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ABSTRACT

Calculations have been made which show that the library method of
solution of the 'Kaplan' experiment yields temperature structure solutions
which are dominated by the random errors in measurement and computation of
radiation. A least squares method of solution is developed and modified by
consideration of the eigenvalues and eigenvecters of the matrix equation.
It exhibits some of the limitations of the experiment and shows that, using
radiometric measurements, certain quite different profiles are essentially

indistinguishable from one another.
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INTRODUCTION

An earlier reportl stressed the importance of determining errors in
the calculation and measurement of the intensity of infrared radiation in
the Kaplan experiment. Workers in the field well know that the problem of
inverting the radiation equation to deduce the temperature structure of the
atmosphere is complicated by the introduction of quite small errors arising
from either physical measurements or inaccuracies in calculations. Kaplan2
showed that the effect of systematic errors was small but stated that ran-
dom errors intréduced much more serious discrepencies. Unfortunately, his
paper gave no details. In order to investigate such solutions, the coef-
ficients given by Kaplan were used to make a preliminary analysis on which

to base more accurate and detailed calculations.



METHOD OF CALCULATION

Kaplan's method follows, briefly: The intensity of radiation at fre-
quency v, I(v) was calculated for a number of atmospheric models, which
were determined by the temperature at a number of pressure levels in the
atmosphere (50, 100, 200, 300, 400, 700, and 1000 mb). The intensity of
radiation Ig(v) was determined for some fixed model, and the value of I(v)

for a slightly different model is assumed to be expanded in the form

I(v) -Io(v) " ‘
Io(v) 1 1,3

where AT; is the difference in temperature from the fixed model at the level
i. The coefficients C; and C;j were determined from calculations of I(v)
for various models.

In the following analysis we shall consider only the first order co-
efficients; second order terms should be included for an accurate solution,
but the essential characteristics and behavior of solutions can be demon-
strated without them. Table 1 (reproduced from Kaplan's paper) gives the
coefficients C; for the "middle route” for each of the nine channels cal-
culated. Table 2 (also reproduced) gives details of the "middle route."

Kaplan chose the first seven frequencies (675, 685, 695, T00, T0O5, T1O,
and 730 cm~!) to make his calculations, and neglected the two remaining
channels (745 and T60 cm~t). To find the value of AT; one must invert the
matrix formed by the first seven columns of Table 1. The inverted matrix

is shown in Table 3. The temperature differences induced by a 1/5% syste-
I(v) -1,(v)

= 1/300 for each of the
Io( v)

matic error may be calculated by putting



TABLE 1

Ci = d(log.I)/dT;(°C) FOR MIDDLE ROUTE

v(cem=1) 675 685 695 700 705  TIO T30 T4 T6O

(cgs Units
Per Steradian) 185.0 182.4 199.8 227.8 26L.7 3%01.9 356.8 391.6 LLL.5

Pressure (mb)

50 .0145 ,0132 .0068 ,00%38 .0021 .0011 .0005 .0002 0
100 .0057 .0062 .0049 .0030 .0016 .0009 .0OOL 0001 0
200 L0018 .0026 .0048 .0037 .0022 ,0013 .0006 .0002 O
300 .0001 .0003 .0024 .0029 .002k ,0016 ,0009 .0004 O
Loo 0 0 .0010 .0030 .00k2 .0040 ,0027 .001T .OOOk
700 0 0 .0001 .0009 .0025 .0037 .00kO .0031 .0010

1000 0 0 0 0 .0003 .0015 .0055 .0086 .01%5
TABLE 2

COMPARISON OF COMPUTED WITH ACTUAL TEMPERATURES ( °K) WITHOUT AND
WITH SYSTEMATIC ERRORS. BASIC SIGNAL N5X10_5 WATTS/STERADIAN

Pressure (mb) 50 100 200 300 400 T00 1000
Middle Route 210.0 210.0 220.0 230.0 250.0 260.0 270.0
+1077 watts/ster 210.2 210.5 220.0 23%0.5 250.2 260.3 270.1

41076 watts/ster  211.7 2148 219.8 235.1 2515 262.9 270.8




INVERSE OF MATRIX FORMED BY

TABLE 3

'IRST 7 COLUMNS OF TABLE 1

DETERMINANT OF COEFFICIENT MATRIX = -L.05x10720

4.91x10° -1.05x10° -1.61x10°  1.45x10° -9.84x10° 6.83x10° -2.02x10°
2.24x10° -1.95x10°  L4.81x10° -7.91x10°  Lk.20x10° -2.73x10°  8.17x10°
hokx100  1.89x10%  -2.78x10%  3.63x10% -1.78x10%  1.13x10% -3.Lox107
l,O2xth -4,5uxlo” 6560x10” -8°u0xlo“ hDOEXlOu -2,5uxlo” 7,68xlo5
S1.2ox10%  s.7ex10%  -8.20x10%  1.05x10° -k.90x10%  %.05x10% -9.18x107
7.92x10° -3.51x10%  5.08x10% -6.41x10%  2.97x10% -1.79x10%  5.2%x107
S1.46x10°  6.45x107  -9.3Lx10°  1.18x10% -5.43x103  3.23x107 -7.L3%x10°
seven frequencies v in question. This ylelds
AT5O = +Oo9OK, ATLOO = -3°O°K, ATEOO = ’HJ,-o?oK, iTBOO = '5bu°K

AT)—*-OO = +2o96K, ﬂT'{OO =

The most surprising aspect of the matrix inversion was
of the ATy for non-systematic errors in radiation.
-1, +1% error respectively for v = 675, 685, 695, 700, 705,
the ATy were -365°K, +16L0°K,
It should be emphasized *hat,
applicable,
errors will be inconveniently

The reason for the large

matrix.

sums, taken by columns, are small,

Nevertheless, it

The coefficients are

large.,

-1.3°K, iTlOOO = +0.7T°K

to get convergent solutions 1in a number of cases.

For +1,

the magnitude
-1, +1, -1, +1,
710, T30 cm~1,
-2L20°K, +3100°K, -1u70°K, +918°K, -273°K.
with AT4 of this magnitude, Eg. (1) is not

does give some indication that the temperature

LT; 1is easy to see by examining the inverse
large in absolute wvalue, but their algebraic

It is not surprising that Kaplan failed



From a purely physical viewpoint one should not expect the first seven
channels to give the best results. Table 1 shows that nearly all the radia-
tion comes from ground level at 760 cm~1, so this channel should certainly
be included for an accurate determination of T1000: A number of coefficient
matrices were inverted, and the systematic and maximum "random" errors were
calculated. The results are summarized in Table 4. The determinant of the
coefficient matrix provides a rough guide to the best choice of channels.
The effect of l% random noise is still very severe and quite unacceptable,
even in the most favorable cases. With values of AT; so large, it is clear
that the use of Eq. (1) is not justified, and that any physical result ob-
tained from it will be meaningless.

A least squares method can be used for cases in which the number of
observations exceeds the number of unknowns. The theory of this method is
developed in the Appendix, which should be consulted for details. The
method was applied to Eg. (1), using seven temperature levels and observa-
tions on nine channels., The maximum values of the |ATi| were very close
to the best result using seven channels and offer very little improvement.
In addition, the systematic errors were not markedly different.

The number of unknown temperatures was reduced to four, by two dif-

ferent sets of assumptions:

Case I
Tso = Ti00
Tooo = 1/2(Ti00 + Tz00)
Troo = 1/2(Tuo0 + T1000)
Case II
Tooo = 1/2(Ti00 *+ T300)
Tyoo = Tzpp + 20°K
Troo = Ticoo - 10°K

)
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In Case I, the AT; were also calculated from the four channels 675, 700,

710, 760 em~1 subject to errors of +1, -1, +1, -1% respectively, giving

Mg = +.9%K, Mzgq = -8.5°K, ATj50 = +5.2°K, ATy599 = -1.1%K

The matrix (A'A)'lA' was found for both cases. The maximum temperature dif-

ferences subject to 1% errors:

Case I

|81 00] = <9°K, [AT500] + 6.L°K, [ATyno| + 4.8°K, [ATy000] = 1.4°K
Case II

|aT50] = 3.9°K, [aT100] + 8.2°K, [AT300] = 3.8°K, [AT1000| = 1.2°K

In Case I the least squares method yields a rather better solution. In fact
it is slightly better that the figures indicate;, since the [ATil will not
all achieve their maximum for the same error distribution. .In éddition, one
is much less likely to have all the errors go 'the wrong way' over nine
channels as compared with a four channel system. One can therefore conclude
that the least squares method will yield a useful but limited improvement

over a plain solution of linear equations.



LIMITATTONS

This section will attempt to give a mathematical explanation for the
large errors. Physically they arise from the fact that two quite different
atmospheric structures may produce an almost equal radiation intensity over
the whole of the 15u COs band under consideration.

Consider an integral equation of the first kind,

b
h(x) = [ £(x,y)g(y)dy (2)

The problem is to invert this equation,; solving for g(y) assuming that f
and h are given functions. In practice, sets of numerical values will be
given for f and h, solving Eq. (2) by reducing it to a set of simultaneous
linear equations.

Now replace the left-hand side of Eq. {2) by h(x) + «(x), where e(x)
is a small error function. We are interested in knowing its effect on the
solution g(y)° Unfortunately, a small e(x) may produce a large change in

g(y). Phillips3 gives an example, showing that

b/\f(x,y)sin(my)dy +> 0 as m > o

for any integrable kernel f. Thus there is a basic instability in Eq. (2);
any solution obtained from it may be correct from a mathematic standpoint,
but physically meaningless. For this reason a least squares solution will,
in general, provide only limited aid.

Phillips goes on to develop a method whereby a smoothness constraint
Placed on the solution eliminates these unwanted oscillations. The technique

L

has been generalized and modified by Twomey "  to a form more convenient for

numerical solution.



A basic difficulty is introduced: how smooth shall the solution be?
If an insufficient degree of smoothness is introduced, oscillations will
still predominate. On the other hand, too much smoothing will destroy the
essential physical characteristics in which we are most interested.

The reduction of the number of unknown temperatures in the previous
sections operates as a smoothing constraint in that it prevents fluctuation
of intermediate temperatures. Approximation by a polynomial of low degree
acts in the same way.

So far we have made little or no use of known properties of the at-
mospheric temperature structure. Because we have some idea of its form,
it is possible to seek a solution which best approximates (in some sense to
be defined) a standard structure.

In the next section, we shall again return to the least squares method
of solving the matrix equations, examining closely which components con-

tribute most to the large errors.



EIGEN VECTOR SOLUTIONS OF THE MATRIX EQUATION

In the appendix, a least squares method is developed to replace the

system of equations
A(AT) = (AI) (3)
where A is a n x m matrix, n > m, by the system
(a'a) (ar) = A(sI) (k)

If the rank of A is m, the matrix A'A is non-singular, and Eq. (W) may be

written
(am) = (a'a)7t ar(a1) (5)

We have shown that the application of Eg. (5) produces physically un-
realistic solutions, arising from the fact that small errors in (AT) may
Produce large errors in (AT), so much so that these errors . dominate the
solution. Let us consider how they arise by looking at the eigen values of
the matrix A'A. Suppose these are \i;Ap;...5hm, Oordered in such a way that
N1 > N2 2 soo 2 Np, With a corresponding orthonormal system of eigenvectors
Visoeoo,Vye

Then
(A'A)vi = NV i = 1,000, m
Suppose Nj is large. Then putting AT = vy in Eq. (4) we see that
Mvi = A'(AI)
and that such a AT will produce a comparatively large change in radiation

10



intensity, i.e., a large A'(AI). However, when Ay is small, the opposite
will occur; putting AT = vi produces a small change in the radiation intensity.

Now any (AT) can be written uniquely in the form

m
(aT) = E;-Bivi
i=
and
m
(A'A) (aT) = Pidivi o
i1

Thus it is now clear that the v;

; corresponding to small A; are precisely

those components of (AT) which have little effect on the radiation intensity,
and which cannot be determined from radiometric measurements.
Iet us consider the effects of small errors on the right side of Eq. (2).

If (A*A)(AT) = vy, then (AT) = —v;. The roles are now reversed: for small

M
Ai, the addition of a small error in the vi component of A'(AT) will produce
a large error in AT, while for large A; the effect of such an error in At (AT)
will be small.

To summarize, the v; corresponding to small Aj have little effect on
the radiation intensity, while at the same time their inclusion in Eq. (3)
Produces large temperature errors. The obvious solution is to ignore these
components. Since (AT) can be written

m
(aT) j; Bivi
i=1

P

m
instead of j{i Bivi we write j{; Bivi with p < m.
i:l i:

11



The value of p chosen depends on the values of KP and on the expected errors
in radiation intensity. So (AT) = V'B where V is the m x p matrix of the

eigenvector columns vi,...,vp, and B is a p x 1 matrix. Eq. (3) now becomes
(av') () = (aI), with v'(B) = (aT)
Solving this by the least squares method
(8) = [(av')r(av')]1™H(avr) (a1)
or
(ar) = v'(B) = vI(av)r(av)] h@v)r(aI) = c(AI) say. (6)

This method lends itself well to computer evaluation. After finding the
eigenvalues and vectors the program may be written in order these in the
manner indicated. The solution C may now be evaluated for all values of
p from 1 to m and the results compared (p = m reduces to Eq. (15)).

It should be noted that although Eq. (6) gives ATy for i = 1,..., m
we do not get m independent pieces of information, but only p. Dependence
was introduced by assuming that (AT) could be written as a linear combination
of Vijeoe;Vp. It has the implication that the finer details of the atmos-
pheric structure are obscured. But it is precisely these details that we
cannot expect ot obtain using radiometric techniques.

Previously the number of variables was reduced by assuming & relation
between AT; in adjacent layers; the eigenvector method may be considered as
the optimum way of choosing a relationship between the various ATia

The eigenvalues of the matrix AA' are given in Table 5a. It can be
seen that N1 is approximately lO5 times greater than x7, showing the rel-
ative small influence of the vy component of (AT) on the intensity of radia-

tion. Table 5b shows the eigenvectors; it is interesting to note that as

12
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Xi decreases, the number of changes in sign of the vy increases. This is
the reason why the "straight" solution gives AT; which are alternatively
positive and negative.

Calculations of the matrix C were made for all values of p from p = 2
to p = 7 in order to compare the solutions obtained from various sets of
assumptions.

Table 6 shows the rapid increase with p of the maximum values of ATj
with IAIiI = l%, obtained by taking the sum of the absolute values of the
rows of the matrix C. For p = 4 all AT are less than 4°K, while for p =5

they rise to above 13°K.

TABIE 6

MAXIMUM VALUE OF [ATy| FOR p = 2,..,7 WITH |ATy]| = 1%

p=2 p=3 p =Lk p=5 p=6 p=7
ATs0 .8°K 1.0°K 1.9°K 1.8°K 16°K 35°K
AT100 b .5 1.k 5.6 Lo 133
AT500 .2 1.0 3.5 5.9 11 151
AT .2 1.1 2.0 4.3 35 175
ATL00 -3 1.8 2.0 11.7 29 56
AT700 p) 1.3 3,7 13.1 18 20
ATi000 1.1 1.k ik 1.7 2 2

It is important to know how well a given temperature structure can be
reproauced° The values of AI were caléulated for each of the nine frequencies
on the assumption that ATy = +1°K for every i. Equation (6) was solved using
these AI, giving the results in Table Ta; p = 2 gives a poor approximation,

expecially for the middle of the atmosphere. However, p = 3 is much improved;

Th



TABLE 7a

SOLUTION OF EQ. (6) USING VALUES OF AI CALCULATED

FROM EQ. (3) WITH AT; = +1°K ALL i
p=2 p=3 p=1L p=5 p=56 p =7

AT5 1.Lhhe°K 1.12°K 1.05°K 1.01°K 1.0%°K 1.00°K
AT 00 .Th .81 .87 .9% .88 1.00
ATo00 L8 .92 1.08 1,1 1.1k 1.00
ATBOO 27 N .86 .82 .85 1.00
AT)00 oLy 1.2k 1.18 1.07 1.0k 1.00
AT700 R .80 .85 .97 .99 1.00
AT 000 1.01 .97 1.01 1.00 1.00 1.00

TABLE 7b

ATIs-2T4%*

v p=2 Pp=73 p =4 p=5 p=56 Pp=7 AT,
675 +.39% +.05% +,01% .00% .00% .00% 2.21%
685 +.26 +.01 .00 .00 .00 .00 2,23
695 -.31 -.08 -.01 .00 -.01 .00 2.00
700 -.53 -,06 +,01 .00 .00 .00 1.73
705 -.61 -.03% +,01 .00 .00 .00 1.53
710 -.58 -.0% .00 .00 .00 .00 1.41
730 -l -.06 -,02 .00 .00 .00 1.46
745 -.28 -.06 -, 0L .00 .00 .00 1.43
760 -.06 -,05 +,01 .00 .00 .00 1.4k9
*AI; calculated from ATy = 1°K all i

AIo> calculated from AT; in Table 7a

15



this improvement continues gradﬁally for p = 4, 5, 6, giving successively
better approximations. If we calculate the difference between the AI for
these temperatures and the AI for AT = +1°K all i, we find that even for
P = 3 this difference is less than 0.1% in absoliute value and does not exceed
0.02% for p = 4 (Table 3b) both of these being much less than the expected
experimental error. Thus the experiment cannot digtinguish between any of
the solution profiles for p > 3.

The limitations of the technique are iliustrated by performing the same
computations with ATzgo = +5°K and all other ATy = 0°K., Even for p = 6
the errors in AT; are almost as high at 2°K, while for p = L, ATsgg 1s 1.37°K
instead of 5°K (Table 8a). However, the difference in radiation intensity is
less than 0.1% for each of the nine chanrels for p = 4 and rather less for
P=5and 6. It is precisely these sharp-peaked variations that the technique
is not able to resolve; iunstead we obtain a smocthed solution, the degree of
smoothing depending on how low a vealue of p 1s selected.

lastly, AL = +1% over all nine channels was used to obtain values of
ATi° The result was somewhat surprising: For valuez of p from p = 3 to
P = 6, for each pressure level the valus of AT differed by less than 0.1°K,
but differed greatly from the sclution with p = 7 {Table 9a}. Again, the
difference in radiation intenszity is less than 005% for 3 <p < T, showing
the essentially indistinguishsble naturs of the varioug solutions.

We should 1like to bz atlie to conclude which value of p gives the best
results. However, this iIs not a question to whkich an absolute answer can
be given for it depends on what is meant by a "vest" solution. If the ex-
pected error lies arourd ®1%, then Tabls 2 shows that p > 5 must be eliminated.
Likewise, p = 2 must be discarded on the grounds that it does not give enough

detail in the middle atmosphere. From the limited calculations made, it



SAME AS TABLE Ta WITH AT30q

TABLE 8a

+5°K, ALL OTHER AT,

p=2 P p =4 =6 p=7
AT 41°K - .10°K - .54°K - .35°K .37°K 0°K
AT1 00 .20 .32 -1.45
AT500 .12 .81 1.78
AT=00 .07 .85 3.18 5.00
AT, 00 L1l 1.35 57
AT700 .11 .82 .17
AT 500 .31 -1.11 - .00
TABLE 8b
AL o-AT 1%

v p =2 p=3 p =4 P=5 =6 p = AL,
675 +.68% + 149 -.09% -.05% .01% .00% N
685 +.55 + .15 +.08 +,06 .00 .00 .15
695 -.Th - .38 +,07 .00 .01 .00 1.20
700 -1.13 - .37 -.08 -.03 .01 .00 1.45
705 - % - .05 -.06 +,01 .00 .00 1.20
710 - .62 + .1k +.05 +.05 +,02 .00 .80
730 - .17 - .2k +.03 +.02 .01 .00 45
745 + .13 - .62 +.02 -.02 .00 .00 .20
760 + .43 -1.3%6 -.0% +.03 +,01 .00 .00

*AI, calculated from ATzoo
Ao calculated from AT; in Table 8a

+5°K, all other AT{ = O



TABLE Oa

SOLUTION WITH AI = +1% FOR EACH CHANNEL

=2 =3 p =L Pp=5 p=56 p=7
ATs( .69°C bhec -b5ec k7ec krec .81°C
AT 00 .36 41 L1 .37 37 - .95
AT200 .23 .59 57 .53 .53 2.16
ATz00 .15 .55 25k .56 .56 -1.07
AT 00 .27 .90 .91 .98 .98 1.50
AT700 .30 .73 .75 .67 .67 .53
ATlOOO 95 .66 .66 .66 .66 .66
TABLE 9b
VALUES OF AT OBTAINED BY SUBSTITUTING VALUES
OF AT; IN TABIE Qa
v p=2 p=373 p=1L p=5 p=56 p =7
675 em-1 1.25% .98% -99% -99% .99% 1.01%
685 1.20 1.00 1.01 1.00 1.00 1.01
695 .82 1.01 1.03 .99 .99 1.02
700 61 1.00 1.00 1.00 1,00 1.01
705 .51 1.00 1.00 1.0% 1.03 1.02
710 .52 .98 .97 .98 .98 1.01
730 .79 1.02 1.03 1.02 1.02 1.02
45 .98 .99 1.00 .99 <99 .99
760 1.%2 1.0C 1,00 1.00 1.00 1.00

18



would appear that p = 4 is the most suitable choice, giving a significantly

better result than p = 3 in Tables 4a and 4b. The only way to come to a

valid decision is to make a statistical analysis based on real atmospheric

temperature soundings. The model chosen by Kaplan does not sufficiently

approximate any part of the earth's atmosphere to Jjustify such an analysis.

The method outlined has a number of advantages:

8.

It used a library method, meking calculation of results compara-
tively simple. The bulk of the calculations can be made in
advance, so that even when large amounts of data are obtained
interpretation can be made at once.

Known physical characteristics of the atmosphere are used in tak-
ing the basic model to be that of a standard atmosphere, the choice
depending on the latitude and season of the observation.

The essential limitations of the technique are recognized, and
precisely those features which we cannot hope to measure and which
contribute so greatly to unwanted oscillations in the solution

are eliminated.

It lends itself to a statistical analysis based on the deviation of

temperature structures from the standard atmospheres.
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CONCLUSIONS

The method described appears to be promising enough to Jjustify further
development. A series of calculations will shortly be made with the follow-
ing features: |

1. New and more accurate transmission functions.

2. The SIRS channel frequencies and their triangular response func-

tions will be used to calculate radiation intensities.

3. A flexible program to allow radiation from any temperature struc-

ture to be readily calculated.

4, A statistical analysis leading to a choice of p.

5. A detailed analysis of the effect of intensity errors.

6. Influence of cloudy or partly cloudy conditions on solutions.
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APPENDIX

LEAST SQUARES SOLUTIONS
Suppose we have n equations in m unknowns
fi(X1,X2ye005%n) - Bt = O i = 1,2,...n (A1)

with n > m. In general, these will be mutually inconsistent and have no
solution. However, we can look for a solution (X1,X25000,%y) for which the

sum of the squares of the left-hand side of Eq. (A1) is a minimum, i.e.

n

i, 2
F(x) = Z{; [fi(X150005%Xm) - Bil is a minimum.
1=

A necessary, but not normally sufficient condition; is

JF . :
- = O J = l,oeclgm
3 J
i.e.
n
f .
}: Er—- 1(X150005xm) - Bi]l = O J = lye0.,m (A2)
%3

Suppose now that f; are linear forms in Xij;...,xp for i = 1,...,n say

m
f (X1yee0sXy) = E: Xk Xk i = 1l,...,n
k=1

Then Eq. (A2) reduces to

n m
Z 04 3 21 (04p xn = B1) = O J = Llyeoo,m (A3)
=1 =
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This may conveniently be written in matrix form
A'A(x) = A'(R) (AL)

where A = (o43), x = (x1,-+-,%m)", (B) = (B1,...,Bn)", the ' denoting matrix
transposition.
Equation (A4) will yield a unique solution (x) provided that the matrix
A'A is nonsingular.* It will be assumed that rank A = m. If t%is is not
the case, there exist less than m linearly independent forms ji; Q33 xj and
i=1

m may be reduced to m-1.

Because rank A = m, there exist nonsingular matrices P, Q such that

_ Im
o o{ER

P is n x n matrix, Q is m x m, I, is the m x m identity matrix, and O is the
(n-m)x(n-m) null matrix.

Then

A'A = Q' (I,0)P! %mQ .

Since P is nonsingular, P'P belongs to a positive definite quadratic
form, which implies that every principal minor of P'P is positive. Hence

the m x m matrix B in the top left corner of P'P is nonsingular. But
(Imo)(P'P)Gorr) - B,

and therefore
A'A = Q'BQ

is nonsingular, being the product of nonsingular matrices.

Equation (A4) may now be rewritten

2k



(x) = (a'a)"tar(p) (a5)

which is in a form convenient for computer evaluation. In the special case
where m = n, Eq. (A5) reduces to (x) = A-l (B), which is the original equa-

tion.
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