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Summary. A series of experiments in Caiman 
crocodilus that outlines an ascending somatosensory 
pathway to the telencephalon is described. This 
telencephalic somatosensory area was found to corre- 
spond to a region high in succinate dehydrogenase 
activity. 
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The dorsal ventricular ridge (DVR) is a prominent 
cellular mass located in the ventrolateral wall and 
extending into the lateral ventricle of the telencepha- 
lon of most reptiles. Architectonic descriptions of the 
DVR (Rose 1923; Riss et al. 1969) reveal a number 
of subdivisions which, in Caiman crocodilus, do not 
precisely correspond to experimentally determined 
auditory (Pritz 1974) and visual (Pritz 1975) projec- 
tions from the thalamus to the DVR. The DVR of 
Caiman, which is equivalent to the dorsolateral area 
of Huber and Crosby (1926), exhibits several distinct 
regions of high succinate dehydrogenase (SDH) 
activity of which two correspond to thalamotelence- 
phalic auditory and visual targets (Pritz and North- 
cutt 1977). We provide evidence that an additional 
DVR region high in SDH is the target of an 
ascending somatosensory pathway. 

To determine which thalamic nuclei received 
non-facial somatosensory input, we made 4 cervical 
spinal cord hemisections (Northcutt and Pritz 1978) 
and a dorsal obex lesion in juvenile Caiman croco- 
dilus. Each brain was then processed in a standard 
fashion for the demonstration of degenerated axons 
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and terminals (Northcutt and Pritz 1978). These 
cases revealed an ascending pathway that coursed 
through the rostral pole of the tectum to terminate in 
nucleus medialis (Northcutt and Pritz 1978; Fig. 1A). 
However, terminal degeneration in nucleus medialis 
was greater following the obex lesion than after 
cervical hemisection. Nucleus medialis (Fig. 1B), 
which is located in the caudal dorsal thalamus, 
appears as a crescent-shaped nucleus that extends 
from the medial border of nucleus rotundus caudally 
to the level of nucleus reuniens where it occupies a 
more dorsomedial position (Huber and Crosby 
1926). 

Our initial effort to identify the central connec- 
tions of nucleus medialis made use of a stereotaxi- 
cally placed microelectrode lesion in a single juvenile 
Caiman who survived for 10 days at 30 ~ C (see Pritz 
1975 for a detailed account of the procedure). The 
degenerated axons that resulted from this lesion, 
which destroyed a dorsolateral and dorsocentral 
portion of nucleus medialis, collected along the 
medial and lateral aspects of nucleus rotundus to 
enter the dorsal peduncle of the lateral forebrain 
bundle. Rostrally, these axons pass through, and 
perhaps synapse on, interposed neurons in the ven- 
trolateral area before terminating in a central portion 
of the dorsolateral area (Fig. 1C). This area of 
terminal degeneration is located lateral to the audit- 
ory telencephalic projection zone of nucleus reuniens 
pars centralis and caudomedial to the visual telen- 
cephalic projection area of nucleus rotundus. This 
particular target of nucleus medialis appears to 
coincide, at least in part, with an area of increased 
SDH activity (see Fig. i in Pritz and Northcutt 1977). 
Unfortunately, this experiment was compounded by 
a second lesion in a medial portion of the midbrain 
tegmentum. Degenerating axons were seen to termi- 
nate in the ipsilateral nucleus of the lateral olfactory 
tract in addition to the dorsolateral area described 
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Fig. 1A-C. Ascending somatosensory connections. A illustrates the distribution of degenerated axons and axon terminals after a dorsal 
hemisection of the obex region. B shows the locus and extent of a small lesion (solid blackened area) of the dorsolateral and dorsocentral 
portion of nucleus mediatis. C demonstrates the pattern of degeneration seen after the lesion made in B. The section that demonstrates this 
lesion in C is located halfway between the first two sections in B. Short line segments represent degenerated axons while dots indicate 
terminal degeneration. All drawings are of transverse sections. Abbreviations: D, nucleus diagonalis; DLA, dorsolateral area; Gv, ventral 
geniculate nucleus; H, hypothalamus; Hb, habenula; HC, habenular commissure; M, nucleus medialis; OT, optic tract; Rc, nucleus 
reuniens pars centralis; Rd, nucleus reuniens pars diffusa; Rt, nucleus rotundus; TeO, optic tectum; TRT, teeto-reuniens tract; VLA, 
ventrolateral area. Bar scales represent 1 mm 
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Fig. 2A-D. Afferents to the telencephalon as demonstrated by the 
retrograde transport of horseradish peroxidase (HRP). A illus- 
trates a 1200 nl injection of HRP while C shows a 700 nl injection. 
The locus and extent of the reaction product are seen in the three 
transverse sections in A and C. The blackened area represents the 
most intense reaction product while the stippled area represents 
the less intense reaction product. The distribution of neurons 
labelled after each injection is shown by squares in transverse 
sections B and D. Abbreviations: DLA, dorsolateral area; H, 
hypothalamus; Hb, habenula; M, nucleus medialis; OC, optic 
chiasm; OT, optic tract; Rc, nucleus reuniens pars eentralis; Rd, 
nucleus reuniens pars diffusa; Rt, nucleus rotundus; SM, stria 
meduUaris; TeO, optic tectum; TRT, tecto-reuniens tract; VLA, 
ventrolateral area. Bar scales represent 1 mm 

above. Unpublished observations indicated that mid- 
brain transections produce degeneration in the 
nucleus of the lateral olfactory tract but not in the 
dorsolateral area. Thus, this additional degeneration 
was attributed to the second ablation and is not 
charted. Also, the possibility that the pattern of 
degeneration seen after the lesion of nucleus medialis 
was produced by the interruption of axons that 
passed through, but did not originate in, nucleus 
medialis, could not be excluded by this experiment 
alone. 

To resolve these problems, we made pressure 
injections of horseradish peroxidase (HRP) with 
glass micropipettes into the telencephalons of two 
additional juvenile Caiman anaesthetized with 
intramuscular methohexital sodium. The calvarium 
over the midportion of the telencephalon was 
removed and the DVR was exposed transcortically. 
After a survival period of 5 (Case 1) or 7 days (Case 
2) at 21 to 25 ~ C, each animal was given an overdose 
of methohexital sodium and perfused transcardially 
with 0.7% saline followed by 2% glutaraldehyde. 
Brains were embedded in gelatin, sectioned at 40 ~, 
and reacted according to a standard protocol with 
diaminobenzidine (LaVail and LaVail 1974) and o- 
dianisidine (Coleman et al. 1976). Case 1 received a 
large, unilateral injection of HRP (1200 nl of a 25% 
aqueous solution) into the DVR (Fig. 2A) which 
resulted in massive labelling of neurons in nucleus 
reuniens pars centralis and nucleus medialis ipsilat- 
eral to the injection (Fig. 2B). No neurons were 
labelled in the midbrain tegmentum, the site of the 
second lesion suspected of giving rise to the terminal 
degeneration seen in the nucleus of the lateral 
olfactory tract. A previous experiment had shown 
that lesions restricted to nucleus reuniens pars cen- 
tralis result in terminal degeneration localized to a 
circumscribed area of the ipsilateral telencephalon 
(Pritz 1974). Thus, the additional labelled neurons in 
nucleus medialis were attributed to the more lateral 
portion of the injected dorsolateral area (Fig. 2A). 
Because of the large extent of this injection, Case 2 
received smaller bilateral injections of a 25% aque- 
ous solution of HRP, 600 and 700 nl. These more 
restricted injections (Fig. 2C) labelled neurons in the 
more caudal part of nucleus medialis and an occa- 
sional neuron in nucleus reuniens (Fig. 2D). A 
precise comparison of the locus of HRP injections 
(Fig. 2A, 2C) with the distribution of terminal 
degeneration after lesion of nucleus medialis is 
complicated. The HRP brains were not blocked in 
the same plane as the lesioned brain, and some 
distortion of the telencephalic hemispheres occurred 
in the brains processed for HRP. However, careful 
review of the material indicates significant overlap 
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between the locus of HRP injection, labelling 
neurons in nucleus medialis, and the telencephalic 
distribution of terminal degeneration seen after the 
lesion of nucleus medialis. 

Taken together these HRP cases resolve two 
questions that were not able to be answered by the 
case with the lesion in nucleus medialis. First, the 
pattern of degeneration seen after, and attributed to, 
the lesion of nucleus medialis was indeed due to 
damage to this nuclear group and not to axons merely 
passing through nucleus medialis. Second, the partial 
lesion of the midbrain tegmentum was not the source 
of degenerated axons seen entering the lateral fore- 
brain bundle to terminate in the dorsolateral area. 

These experiments provide a preliminary outline 
of the neural circuitry underlying the transmission of 
non-facial somatosensory information to the telen- 
cephalon in Caiman crocodilus. Comparable studies 
of other reptiles are not available. However, scat- 
tered reports suggest that the ascending somatosen- 
sory pathways we describe are not unique to Caiman. 
Spinal cord hemisections in several reptiles have 
revealed projections to a dorsal thalamic region, 
nucleus intermedius dorsalis thalami (Ebbesson 
1967, 1969). On the other hand, lesions of the dorsal 
column nuclei in the monitor lizard, Varanus ben- 
galensis, have revealed a pathway terminating in a 
thalamic area labelled the ventrobasal complex 
(Ebbesson 1978). Furthermore, thalamic nuclei other 
than those we term nucleus reuniens pars centralis 
and nucleus rotundus in Caiman are reported to 
project to a restricted portion of the DVR in lizards 
(Lohman and Van Woerden-Verkley 1978) and tur- 
tles (Parent 1976). However, additional anatomical 
details are needed before somatosensory organiza- 
tion in Caiman and other reptiles can be understood. 
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