (p , t )=p t+  ~dsVpV(Xk_l(p,s)),  k = l , . . . , U .  (III.12) 
0 

Finally let 

x(p, t) = xN(p, t); U(p, t) = UN(p, t). (III.13) 

Since the n th partial, D" Uk(p, t) involves (D "+k V) (x), it is clear that for all 
quantities to be well defined we need a condition like VeCN+I(R3). 
In fact we find that if the sequence is to have the required properties, 
much more is required. Thus we assume in all of the following, 

v~CN+2(R3); [(OnV)(x)[<clx[ -~-n, n = 0 , 1  . . . . .  N + 2 .  (III.14) 

We now list the properties of the U, and x, which we will need. These 
follow from Eq. (111.14) and can be proved by induction. (See also Ref. I-1].) 
For Ipl > e > 0 

I(D"Un+O(p,t)-(D"Un)(p,t)l<c(l+[tl)-~tn+l); n = 0 ,  1,2, (III.15) 

I(D"x)(p,t)l<c(l +ltl); n = 0 , 1 , 2  Ixn(p , t ) -p t l<cl t l  ~-~ (111.16) 

The proof of the following theorem shows how the heuristic argument 
based on Eq. (III.8) needs to be modified. 

Theorem Il iA. Assume (III.14). Then the transformations lim f2 t- 1, 
t--* + oo 

exist and define 1 - 1 maps f27_ 1 of S+ onto X. 12+ intertwines SI °) and U t 

f2± SI °) = Utf2±. (III.17) 

In addition if (xt(O), pt(0)) and (x2(0), p2(0)) are in Z± and both satisfy 
Eq. (II.11), then 

f2~_ l(xt (0), p~(0)) - f2~ ~ (x2(0), p2(0)) = t l i m  (xl(t) - Xa(t), 0). (III.18) 

Remark. Eq. (III.18) serves to give some meaning to the parameter a 
which occurs in the expression O ;  l(xo, Po) = (a, p). Although we will not 
demonstrate it, if V(x) is a central potential, the component of a perpen- 
dicular to p, a±, is just the impact parameter, lira xz(t ). Of course the 

t ~ _ + o e  

parameter p is always the asymptotic momentum. 
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Proof. T h e p r o o f o f T h e o r e m  III.1 is simple. We  consider the behavior  
of r(t) in the expression 

o?  l(xo, Co) = (r(t), p(t)). 

Where as before r(t) = x(t) - x(p(t), t). Instead of Eq. (III.7) we have 

[ ~ x j  ( , 
i~j(t) = [ ~  p t) (Fi(x(p, t)) -- Fi(x(t)) ) 

(ni.J9) 

+-~-p-f(U~+l(P,t)-UN(p,t))]p=p~o. 

F r o m  Eq. (III.15) we find for sufficiently large t 

[~(t)l < clt[ -(N+ l~(Ir (t)] + 1). 

This means that Ir(t)l = (9 (It[ -(N+ ~)~) and thus r(t) converges as t ~  _ oe. 
Hence the limits lim £2 t- i exist on 2;_+. 

t---~ ± CO 

If (xl(0), pl(0)) and (Xe(0), p2(0)) are as stated in the theorem, then 
Lemma (II.2) gives Ipl(t) - p2(t)[ =(9(It[- 1 -~) and thus from Eq. (III.16) 

[x(pl(t), t ) -  x(p2(t) ,  t)] = 0([t[-~). 

• This gives Eq. (III.18), which in combinat ion with Lemma II.2 and 
Theorem II.1 means that  the maps  f2~ ~ are 1 - 1 and onto. To prove the 
intertwining property,  in Eq. (III.18) let 

(xt(0), pl(0)) = (x(2), p(2)) and (x2(0), p2(0)) = (x(0), p(0)). 

Then if f2~ l(x(0), p(0)) = (a, p) 

f2~l(x(2), p(2)) = (a + lim (x(t + it) - x(t)), p). 
t--* ± co 

But because of Eq. (II.10), x(t  + 2) - x(t) --,pit. Hence 

0 ;  1 u~.(x(O), p(0)) = s~ °~_; l(x(0), e(0)) 

giving Eq. 0 IL  17). This completes the proof  of Theorem III. 1. 
It remains to show that lira Qt = f2± and to prove that the wave 

t ~ ± o 9  

operators  are canonical transformations.  This we do in the next theorem. 

Theorem Il l .2.  Assume (III.14) and let D~'2 t be the matrix of  derivatives 

OQj (Q)i. The limits t?t ~f2+ - and Dg2t ~ D O  ± are achieved uniformly on 

compact subsets of  r .  Since the transformations t? t are canonical, the wave 
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operators are (continuously differentiable) canonical transformations on S :  

[~2+_ (Q)i, ~'2± (Q) j ]  = [Qi, Q j] Q s Z (III.20) 

where [ , ] is the Poisson bracket. 

The proof  will be given for 12_ only. 

Proof. It will prove useful in what  follows to rewrite Eq. (1II.19) as an 
integral equation. For  that purpose, let a = lim r(t), Q = (a, p). Then 

t--~ -- o0 

u, o _  ((2)= (x(t), p(t)) . (II1.21) 
Let 

/~(Q; t) = (x(t) - x(p(t), t) - a, p(t) - p) = (#I(Q; t),/~2(Q; t)) (111.22) 

and define for each ~ = (~q, ~%) e S 

t~xj , , 
(G1)j(c~, s) = ~ (~2, s) [Fi(x(~2, s)) - Fi(x(e 2, s) + aq)] 

+ ~ ( UN + 1 (~2, s) -- VN(ace, s)) (III.23) 

(a2b.(~, s) = Fj(x(~2, s) + ~ ) .  

The reason for this long list of definitions is the concise equation satisfied 
by ]~(Q; t): 

t 

/?(Q; t) = ~ ds G(Q +/3(Q; s), s). (III.24) 

Suppose K __c S is compact ,  and all (a, p) e K satisfy ]at < ao, tPl > Po > 0. 
Let Mr, ~ be the set of  all cont inuous  functions 7 : ( -  oc, T]  ~ R  6 with 
II;~IIr= sup IT ( s ) I<~whe ree<po .  

s ~ ( -  oo, T )  

Then for T sufficiently negative, the operator  (pe 

t 

cpe(7) ( t ) -  ~ ds G(Q + y(s), s) (III.25) 
- -cG 

maps ?¢lr,~ into Mr,~ and for 7, Y' e Mr, ~ 

II ~0e(~,) _ q~e(7)l I T ----< e II~' -- ~11 r,  ~ < t (111.26) 

for all Q e K. These statements are easily proved from the estimates 

Ia(~, s)l ~ C~(l + Isl) -~(N÷ 1) (III.27) 

~ (c~, s) __< C~(1 + Isl) -~(N+ 1) (111.28) 
U C ¢  
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which hold for all c~ with 1~11 ~__~--1, l~2l ~_~ and c5 arbitrary except 6 > 0 .  
The fact that q~e is a contraction allows us to conclude that fl(Q; t) ~ Mr. ~ 
because the contraction mapping theorem says that a solution 7(t) 
exists with 7 e Mr, ~ and Lemma II.2 tells us ~ and fl(Q; .) must be equal. 

Consider the function U~O~(Q) = u~_ t u~(m(Q) = (x(t)(s), p~°(s)) and the 
related function 

i f(Q; s) = (x~t)(s) - x(p~°(s), s) - a, p~t)(s) -- p). (III.29) 

Note that ~ t~g; s) = G(Q + if(Q; s), s); i f(Q; t) = 0. Thus 

fl '(Q;s)=~oO"(ff(Q;.))(s) =- i d 2 G ( Q + f l t ( Q ; 2 ) , X ) .  (III.30) 
t 

The operator (po,t also maps Mr, ~ ~ M r ,  ~ and satisfies (III.26) for the same 
reasons as ~o o, and in addition the estimate (III.27) implies 

lim [[q~ e ' t -  q~ellr=0 (III.31) 

uniformly in Q for Q e K. 

Here Itq~ ~'' - ~o~11 r = sup II~oQ"(~)-~oo(~)ll T. Note that ff(Q;s)sMr,, 
7~MT,e 

because the contraction mapping theorem says that a fixed point 7eMr,,  
exists and by the uniqueness of the initial value problem for Newton's 
equation 7(s) ==- fit(Q; s). Now 

II ~(O; ") - / ~ * ( Q ;  ")II T = II q~Q(/~(Q; ")) - -  q~Q"(ff(Q; "))II r 

--< 11 q~(B(Q; ")) - ~°~(/3'(Q ;'))11 r+  II q~(/3'(Q; . ) ) -  ~oe,'(/~'(Q; "))tl r 

and thus 
II~(Q; " ) - i f (Q ;  ')lIT ~ (1 _ ~ ) - 1  [I~oQ_~oQ,~[IT. (III.32) 

Thus in particular i f(Q; T ) -  fl(Q; T ) ~ 0  uniformly in Q for Q e K and 
therefore Urf2 t (Q)~Ur f2_ (Q)as  t ~ - o o  uniformly in Q. Since U - r  is 
continuous we have 

Or(Q) ~ f2 _ (Q) uniformly in Q for Q e K .  

The convergence of DOt(Q) is proved similarly: First note that 
because F(x) is continuously differentiable, (x~°(s), p(t)(s)) is continuously 
differentiable in its "initial" value (x(t)(t), p~°(t)) [8]. Since the latter is in 

turn continuously differentiable in Q, , . .  (s) and (s) exist and are 
o U j  
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continuous. They also satisfy the linear D.E. 

d 
ds ~Pii(s)= Aij(s) 

(III.33) 
OF/ t d Aii(s)= ~ (x ~ )(s)) ~p~,j(s) 

ds 

( c~xlt) c~pl ') ) 
with~oij= OQj,A~j-  t?Qj " 

The propagation function L(~ ) for this D.E. 

Lt~t)(Ip(0), A(0)) = 0p(s), A(s)) (III.34) 

has the property that if (tp~°(T), A(t)(T)) ~ 0p(T), A(T)), then 

(tp(t)(O), A(t)(O)) = (/2~)- 1 (@t)(T), A(t)(T))~L~I(~(T), A(T)) 

uniformly in Q for Q e K [-83. Here L~ results from L(~ ) by replacing x~t)(s) 
by its limit x(s). Note that L(~ t) depends on Q through x~t)(s). 

,~ R(t) 
• • ~ P k  Now consider the corresponding quantmes ~ (s) which satisfy the 

Q, 
integral equation 

O fl(k t) s ~ G k ( Off(t) \ 
0 -. (s)= !d2-~f(Q+fl ' t ) (2) ,2)_6j ,+ ~ (2)). (111.35) 

Using similar methods as in the proof that l ift-fllkr-,0 uniformly in Q 

oNP _ 7ki r--'0 for Q e K we can show that - ~  uniformly in Q for Q e K 

where 7k, is the solution to 

OGk ;Ok,(S ) = .~ d2 ~ (Q + fl(2), 2) (6ji + 7ji(2)). (III.36) 
- - 0 0  

Q flk , , ,  Thus 7ki(S) --~ - ~ i  tS) Ior s e (-- o% T]. Hence in particular 

Ox (t) Ox(T) Gqp (t) c~p(T) 
- -  ( T )  - +  , ( T )  ~ -~- 

OQi c3Qi t~Qi c~Qi 

The properties of/J~) mentioned after Eq. (III.14) then show the uniform 
0~2t 

convergence o f - ~ ( Q ) .  The Poisson brackets [~t(Q)i, ~2t(Q)j]= [Qi,Q2] 

thus also converge to [(2_ (Q)i, f2_ (Q)fl. This proves Theorem III.2. 
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Theorem III.1 and III.2 give the wave operators many of the familiar 
properties they enjoy in Q.M. The isometric nature of the wave operators 
in Q.M. has its analog in their being canonical transformations in 
classical mechanics. The fact that they are not in general unitary in 
Q.M. has its analog in the fact that the range of ~2+ is missing just those 
initial conditions corresponding to bound orbits (up to a set of Lebesgue 
measure zero) 1. 

It is interesting to note that while f2± = lim U_tU} °), the equation 
t-~_+oo 

UtO+_- U}°)~O is characteristically false in the long range case. (This 
is the exact opposite of the situation with W± as Eq. (II.35) partially 
verifies.) In fact the above limit is characteristically oo. This suggests the 
question as to how these properties manifest themselves in Q.M. We 
feel that many of the convergence statements in this paper will be true 
in the sense of convergence of the appropriately transformed x or p in 
Q.M. Thus for example we conjecture that for the quantum mechanical 
operators Ot constructed by Buslaev and Matveev [1] 

~72 ~ (x) - O, x O * - ~  t2 ± xO* 

Oi- ~ (p) - O, pO*-~  O ± pO~ 
(III.37) 

on a dense set of states in the range of ~2+. This is the analog of Theo- 
rem III. 1. Indeed Qt x~2* = eiltt(x - xN(p, t)) e - i m  = x(t) - xs(p(t  ), t) where 
x(t) and p(t) are Heisenberg operators and xN(p, t) is the function 
introduced in Eq. (III.13). Thus formally Y~tx~2* is the same as the func- 
tion r(t) introduced in the proof of Theorem III.1. 

On the other hand the fact that UtY~ ± -U}°)-Tz-~O should manifest 
itself in the following way: Iflp = O_ f ,  we know that [ t ]  e-im~p--~ U~(°) f ,  
but we conjecture that characteristically 

(~o, x(t) ~p) - (U~°) f , x C}°) f ) -~O (III.38) 

(while of course the above always has limit zero for bounded functions 
of x). 

Before going on to examine what kind of spatial cluster properties 
a long range interaction has, we must define the S-operator. The definition 

S = t?~ 1 O_ (III.39) 

is conventional. It has the consequence that the domain and range of S 
are respectively ~?_-I(Z+nZ_) and f2+l(X+c~Z_). As a result of the 
next theorem, the latter two sets differ from g 6 by sets of measure zero. 

1 For a justification of the measure theoretic part of this statement, see Theorem III.3 
below. 



208 I .W.  Herbs t  

Theorem llI.3 (Asymptotic Completeness). Assume (II.2) through 
(I1.4). Then 2;+ = Z_ up to a set of Lebesgue measure zero (i.e. 2;+ u S _  
- Z + ~ X_ has measure zero). 

The proof of this result can be found in [7] or [9]. 

IV. Cluster Properties of the S-operator 

Let T(a) :R  6 ~ R  6 be a translation of the x coordinate of a point in 
phase space: 

T(a) (x, p) = (x + a, p). (IV.l) 

We want to consider the behavior of T ( - a ) S T ( a )  for large lal. This 
behavior is very different for short range and for long range forces. We 
will consider the short range case first. We define a short range force by 
the following conditions, which are essentially those of Ref. [5] 

F(x) = - (V V) (x), lirn V(x) = O, (IV.2) 

IF(x)l_-< k(1 + Ixl) -~2+~); ~ > 0, (IV.3) 

0Fi < k(l + Ixl) -(2+"). (IV.4) F ~ CI(R 3) and Oxj 

Then f2_+ = lim U_~S} °) exists and is a (canonical) transformation 
t ~ + c o  

of N onto 2;_+ (see Ref. I-5]). With the S-operator defined as in (1II.39) 
we then have the following theorem. 

Theorem IV.1. Suppose V (x) satisfies (IV.2) through (IV.4). Let K c= S 
be compact and suppose (x, p)~ K=>p e F, F a closed cone with apex at 
p = 0 and solid angle < 4m For (x, p) ~ K, let 

(x(a), p(a)) = T ( -  a) ST(a)(x ,  p). (IV.5) 

Then as a -+ oo outside any open cone Fa ~= F 

lim ( T ( -  a) ST(a)  - I) = 0 (IV.6) 

uniformly on K. In fact 

Ix(a) - xl = O(lal-~) 
(w.7) 

Ip(a)-  Pl = O(]al-l-~) 

uniformly in (x, p) for (x, p) ~ K. 

We defer the proof of this theorem (and Theorem IV.2 to follow) until 
the end of this section. 
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Because of Eq. (IV.7), Theorem IV.1 says that the rate of approach of 
T ( - a )  S T ( a ) -  1 to zero is a measure of just how short range the forces 
are. For long range forces Theorem IV.1 is false, but the corresponding 
cluster property still gives a measure of the rate of decrease of F(x). 

Theorem IV.2. Suppose V(x) satisfies (III.14). Then with K, F, and 
F~ as in Theorem IV.1 and 

(x (a ) ,  p(a))= T( -  a) ST(a)(x, p), 

then as a ---> ~ outside F~ 

Ip(a)  - pl = C0(Jal-~) 
(IV.S) 

Ix(a) - x[ = (.9 (lal 1 -~) 

uniformly in (x, p) for (x, p) ~ K. 

In order to get a feeling for the behavior of x(a) as defined above, we 
specialize to the class of potentials for which e > ½. 

Theorem IV.3. Suppose V(x) satisfies (III.14) with N = [1/a] = 1. Then 
with K, F, and F o as above, 

x ( a ) = x + g  v ~. d t (V(p t+a) -V(p t ) )+(9( la[  1-2") (IV.9) 

as a ~ o c  outside Fe, uniformly in (x, p) for (x, p) ~ K. 

We remark that x ( a ) -  x characteristically diverges as a - - ,~ .  Thus 
in Q.M. we expect the following behavior for the amplitude 

(T(a) f ,  ST(a) g). 

As lat gets large, 9(a) =_ T ( - a ) S T ( a ) g  becomes a state with the same 
momentum space probability distribution as 9 (Theorem IV.2), but in 
x space 9(a) has moved very far from 9 (and f) .  Thus the overlap of g(a) 
with f in x-space is very small. Hence we expect that 

lim (T(a) f ,  ST(a) g) = 0. (IV.10) 

Indeed this has been verified for the non-relativistic Coulomb S-operator 
by Ross [12]. 

In an Appendix we discuss the spatial cluster property of the classical 
S-operator for the Coulomb scattering problem and compare our results 
with those of Ross. 

Proof of  Theorem IV.1. Suppose Q ~ Z. We consider the quantity 
fl(Q; t) (compare Eq. (III.22)) given by 

fl(Q ; t) = (f2~- l f2_ - I)(Q). (IV.11) 
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Note that since ~2 t = U~- 1 S~O) we have 

fl(Q; t) = (fit (Q; t), fl2(Q; t))= ( x ( t ) -  t p ( t ) -  Q1, p ( t ) -  Q2) (IV.12) 

(x(t),p(t))= Utg2_(Q), Q = ( Q 1 , Q 2 ) .  (IV.13) 

Since f2~ 1 = lira f2; - t  (the analog of Theorem III.l) 
t ~ _ + o o  

lira fl(Q; t ) = 0 .  (IV.14) 
t - ~  -- OO 

Note also that for the same reason, if Q is in the domain of S 

fl(Q) =- ,fim+o ° fl(Q ; t) = (S - I) (Q) . (IV.15) 

Using the fact that S~ °) commutes with S one easily derives the equality 

fl(Q1 + 2Q2, Q2) = fl(Q) + (2fiE(Q), O) (IV.16) 

valid also in the sense that (Q1 + 2Q2, Q2) is in the domain of S if and 
only if Q is. 

If Q = (a, p) e 2: with a .  p = O, we will derive the following estimates 
which hold for [Pl ~ Po > 0 and all t if ]p[2 ]all +~ is large enough: 

I/~I(Q; t)[ ____ c l p l -  2 l a l  - ~  
(IV.17) 

I/~2(Q; t)l < clpl- l lal- 1 -~ 

To see that this is enough to prove the theorem first note that 

Ix(t)[ > [pt + a t -  ltfl2(Q; t ) [ -  jill(Q; t)[ (IV.18) 

and thus if p2 a 1 +. > c the estimates (IV. 17) imply 

li---m ] x ( t ) l > t ~ { l p t l ( 1 - c ( p 2 a l + ~ ) - a ) - l ~ 2 ( Q ; t ) [ } = ~ .  (IV.19) 
t ---~ -I- oo 

Hence if p2al+~ is large enough Q is in the domain of S (Lemma II.l). 
Now consider (x, p) e K and the expression 

(T( - a) ST(a)  - I) (x, p) = fl(x + a, p) (IV.Z0) 

where the last equality follows from the definitions of fl(Q) and T(a). 
We split up x and a into 

x = x± + 2xp 

a = a± + 2,p 

where x± and a L are perpendicular to p. Note that because K __c 2; and 
compact, X L and 2x vary in compact sets. Note also that ifa e Fo, lad > 712,[ 

where here 
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with 7 independent of p. Thus since 

]~(X "~ a, p) : ]~(X& JI- a l ,  p) -[- (/~x -[- ~a) (•2(X± + a.k, P), 0 ) ,  

if lal is large enough (x + a, p) is in the domain of S for all (x, p) E K, 
and the estimates (IV.17) give 

Ifll(X + a, P)I < clP1-2 Ix± + a±l-" + 12~ + 2.1 clPl- 1Ix± + a±l- ~ -~ < Cl lal -~ 

I]~2(X "1- a,  P)I < clpl- 1Ix± + a±l- a -~ < C2 lal- 1 -~ (IV.21) 

Thus the theorem is proved once we have derived the estimates (IV.17) 
under the stated conditions. 

Consider the quantity 

C(t) --= p2 a s It1 (t)[ + pa 1 + ~ llg2(t)[ (IV.22) 

where fl(t)=-fl(Q;t), Q = ( a , p ) , a . p = O .  We know that C(t)~O as 
t ~ - oo. We will show that there exists k0 such that for all (a, p) satisfying 
p2a~ +e > const. 

C(t)<k o all t .  (IV.23) 

The proof proceeds in the following way. Suppose k o > 0, t /> 1 and 
p2al+'>V-2kot  1. Then if C(t)>ko for some t, the continuity of C(t) 
implies C(t) < ko for t a ( -  ~ ,  T) and C(T) = ko for some T. For certain 
choices of k o and 17 we will show that the conditions C(t)< ko for 
t ~ ( -  ~ ,  T) and p2 al +~ > l//~kot/imply C(T) < ko. This contradiction 
wilt prove (IV.23). Thus we first note that 

t 
/ ~ l ( t ) = -  ~ dssF(x(s)) 

- ~ (IV.24) t 
/h(t)= S ds e(x(s)) 

--00 

and that C(t)< k o for t e ( -  ~ ,  T) implies (see (IV.18)) 

lx(s)l > (lal + Ipsl) 4,  s E ( -  0% T) (IV.25) 

where ¢ - ( t / ~ ) ( t  - ~ k o / p 2  a 1 +~) > O . 

Using (IV.24) and (IV.3) we can estimate C(T) with the result 

C(T) < 2k(l + 2e) {~(1 + ~) ~2+~)- 1 (IV.26) 

where k is the constant appearing in (IV.3). Since as p2 a 1 +~ ~ ~ ~ ~ 1/]/72, 
for any ko >2k(1 +2e)(e(1 +8))-121+~/2 we can find t/ such that if 
pZ al +~ > ~/2tlko, (IV.26) implies C(T) < k o. This completes the proof 
of Theorem IV.1. 
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Proof  of  Theorem IV.2. Because the proof is very similar to that of 
Theorem IV.1 we only sketch it. With Q = (a, p) e z and a .  p = 0, define 
fi(t) as in Eq. (IV.11). Then fl satisfies (III.24). With 

C(t) = a ~ -  1 ]/~a(t)] + l~2(t)[ 

an argument similar to the preceding one gives C(t)< e for any e > 0 
and all t if a > a(e). Using this information and Eq. (III.24) one can again 
estimate/?(t) with the result given in the theorem. 

We do not give the proof of Theorem IV.3 for it involves only 
straightforward but tedious estimates. 

V. Concluding Remarks 

We have shown in Section II that a very reasonable classical 
scattering theory exists for slowly decreasing potentials with only mild 
restrictions on the forces. However canonical wave operators (and thus a 
canonical S-operator) were constructed (in Section III) only after a 
considerable strengthening of the assumptions on the forces. It remains 
to be seen whether canonical S-operators in classical mechanics (and 
thus presumably unitary S-operators in quantum potential scattering) 
can be constructed without these restrictive assumptions on the forces. 
We remark that for central potentials the operators W e of Section II 
can be shown to be canonical transformations (under further mild 
restrictions on the potential), but we have not tried the analogous con- 
struction in Q.M. 
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Appendix: Cluster Property for the Coulomb Potential 

Because the Coulomb potential, V(x )=~lx1 -1 ,  has a singularity 
at x = 0, the results of this paper are not directly applicable. The main 
difficulty is the fact that the quasi-free time evolution, L~ (°), as defined in 
(III.3), (III.4), and (III.13) (with N---[1/s] = 1) does not exist. However, 
this is easily remedied by taking for example 

H o + g(p t )  O([qt I - 1) (a.1) 

as the Hamiltonian associated with Ut ~°) instead of H0+ V(pt). The 
0-function cutoff removes the singularity at t = 0 and thus U} °) exists. 
Although the kind of cutoff used is essentially arbitrary, Eq. (A.I) with 
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t /=  4H o = 2p 2 is the one which in Q.M. gives the standard result for the 
Coulomb S-matrix [2] and is therefore the one we will use. With this 
prescription, for 2p 2 Itl > 1 

U(t°)(a, p) = (a -F x(p,  t), p) (1.2) 
where 

t 

x(p, t) -- pt  + V v S ds 0(4Ho Isl- 1) V(ps) 
0 

(A.3) 
-- pt  - e(t) 2p IPl- 3 log(4Ho Itl/e2) . 

Here e(t) = + 1 if _+ t > 0 and e is the base of natural logarithms. 
With this choice of U, (°~, and f2 t = U t- 1 U}O),Theorems III.1 and III.2 

remain true if L'+ and S are redefined to exclude points with zero angular 
momentum. 

The integral (IV.9) of Theorem IV.3 must be replaced by 

dt{V(pt  + a) - V(pt) 0(4H o [tl - 1)} (1.4) 
--Of) 

and thus the cluster property for the Coulomb potential takes the 
following form (with Z = {(a, p) s R 6 :a x p 4= 0}):. 

Proposition. Suppose V(x)= )~/Ix] and U~ t°) is defined as in (A.2) and 
(A.3). Let K ~ X be compact and suppose (x, p)~ K=~p ~ F, F a closed 
cone with apex at p = 0 and solid angle < 4re. For (x, p) ~ K, let 

(x(a), p(a))= T ( -  a) ST(a)(x,  p). (A.5) 

Then as a ~ ov outside any open cone F~ ~ F 

t p ( a ) -  pl = (9([al- 1) 
(A.6) 

X(a) = X Af_ Vp { - -  ~ I P l -  1 log lax  p]2} -I- ~ ( t a l -  1 loglal) 

uniformly in (x, p) for (x, p) ~ K. 
To compare this result with that of Ross [12], we rewrite his result 

(after correcting a sign error) in the form 

T ( -  a) ST(a) ~-~e i'z[pl-1 log la ×pl 2 __. W(a,  p) . (A.7) 

Eq. (A.7) is true in the sense that the difference between the right and left 
sides converges strongly to zero as lal---,oe. Thus in the limit a---,oe, 
T ( - a ) S T ( a ) f ~ W ( a , p ) f  has the same momentum spectrum as f 
but in x-space has been shifted. Specifically 

(W( , ,  p ) f ,  xW(a,  p ) f )  
(A.8) 

= ( f ,  {x+ Vp[ -  Rip[ -1 logla x pl2]}.f) 

in agreement with (A.6). 
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We remark that the asymptotic difference in the "in" and "out" 
impact parameters is very different from the formula (A.6). If s t and s 2 
are respectively the in and out impact parameters we have 

s l  = x + a - ( x + a ) . ~ p  
(1.9) 

s 2 = x(a)  + a - (x(a) + a ) .  ~(a)  p(a)  

and from any textbook on classical mechanics it follows that 

lim (S2--Sl)=--2J. lpl-ap. (A.10) 
la xt3t~oo 

Note that we have used the remark made after Theorem I l ia  to write 
down (A.9). 

R e f e r e n c e s  

1. Buslaev, V. S., Matveev, V. B.: Theor. Math. Phys. 1,367 (1970) (English translation) 
2. Dollard, J. D. :J. Math. Phys. 5, 729 (1964) 
3. Amrein, W. O., Martin, Ph. A., Misra, B. : Helv. Phys. Acta 43, 313 (1970) 
4. Alsholm, P., Kato, T.: Lecture given by second named author at the Am. Math. 

Soc. Summer Institute on Partial Differential Equations, Berkeley 1971, (to be 
published) 

5. Simon, B. : Commun. math. Phys. 23, 37 (1971) 
6. Cook, J.M.: In 1965 Cargese Lectures in Theoretical Physics, F. Lurcat, ed., New 

York: Gordon and Breach, 1967 
7. Hunziker, W. : Commun. math. Phys. 8, 282 (1968) 
8. Birkhoff, G., Rota, G.: Ordinary Differential Equations. Boston: Ginn and Co. 1962 
9. Siegel, C.L.: Vorlesungen fiber Himmelsmechanik. Berlin-Grttingen-Heidelberg: 

Springer 1956 
10. Hunziker, W.: J. Math. Phys. 6, 6 (I965) 
t l .  Hepp, K. : In 1965 Brandeis University Summer Institute in Theoretical Physics, 

Axiomatic Field Theory, ed. M. Chretian and S. Deser. New York: Gordon and 
Breach 1966 

12. Ross, W.: Ph. D. Thesis, University of Colorado, Boulder (1968) 

I. W. Herbst 
Department of Physics 
Princeton University 
Princeton, N.J. 08540, USA 


