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Abstract. The formalism developed in a previous paper is applied to yield a 
phase cell cluster expansion for a hierarchical ~b~ model. The field is expanded 
into modes with specific renormatization group scaling properties. The present 
cluster expansion for a vacuum expectation value is formally the natural 
factorization of each term in the perturbation expansion into the contribution 
of modes connected to the variables in the expectation via interactions, and 
that of the complementary set. The expectation value is thus realized as a sum 
of contributions due to finite subsets of the modes. We emphasize the following 
additional features : 

1) Partitions of unity are not used. 
2) There are essentially no cut-offs. 
3) The expansion is developed directly, without an initial need to prove an 

ultraviolet stability bound, the most difficult part of the traditional approach. 
Our main interest in the present phase cell cluster expansion is founded in 

the belief that it may be the right vehicle for proving the existence of a non- 
trivial four-dimensional field theory. 

0. Introduction 

Techniques developed in the study of qb~ should eventually be useful in other 
directions - in statistical mechanics, in fluid mechanics, in the study of turbulence. 
We here restrict our sights to further applications in field theory, in particular to 
the construction of non-trivial four-dimensional field theories. For us the study of 
~b 4 is taken in this light. For convenience we divide the bulk of work on ~b~ into five 3 
tracks. 

1) The first important contribution was the establishment of the ultraviolet 
bound by Glimm and Jaffe [9]. This most difficult paper indicated the importance 
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of phase cell localization and foreshadowed (block spin) renormalization group 
techniques. Feldman and Osterwalder [7], and Magnen and S6n6or [12] applied 
cluster expansion techniques, using the results of [9], to establish field theory 
axioms for 05~. 

2) Gallavotti et al. introduced renormalization group (block spin) ideas to 
provide a new proof of the ultraviolet bound [4]. Gawedzki and Kupiainen 
adapted these techniques to study infrared lattice models [8]. Our first efforts in 
using phase cell cluster expansions were inspired by this work. 

3) Brydges et al. have used random walk and correlation inequality techniques 
to obtain bounds on expectation values for 05~ [5]. 

4) Using the results in [9] Y. M. Park has shown that the lattice approxima- 
tion to 054 converges to the continuum theory [13]. In [1, 2] Ba~aban has given a 
new proof of ultraviolet stability for a lattice 0534, with bounds independent of 
lattice spacing. The technique used is that of block spin transformations and the 
renormalization group, making rigorous ideas of Wilson and Kadanoff in this 
setting. This effort borrows heavily from some ideas in 2). 

5) Here we include our present treatment. The phase cell cluster expansion was 
first applied in an infrared lattice setting [6]. In [3] we applied the expansion to 
two dimensional models ; but in fact much of the work of that paper was general, 
independent of spatial dimension, and immediately applicable to ~b 4. (An error in 
this reference will be corrected herein.) 

All of the above approaches except 3) use phase cell localization in an 
important way. Approaches 1), 2), and 4) each have as the first and most difficult 
step the establishment of ultraviolet bounds. In viewing extensions to further field 
theories, the techniques in 3) may be limited by special requirements on a theory to 
yield necessary correlation inequalities. Balaban has already extended his treat- 
ment to handle gauge theories in two and three dimensions. In future papers we 
will extend the present work to include the actual 05 4 model, and to treat 112. Work 
is also underway to treat gauge field theories. We feel the approaches of 4) and 5) 
are the most promising for establishing the existence of non-trivial four- 
dimensional field theories. The phase cell cluster expansion is perhaps the most 
natural setting within which to treat non-superrenormalizable models - although 
difficult and still untested, it seems possible to renormatize this cluster expansion 
by the traditional subtraction procedures of theoretical physics. (By the use of 
interpolation and "removal of contours" [10] numerical factors similar to mass 
inserts and vertex inserts are developed inside terms in the cluster expansion. 
Individually some of the factors may be infinite, but the cluster expansion is 
organized so that only finite differences of such factors appear. Asymptotic 
freedom seems essential.) 

We now describe the models to be considered. We will use a label k to describe 
our expansion functions; with the same notation as in [3, Sect. 2], so that the 
expansion function uk(x ) and variable c~ k are associated to a cube, say A k. However, 
uk(x ) need not necessarily be given by Eq. (1.4) of [3] ! There is here, as there, a 
fixed integer s. We write 

~(x) = ~ C~kUk(X). (0.1) 
k 
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Let d#o be a probability measure on continuous functions of the ~ in which the ~ 
are Gaussian variables distributed with covariance C u, i.e. 

Cis = ~ dPoCqC~ j . (0.2) 

We write 

and set 

(")o = S d,o(.), (0.3) 

I' = 2 S : 4)4 : + 4822 S dx:4)2(x):5 dy(4)(x) 4)(y))~ 

+ 12225 dx ~ dy(4)(x) 4)(y))~ 

with normal ordering defined with respect to d#o. We write I' as 

I ' =  ~ w(1,2,3,4):~1%0¢3~4: 
1,2,3,4 

+48 
l, 2,3,4,5 

1 ' ,2" ,3 '  

+12 
1,2,3,4- 

1', 2', 3',4' 

with 

w(l', 2', 3')w(1, 2, 3,4,5) " ~ 4 o ~ 5 C l 1 , C 2 2 , C 3 3  , 

w(1, 2, 3, 4) w(l', 2', 3', 4)  C11, C22, C33, C44, 

(0.4) 

(0.5) 

We may alternatively expand in terms of u k = L ~ - " ( M 2 ) ( 1 / 2 )  a lpk with a > 0  

and sufficiently small.) 

2) The hierarchical 4) 4 models. In this case we set 

C u = 3 u . ( 0 . 10 )  

(0.9) with 

W(1, 2, . . , ,  YI)= 2 f U l U 2 . . .  U n . (0.6) 

[We here use a formalism appropriate to d = 3. If d = 2 we would keep only the first 
term in (0.4).] It will be convenient to define for A, a subset of the k, I,A, by 
restricting the sums in (0.5) to the subset A; and 4)A, by restricting the sum in (0.1) 
to the subset A. 

We wilt be interested in two cases. 

1) The 4)4 model. Here we pick 3 

uk= LktPk , (0.7) 

using the notation of [3] for L k and ~Pk, and 

1 1 1 
Cu= 

L7 d +  M 2 
(0.8) ~oj, 
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Thus we may later work with the measure, proportional to #o, 

a ~ i e  ' j . 
i 

We require the u k to satisfy the following four requirements, I-IV (stated for d = 3). 

I. Boundedness 
1 

luk(x)[ < c L~/2 , ~l < Lk, (0.11) 

( ~ )  3+S 1 cl>Lk, (0.12) 
]Uk(X)] ~ C 11/2 '  

where d is the distance fi'om x to the center of A k. 

II. a-Stability 

For any set A of variables, with cardinality [al 

2 4 I 'a-  ~y~a > -cM[. (0.13) 

III. a-Positivity 

For any e>0  there is a c > 0  such that 

qb 4 > c  Y~ L~ +q%l 4-~ . (0.14) 
k~A 

IV. c¢-Renormalizability 

For any e > 0 

fw(1,2,3, 4,5)w(1,2,3)-w(1,2,3, 4)w(1,2,3,5)f 

<-c22L6 ~I (1)  1 1 (LIlI-~ ~I (~j) 
i=1 L// LI/2 ]-1/2 h~/lo , (0.1Sl 

--  ~5  \ L 5 /  j=2  

provided L 1 <LaNLB<L,~,Ls. The notation for h and d/j is as in Sect. 3 of [3]. 
We will show in Sect. 1 that the choice Uk(x)=Lk~k(X) satisfies all these 

properties. 
We set 

[p]a = ,f d#oe-'"*P(~), (0.16) 

with p a polynomial in the {a~[ im A}, and 

Z A = [1] A, (0.17) 

and finally 

( p ) ~  = [ p ] ~ / z  A . (0.18) 

We state results for qb~ and for the hierarchical 4 ¢ 3 as defined in t) and 2). 
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Theorem 0.1. There is a 2 o > 0, such that/ f  0 -< 2 -< 20, and p is any polynomial in the 
variables { e ~ l i ~  }, ~ an arbitrary finite subset of the k's, then 

limit (p)a  = (p)  (0.19) 
A,~ 

A~N 

exists. Here the limit is over an increasing sequence of sets containing @ and 
exhausting all k's. 

The center of our attention is a cluster expansion. Let ~" be a finite subset of 
the k's. Let ~ be the set of variables in a polynomial p(e), the distinguished 
variables. (We here let ~ be a certain subset of the k's, and also the set of variables 
they label.) Then we write 

( p ) ~ =  ~ KA(p)ZJC-A/Z :~. (0.20) 
@cAcJg" 

Formally we expand [pl :~ into a perturbation expansion in 2, evaluate the 
Gaussian integrals, and factor each individual term (sums in I' left undone) into 
the product of the contribution of variables connected to @ by the interactions 
and covariances arising in the integration, and the contribution of the com- 
plementary variables. This is the usual product into a connected contribution and 
a disconnected contribution in these variables. Connected contributions with 
connected variables A are resummed into KA(P). [Any term in (0.5) is understood 
to couple all variables in its labelling, whether or not all the variables are present.] 
Of course, KA(p) may be defined (and is in the paper) without the use of a 
perturbation expansion. Our main result is the following: 

Theorem 0.2. Let c 1 be fixed, then there is )~o(Ct) >0  such that if 0_<2_<2o(Cl) and p 
is any polynomial in variables in ~,  then 

]K A(P) [ e~llAI < c(p) . (0.21) 

The paper is devoted to proving this result for the hierarchical ~b~ model. 
Standard machinery can then be used to obtain 

( P ) =  Z KA(p)ZA7 Z,  (0.22) 
NcA 

where zA° /z  is defined as the solution of a Kirkwood-Salsburg-like equation. 
There are no cutoffs in (0.22). Some generalization of this may be useful in the 
gauge theory situation where it is hard to find gauge-invariant cutoffs. 

We will prove these results for the actual q54 in a future paper. There is an 3 
unfortunate error in [3] : Eq. (3.7) is incorrect, and thus also e-positivity as stated 
there. Actually [3] provides a proof for hierarchical models as defined above (with 
obvious changes from d = 3 and d = 2). The paper should be read excluding Sects, 6 
and 7, and with u k translated by Lk~ k. Proofs of e-stability and e-positivity are as 
in Sect. 1 here. Reference [3] is an important paper, although flawed. 

Preparatory to reading this paper it is recommended that one become familiar 
with portions of [3] and [61 as follows: 

1) Read Sects. 3 and 4 of [6]. This provides the construction of the ~Pk in a 
lattice situation. Then read Sect. 2 of [3] to see the continuum tp k, easily derived 
from the lattice situation. 
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2) Study well factorial estimate l l .B of [63. This easy estimate plays a very 
central role in the proof of convergence. 

3) Read Sect. 8 and Appendices A and B of [3]. Estimates with tree graphs, 
along with factorial estimate 11.B of [6], handle the combinatoric aspects of the 
convergence proof. These estimates are the most characteristic feature of phase cell 
cluster expansions, and have an intrinsic beauty of their own. They should be 
useful in other situations in field theory and statistical mechanics. 

4) Now read the rest of [3] exclusive of Sects. 6 and 7 with the understandings 
mentioned above. 

The extension of the work of the present paper to the treatment of the actual 
qS~ model represents an increase in complexity, but no fundamental innovations 
are required. The present paper is an interesting warm-up for ~b 4, but phase cell 
cluster expansions with diagonal Cij as here are also of importance. The Yukawa 
model will be treated with a diagonal boson covariance. If one could find a basis 

1 
~b k for L2(R3), labelled as our expansions functions, for which u k =- 1 / -  A + M 2 ~bk 

satisfies I-IV above then the present paper would include the ~b 4 model. This 
although unlikely should be investigated. (Some variations on these properties are 
permitted.) 

1. u k = L k ~  ~ Satisfy I - I V  

We study these properties but not in order. 
I) Boundedness is immediate for this choice of u k. In fact the right side of 

(0.12) may be set equal to zero. 
III) We follow [3, Sect. 6] with the formal substitutions: j ~ 0 ,  r-~4, 

1 
D l-J~k'-* ~-~vk- In fact with these substitutions the proof is considerably simpler 

I L  

and there is no kinetic term. 
II) We first consider the normal orderings in (0.5) 

:0~40 % : =o%~ 5 - 3~5, (1.1) 

Sym :elc%c%cq : = o~ 1~20~30~ 4 - -  6634cqo~ z + 331 z53~, (1.2) 

where Sym in (1.2) indicates the relationship holds when substituted into 
expressions symmetric in 1, 2, 3, 4 as (0.5). We write the three expressions on the 
right side of (0.5) as E 1, E2, E 3. We first note 

We write 

Clearly 

E~ >=o. (1.3) 

2 4 2-  4 2" E , -  ~ dpA= ~j dp A-  J a(x) d#~(x)+ 2b, (1.4) 

(1.5) 

b>O. (1.6) 
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We would be through, by completing the square in the terms involving q~A(x), if we 
could show 

Idl ___< clAI, (1.7) 

S la(x)l 2 < clAI, (1.8) 

S [c(x)[ 2 < clA]. (1.9) 

Equation (1.8) is equivalent to 

2 2 2 2 ~  , Z L1LeS~lq~2=cIA[ (1.10) 
1,2 

where sums are understood to be restricted to A. 
One easily has 

2 2 2 2 - e  Z L1LzftPl~2<cLI , (1.11) 
2 

L2~L1 

from which (1.10) follows. Inequality (1.7) is equivalent to 

L 2 L 2 L 2 L  2 ~,  . i I 2 2 1 2 3 4 J l ~ l t J ) 2 ~ a I ~ t J ) l t P 2 1 P 3 ~ 4 l  ~ c l a l -  (1 .12)  
1 ,2 ,3 ,4  

If in (1.12) one fixes one of the indices and sums over the others, but, as in (1.11), 
restricts the edge lengths to be greater than or equal to that of the fixed length, the 
sum is <cL 2-~, where L is the fixed edge length. This establishes (1.12). 
Equation (1.9) is equivalent to 

1 2  T 2 / . 2 / 2 f 2  ir 2 
~ 1 ~ 2 ~ 3 ~ 4 ~ 5 ~ 6  ~ I~x~2~31 J" It04~s~61 J" I~Pl~PNtP3~P4~s~61 < clAI. (1.13) 

1 ,2 ,3 ,4 ,5 ,6  

This is established similarly, fixing a given index and summing with like edge size 
restrictions. Lieb has generalized the e-stability inequalities of [3] in [ l l J .  

IV) We look at 

Iw(1, 2, 3, 4, 5) w(1, 2, 3) - w(1, 2, 3, 4) w(1, 2, 3, 5)1, (1.14) 

and note that 

4 3 (Ljtpj(y)) (l'14)<22SdxSdy ) ~ [I L5t~5(x)-~s(y)l , (1.t5) 
j = l  

with the restrictions L 1 N L 2 _<_ L 3 < L 4, L s. 
We have in turn 

(1.15)<c2aL6 i~i ( ~ )  1 1 (L@ (1.16) 
- -  i = 1  L I / 2  ~511/2 " 

We note that in (1.15) the integrand is zero unless x and y are in the same octant of 
the cube associated to tps, in which ~5 is a pure polynomial. 

It is interesting that none of the counterterms are necessary for stability; that 
the mass counterterm and the second order energy counterterm are necessary for 
convergence of the cluster expansion, but not the third order energy counterterm. 
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Although we have not carried through the details, it should not be difficult using 
the results of this paper to derive a form of ultraviolet bound if we include the third 
order energy counterterm. One would compute the partition function including all 
the c~ k associated to cubes with centers in a given volume V and with edge size 
greater than some L 0 and obtain an upper bound of the form e w, c independent of 
L 0 . 

2. Basic Expansion Scheme 

We introduce a multi-index notation as in [3, Sect. 10] so that (0.5) becomes 

g~('c):a~:4 - ~ g2(z ' ,z") :~ ' :+ ~ g3(z), (2.1) 

J'z'= 2, 
I t " =  3 

with S z -  ~ z(k) and (for M('c) as in [3]) 
k~c¢" 

gl('c) - 2M(z) ~ u ~ , (2.2) 

92(z', z") ~ 48)tZM(z ') M(z") (~ u ~'+ <) (~ u<), (2.3) 

93(z) =- 1222M(z)(~ u~) 2 . (2.4) 

As in [3] the only ingredients of our cluster expansion are interpolation ((4.1) of 
[3]) and integration by parts ((4.2) of [3]). For p a polynomial in the cell variables, 
we expand (p(a)) (---- (p(a) )x  for notational simplicity) by repeated use of these 
two operations. The variables in p(~) are the distinguished vertices, and a move is a 
choice of a right hand side term of either (4.1) or (4.2) of [3]. A unit, defined slightly 
differently from in [3], is one of the kinds of objects we encounter in a move, 
specifically one of the following: 

91(z) :~ :  (or derivatives), ~ -c = 4, (2.5) 

92(z', ~") :a*': (or derivatives), j' ~'= 2, ~ z" = 3, (2.6) 

g3(z), ~ z = 4 ,  (2.7) 

each multiplied by some monomial in the interpolation parameters. Any unit of 
the form (2.5) [respectively (2.6) and (2.7)] will be called a form I (respectively 
form 2, form 3) unit. After a given sequence of moves applied to (p),  the interior 
vertices are the distinguished vertices together with the vertices appearing in units 
introduced as a result of all moves; the exterior vertices are the complementary set. 

The first term in the right hand side of (4. t) of [3] is the decoupled term, and an 
expression obtained by some sequence of moves from (p)  whose last move is an 
interpolation choosing the decoupled term is a completed term. Any other allowed 
sequence of moves yields a remainder term. Moves choosing a unit give rise to a 
remainder term (which represents a branch point in the expansion) and calls for 
another move. 

With f a finite set, our rules for moves will dictate that the iterative 
construction eventually terminates, and we may collect completed terms to obtain 

Z g\A~ 
(p(cz)) = ~ - - ~ - K G ( p ) .  (2.8) 
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The history of moves is indexed by G, and A G is the set of interior vertices at the 
end of the history. Expression (0.22) is obtained from 

K~(p)=KA(p). (2.9) 
G 

A a = A  

3. Interpolation of the Interaction 

The interpolation of the :~b4: term in the interaction is identical to the treatment 
in [3, Sect. 5]. The interpolation of the remaining two terms in (0.5) is different, to 
facilitate the mass renormalization cancellations. The first interpolation has ~ the 
set of distinguished vertices as interior vertices. The interpolated interaction is 

S12 ~ : (O(X) 4 : d x  "J" (1 -- Sl)(2 5 : dp~(x)4:dx + 2 5 : qSw\~(xff : dx) 

+48 ~ w(1,2,3)j' dxul(x)u2(x)u3(x ) 
1,2,3 

(~123 6123 2.  -:[s~¢(x)+(1-s3( ~ 4~(x)+ ~ \ S ~ \ ~ ( x ) ) ]  . 

+ 12s222 ~ dx ~ dy(4(x) 4(y))~ + (1 - Sl 2) (1222 ~ dx ~ dy(~.m(x)~m(y))'~ 
( 4 + 1222 ~ dx ~ dy(qS~\m(x) ~bx-~e Y))o), (3.1) 

where 

and 

~)A(X) = ~ Uk(X)C~k, (3.2) 
k~A 

blt232{1 , if 1,2,3cA (3.3) 
0, otherwise. 

The first-order term, in :q54 :, is interpolated at all stages as in [3]. We now 
describe the succeeding interpolations of the second-order energy counterterm. 
Let W(Sl, ..., s n_ 1) be the ( n - 1 )  st interpolation of the energy counterterm, and 
P(O ~) be the set of interior (exterior) vertices at the onset of the move correspond- 
ing to the n th interpolation. Here W(st, ..., G-1) is a convex combination of terms 
of the form 

1222ydxydy(~A(x)~A(y))~ and the n th interpolation replaces W(s 1 .... , s,_ 1) 

with 

. . . ,s,)=s n W(Sl, ...,s,,_l)+(1-s~)~V(Sl, ...,s,, 1), (3.4) W(sl ' _ 2 

where (V is obtained from W by the replacement 

1222 ~ dx ~ dy( 4) A(X) q~A(Y)>0%+1222 ~ dx ~ dy( @,~,~(x) ~bA~,~dy)>o ~ 

+ 1222 ~ dx ~ dy(OA~,o,,(x) OA~O,,(Y))~" 

The ( n - 1 )  ~t interpolation of the second-order mass counterterm has the form 

48 ~ w(1,2,3)~dxul(x)u2(x)u3(x):d2123(x;s1,...,s,_l)2:, (3.5) 
1,2,3 
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where ~123(X ;S 1 . . . . .  Sn-1) denotes a convex combination of terms of the form 
6Aa23~bA(X). The n th interpolation is obtained from (3.5) by replacing 
q~123( x ; sl . . . . .  s._ 1) with 

~b123(X ; S 1 . . . . .  Sn)~-----Snft~I23(X ;S1 . . . . .  Sn . . ,1) -~(1--  Sn) ~ 1 2 3 ( X  ; S 1 . . . .  ,Sn_ l)  , (3.6) 

where d5123 is obtained from ~b,23 by the replacement 

~ .  123  123  b ~(x) , ~ .~ , i . ( x )  +'~A~O. A~oo(X). 
It is important for us that generalized a-stability holds for the interpolated 

interactions. If 0 < ai < 1 and ~ a, = 1, then (~  a~4~) 2 < ~ c@ 2. From (3.1) the term 
i 

~ - ~ 4 ~ - ~ ) )  =s14~ +(1 ~ _ ~ . ~ _ ~ ,  , 

which with (3.1) and results in Sect. 1 yield generalized a-stability for the first 
interpolated interaction. This process iterates. 

4. Integration by Parts 

In this section we give the rules by which we decide when to integrate by parts ; this 
will specify allowable histories of moves. First we collect some generalized 
integration by parts formulas that we will treat as generating single moves. Let 
P(a) be an arbitrary polynomial in the cell variables and let vl , . . . ,  v m be vertices 
(not necessarily distinct) such that a 1 =-a~l does not appear in P(a). Then 

[:al...a,~:P(a)]=[:a2...a,,:P(a)~--~71Q(a) ] , (4.1) 

where 

Q(a ) - - -  ~, gl(~):a¢: - Y, g2(z',z"):a~':, (4.2) 
~ : S r = 4  ~', ~": j 'r '  = 2, J'~" = 3 

and we have suppressed the interpolation parameters that are also brought down 
from the exponent, which is an interpolation of the interaction. Equation (4.1) is 
the same kind of formula that we used in [3], and in that case this was the only 
integration by parts that was necessary. To control the singular behavior of the 
hierarchical qb 4 model, however, we will sometimes need to integrate by parts in a 3 

more complicated way. Let Vz, v3, v2, v3, v] be vertices such that the corresponding 
t t t variables az, a3, cq, %, a¢ do not appear in P(a). Then 

[ :a2a3 : : a la ;  : P(a)] = :a2a 3 :% e(a)?U~ Q(a) 

)] ......... :a2a 3 : P(a) (4.3) 
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[ :~2~3 : :°¢2°~30~4 : P(c~)] = [ :c~20~3" : ~'3c~, : P(cO Q@2 Q(cO ] 

a, Q(~)] 
. . . . . .  :0~20~ 3 . o~4P(o: , (4.4) 

[a2 :c(2e'a"'4 : P(e)] = [e2 :a;a'4 : P(a) ~ Q(ct)] 

+ [(~2- c~2) a4 ,(c~) ~ Q(c0]. (4.5) 

When we speak of a term on the right hand side of any one of these integration by 
parts formulae, we do so with the understanding that (4.2) has been plugged in. 

/ 

Notice that the last term on the right hand side of either (4.3) or (4.4) (assuming 
\ 

that 0a 2 ~?a~- :e2a 3 • ~ 0  is the only term that does not involve the introduction of 

another unit. Any move that chooses such a term will be called a mass insertion; 
any other move involving (4.3) or (4.4) or any move involving (4.5) will be called a 
Class 3 (b) move, while any move involving (4.1) will be Class 3 (a). Class 1 and 
Class 2 moves are as in Sect. 9 of [3]. 

Now we adopt an arbitrary but fixed scale-lexicographic order on S(( ; i.e., if k 
precedes k', then L k, < L k. If 7 is a nonnegative-integer-valued function on S and 
~7=m, let (zl,...,zm) denote the unique m-tuple of vertices which respects the 
reversal of our linear ordering and whose weight function is r. (Hence 
L~, < ... _-< L~,.) We are now ready for a case-by-case description of our rule. As we 
have already indicated in the preceding section, the first move will always involve 
interpolation, so assume that we have made n -  1 moves resulting in a remainder 
term. 

There are many cases; the concept of the "form" of a move introduced after 
(2,7) is important. Loosely speaking, one integrates by parts some vertices that are 
newly introduced and of a smaller scale than previously introduced variables they 
are coupled to in the corresponding unit. This must be done at least often enough 
to allow mass inserts (of small scale variables) to develop. A set of rules that works 
is fairly complicated, as follows: 

Case t. The ( n -  1) st move chose a form t unit whose weight function T has the 
property that L,, < L k for any k~ supp7 that was interior at the onset of the ( n -  1) ~ 
move. Let o- be the restriction of z to those vertices that share this property with z~. 
In this case we require the n th move to involve an application of (4.1), where m = ~ a 
and v~ = a~. 

Case 2. The ( n -  1) ~t move chose a form 1 unit that violates Case 1, but the ( n -  2) ~a 
move chose a form 1 unit that satisfies Case 1 with respect to that move. Let a' and 
a be the restrictions of the weight functions of our ( n -  1) ~t and ( n -  2) ~d units, 



274 G.A.  Bat t le  I I I  and  P. Federbush  

respectively, to those vertices whose scales are strictly smaller than L k for any k in 
either unit that was interior at the onset of the ( n - 2 )  na move. By Case 1 our 
remainder term has the form 

where 61 is the delta function located at cr I and P(a) does not depend on any of the 
~k for which k~suppcrusupp# .  

Case 2a. ~ +  y & < 6 .  In this case we require the n tla move to be either Class 1 or 
Class 2. 

Class2b. ~rr+ yo- '>6 and cr'l=~o- 1. Since o-l~suppo-' and is the last vertex in 
supp or, it follows that r;' 14supp0-. In this case we require the n th move to involve 
(4.1), where we absorb :e°- ~ :  into P(e) and set vi=a' i. 

Class 2c. ~(rr+ y # > 6  and rr' 1 =~r~. Since ~rr<4, we know that ~&>3 ,  and since 
.( a '  <4,  we know that y a > 2. If  we set v~ = a~ and v'~ = o-'~, then the possibilities for 
(4.6) are precisely the left hand side of formulae (4.3)-(4.5). In each case we require 
the n th move to involve the appropriate formula. 

Case3. The ( n - 1 )  st m o v e  chose a form 2 unit whose pair (z',z") of weight 
functions has the property that L~I<L k for every kesuppT'usuppz"  that was 
interior at the onset of the ( n - 1 )  st m o v e  and z"3 precedes z~' with respect to our 
order on vertices. In this case we require the n ~h move to involve (4.1), where v~ ='c'  i 

and m =  1 or 2 (depending on whether ~ :c~' : or :~x~' : appears in the unit). 

Case 4. The ( n - 1 )  st m o v e  chose a form 2 unit whose pair (z', z") of weight 
functions violates Case 3. In this case we require the n th move to be either Class t 
or Class 2. 

Case 5. The ( n -  1) st unit chose a form 1 unit violating Case 1 and the ( n -  2) ~d 
move chose a form 2 unit whose pair (z', z") of weight functions satisfies Case 3 ; 
assume further that L~s<L~r. Let a (respectively o-') be the restriction of z' 
(respectively weight function for the form 1 unit) to the set of vertices whose scales 
are strictly smaller than that of every Vertex in either unit that was interior at the 
onset of the ( n -  2) ~d move. By Case 3 our remainder term has the form (4.6), and 
we consider exactly the sub-cases that were considered in Case 2. Our instructions 
for Cases 5a and b are exactly what they were for Cases 2a and b, respectively. In 
Case 5c the only possibility is y o- = 2 and ~ ~;' = 4, and so we require the n tl~ move to 
involve (4.5), where vi= ~;i and v'i= a' i. 

Case 6. The 
this case we 

Case 7. The 
move;  
7a. Chose a 
7b. Chose a 

( n - -  1) st move either chose a form 3 unit or was a mass insertion. In 
require the n th move to be either Class 1 or Class 2. 

( n -  1) s~ move chose a form 1 unit violating Case 1 and the ( n -  2) na 

form 1 unit violating Case 1, 
form 2 unit for which L~ >__ Lq and/or Case 3 is violated, 
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7c. Either chose a form 3 unit or was a mass insertion. 
In all of these cases we require the n th move to be either Class 1 or Class 2. 
By inspection, we see that our rules cover all possibilities. 

5. Representation 1 Graphs 

Having defined our cluster expansion of the expectation (p(~)) of an arbitrary 
polynomial p(c 0 in the cell variables, we write this expansion in terms of 
representation 1 graphs as we did for our expansion of expectations in [33. In this 
case, however, the expansion rules do not admit a one-to-one correspondence 
between representation 1 graphs and completed terms of the expansion, so the 
terms that are possible for a given graph must be collected. 

There is also more than one kind of basic graph to consider. In this analysis the 
elementary graphs are the nonnegative-integervalued functions z on Y such that 

z =4  (form i graphs), the pairs (z',~") of functions where S ~ '=2 and ~z"= 3 
(form 2 graphs), and the pairs (z, 3) such that ~ z--4 (form 3 graphs). Obviously 
we intend a form i graph to label some form i unit associated with that elementary 
graph. (Which such unit is labeled would be determined by what differentiations, 
if any, fall on the undifferentiated unit when the move introducing the graph and 
the move following that introduction take place.) 

Definition 5.1. Let ~ be the set of distinguished vertices. A representation 1 graph 
rooted on ~ is a sequence G ~-(G1,..., GN) of elementary graphs and sequences of 
elementary graphs with vertices assigned to them - called the chains of G - such 
that the following proEerties hold : 

(a) The sequence G - ( G  1, ...,(U") of elementary graphs induced by G if one 
ignores the chain structure is introduced by some allowed sequence of moves 
corresponding to a completed term. 

(b) Every elementary graph in G and the first elementary graph in every chain 
of G are introduced by Class 2 moves, and no vertices are assigned to such graphs. 

(c) If an elementary graph lies in a chain of G and is not the first elementary 
graph in the chain, then it is introduced by either a Class 3(a) move or a Class 3(b) 
move, and the vertex assigned to it has been integrated by parts by that move. 

Remark. Although mass insertions do not introduce elementary graphs, repre- 
sentation 1 graphs implicitly record such moves. 

The expansion is 

z,~tA~ 11 \ i ~ \ 

2 I1 I S 
G i ~ I \ 0  l k e A G \ - c o  I 

exp(--  Z 
k~AG I 

where the summation is over all representation 1 graphs G, g(~i) is one of gx(Z), 
g2(z', z"), or g3(z), b~(s) is the product of interpolation parameters brought down 
from the exponent by the move or sequence of moves introducing G~ (and respects 
equivalence classes of completed terms because interpolation moves are uniquely 
determined by the elementary graphs they introduce), VG(s, ~) is the form of the 
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interaction for the completed term (and also respects equivalence classes because it 
has only been interpolated), and B~(c~) is the combination of all (equivalent) 
products and differentiated products of cell variables that are generated by the 
moves or sequences of moves introducing the same G z. 

The b~(s) and B~(cQ are implicitly defined by our expansion rules. Since most of 
these factors will be over-estimated in a gross manner, we will not compute the 
expressions for them except in those cases where they affect the combinatorics of 
the second-order renormalization cancellation. 

6. Combinatorics of the Mass Cancellation 

Before beginning our estimation of (5.t) we must group together the terms whose 
ultraviolet (small scale) divergences will cancel against one another. This is the 
combinatoric content of the second-order mass and energy renormalization. 

Definition6.1. Let G be a representation 1 graph rooted on 9 .  A type 1 
(respectively type 2) composite graph of G is a pair (~i, ~i+1) of consecutive 
elementary graphs in G such that G ~ is form 1 (respectively form 2), G~+ 1 is form 1, 
and the introduction of ~i+ 1 has given rise to Case 2 (respectively Case 5). 

Remark. The elementary graphs in a composite graph of G clearly occur in a chain 
of G. 

Definition 6.2. For a given representation 1 graph G rooted on 9 ,  an exact graph 
of G is type 1 composite graph (~,~i+1)  of G such that G] =G~I +1, d~=@ 1, 
G~=d~ +1, the scale of G~ is strictly less than that of any vertex in 

(suppGiusuppGi+l)c~( ~ w  U suppGJ/, and ~i+1 is the last elementary graph of 
\ j<i / 

the chain. 

Definition 6.3. A local graph of G is a form 2 graph ~i = (z', z") in G such that z' 1 
precedes z£ and L~;, is strictly less than the scale of any vertex in 

supp Gic~(9~ jU<i s?pp GJ). 

We now let G denote the structure obtained from G by considering the 
composite graphs of G as single elements. We also consider the following 
operations on {G}" 

(a) Replace an exact graph (z, a) of d with the form 2 graph (z', z") such that 
z'~ = z  1, z 2 = z 2, z; ='ca,and z' is the weight function of the pair (%, a4) of vertices. 
The resulting graph is G', where G' is representation 1 and (~', z") is a local graph of 
G'. 

(b) Replace a local graph (z', z") of d with a pair (z, a) of form 1 graphs such 
that "c i = a~ = z'~', i=  1, 2, 3, z' is the weight function of ('c 4, a4), and z 4 is an interior 
vertex at the onset of the move introducing (z', z"). The resulting graph is G'~, where 
G" is representation 1 and (z, a) is an exact graph of G". 

(c) If in case (a) [-respectively case (b)] z = a (respectively z'+ 2z"= 2r) and the 
exact graph (respectively local graph) is the first element in a chain of G or occurs 
in G, then replace it with the form 3 graph element (z, 3). 
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(d) If a form 3 graph (v, 3) has the same scale properties as an exact graph, then 
either replace it with the exact graph (z,z) or replace it with the corresponding 
local graph. 

Now F t is the structure obtained from G by replacing each exam, local, or case 
(d) form 3 graph of G with the set of all graphs that operations on G can replace it 
by. Such a set is called a cancellation graph of F t. We are grouping together terms 
that will combine to exhibit the mass renormalization cancellations. [A cancel- 
lation graph may contain one or two exact graphs and possibly a form 3 graph in 
addition to a local graph. If(G i, ~i+ 1) is both an exact graph o f f  t and a chain of G 

and ~+1~  @u U supp Cr/, then (G i+ 1, ~i)is also an exact graph of Ft. ] 
j < l  

Definition 6.4. A representation 1½ graph rooted on ~ is F t for some representation 
1 graph G rooted on ~. 

We may rewrite (5.1) as 

(P(e)) = 2 ~ ~ dsl ~ d~ k exp - ½ 2 c~2/ 
F k - k E A r  / 

• p(~)e-Vr(s'~) ~ [I(-g(4'))[IB~(cO[lb~(s). (6.1) 
G : F d = F  i 1 l 

We are now ready to state the fundamental combinatoric result. 

Theorem 6.5. Let F-(F1,...,FN) be a representation 1½ graph rooted on ~. For 
1 < l < N  there are polynomials Nlr(C Q in the c~ k and monomials ~Zr(s ) in the 
interpolation parameters such that 

~ ( -  g(G~)) I] B~(a) [I hi(s) = I ]  N~-(~) ~ ~-(s) I ]  J ( /~ ) ,  (6.2) 
G : F ~ = F  i l l l l # 

where F is the sequence of elementary graphs, composite graphs, and cancellation 
graphs induced by F if the chain structure is ignored, and 

{ -g(['~), ['" is an elementary graph, 

~(?l~) = g(di)g(ai+ 1), I-~t is a composite graph (~i, ~i+ 1) of F. (6.3) 

2 2 ~ u ~ ~ u ~- 2 2 ~ u ~'+ ~"~ u <, F~ is a cancellation graph of r .  

Remark. In the definition of J(/%) it is understood that (z', z") is the local graph 
and that (z, a) [respectively (z, a) and (a, z)] is (respectively are) the corresponding 
exact graph (respectively exact graphs). 

The proof of this theorem is the content of Appendix A, and a crucial role is 
played by the way we have chosen to interpolate the mass counterterm. Suppose 
that we are building a completed term for whose representation 1 graph G we have 
F t = F ,  suppose that we have done n -  1 interpolation moves and are confronted 
with the n th interpolation. The set of interior vertices at the onset of this 
interpolation is given by 

n - 1  n--1 

I " = ~ w  U s u p p G l = ~ u  ~ suppF~ (6.4) 
l - 1  1 -1  
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while a form 2 unit gz(z', z') :cd': in the exponent is multiplied by some product of 
the interpolation parameters sp ..., G-  r By inspection of (3.3), (3.6), and (3.7), we 
see that (assuming that suppCC O") 

(a) if suppr 'C P, then the n th interpolation introduces an s, 2 factor for the unit, 
(b) if suppz' meets both I" and O", then the n th interpolation introduces an s, 

factor, 
(c) if supp# C O', then the n th interpolation introduces no factor. 
We are assuming that suppz"C O" because this is the only case in which (#, C) 

can possibly be a local graph of G. It is obvious from (6.3) that there is no 
combinatoric work to do unless there is a cancellation graph involved at a given 
stage. 

7. a-Stability, ~-Positivity, and the Tree-Graph Estimation 

Combining (6.1) with (6.2), we obtain 

~ Z~¢" - A 

(P(C0) = ~ I~ J ( F , )  ~ -  Hr(p), (7.1) 
F g 

where the sum is over all representation 12 graphs rooted on @, J(/~") is defined by 
(6.3), and 

( i )  ' H r ( p ) - 1 ~  dsz 1~ de k e x p - g  2 ekt 
t k e A r  \ -  co k~Ar  / 

• e-  vr(s,~)p(e) l~ N~(e) l-[ d~(s). (7.2) 
l l 

The basic idea is to apply this expansion to the problem of showing that for 
sufficiently small 2 the expectation (p(e)) converges as the cut-off in volume and 
scale represented by ~ff is removed. As we pointed out in [3], the crux of such a 
problem is to prove: 

Theorem 7.1. There is an e > 0  and a 20>0  such that for 0-<2-<2 o, 

1~ }J(/~)l 1 - ~IHr(p)t < c. 
Y # 

The proof of this theorem is the content of the sequel. As in [3], the 
preliminary step is to apply a-stability and e-positivity, which are preserved under 
interpolation. Combining this with the Schwarz inequality, we see that 

< g n ( 0 0 2 \  1 /2ec lAr l  [ ] - [  ,d~t (e- i211/2  / 1 , H r ( P ) , : \ e , ,  /o [ , , . r , , l a F ~ ( i d s , ) ~ I d Z r ( s ) ,  (7.3, 

where ( )0 is the free (2 =0) expectation and [ ]A is the expectation with respect to 
the measure 

l + e '  4 - #  exp( -¼  ~ e2-c)~ 2 Lk ]ekl ]1~ dec k. (7.4) 
\ keA keA / k~A 
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Now we define the 

! 
2", 

/~.= 0, 
i 

7 : + 6 ,  

Z" q-  0", 

nonnegative-integer-valued function I% by 

/~" is a form 1 graph 

/~u is 

~" is 

1% is 

I% is 

/~" is 

a form 2 graph (z', q'), 

a form 3 graph, 

a cancellation graph of F with (z', z") as local graph, 

a type 1 composite graph (z, a), 

a type 2 composite graph ((z', r"), a). 

(7.5) 

It follows from inspection of cases that 

H , _ 2 E P -  
N~-(e)~ < c"rc~ " , (7.6) 

l 

where 
~k --= max {1, I%1} (7.7) 

and n r is the length of the sequence/~. Hence 

2 y/~* 1/2  .1- 

b e c a u s e  tAx, I <= I@l + 8nr. 
The next step involves the general tree graph identity that was stated and 

proven in [3], The point is that 

bl (s) ~ St / r ( / ) " " '  Sl- 1 '  (7.9) 

where t/r is the tree graph associated with the sequence (suppF 1 ..... , suppFu) rooted 
on 9.  This inequality follows from throwing away the unnecessary factors in the 
monomial b{.(s) via the inequality 0 < s i < 1. 

Definition 7.2. A representation 2 9raph rooted on ~ is the set of elements occurring 
in some representation 1½ graph rooted on ,@. 

For a given representation 1½ graph F we will denote the associated repre- 
sentation 2 graph by Tr; it follows from Theorem B.3 of [3] that for a given 
representation 2 graph T rooted on 9 ,  

E ~i(idSl)~l(S~11'(l)'"Sl-1 )~-~1' ( 7 . 1 0 )  
F : T r =  T 

We have an inequality instead of an identity because of the restrictions on possible 
graphs imposed by our rules for integrating by parts. Now, in view of (7.8)-(7.10) 
we see that Theorem 7.1 will follow from : 

Lemma "/.3. There is an e > 0 and a 2 o > 0 such that for 0 <-2 <-2 o, 

~ I 2Y/%*] 1/2  
£ 1~ tJ(F~)I 1 - ~eC"T[8 ~ jar  < C, 
T # 

where the sum is over all representation 2 graphs rooted on ~ ,  F r is an arbitrary but 
f ixed representative of  T, and Ar=-Ar~,  nT~nrT.  



280 G.A. Battle III and P. Federbus/~ 

8. Attachments  and "New Variables" 

Throughout our proof of Lemma 7.3 our arbitrary choice F r for each repre- 
sentation 2 graph T will remain fixed. For a given element FT, l of T we define the 

attachmentofF%z(relativeto T) asthelastvertexinsuppFr,  f ' ~ ( ~ u U s u p p F r ,  j) 

with respect to our scale-lexicographic order on the vertices, unless FT, z is a chain 
for which (wi th /~  the last element in the chain) the set 

s u p p / ~  ( ~ u  U suppFr.~] (8.1) 
\ j < I  / 

is non-empty. In this case the attachment is the last vertex in 

(supp/~ - lvosupp/~)~ ( ~ u  U suppFr, j)' 
\ j < l  ] 

Chains with non-empty set (8.1) are called "extraordinary," other chains 
"ordinary." 

Definition8.1. For a given representation 2 graph T rooted on ~,  let 
(/~,+ 1, . . . , /~,+,) be a chain of Q and let v be the vertex to which this element of T 
is attached relative to T; set 

t = m a x  { j lm<j<m+ n, vE suppE~}. 

Then/~: is the attachment graph of the chain. 
Our notion of attachment graph is identical to that used in [3] ; we must also 

introduce a notion of new variable as we did in [3] - i.e., nonnegative-integer- 
valued functions a)  for 1 < # < n r. I f / ~  is the attachment graph or the last element 
of a chain FT,~ of F T, then 

I F~(k), k¢~vo Q) suppQ, j, 

~<z (8.2) 
~r~-(k) --- [ 0, otherwise. 

Otherwise, 

/ /~)#(k), k¢~,.~ U supp/~j, 
j < # - I  

a~,(k)- [ 0, otherwise. 

Old variables are the complementary set to the new variables. 

(8.3) 

Lemma 8.2. For a given representation 2 graph T rooted on ~,  
II T 

cr~,(k) < c, (8.4) 
#=1 

6, F~ is composite 
( / ~ -  cry) < 3, otherwise. 

(8.5) 

Since the rules for integrating by parts are more complicated here than in [3], 
we will find it convenient to supplement the notion of "new variable" represented 
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by a~, with an additional nonnegative-integer-valued function Z~ defined as 
follows : i f /~  either occurs in Fr or occurs as the first element of a chain of FT,, then 
Z~--0, and otherwise, (with FT., t as the chain) 

z~(k)-, 

?~(k)-~(k), k ~ u  ~ suppFr, ~ and L k is strictly less 
m < l  

than the scale of the vertex that was integrated by parts 
by the move introducing F~, 

0, otherwise. 

Lemma 8.3. For a given representation 2 graph T rooted on ~ ,  

n T  

Z z~(k)=< c. 

Let 

(8.6) 

n T  

a~(k)- Z [/~(k)- ~(k)-  z~(k)3 ; 
t ~ = l  

it follows from (8.5) that 

(8.7) 

f2 T < cn T . (8.8) 

As in [3], we apply the Schwarz inequality to estimate out the integration 
variables contributed by the weights subtracted out in (8.7) with the free part of the 
interaction represented by the product measure [ ]AT and estimate out the other 
variables with the other part of the exponent. By (7.4), (8.4), (8.6), and (8.7), we have 

T g T ,~ 

" I ]  [(~2T(k)!)P (L/~'2-~')n~'~k)], (8.9) 
k 

1 +e' 1 
where fl' =- f i -  

4 - e "  4 - e "  
The right hand side is dominated by 

cnT2,~" I~ ~(~#)1 - ~ l~ [L[  P'eT(k)(Y2T(k) !)~]' (8.10) 
T # k. 

where ~ ( /~ )  denotes 
(a) the bound (3.6) of [3] on ~ p* if/~# is a form 1 graph r, 
(b) the corresponding bound on p?'+ < ~ #< if ~f is a form 2 graph (z', ~"), 
(c) 5~(~) 2 if I~ is a form 3 graph (~, Q, 
(d) the bound (0.15) on j 'p~ ~ " -  j'#*'+*"j'p'" if/~f is a cancellation graph with 

local graph (~', z") and exact graph (r, a) and/or (a, r). 
(e) L~CP(G 1) 5¢(G 2) if/~' is a composite graph (~1, ~:). The powercounting for 2 

has worked as follows: i f /~  is not a composite graph, then ~ (/~ - a~.- Z~) < 3 by 
(8.5), so the contribution to the power of 2 is 2 ~ -~2-3P' ; if F,~ is a composite graph, 
then (8.5) gives only ~ (/~ - a~.- Z~-) < 6, but J(F~) contributes 2 2, so the power of 2 
is 2 2- 2~)o-6~' in this case. 
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We have reduced the problem of proving Lemma 7.3 to that of bounding (8.10) 
with a constant independent of the cut-off in scale and volume. Now for a given 
representation 2 graph T rooted on ~ ,  consider the sequence of attachments 
relative to T induced by F r--(Fr, 1,"-, FT., N) and extract the subsequence of first 
appearances. For each such vertex list every element of T attached to that vertex in 
some arbitrary order and adjoin the sequences in the order that their attachments 
appear in the subsequence. Such a re-ordering of (F~:, p. . . ,  IT.,N) is a representation 
3 graph rooted on ~.  (As in [6], we could have defined a representation 3 graph as 
a set of sequences instead of an adjunction of them, because the ordering of the 
elements of T attached to a given vertex is the ordering that we really wish to 
introduce. The "first appearance" ordering is just a convenience, as it was in [3].) 

For a given representation 3 graph J rooted on ~,  let Tj denote the unique 
representation 2 graph associated with it and let rj(k) denote the number of 

elements of Tj attached to k relative to Tj. Obviously, 1~ r~(k)! is the number of 
k 

representation 3 graphs that Tj is associated with, so we may trivially rewrite (8.10) 
a s  

Zc'~ l~2"J~"l-I~(J,)~-~fI[Lf" 'n , (k)(Oj(k)!) '] ,  (8.11) 
J I - I r ~ ( k ) !  , k 

k 

where nj = nT~, f2j =-- f2Z~ , and Y is the sequence of elementary graphs, composite 
graphs, and cancellation graphs induced by d if we ignore the chain structure (and 
is therefore a permutation of FT.,). 

9. Counting (Including the Number Divergence) 

In this section we carry through the final numerical estimations, quite as in 
Sects. 16 and 17 of [3]. The nomenclature we have introduced in this process 
(attachment, pinning, new variable, etc.) is quite natural ; we feel anyone studying 
the "topological" description of terms in the cluster expansion would create similar 
concepts. 

9.1. Pinning and the Hook 

In this subsection we define "pinning" and the "hook"; the first of these is a 
generalization of "pinning" as in [3], the second a new complication we did not 
need to consider there. 

We here fix a representation 3 graph J. Let (z), ..., ry)  [respectively 
(Q~ ... .  ,Q~J)] be the permut~ion of (/~r~j, . . . , / ~ )  [respectively "cr 1 + ,1 ,j  ~ [ r j  ~Tj' " "  " ' (~rj 

nj + Zr~)] whose action takes Yr., to J. We first define the "hook" '  

Definition g.i.t. Let J be a representation 3 graph rooted on the set ~ of 
distinguished vertices and consider a chain (jm + 1,... ,~7" + ~, = ~'~:~(~ + ~, ~ ,  ~_~:~ +.~,ofJ 

(i.e., of Frj). The hook of the chain is the last vertex in supp)"+'¢~ Q) supp) u 
,u=m+ 1 

with respect to the scale-lexicographic order on vertices. If v is the hook of the 

chain and t = min {#lm </x < m + n, vs supp) '} ,  

then )~ is the hook graph of the chain. 
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We define the pinning of J" as the vertex p~suppJU such that 
(I) If )~ occurs in J, then Pu is the attachment of jr .  

(II) If )" occurs in a chain of J and 
(IIa) if JU is the attachment graph of the chain, then pu is the attachment of the 

chain. 
(IIb) If JP' is the hook graph in a chain when the last graph in the chain is the 

attachment graph, then p~ is the hook of the chain. 
(IIc) If j r  violates (IIb) and if)u occurs before the attachment and/or after the 

hook graph, but is not the last graph, then p~ is the vertex that was integrated by 
parts giving rise to )"+ 1. 

(IId) If JU is the last element of the chain and is not the attachment graph of the 
chain, then p~, is the hook of the chain. 

(IIe) j r  violates (IIa)-(IIc), then pu is the vertex in J~- a that was integrated by 
parts giving rise to J~. 

We also define the bottom of )"  as the last vertex in supp)  u with respect to the 
scale lexicographic ordering on vertices. 

Lemma 9.:1.2. No vertex can be the pinning of  more than one case (IIb)-(IIe) graph. 
Moreover no vertex can be the bottom of  more than one composite graph. 

Lemma 9.1.3. Lp~ is less than or equal to the scale size of  every vertex in 
supp(z~- ~). 

9.2. The Number Divergence - An Abstract Discussion 

For a fixed representation 3 graph J we assume a set of positive numerical factors 
f (k , j ) ,  j, k~ f satisfying ~ f (k , j )  < c. Let (lq, ..., kN) be a sequence of vertices such 

k 
1 1 2) that the first y ( z J -  &J) vertices have weight function z s -  C j, the next y (z 2 -  Cs 

vertices have weight function r 2 -  e 2, etc. Each "occurrence" of a vertex in this 
sequence is said to "occur" in j r  if the occurrence is in the segment associated with 
zj~_ Cj.u We have a mapping NDF : {1, ..., N}~(0, 00) of a special nature so that 
any occurrence of vertex j has as an image an element of the set 

Sj =- { f (k , j )  Ike Y }  u { f (k , j )  1/: f(k' , j)I/2lk,  k' e ~f~} . 

An occurrence of vertex j is said to be singly bound to k if its image is f (k , j )  and 
jointly bound to k and k' if its image is ,,f(k,~,iW 2 j,f(k',jj;~'l/2. The weight of a binding is 
1 for single bindings and 1/2 for joint bindings. Referring to (8.7), (8.11), and [3] or 
[6], we see the numerical factor 

1 + 1 +  

[ I  (NDF(i)) ~ L}i), (9.2.1) 
i 

with the i th occurrence an occurrence of vertex j(i), is sufficient to control the 
number divergence provided that the sum of the weights of all bindings to vertex k 
is dominated by 

4-rs(k  ) + c, with ¼+-4- = 1, for all k. 

Remark 1. In [3] all bindings were single. 
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Remark 2. As we find numerical factors to serve as our f(k,j), they will arise as 
(with g=  cs) 

(Lk) 3+ h~( l  dk,j), L k <LJ, 
L i  - d - 

If  the application of the ideas in this section to [3] is understood (with trivial 
modification due to the change in dimension) the application to the hierarchical 
q~ is immediate. 

9.3. Assignment of Numerical Factors 

From the consideration of the last section we need only specify the nature of the 
bindings to see what numerical factors (NF) we are using to control the number 
divergence. We give rules NF  1) and N F  2) to specify the bindings. 

N F  1) An occurrence of a vertex in a graph, that is in a chain but neither 
a) the attachment graph 

nor 
b) either of the last two graphs in an extraordinary chain, is bound to one of 

the new variables in the same graph of highest scale size. 
NF  2) Let S be either 
a) a graph not in a chain 

or 
b) the two last graphs in an extraordinary chain 

(Essentially the two last graphs in such a chain are here being treated as a single 
graph.) 
o r  

c) an attachment graph of an ordinary chain. 
Let v 1 be the attachment and v 2 one of the largest scale new vertices in S. Let v 

be the largest scale vertex of v 1 and v 2 (or v 2 if they are the same scale). Any 
occurrence of a vertex in S is bound singly or jointly to vl and v 2. This is done so 
that the sum of the weights of the bindings to v (of such occurrences inside S) is as 
large as possible, subject to the limitation that if v =v~ the sum must be < 3.5. 

The assignment of numerical factors by rules N F  1) and NF 2) ensure that the 
restriction on the sum of weights of bindings to each vertex given in the last section 
is satisfied. We now have knowledge of the numerical factors we will use to control 
the number  divergence. As in [3] and [6] we divide numerical factors into two 
parts, one for counting, and one for controlling the number divergence. Factors of 
h and 2 will never be a difficulty; we will only keep track of factors of L's. 

9.4. Numerical Factors Needed for Counting 
Counting estimates are performed by the usual sums into sups procedure. Similar 
to [3] and [6] we sum in an iterative manner over: 

a) the number of attachments to a vertex, 
b) whether an attachment is a chain or a graph not in a chain, 
c) the length of a chain, 
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d) which graph in a chain is the attachment graph and which the hook graph, 
e) the case and subcase of moves that gave rise to a graph, 
f) the bottom of a graph once its pinning is known, 
g) the remaining vertices (with multiplicities) in a graph once its bottom is 

known, 
h) for each vertex in a graph, whether it is a new variable, a hook, or a pinning 

of another graph in the same chain. 
The sums in a)-e) and h) may all be handled by a factor of 2 ° ÷ borrowed from 

0 + each unit. The sum in g) may be compensated by a factor of L B , where L B is the 
edge size of the bottom. The sum in f) may be controlled by a factor 

(L./3+ 
Lp/ ' 

where L B and Lp are respectively the edge sizes of the bottom and pinning. Thus to 
control counting we need a factor 

~B~ L 0 + 
Bi , 

for each graph, an overall factor 

[I (I(~B-~]3+ L°( (9.4.1) 
i \L t ,  j 

where the product is over all graphs. 
Here as in Sect. i simple geometric estimates of sums and integrals replace the 

usual power counting techniques. Thus in summing over possible bottoms of edge 
size L B for a given pinning of edge size L v we are concerned with compensating a 

factor of '''~L'P~ 3 the number of cubes of side L .  in a cube of side Lv. ~/Including 
\ L d  ' L 

(Lp  3+ ] 
summing over size of L s we have c/~-£) .j Such considerations yield (9.4.1). 

9.5. Finding the Numerical Factors 

We must now show that the numerical factors generated in the cluster expansion 
provide sufficient powers of L to do the counting, (9.4.1), and to handle the number 
divergence, (9.2.1). The basic results we have for graphs will now be presented. The 
bounds will involve a parameter e >0  that may be picked arbitrarily small [by 
adjusting d in (7.4)]. We will present bounds for classes of graphs, where in each 
case we have already divided out the numerical factors assigned to the number 
divergence in Sects. 9.2 and 9.3 for occurrences inside the given graphs. These 
bounds are derived by a case by case study ; each case is easy to analyze but there 
are many cases. Inequality (0.15) is used to study cancellation graphs. Appendix B 
contains a representative derivation of one of our bounds. 

9.6. Bounds on Graphs After Dividing Out Factors for Number Divergence 

We separate our graphs into a number of types. To a graph we associate a number, 
d 1, with d1=1 if the graph is form 1, and d1=2  otherwise. If a vertex was 



286 G.A. Battle III and P. Federbush 

integrated by parts to introduce a graph we will call it the graph's "entering" 
vertex, and similarly a graph's "exiting" vertex is the entering vertex of the very 
next graph. For our first four bounds below, Bound 1-4, we let Lp, L B, L I, and L 2 
be the edge sizes of the pinning, bottom, entering vertex, and exiting vertex, 
respectively• 

Bound i. A graph that is not in a chain 

L(p 1/4) ~B~pr~ r -  5~ . (9.6.1) 

Bound 2. The last graph in an ordinary chain 

L~I(L.13r~ r-5~ (9.6.2) 
\Lp/ ~B~I " 

Bound 3. Not one of the last two graphs in an extraordinary chain, and either 
a) before the attachment graph 

o r  

b) after both the hook graph and the attachment graph but not the last graph 
in the chain 

L~2 s/4'e~- I (L~I 3 L ; L ;  5~ (9•6.3) 
\LJ 

Bound 4. Not one of the last two graphs in an extraordinary chain and neither 
a) before the attachment graph 

nor 
b) after both the attachment graph and the ihook graph 

L(;a/4)+(5/4)'e~-"(Lp]S(L"]3t~ r -5~ (9.6.4) 
\L2 /  \Lp/  =B=2 ' 

where 

3/2 if graph form 1, 

s=  1 if graph form 2, 

1/2 otherwise. 

For extraordinary chains we must consider the last two graphs in the chain in 
greater detail. Let T be the last graph and N the next to last graph in the chain. Let 
L~I, LB2, L, L~, and L o designate the edge sizes of the bottom of N, the bottom of 
T, the entering vertex of T, the hook, and the attachment, respectively. 

Let d and d be the d 1 values of N and T, respectively, $1 and $2, the number of 
bound occurrences in N and Z respectively. 

Bound 5. N, if L < L o 

[(L(1/2)ts1-~ S1 > 1 

B1 [ 1, S 1 = 0 ,  L(o3/4 ) . U . L -  (9.6.5) 
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where 7 = d if graph is not the first graph in the chain, and ~ = 3 -  s if the graph is 
first in the chain, with s as in Bound 4. If L > L o, we use (9.5.3) with L2, L B, d 1 
replaced by L, LB,, d. 

Bound 6. T 

L(1/2)/$2 
L(o314--~j , L o >= L, S 2 -~- S 1 ~£ 4 

L(llz,t3.s s~( 1 )s~+s~-3.s 
~o3i4) ] ~L~7~ ) , Lo >=L, SI + S2>=4 (9.6.6) 

1 xS2 

with L M the minimum of L 0 and L H. 
Once the tedious task of compiling the table of values (9.6.1)-(9.6.6) is behind 

us, verifying that one has sufficient numerical factors to control the counting is not 
difficult. The product of factors from the table, for any given chain, is smaller than 
the product of factors from (9.4.1) contributed by the same chain. [For a graph not 
in a chain, the contribution from the table, (9.6.1), is trivially smaller than the 
factor for this graph in (9.4.1).] As we proceed to verify this, for a given chain, 
careful attention will have to be paid to the positions of the attachment graph and 
the hook graph in the chain. 

We first treat an ordinary chain. We divide the graphs of the chain into a 
number of segments, S1-$4, some of which may be empty: 

S 1, graphs that precede the attachment graph 
$2, graphs that precede the last graph in the chain, but follow both the 

attachment graph and the hook graph 
$3, the attachment graph if the hook graph does not follow the attachment 

graph. If the hook graph follows the attachment graph, then $3 is the hook graph, 
the attachment graph, and all graphs between these two 

$4, the last graph in the chain. 
For each of these four sets we compute bounds for the "excess" factor. This will 

be defined as the quotient of the product of factors from the table for each graph in 
the set by the product of factors from (9.4.1). Provided the product of the excess 
factors for S1, $2, $3, $4 is less than c the numerical factors are under control. 

For the sets S1 and $2 the excess factors are easily seen to be <c. If d' is the d 1 
value for the last graph in the chain, and L' is the edge size of the entering vertex of 
the last graph in the chain, then the excess factor for S4 is _<L 'd'-. We let the last 
graph in the set S 3 have exiting vertex of edge size L. We find the following bound 
for the excess factor for the set $3: 

1 

LS+ 

where s is function defined after (9.6.4) for the last graph in the set $3. 



288 G . A .  Bat t le  III a n d  P. F e d e r b u s h  

Notice that L'< L. We see from these bounds that the product of excess factors 
is < c except possibly when the last graph in S 3 is form 1 or form 2. The last two 
graphs in a chain cannot be a form 1 or form 2 graph followed by a form 1 graph. 
This implies that in the situation we are worried about  $2 must contain at least 
one d~ = 2  graph. This will supply [by (9.6.3)] a necessary power of L. This 
completes the study of ordinary chains. 

Our last task is the treatment of an extraordinary chain. We must look at the 
products of bounds for N and T from our table of bounds. The case L o < L is not 
very troublesome. Our considerations for L 0 > L  may easily be adopted to this 
case. We now assume L o > L. If T is the at tachment we can bound the product of 
our estimates for N and T [(9.6.5) and (9.6.6)] by (with L '=en te r ing  vertex of N) 

¢) L(13/s ) [~ /L~2\ 1 ~ L ~ 1 1 (9.6.7) 

where r = 0 if N is the first graph in the chain, and r = 1 otherwise. If N is the 
attachment, our bound for the product is 

( 1 )  ~ / L 3 \ / L a \  L(1/s)| ro l l  B~IL(~/S)L;L;~ 1 1 (9.6.8) 
"75 ...... : T  Ls~ 5~ \ Co ] J 

If N is the first graph in the chain we rewrite (9.6.8) as follows 

L~/2) (L3 ) 3 1 
m . (9.6.9) 

Clearly the excess factor for (9.6.8) and (9.6.9) are __< c and so the counting is under 
control whenever N is the first element in a chain• Now suppose N is not the first 
element of the chain. If N is the attachment, we need only know that the excess 
factor for that portion of the chain preceding N is <(L') ~1/8~. This follows from 
(9.6.3) and (9.4.1). The case when T is the at tachment graph and N not the first 
element in the chain is similar to the cases we have just considered• 

Appendix A. Proof of Combinatoric Theorem 

In this appendix we give the essential features of the proof  of Theorem 6.3. Clearly, 
the conversion of the left hand side of (6.2) into the right hand side is done 
inductively with respect to the sequence (F~, ..., FN). Now, by (6.4) and the nature 
of interpolation, b(~ ...... r . . . .  G ...... GN)(S) is well-defined for I > n; moreover,  it follows 
from inspection of our integration by parts rules that B~(c 0 depends only on the 
chain or elementary graph G r Hence, in combining the terms of the multiple sum, 
we may work "from the outside in." 

We assume that the left hand side of (6.2) has been transformed into 

n - 1  n - 1  

lq gl 4(s) II Z I1 (-g(O,)) 
1=1 l = l  t t = l  G':FG,=(Fn,...,FN) i 

N 

• l-I I] blr, ...... ro_,,vo,(s), l' l=n 
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where (/~1, ...,/~,-1) is the sequence of elementary graphs, composite graphs, and 
cancellation graphs induced by (FI, ..., F n _ 1). By the remark above, the remaining 
multiple sum factors into [n th sum depending on F1,. . . ,  F,]  

N 

[ I ( -g(5 '~)) l~B~,(~)  l~ bZ(r ...... r,,)~a'(s), 
G' : / ' G , = ( F ~ +  1 . . . . .  FN) i l" I = n + l  

and the essential work is to examine this n th sum for each case that must be 
considered for F~. If F~ is either an elementary graph, a composite graph, or a 
chain containing no cancellation graph, then the sum involves one term and we 
need only set 

N~(c¢) = B~,(a), 

~)(s)=b("rl ..... r,.~ ltvG'(s)- 

The nontrivial cases in our combinatoric proof are : 

Case 1. F~ is a cancellation graph. 

Case 2. F~ is a chain terminated by a cancellation graph. We stipulate that the 
vertices o f  any form I graph we consider in this argument have no multiplicity ; the 
reader can easily check our proof against the other possibilities. The interpolation 
defined in Sect. 3 splits Case 1 into three sub-cases. 

Case t (a).  F~ = {(~, a), (~', r")}, where z + a are form 1 and ({, r") is form 2. In this 
rt--1 

case z 4 lies in ~ 0 U suppFt and a s does not [otherwise (a, ~) would be included 
l = 1  

in F~] ; since z' is the weight function of (~4, a4), it follows from our remarks at the 
end of Sect. 6 (and our multiplicity assumption applied to the integration by parts) 
that the n th sum is 

( -  g l('c)) ( -  g l(a))s~.., s~_ i c~ a~ - g2(z', z")s,.., s, l c¢¢ c¢~,, (a.  1) 

where ~ is the smallest of all integers 1 such that r4E suppF~_ ~, with the convention 
supp F o = ~.  The first term in (A. 1) indicates the development of the mass insertion 
that terminates the two-element chain (~, a) and the Wick ordering in the second 
term has been dropped because % # a~. By (2.2) and (2.3), (A.1) reduces to 

[M(~)M(a) ~ u ~ o[ u ~ -  48M(~')M(r") .[ u ~' + < ~ u<])..2s,.., s,_ la~ a~ . 

Since r~=ai, i=1,2 ,3 ,  it follows from our multiplicity assumption that M(r) 
= M ( a ) = 4 !  and M(~")= 3!; moreover, M(~')= 2 because % 4 a 4. Thus the com- 
binatoric factors of the two terms match, and we have the desired result if we set 
~ ( 0  0 = (4 !)20~:,laa4 and d~(s) = s,.. .  s,_ 1" 

Case t ( b ) .  F, - {(z, a), (a, z), (z', z")}, where z * o- are form 1 and (z', z") is form 2. In 
t /--1 

this case z~,o-4e~ U ~ suppF Z, so supp{ is contained in this set. By (a) of the 
/ = 1  

concluding remarks of Sect. 6, the n th interpolation introduces an s 2 factor for the 
unit g2(z', z"):e¢': in the exponent. The n th sum is 

2(-- gl(z)) (-- gl(a)) (s,.. .  s,_ l) (s~... s,)c¢~4%~ 

-- g2(r', r") (2sfi 2 2 s a . . s,)c~, e¢~ (A.2) _ l S n _ 2 . . .  s $ ~ -  1 S e - 2  -. 
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where I/ (respectively e) is the smallest of all integers l such that % (respectively a4) 
lies in suppF~_ a and we have assumed tl _-<e for definiteness. As before the Wick 
ordering has been dropped from the second term because % -t= a4 ; the factor of 2 in 
the first term arises from having a mass insertion for (a, z) as well as for (z, a), while 

2 associated with the the factor of 2s, arises from the differentiation of s, 
interpolation move that brings the form 2 unit down from the exponent• Once 
again we see that the combinatoric factors, the interpolation parameters, and the 
cell variables match for the two terms, and we have the desired result if we set 
N~-(e) = 2(4 !)2%4%4 and ~}(s) = s,... s~_ lsff'" s2- 1Sn" 

Case i (c) .  F , =  {(z, z), (Y, z"), (z, 3)}, where z is form 1 and (z',z") is form 2. As in 
2 factor for the form 2 unit the preceding case, the n m interpolation introduces an s, 

in the exponent. In this case, however, 

:cd ' :=" 2.  2 1 ; 

moreover, since representation one does not distinguish between a form 3 graph 
and a two-element chain consisting of identical form 1 graphs, there are two terms 
associated with (z, z). The n th sum is 

2 ~ 2 ..s~) ( - -  g1('C))2(Su.., an_ 1 ) ( S , . . .  Sn)g24 - -  g3('C) ( St, Sn_ lSn 2' 
g2(T, ' ,t 2 2 2 2 --  "C ) (2shah_ iS  n 2 . . . S t / ) ( ~ 4 - - 1 ) ,  (k.3) 

where t/is defined as before. By (2.2)-(2.4), (A.3) reduces to 

[ M( 'c )2(  I U*)2 - -  96M(z")M(z') ~ lg~'+ ~"¢j 12z'%'~2j/~ sq2 . . .  Sn2_ 1Sn(~7:42 

- 24M(z) ( S u~) 2 - 96M(z')M(z")~ u ~'+ ""~ u<]22s 2 . .. s 2._ ~s,. 

Once again, by our multiplicity assumption, M(z)=4!  and M(z")= 3!; however, 
M(Y)= 1 in this case, so the combinatoric factors match, and we have desired 

n - -  T 2 2 n 2 S 2 result if we set ~ r ( e ) - ( 4 , )  ( e , - 1 )  and ~r(s)=s,  ... ,_ is,. 
The nature of our expansion procedure splits Case 2 into three sub-cases as 

well. 

Case 2(a). F,  is a chain terminated by a cancellation graph {(z, ~), (z', z")}, where 
z + a are form 1 and (z', z") is form 2. The n TM s u m  factors into 

[ ( -  gl (z)) ( -  gl(a))s~.., s,%, - g2(z', Y')s~... s,%~]b(sp,.. ,  s,)P(o:) 
~-1  
I-[ J( /%),  (A.4) 

#=n-~ + I 

where ~ is defined as in Case l(b), b(sp. . . ,  s,) is the total monomial of interpolation 
parameters brought down by the preceding moves in the chain, and P(e) is the 
total polynomial of cell variables brought down by those moves. The interpolation 

#--1 
parameters in the second term have no multiplicity because z4¢~l , j  ~) suppF 1 

t = l  
and z' is the weight function of (%, a4). In both terms %4 has been differentiated out 
because it is the variable with respect to which one integrates by parts to introduce 
either z or (z',z"), In the case where t / = n + l ,  how does one rule out the 
interpretation of (z', Y') as the term where e~  is differentiated out? The answer is 
the content of the following lemma: 
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Lemma A.1. Let G be representation one graph rooted on @ and (7', z") a local graph 
of G that terminates a chain of G. Let (% a) be a type 1 composite graph such that the 
replacement of (7', 7") with (% a) yields a representation 1 graph. Thus z' is the weight 
function of  (%, cr,) and the Jbrm 2 unit g2(~', z")~o, is associated with (7', C). Here 
(7', 7") includes the form 2 unit 92(z', z")e,~ if" and only if" the replacement of (z', z") 
with (a, 7) also yields a representation 1 graph. 

The proof is a matter of inspecting the rules for integrating by parts. Applying 
this lemma to the case at hand, we see that the form 2 unit g2('C', "r")0~4 is ruled out 
because our specification of the cancellation graph implicitly rules out the (a, 7) 
possibility. We have the desired result in this case because the combinatoric 
factors are exactly as in Case l(a). 

Case 2(b). F, is a chain terminated by a cancellation graph {(z, a), (a, 7), (z', C)}, 
where z + o- are form i and (z', C) is form 2. The n th sum factors into 

[( - -  g l (7) ( - -  g 1 (o'))~, + (-- gl(z)) - g l(a))~,, - g z(z', z")cz~, - g Z(T', Z")C~J 
~ - 1  

• b ( s l , . . . ,  s , ) P ( e )  I-I fl(/%), (A.5) 
u = ~ + l  

where the terms in the brackets are dictated by Lemma A.1. The combinatoric 
factors are exactly as in the preceding case, so we have the desired result if we set 
N~-(~) = (4 !)2(e,, + ~,,)p(e) and d)(s) = b(si,..., s,)• 

Case 2(c). F is a chain terminated by a cancellation graph {(7, z), (z', z")}, where 7 
is form 1 and (z','c") is form 2. The n th sum factors into 

~ - 1  

[-( - -  g 1 ( Z ) ) 2 ~ 4  - -  g 2 ( z ' ,  "r") (2c~,,)] b(s 1,..., s,)P(~) I-[ J( /%),  ( A . 6 )  

where the factor 2c~, in the second term arises from the differentiation of 
• "ez~." = c t ~ -  1. As in Case 1(c), M(z')= 1 in this case, so the combinatoric factors 
still match. 

Appendix B. Representative Derivation 

We derive Bound 2 here to illustrate the case-by-case reasoning involved in the 
proofs of our estimates. Since Bound 2 deals with the last graph in an ordinary 
chain, there are no occurrences in this situation, so nothing is extracted from 
A°()~) 1-~ for the number divergence cancellation• 

Case L fr, is a form 1 graph z. The scale expression is (L~L-<~/2>~) 1 -~, which is 
clearly dominated by L ~ •  But our integration by parts rules imply that 

t is case, o ; (W   v0natu a ,ywr tten  -- 
Case 2• ]~ is a form 2 graph (#,C)• The scale expression in this case is 
L3L L -~"-(I/2)~h1-~ Our rules in Sect. 4 imply that L~I-<L~ and that Lv---L n B ~i' / " 
<L,~, so 

3 3 --~'--(1/2)z' LBL~L <-_ L~L,,~,L~ 2. 
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Now, if L<~,=Ln, we obviously have the upper bound/Lo\_|_,,|4-L~_" If L ~ >  L B, then 
\Lp/ 

L,i =L~, so L B = L  n and we use 

LaL 3 L-<-(1/EW < L3L-(1/2w 
B z~ = 

2-  instead to obtain Lp as an upper bound. 

Remark. A form 3 graph cannot occur in a chain. 

Case 3. )~ is a cancellation graph whose local graph is (z', ¢'). The expression is 
(L 7- L -  <-(1/2)*'L~ 1 - )1 - e Since Lp = L n < L~, 

L 7-L"-¢'-(I/2)*' L~ l- <= L(BT/2)-L~(3/2) , 

(L.]( ~/~)- 
so we have the bound \ ~ /  L 2- . 

Case 4. )~ is a type 1 composite graph (z, a). We have 

L3 r 3 f - (1 /2 ) , r - ( i /2 ) ,  < L(3/2)L('l/2) 

If L~>Ln ,  then the integration by parts rules dictate L , = L n = L ~ ,  and the 
2-. If L~, = L~, then our rules dictate that numerical expression is dominated by Lp 

the restriction of o- + z to vertices whose scales are strictly smaller than Lp = L n has 
weight ~ 5, so we use 

L 3 r 3B~1~r-(1/2)* -O/2)~ < L (J /2) L~(3/2) 

(LBt(7/2) 
instead to obtain the bound \~r7 / Lv 2 . 

Case 5. Ju is a type 2 composite graph ((z', ¢'), ~) with L~i < L<,. 

L3L 3 g 3 r -¢ ' - (1 /2 ) z ' - (1 /2 )cr  < / 3 ] 3 r - (1 /2 )¢ - (1 /2 )*  
B ~i H ~ = ~ B ~ i ~ - ~  ' 

If Lp--LH<L~I , then L B = L  v, and we have the bound _pL(3/2)-L(3/2)-,i because the 
part of z' + o- with scale > Lvl is at least 3 in weight. On the other hand, if Lp > L,I, 
then our rules dictate LB=L<~ , in which case we estimate 

L 3 / - 3  i - ( 1 / 2 ) ¢ - ( 1 / 2 ) t r  < L(7/2)L- (1 /2)  
B~zl  ~ = B p 

b e c a u s e L p = L H < L l = L ~ ; i n t h i s s i t u a t i o n o u r b o u n d i s ( ~ )  (7/2) L 3- " 

Case 6. )u is a type 2 composite graph ((¢, z"), a) with L~i > L~, : 

6 3 -'c"--(1/2)'c'--(1/2)a 4 (3/2) --2 --(1/2) L~rL~ L <=L~L~ L< L,~ , 

because Lzl =< L,~, as our rules imply. If L~, < L~a,, then L B = L~ = L n = Lp and we 
obtain the bound L(3/2)-L(3/2)~; . If L~, _>L<~,, then L B = L ~  and we estimate 

L 4 1 (3/2)L- 2L-(1/2) ,< L(v/2)L~(1/2) 

because L,, < L~ and Lp <L~.  In this case we have the bound 

g/ 
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