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w 1. Introduction 

Let E and F be Banach spaces, E cF, and A an interval in ~ .  In this paper 
we use bifurcation theory to study the set of solutions of an equation M(u, 2)=0,  
where M is a smooth operator, M: E x A ~ F .  Suppose G is a compact Lie 
group acting on E and F, and that M is equivariant with respect to G in 
the sense that M(gu, 2)=gM(u, 2) for all gEG, u~E, 2~A. Then the set of solu- 
tions also admits a G-action. Suppose too that (uz, 2) is a smooth curve of 
invariant (symmetric) solutions under G; i.e., g u~ = u~, for all g ~ G. We investigate 
under what conditions there exists bifurcation from this curve of invariant solu- 
tions to non-invariant solutions; that is, we study the general problem of "sym- 
metry-breaking". We consider the case where the u-derivative, dMo,~,,~ ) has a 
finite positive spectrum, and using an equivariant version of the Conley index, 
we prove the existence of bifurcation whenever there is a "change"  in the positive 
spectrum. This problem arises naturally in the study of bifurcation of radial 
solutions of the semilinear elliptic equation 

Au(x)+f(u(x))=O, x~O"~, (1.1) 

with homogeneous linear boundary conditions 

c~u(x)-fldu(x)/dn=O, x~t3D~, (1.2) 

into asymmetric ones (the problem of "symmetry breaking"; see [SW2, SW3, 
SWs]). Here G = O(n), the n-dimensional orthogonal group, D R denotes the n-ball 
of radius R centered at the origin, d/dn denotes differentiation in the outward- 
pointing normal direction, ct2+ f12= 1, and f is a smooth function. We shall 
show that our general results apply to this problem, and that under fairly general 
hypotheses on the nonlinear function f, there are infinitely-many symmetry- 
breaking solutions. Furthermore, we prove that at each such solution there 
bifurcates out families of distinct solutions having distinct symmetries. 

Our general bifurcation result can be described as follows. Suppose that 
{(Uz, 2)}: '~1 ~ 2 ~)~2} is a smooth family of symmetric solutions of M(u, 2)=0,  
and let P~ be the vector space generated by the set {veE: dM~,~,~)v=lJv for 
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some #>0}.  Then if P~, and P~2 are distinct representations of G, there is a 
2, 21 < 2 < 2 2 ,  for which (u~, 2) is a bifurcation point for M. To be somewhat 
more specific, let M be as above, and assume that Pz,, i=  1, 2, contains k i copies 
of some fixed irreducible representation of G, where k~ 4:k2,  and that dM~,~,.z) 
is non-singular, i=  1, 2. Then modulo two technical assumptions, one of which 
mimics the notion of ellipticity, and the other of which is valid for groups 
G having less than 5 components (e.g. O(n)), we have that bifurcation for M 
occurs in 21 < 2 < 22, (see Theorem 3.3 for the precise statement). 

Our method is to construct a "modified", equivariant Lyapunov-Schmidt- 
type reduction, global in 2, not to the kernel, (or center manifold), as previous 
workers have done, but to a finite-dimensional subspace containing the spaces 
P~I and P~2. This has the advantage that when e.g., G=O(n), we can obtain 
the simple condition that the Conley indices (for an associated finite-dimensional 
problem), are different at 2~ and /~2 iff Pz, 4: P~2, as representations of O(n). This 
last condition is easily verified in our application to the problem (1.1) (1.2), 
and enables us to prove that bifurcation must occur. A further argument is 
given to show that the symmetry breaks. 

There are several different ways of relating "infinitesimal bifurcation" to 
bifurcation, (see e.g. [AZ, B, Ch, K, Kr, R, Ry]), but none of these are applicable 
to our symmetry-breaking problem, (1.1), (1.2). This is because the problem 
either lacks a specific form of variational structure, or the hypotheses required 
of the derivatives are not satisfied, or some "transversality" condition is just 
too difficult to verify. Moreover, we do not require that eigenvalues be simple, 
or "odd-dimensional" as required in the bifurcation theorems of Crandall- 
Rabinowitz and Krasnoselski, I-S]. Our method avoids these difficulties by using 
the Conley index. Similar ideas were used by Kielhofer [K], who uses the stan- 
dard Lyapunov-Schmidt reduction (local in 2), to the kernel of dM~u.~), and 
he also requires a certain "crossing number" to be non-zero. Our approach 
is simpler, can be done equivariantly, is easily applicable to the symmetry- 
breaking problem for (1.1), (1.2), and does not require the crossing number 
to be non-zero. 

In Sect. 2 we prove an abstract bifurcation theorem. Our method is to reduce 
it to one in finite dimensions whereby we show that information on the structure 
of the spaces P~,, (i = 1, 2), implies that  we can explicitly compute Conley indices 
for rest points of an associated finite dimensional equation. For these equations 
we prove that bifurcation occurs, and then we transfer this information back 
to the given infinite dimensional equation. (To apply the Conley Index Theory 
directly in the infinite dimensional situation is simply too difficult.) These things 
are discussed in the introduction to Sect. 2, whereby we also make connections 
with the results of previous work in the literature. 

In Sect. 3 we consider an equivariant form of the Conley index suitable 
for our purposes. We show how a theorem of Lee and Wasserman, [LW], 
applies to yield a general bifurcation result in the presence of a group action 
(Theorem 3.3). 

In Sect. 4 we consider the application of our abstract results to the problem 
(1.i), (1.2). We state our precise hypotheses on f, and we summarize the linear 
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results contained in [SW5]. That is, in [SW5] we have shown that under rather 
general assumptions on f, "infinitesimal" symmetry breaking must occur, in 
the sense that there are radial solutions of (1.1), (1.2), with the property that 
the associated linearized operator about such a solution is singular, and its 
kernel contains asymmetric elements. We use these type of results in Sect. 5 
to show that the hypotheses of our previously obtained general theorems are 
satisfied, so that bifurcation must occur. In order to rule out some very degener- 
ate situations (which can arise - see [Po]), in certain cases we impose the 
conditions of analyticity on f. Using a general theorem in [SW4], we prove 
that the resulting bifurcating solutions are asymmetric ones, so that symmetry- 
breaking indeed occurs. 

The existence of solutions having particular symmetry groups is discussed 
in Sect. 6. We prove a general theorem giving conditions under which there 
exist distinct bifurcating solutions admitting distinct symmetry groups. This is 
applied to the problem (1.1), (1.2) for subgroups of O(n), the form O(p) x O(n-p), 
(and also to other subgroups of O(n)), and we deduce the existence of bifurcating 
solutions having at least these symmetries. 

Finally in the appendix we show that two apparently different problems 
are in fact equivalent. Thus as is well-known, we can consider (i.1), (1.2) with 
fixed boundary conditions and allow the radius R to vary, or equivalently, 
we can fix the radius and have the equation vary. However, if ~ fl # 0, this requires 
that the boundary conditions also vary with the parameter. The standard bifur- 
cation framework considers fixed radius and fixed boundary conditions, and 
only the equation is allowed to vary. That is, if 0tfl ~0,  one cannot set up 
the bifurcation problem in the standard framework as a mapping from a product 
B1 x A---~'B2, where B1 and B 2 are Banach spaces of functions, and A denotes 
the parameter space. However, we shall show that the relevant function-parame- 
ter space forms a vector bundle over ~,, and is thus locally a product. This 
local product structure then suffices to fit our problem into the general bifurca- 
tion theory framework which we have discussed in the previous sections. 

w 2. An abstract bifurcation theorem 

Let B2, Bo be Banach spaces, H a Hilbert space, and assume that B 2 c Bo c H, 
where each of the embeddings are continuous (in many applications, B2 = Cg (f2), 
Bo = C~ H =  L2(f2)). Let A be an interval in ~ ,  and suppose that M is a 
smooth operator, 

M: B 2 x A -~ Bo. 

We assume too that there is a continuous 1-parameter family {ux} c B 2 satisfying 
M(uz, 2)=0, and we denote by dMx(w)=dM(u~, x)(w, 0) the associated linearized 
operators. 

Definition 2.1. The peigenspace P~ of dMx is the closed sub-vector space spanned 
by {v~B2: dM~ v = up for some/t > 0, v $ 0}. The neigenspace N~ of dM~ is defined 
similarly but with # > 0 replaced by # < 0. (Thus the peigenspace (resp. neigen- 
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space) is the space generated by those eigenvectors of dM~ corresponding to 
non-negative (resp. non-positive) eigenvalues.) 

In this section we shall show that under mild hypotheses, if M is a gradient 
and 

(*) if for some 21, )~2 in A, dimPz,~=dimP~ 2, and both dM~, and dM~2 are 
non-singular, then there exists a 2 between 2~ and 22 such that (uz,2) 
is a bifurcation point for M. 

Note that if this problem were one in finite dimensions, (i.e., if B 2 and Bo 
were finite dimensional), then the Conley indices h(uz), would satisfy h(uz,) 
+h(uJ so that Conley's Continuation Theorem implies that (.) is valid, (see 
[S] for details). 

Now although the Conley index theory has an extension to the infinite 
dimensional case, I-C, S, Ry], the corresponding notions are quite abstract, and 
the theory requires some subtle constructions which are not easily applicable 
to our bifurcation problem. Indeed, in this case it is no easy matter to compute 
the homotopy types [N1/N2] of an index pair (N1, N2), for a non-degenerate 
solution uz, from a knowledge of the peigenspace Pa, even assuming that dMz 
is symmetric, and Fredholm of index zero, and that P~ is finite dimensional. 

In a recent interesting paper, [K], Kielhofer considers a related problem, 
and obtains a corresponding bifurcation theorem. His method involves a local 
argument (in 2 and u), reducing the problem to a finite dimensional one on 
the null space of dMa, via a Lyapunov-Schmidt reduction. He uses the idea 
of a "crossing number", together with a Brouwer-degree argument and certain 
ideas from the Conley index theory. His result does not apply when the crossing 
number is zero and indeed, such crossing numbers are often quite difficult to 
compute. These remarks apply, in particular to the symmetry-breaking problem 
for (1.1), (1.2). A related result can be found in a paper of Amann and Zehnder, 
[AZ];  here again the bifurcation problem is reduced to one in finite dimensions, 
but their result is not applicable to our problem. A similar idea occurs in the 
paper of Chow and Lauterbach, [CL], whereby they reduce the problem to 
a finite-dimensional one on the center manifold; this theory too is not applicable 
to our problem. 

The technique which we use involves a generalized Lyapunov-Schmidt reduc- 
tion, global in 2, whereby we reduce the problem to one on a finite dimensional 
space that contains P~, and P~. 

With B2,Bo, H, and A defined as above, let M be a C 1 mapping M: B 2 
x A ~ Bo, satisfying 

M(0, 2)=0, 2cA. (2.1) 

(This entails no loss in generality; merely replace u by u+u~.) For e>0,  let 
P~, ~ denote the peigenspace of dM,z + el. We assume that there is an e > 0 such 
that for all 2~A, 

dim P~,, < ~ .  (2.2) 

Here is the main result in this section. 
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Theorem 2.1. Let M be a gradient operator for each 2eA, satisfying (2.1), and 
(2.2). I f  there exists 2~ <22 in A satisfying 

(i) dMz~ is non-singular, i= 1, 2, and 
(ii) Pz, is not isomorphic to P~2, then there exists a 2o,). a <20<22  such that 

(0, 20) is a bifurcation point for M (u, 2)=0. 
We remark that since P~cP~.,, hypotheses (2.2) implies that dim Pa ,<~ ,  

i=1,2.  Hence condition (ii) means that dim P~,#:dimPa~. We have stated (ii) 
in this slightly awkward way in anticipation of the results in Sect. 3, where 
we shall extend this theorem to the equivariant case, i.e., to the case where 
there is a group acting on the space. 

Proof Let I=[2~,22] .  Since M is a gradient, dM~ is symmetric, and hence 
diagonalizable. Since (2.2) implies that the eigenvectors of dMa corresponding 
to eigenvalues greater than - e  lie in a finite dimensional space, it follows that 
there is a finite codimensional space Ez c B 2 such that 

(dMze,  e)<--ele] 2 Ve~E~cB 2 

where the inner product, and norm are those in H. Since the mapping 2-~ dMa 
is continuous (in the strong operator topology), it follows that there is an open 

interval Iz about 2 on which (dMue, e><--21el2 VId~I;~ , Ve~Eu. A finite 

number of intervals Iz . . . . . .  Iz, cover I; let E =  f l  E~, n/~,l n/~.• Then E c B E 

i = l  

has finite codimension. Note that E~ = P ~  n B2, so 

E =  /~, • • ~n/~, n / ~  r iB•  P~,,~ u P~, u P~2 A B 2 = - F •  
i=1  i 

so that E is a closed subspace of B2 of finite codimension. Now if peI ,  then 

/~elzj for some j, and if e~E then e~Ezj so (dMu e, e ) <  - ~  le[ 2. Thus for each 

2~I, dM~ restricted to F • is uniformly negative definite. Note that P~, u P~2 ~ F. 
Now write H = F •  B 2 = ( B z n F I ) O F ,  and Bo=(F• since 

F e B  2. Let ni be the projection hi: B~(F•  i=0,  2, and note that noon2 
=n2. Note too that since F is finite dimensional, and the inner product is 
a continuous function on Bi, i=  I, 2, (since B~ is continuously embedded in 
H), it follows that (F 1 n B~) is a closed subspace of B~, i = 0, 2. 

We are now ready to make a Lyapunov-Schmidt reduction. Thus, for heB 2, 
we write 

h=(x,y), x~F • y~F, 

m(h, 2)= M(x, y, 2)= (u(x, y, 2), v(x, y, 2)), 

where ueF l, v6F. Now since M(0, 0, 2)=0 (by (2.2)), it follows that u(0, 0, 2)=0. 
We claim that ux(0,0, 2), (defined on F •  B2 to F • n Bo), is an isomorphism 
for each 2eI.  To see this, note that ux(0,0, 2) is injective since if Ux ~=0,  for 
some ~ e F  • and ~ . 0 ,  then as u~ is strictly negative definite, the relation 
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( u ~ , ~ ) < 0  gives a contradiction. Next, note that ux(O,O, 2)=noodM~(O,O), 
which we write for short as u~ = no dM. We use this to show that u~ is symmetric; 
namely for n2 y, n2 z sB2 ,  

(ux(n 2 y), n 2 z)  = (n  o d M  (n 2 y), n 2 z)  

= ( d M ( n  z y), n o n 2 Z) 

= (dM(n2 y), nz z )  

= (nz y, dM(nz  z)) 

= (no n2 y, dM(n2 z)) 

= (n2 y, no dM(n2 z)) 

= (n2 y, Ux(nz z)). 
Next for x e H ,  

8 
2 In2 x l2~(dM( l r2  x) ,  n 2 x )  

= (dM(n2  x), n o n2 x )  

= (no dM(n2 x), n2 x )  

= (uAn~ x), n2 x) .  

Thus the spectrum of ux(0, 0, 2) is uniformly bounded away from zero. Since 
Ux(0, 0, 2) is symmetric and injective, it follows that ux(0, 0, 2) is an isomorphism 
for each 2eI ;  this proves our claim. 

Hence by the implicit function theorem, we may solve the equation 
u(x, y, 2)=0 for x = x ( y ,  2) in a neighborhood of (0, 0)x I. (This holds since we 
can solve the equation in a neighborhood of (0, 0, 2) of the form U~ x 04, where 
U~ is a neighborhood of (0, 0), and 04 is a neighborhood of 2 in I.) By compact- 
ness, a finite number of the 04 cover I, say 0~1 . . . . .  0x~. Therefore we have a 

unique solution on a//x Y __ N U~, x ~) 0~,. Now define 
i=1 i=1 

~b(y, 2)= v(x(y, 2), y, 2), 2eI .  (2.3) 

This is the global Lyapunov-Schmidt reduction which we shall use. We now 
need two lemmas. 

Lemma 2.2. Fix 2EI and consider the differential equation (in finite dimensions), 
ys= ~b(y(s), 2). Then this equation admits a L yapunov function. 

Proof. Write H = Fx @ F~, and Bi = Fx @ (Bi c~ F~), i = 1, 2. Then 

M: F ~ e ( B 2 c ~ F ? ) - , ( B o n e ~ ) e ( B o n F ? ) ,  

(x, y) -* (u, v) = M (x, y)=(~%, ~,y), 

for some function ~k. Now consider the differential equation 

(x, y), = v 0.  
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Then 

q,(x,y),=Gu+Gv=l~12>O 

if (u, v) + (0, 0). If x=x(y, 2), u = 0 ,  v#:0, we have ~br(x(y, 2),2 ) v(x(y, 2),2)>O. 
Thus if we define t~ (y, 2) = qs (x (y, 2), y), then when x = x (y, 2), u = 0, 4) = v, and 

~(y, ,~)~ = 0x x,  4) + G 4) 
=ux~4)+Gv 
= G v > 0  

if v 4:0. Hence ff is the desired Lyapunov  function. [ ]  

L e m m a  2.3. For i =  1, 2, P ( d 4 ) r  where the symbol ~ denotes isomor- 
phism. 

Proof. As before, we have 

M: (F• ~(F• 
(x, y, 2) ~ (u, v) = M(x, y, 2), 

where 2=21  or 22. Since 4)(y)=v(x(y),y) (we are dropping  the dependence on 
2, for convenience), d4)=vxxr+v r. Also u(x(y),y)=O, so  that  uxxr+uy=O. 
Hence in q / x  X ,  we may write x r = - u2 a uy. N o w  since 

Uy 

the eigenvalue equat ion dM(fl, ,)t=/~(fl, cot, gives the two equat ions 

(ux -~)  f l + u , ~ = o  

v~ fl + ( v r -  p) ~ = 0. (2.4) 

The eigenvalue equat ion for d 4) reads 

0 = (d 4 ) -  ~r) ? = ( -  v~ u21 u, + v~-  ~) 7. (2.5) 

N o w  let veP~cF; then v=(0 ,  ~)t and dMv=#v gives uy c~=0 and ( v y - # ) ~ = 0 .  
Thus  from (2.5) with cr = #  and y = ~, we get 

(d4) -kt)  a = ( - v ~  u2 1 Uy"~-Uy--]~) 0C ~-"~- 0, (2.6) 

SO that  eeP(d4)(o, a)). Next,  we note  that  the map  

h: P~-~ P(d4)(o,~}) 
(0, ~)' ~ 

is clearly injective; thus dim P(d4)r Pa. To show that  h is an isomor-  
phism, it suffices to prove that  

dim Pz > dim P(d 4)~o, ~). (2.7) 
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To do this, let a~P(d~b(o,a)), and define the vector L(a) by 

L(~) =(--u~-~ u~ ~). 

k 
Then a =  ~ ai, where dqS(o,~ ) a i=Pi  al, each pi>0,  and ~ i •  if i4:j. Hence 

i = 1  

< d M z L(~), L(oO ) = <~ d M ~ ( -  uff 1 vy oq, ~i) t, ~ ( - u;  1 

i i 

= < E (  O' [Ai O~i) t' E ( -  Ux 1 Vy ~i,  O~i)> 
i i 

= Y~ <(0, ~ ~)', ( -  u ;  ~ v, ~j, ~j)'> 
i , j  

= Z , ,  ~,.~j= Z~eI~,I2 >= o. 
i , j  i 

(2.8) 

Now write (c.f. Definition (2.1)), B2=P~@ Na, and let n denote the projection 
n: Pz @ N~--* Pz. Consider the map n o L: P(d (O(o ' ~))~ Pz. We claim that this map 
is injective. Indeed, if n o L(c 0 = 0, then L(e)e Nz, so if L(~)4= 0, 

<dM z L(~), L(~)) < 0, 

which contradicts (2.8). Thus n oL is injective and hence (2.7) holds. This com- 
pletes the proof of the lemma. [] 

End of proof of Theorem 2.1. First we remark that solutions of M = 0 are in 
1 -- 1 correspondence with the solutions of ~b = 0. From Lemma 2.3 and hypothe- 
sis ii), dim P (d ~b(o ' z,)) 4: dim P (d 4)(0 ' 22)). Moreover, d q~(o. ~) is non-singular since 
if for some ~ : 0  dq~(o,~0~--0, then from (2.6), ( - v x u ; l u y + v y ) ~ = O .  Hence 
dM~, L(~)=(0,0) t, and this contradicts hypothesis (i). Now consider the finite- 
dimensional flow Ys--~b(y, 2). The Conley indices h(0, 2i) of the isolated invariant 

si 

set (0, 20, i =  1, 2, can be easily computed in this case; namely h(0, 2 ~ ) ~  where 
8i 

is the pointed sphere of dimension si=dimension P~; (see, e.g. [S]), and 
one finds h(0,21)4:h(0,22). From Conley's Continuation Theorem [C, S], if 

is any neighborhood of 0, then 0 cannot be the maximal invariant set in 
~U for each 2~I. Thus there exists 2 ( ~ ) E I  such that 0 is not the maximal 
invariant set in ~U for the equation y~ -- ~b (y (s), 2(~U)). It follows that the maximal 
invariant set in ~ for this equation contains a point y#:0. Since Lemma 2.2 
implies that this equation is gradient-like, it follows that the ~- and ~o-limit 
sets of y are distinct rest points. Thus there must exist another rest point in 

different from 0. Now let the neighborhoods V shrink to 0. As the correspond- 
ing 2(~U)'s have a convergent subsequence 2(~//~i)-~2o~I, we see that (0, 20) is a 
bifurcation point. Moreover, 2~ < 2o < 22 since d qS~o ' ~,)is non-singular, for i=  1, 2. 
It follows from what we have discussed above, that (0, 2o) is a bifurcation point 
for the equation M(u, 2) = 0. This completes the proof of Theorem 2.1. [] 
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w 3. Equivariant Conley index 

In the standard form of the Conley Index Theory, a finite-dimensional general- 
ization of the Morse index is constructed, and the theory is then extended to 
infinite dimensions via the notion of index pairs; see [C, S]. One can also 
consider the case when there exists a group G of symmetries acting on the 
space X, and the flow (or semiflow) ~,, is equivariant in the sense that the 
group action commutes with the flow: 

Ot(gx)=gOt(x) VxeX,  geG, t e N ( o r  ~+) .  

In this section we shall assume that we are in this situation, and we shall show 
how to define an equivariant Conley index for any G-invariant isolated invariant 
set. Following Pacella, I-P], we shall show that all the constructions of index 
pairs, isolating neighborhoods, the continuation theorem, etc., can be done using 
G-invariant neighborhoods. 

The Conley index h(I) of a non-degenerate critical point I in finite dimen- 
sions, is given by h ( I ) = S  k, where S k denotes a pointed k-sphere, and k is the 
number of positive eigenvalues of the linearized equations about I. More general- 
ly, if V is the peigenspace of I, h(I) is the homotopy type of the pointed space 
D(V)/S(V), where D(V) is the unit ball in V and S(V) the unit sphere in V. 
If we ignore the group action, then since V is a vector space of dimension 
k, D(V)/S(V)~S k. However, when there is a group acting on the space, we 
can put more structure on the Conley index; namely it becomes a pointed 
G-space. We write this index as hG(l). The advantage of using the equivariant 
Conley index is that it is possible to have h(IO=h(I2) but h~(IO4=h~(Iz) , or 
h(I, 21)=h(I  , 22) , but h~(I, 21)4:hG(I, 22). Therefore under such circumstances 
using the hG index it is possible to prove that bifurcation occurs while no such 
statement is possible from the ordinary Conley index. Moreover, just as in 
the non-equivariant case, at a non-degenerate critical point 1 we may identify 
the Conley index with D(V)/S(V), (where as above, V=peigenspace of I), and 
it may happen that at distinct parameter values 2 t 4= 2 2, w e  have dim V~ = dim V 2, 
and thus h(l, 21)=h(I, 2z). But by a result of Lee and Wasserman, [LW], if 
G=O(n) and V1 4= V2 as representations of O(n), then ho~,)(l, 21)4=ho~,)(I, 22). 
It is thus quite useful to extend the notion of the Conley index to the equivariant 
case, and we shall now outline an "equivariant" Conley Index Theory. 

Let X be a metric space, let G be a compact Lie group and let ~: 
(IRxG) x X ~ X  be a G-flow on X; i.e., for all telR, g l ,g2~G,  and xEX, we 
have 

qJ (0, e, x) = x, (e = id. element in G), 

and 

Ifi(tl, gl,  ~(t2, g2, X))= ~/(t 1 + t2, gl g2, X). 

Thus if g=e ,  tp(t,e,x)-~Ot(x) defines a flow on X. If t=0 ,  r induces an action 
of G on X by ~b(0, g, x)=gx. Ifrr is the canonical map 

~z: X ~ X/G, 
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where X/G is the orbit space of X with respect to G, then if (N~, No) is an 
index pair in X/G, (c.f. [P]), then (rc-~(N1),rt-~(No)) is an index pair in X. 
If I is a G-invariant set in X (i.e., g l c I  Vg~G), and I is also an isolated 
invariant set for the flow ~k r, we define h~(1), the equivariant Conley index of 
I to be the equivariant homotopy type of the pointed space n-a(N~)/rc-~(No) 
where (NI, No) is a index pair for re(I). (We remark that Pacella, [P] has shown 
that there is an induced flow on the orbit space X/G, and if I/G is an invariant 
set for the flow on X/G then if (N~,No) is any index pair for 1/G, 
(n- 1 (N0, rc - 1 (No)) is a G-invariant index pair for 1.) 

Now let (N~, No) and (/V~, No) be G-invariant index pairs for I. Then there 
exist equivariant maps, (i.e., maps which commute with the G-action), 

f: (N1/No, No) "-* (N1/No, No) 
h: (N~/fl o, rio)--'(N~/No, No) 

such that both hof  and foh are equivariantly homotopic to the identity map. 
That is, the pointed spaces (N1/No, No) and (N1/No, No) are of the same equivar- 
iant homotopy type. We thus can unambiguously define the G-invariant Conley 
index of 1, ho(I), to be that equivariant homotopy type. Note that if G=  {id}, 
this definition agrees with the usual definition of the Conley index. The definition 
given here is somewhat richer since as the relevant spaces admit a group action, 
we can distinguish indices which have the same homotopy type as pointed 
topological spaces, but which are not of the same homotopy type as pointed 
G-spaces. We observe that the reason there exist maps f and h as defined above 
follows just as in [C, S]. All maps constructed there are easily seen to be G- 
equivariant if G operates on the space and the index pairs (N1, No) and (N1, No) 
are G-invariant. In fact, all other things such as the fact that ho(I) is independent 
of the isolating neighborhood containing I, the existence of index pairs, Morse 
decompositions, and the Continuation Theorem all go through mutatis mutandis 
in the equivariant case. We remark that the advantage of defining the equivariant 
Conley index as a pointed space is that it is a "pr imary" definition. We can 
compose this index with any equivariant algebraic invariant to derive any other 
proposed definition of an equivariant Conley index; c.f. [P] for other definitions. 

Finally we shall explain how the above ideas are used to extend the results 
of Sect. 2 in order to deduce an "equivariant" of Theorem 2.1. That is, we 
shall now that if the peigenspaces differ as G-spaces, then bifurcation must occur. 

Thus let Bo and B2 be G-invariant Banach spaces, H a G-invariant Hilbert 
space, Be c Bo c H, where the embeddings are all continuous, and let A be an 
interval in ~-~. Let M: B 2 x A ~ B  o be a smooth G-invariant operator (M(gu, 2) 
=gM(u, 2) VgeG, ueB2,2~A), satisfying 

M(0, 2)=0, V26A. (3.1) 

Since M is G-invariant, it follows that the peigenspaces Pz and the neigenspaces 
Nz (see Definition 2.1) are also G-invariant. We assume that there is an e > 0  
such that for all 2~A the peigenspace of dMz+eI is finite-dimensional, for 
each 2~A. 
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Definition 3.1. If dMx is non-singular, the reduced G index of 0, h~ (0, 2,) is defined 
to be the equivariant homotopy type of the pointed G-space: 

h~(O, ,,1.) = D(P~)/S(P~), 

where D(P~) denotes the unit ball in P~ and S(P~) denotes the unit sphere in 
P~. 

Note that in the finite-dimensional case, this definition coincides with our 
equivariant formulation of the Conley index given above. 

Theorem 3.1. With M defined as above and satisfying (3.1), assume that M is 
a gradient for each 2~A. Suppose that there exist 21 <,~2 in A satisfying 

(i) dMz, is non-singular for i= 1, 2, 
(ii) hG (O, ,~l)+hG(0, )]'2). 

Then there exists a 2o,21<2o<22 such that (0,20) is a bifurcation point for 
M(u, 2)=0. 

Notice that if G = {id}, the trivial group, then this theorem reduces to Theo- 
rem 2.1. 

The connection of hypothesis (ii) with the peigenspaces is made via the follow- 
ing theorem of Lee and Wasserman [LW]. 

Theorem 3.2. I f  G=O(n) and V and W are representations of O(n), then the 
pointed O(n)-spaces D(V)/S(V), and D(W)/S(W) are equivariantly homotopy equiv- 
alent iff V,~ W as 0 (n) representations. 

Theorem 3.2 is valid for other groups besides O(n). Thus, we call a group 
G "nice" if whenever V and W are two vector spaces satisfying D(V)/S(V) 
~G(D(W)/S(W) (same equivariant homotopy type as G-spaces), then Vg W as 
representations of G. Then if Go denotes the component of G containing the 
identity, G is nice if, for example, G/Go=2g2x ... x292, (so G=O(n) is nice), 
or G/Go=TZ. 3 X ... XZ3, or G/Go=•4, or G is connected, (so G=SO(n) and 
G= U(n) are nice); see [LW]. On the other hand there are groups G and distinct 
representations V and W with D(V)/S(V) equivariantly homeomorphic to D(W)/ 
S(W); see [CS]. 

In view of Theorem 3.2, we see that Theorem 3.1 is equivalent to the following 
theorem, (since h ~ 2i) = D (P~,)/S (Pa,), i = i, 2): 

Theorem 3.3. Assume that the hypotheses of Theorem 3.1 hold but with (ii) replaced 
by 

(ii)' P~, is not isomorphic to P~2 as a representation of O(n). Then the conclusion 
of Theorem 3.1 is valid. 

The proof of Theorem 3.1 is virtually the same as that of Theorem 2.1. In 
the statement of Lemma 2.3, P(dq~(o.~,))~ Pa,, must be understood now as mean- 
ing that the two spaces are isomorphic as G-spaces. The map h in the proof 
of Lemma 2.3 is also equivariant (i.e., h(gx)=gh(x)VgeG), since the spaces P~ 
and Pa • are invariant under the group action. The global, (in 2), Lyapunov- 
Schmidt reduction given in Lemma 2.3 can easily be done equivariantly, and 
Theorem 3.3, which states that if the peigenspaces differ as G-spaces, then bifur- 
cation occurs, is a strengthened version of Theorem 2.1. 
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Proof of Theorem 3.2. If V~ W as O(n) representations, then there is an equivar- 
iant linear isomorphism L: V-* W and so O (V)/S (V) and O ( W)/S (W) are equivar- 
iantly homotopy equivalent. To prove the converse we first recall that a represen- 
tation is determined by its character; i.e., two representations are the same 
if they have equal characters. Now by [-LW, Th. 2.21], if V and W are two 
representations of G, and D(V)/S(V) is equivariantly homo topy to D (W)/S(W), 
and o(G/Go)=p k where p is a prime number, and Go is the component of the 
identity in G, then the derivative, D[z(V)-z(V)]=__O. Thus the difference in 
characters, z(V)-z(W) must be constant on components of G. Now if G =  O(n), 
we shall now )~(V)-z(W)-O. First note that Go=SO(n) and o(G/Go)=2. Next, 
as D (V)/S (V) is homeomorphic to the sphere S dim v, it follows that dim V= dim W. 
Also as Z (V) (e)= dim V(e = identity in G), we see that x(V)= Z (W) on the identity 
component of G. Now if G=O(n),  we can find an element g eO(n) such that 
gZ=e;  for example, let g = d i a g ( - 1 ,  1 . . . . .  1). Then a calculation gives x(V)g 
= 2 x dim V G -  dim V, where V ~ is the fixed point set of V; i.e., those elements 
in V fixed by all geG (see (6.1) below). Thus )~(V)g-z(W)g=2(dimV G 
- d i m  W a )=0  from [LW, Theorem 2.7]. Hence )~(V)=;((W) so that V= W, and 
our theorem is proved. 

w 4. Semilinear elliptic equations - A summary of the linear results 

In this section we begin to discuss the application of our results to the problem 
of symmetry-breaking for solutions of (1.1), (1.2). In an earlier paper, [SWs], 
we showed that for a fairly broad class of nonlinear Cl-functions .s "infinitesi- 
mal" symmetry-breaking must occur in the sense that for a fixed nodal class, 
there exist infinitely-many degenerate radial solutions of (1.1), on distinct balls, 
the kernels of whose linearized operators contain asymmetric elements. We shall 
use this result to show that actual symmetry-breaking occurs. 

The symmetry-breaking problem presents certain difficulties which do not 
occur in the bifurcation problems usually encountered. One such difficulty is 
that we do not bifurcate off of a "trivial" branch (i.e., u=0)  of solutions, and 
if one transforms the problem so that we do bifurcate off of a trivial branch, 
we lose a certain variational structure so that the basic bifurcation theorems, 
(e.g. [B, Kr, R]), cannot be applied. Another difficulty is that one cannot directly 
apply the Crandall-Rabinowitz theorem. There are two reasons for this: namely, 
if n > 1, we never bifurcate from a "simple eigenvalue' ,  and secondly, the "trans- 
versality" hypothesis is quite difficult to verify. However, there is a way to 
finesse the first difficulty, (by considering O(n-1)- invar iant  functions; see 
[SW2]), but the verification of the transversality condition remains a difficult 
open problem. (However see [SW3], where the transversality condition is verified 
for positive solutions of the Dirichlet problem.) 

For  these reasons, we have found it necessary to develop a different approach 
to the symmetry-breaking problem. Our method is based on the Conley index 
and can be described as follows. We show that in any given nodal class, the 
radial solutions u( . ,2)  can be parametrized by a real parameter 2>0 ,  2>2 .  
We then show that there is an increasing sequence 2i-~ ~ for which the peigen- 
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spaces P~, satisfy the hypotheses of Theorem 3.3, so that bifurcation must occur. 
We then give an additional argument in order to show that radial bifurcation 
can be avoided so that the symmetry actually breaks. 

The verifications of the hypotheses of Theorem 3.3 concerning the peigen- 
spaces P~, follows easily from [SWs]. It is here where we must place additional 
hypotheses on f in order to rule out certain highly degenerate situations. For  
example, if we consider radial solutions lying in a k > 1 nodal class, we require 
f to be analytic. 

We remark too that in using the Conley index, we must pay a certain price, 
this being that we cannot assert the existence of a connected branch of bifurcating 
solutions - in fact, we do not know the precise structure of the bifurcating 
set; (see [Po] for an interesting algebraic example). On the other hand, there 
are some interesting advantages to using the Conley index technique. One is 
that by employing an equivariant from of the Conley index, as discussed in 
the last section, we are able to avoid certain "cancellation of indices", which 
may occur in the non-equivariant theory. That is, we can prove that bifurcation 
occurs even if the usual Conley index has not changed, provided that there 
is a change in the representation. This enables us to prove that symmetry- 
breaking occurs under less restrictive hypotheses. Another advantage of this 
technique is that we can obtain a richer bifurcating set in the sense that we 
can show that distinct solutions come out having distinct symmetries. This aspect 
is discussed in Sect. 6. Finally, the use of the Conley index enables us to avoid 
requiring that the eigenvalues be "simple", or "odd-dimensional",  or that they 
"cross transversally" at bifurcation points, as required in the theorems of Cran- 
dall-Rabinowitz, [S], or Krasneselskii, [-Kr], B6hme, [B], and others. 

In the remainder of this section we shall formulate the problem, and recall 
the main results in [SWs]. In the next section we shall consider in detail the 
verification of the hypotheses of Theorem 3.3. 

We consider the equations (1.1), (1.2) where we assume that the function 
f satisfies the following hypotheses: 

There exist points b < 0 < ~ such that: 
(i) f ( 7 ) = 0 , f ' ( v ) < 0  

(ii) F(7 ) > F(u) if b < u < 7 (here F' = f  and F(0) = 0) 
(iii) F(b)=F(7) 
(iv) i f f ( b ) = 0 ,  t h e n f ' < 0  
(v) uf(u)+2(F(7)-F(u))>O ifb<u<~;. (4.1) 

These conditions have been discussed in [SWs]; we remark that conditions 
(ii) and (v) are implied by the condition uf(u)>O if u~(b, ~)\{0}. We shall have 
more to say below, about the import these conditions have to our symmetry- 
breaking problem. 

Now radial solutions of (1.1), (1.2) satisfy the equation 

n-1 
u"(r)+ u'(r)+f(u(r))=O, 0 < r < R ,  r= lx l ,  (4.2) 

r 

together with the boundary conditions 

u' (O)=O=~zu(R)- flu' (R). (4.3) 
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The solution of the initial-value problem for (4.2) with u(0)=p>0,  u'(0)=0, 
will be denoted by u(r, p), and p will be considered as a parameter. We define 
angles 0o and O(r, p) by 

0o = Tan-  1 (~/fl), - ~z/2 < 0 o < 1r/2, and (4.4) 

O(r, p)= Tan-  l (u'(r, p)/u(r, p)). (4.5) 

If k is a given non-negative integer, and f (p )>0 ,  we define the function Tk(p) 
by 

O(Tk(p), p)= Oo -- krc (4.6) 

It was proved in [SWs, Prop. 2.2], that Tk(p) is well-defined for p near 7. Note 
that Tk(p) plays the role of R, and so R now varies with p. Since k will be 
fixed, in what follows, we write Tk(p)= T(p). A solution of (4.2), (4.3), and (4.6) 
will be said to belong to the " k  th nodal class" of f With these preliminaries 
out of the way, we can now summarize the main results of I-SWs]. 

The principal result in [SWs] states that there are infinitely-many points 
pj, 0 < p j < 7  for which the corresponding solutions u(',pj) of (4.2), (4.3), (4.6) 
are "degenerate", in the sense that the kernel of the corresponding linearized 
operator is singular and contains asymmetric elements. More precisely suppose 
that the dimension n, and the nodal class k are given. Then there is an integer 
N having the following property: For every integer N > N, there are k-solutions 
u(', p~), j = 1, 2 . . . .  , k, lim p~Y = 7, of (4.2), (4.3), (4.6) such that the linearized prob- 
lem N ~ 

Aw(x)+f'(u(x),p~)) w(x)=0, Ixl< T(p)~), 
~w(x)-~dw(x)/dn=O, Ixl= T(P~f) (4.7) 

admits solutions of the form a(r)q~N(O), where a = 0  and ON lies in the N th 

eigenspace of the Laplacian on the ( n -  1)-sphere S"- 1. Furthermore, the peigen- 
space at u(., pk u) contains exactly j copies of EN and less than j copies of EN+ 1 
(if j>0) .  From the results in [SWs], it is easy to show that we may choose 
p~V + 1 > pin if N > bT. Thus we can say that "the symmetry-breaks infinitesimally" 
for all sufficiently high modes if k>0.  Moreover, if hypotheses (4.1), (ii) and 
(v) are replaced by the stronger hypotheses 

(ii)a u f ( u ) > O i f b < u < O ,  orO<u<7,  
and 

(V)a f ' (0)  > 0, 
then the integer N is universal, i.e., it is independent of f. The main purpose 
of this section is to strengthen these results by showing that the symmetry 
breaks, in the sense that actual bifurcation to asymmetric solutions occurs on 
infinitely-many degenerate radial solutions. 

In order to study the bifurcation problem, it is necessary to work in a fixed 
space of functions; i.e.; we wish to remove the dependence of R = T(p), on p. 
We accomplish this by a simple scaling device, namely, if u(x) solves (1.1), (1.2) 
on the n-ball JxJ < R, then the function z(y)= u(Ry) solves the equation 

A z(y)+R2f(z(y))=O, }Yl < 1, (4.8) 
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together with the boundary conditions 

o~w(y)-Rfldw(y)/dn=O, lYl = 1. (4.9) 

Notice that R appears explicitly in the boundary conditions (4.9) only if both 
and fl are non-zero; i.e., Dirichlet or Neumann boundary conditions do not 

explicitly involve the parameter R in (4.9). The explicit dependence of R in 
the boundary conditions causes certain technical difficulties, in that we cannot 
consider pairs (u, R) lying in a product space of the form B x IR. Thus we cannot 
apply bifurcation theory in the usual sense. To get around this, we show in 
the appendix, that the set 

{(u, R)EC2(D ") • R+ : a u(x)- f lRdu(x) /dn=O,  Ix[ = 1} 

forms a vector bundle over IR+, whose fiber at R equals p-  ~ (R), where p is 
the projection on the first factor; i.e., for any R o and sufficiently small e, we 
show that p -  1 [(Ro - e, Ro + e)] is a product. This local product structure is suffi- 
cient to apply the usual bifurcation techniques, as we also show in the appendix. 

w 5. Symmetry-breaking bifurcations 

We shall show here that the results of Sect. 2 and 3 apply to the symmetry- 
breaking problem for (1.1), (1.2). Thus we shall that for N > N  (c.f. the discussion 
preceding (4.7)), that we can find an increasing sequence of numbers 2N~O0 
for which the peigenspaces P~N satisfy the hypotheses of Theorem 3.3; i.e. dMzN 
is non-singular and P~, and P~,,+I differ as representations of O(n). Thus there 
must be infinitely-many bifurcation points, u( ' ,  ~N), 2N < XN < 2N +1. As we have 
mentioned before, it does not follow that the symmetry breaks on these solutions; 
indeed, u( ' ,  ~-N) could be a "radial"  bifurcation point. In other words, there 
can bifurcate out of u( ' ,  2-N) a branch of radial solutions. We shall, however, 
prove that this doesn't occur if 2N is sufficiently large, so that the symmetry 
must break on such solutions. 

The actual verification of the hypotheses of Theorem 3.3 is made difficult 
since one must avoid certain degenerate situations whereby it is conceivable 
that zero lies in the spectrum of the linearized operators for an entire open 
interval of 2's. For example, if u' changes sign, it is possible to have distinct 
elements aN(r) ~N(O), aM(r) q~,,(O), N ~ M, in the kernel of the linearized operator 
about a given radial solution u( ' ,2);  see [-SWz, Theorem 3.4]. This situation 
is depicted in Fig. 1. Thus as 2 varies, different elements aN ~N could enter 
and leave the kernel, so as to render degenerate an entire continuum of solutions 
u(., 2). However, we shall show that this problem can be avoided if the 
function f is assumed to be analytic. This leads us to consider separately the 
cases u'(r, 2)<0, 0 < r <  1, and the general case where u' is allowed to change 
sign; only in the latter case need we assume f to be analytic. In order to 
carry out the above program, we find it technically more convenient in comput- 
ing peigenspaces, to consider the family of radial solutions parametrized 
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l 

a' 

~(aN, a ~) 

A : aa-f%a' = 0 

r:T(p) 

a 

Fig. 1 

by p, rather than by 2; as we show in the appendix, this does not affect the 
computation of indices. 

Under the hypotheses (4.1) on f, if k is a fixed positive integer, then there 
is a s o < 7 such that [So, V)= d o r a ( T ) - d o r a  (Tk); (see [SWs]). Also, as was shown 
in [SW4], there is an sl with so<s~ <V such that Ti(p)>0 if s~ < P < 7 -  For 
such p, the linearized operator LPw=Aw+f'(u(. ,p))w, defined on functions 
w satisfying the boundary conditions (1.2) (R =  T(p)), has a finite number of 
positive eigenvalues each of finite multiplicity. If ~ is an eigenfunction of the 
Laplacian on S"-1 with eigenvalue kN = - -N(N + n -  2) and ~b is a radial function 
satisfying the given boundary conditions on Ix[ = T(p) then w--~b(r)~ satisfies 
the boundary conditions and LPw=(LVn r where 

LP~b=~b"+n- l r  c~' +[f ' (u( . ,p))+~]c~.  

Thus, L% has no positive eigenvalue for large N. Also, if L%+ 1 has j positive 
eigenvalues, then L% has (at leas t ) j  positive eigenvalues. On the other hand, 
for p close to 7, L% has k (or k +  1) positive eigenvalues of multiplicity lN. Since 
the eigenvalues of L~v are continuous in p, we can find p~ < 7, for 0 =<j =< k, such 
that L~" has exactly j positive eigenvalues of multiplicity lN, if N is large. (The 
proofs of the above statements can all be found in I-SWs_]). We shall show 
below that we can choose the points p~ such that each L p" is non-singular. 
This will imply that the conditions of Theorem 3.3 are satisfied, so that we 
have bifurcation on some u( ' ,  p), p between p~ and p~+ 1. Furthermore the bifur- 
cation must be non-radial since T ' (p )>0  (see [SW2]); i.e., symmetry-breaking 
occurs. 

We begin by considering the case of monotone radial solutions. 

Theorem 5.1. Assume that f satisfies hypotheses (4.1). Suppose that we consider 
monotone radial solutions of (4.2), (4.3) with 0 < Oo < ~z/2 and thus k = 1. Then 
there exists an increasing sequence of numbers 2,, ---} ~ for which the corresponding 
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radial solutions u~,.(.) are symmetry-breaking bifurcation points. Equivalently, 
there exists a sequence p,, ~ 7 for which the radial solutions u(', Pro) are symmetry- 
breaking bifurcation points. The kernels of the associated linearized operators 
have dimensions at least 

l, =(m-t-:-f-2~[n+ 2m--2~ 
7t-  --27 

Proof We recall from [SWs], the definitions of the operators L%: % ~ C(0, T(p)), 
where 

namely, 

% =  {r T(p)): r162162 (5.2) 

L% r n- 1 q~'+( 2N ) 
r ~+f ' ( ( r ,p ) )  c~. (5.3) 

We endow % with the following inner product: 

T(p) 
(q~'O> = f ~)(r)O(r)r'-idr. 

o 

Then with N r defined as above, and i~2g+ satisfying i> N, let 1 

pi= sup {p: g(L~)< O, sl <P<7};  

here tr(L p) denotes the sup of the spectrum of the operator L p. At this point 
we need a lemma. 

Lemma 5.2. I f  p < Pl, then tr(L~) < 0 .for j > i. 

Proof. For q5 ~ %, 

<L~q~, q~)= TP)[c~(rn- l (a')' +(f'(u(r,p))+~2)c~2r"-l]dr 

~ S' (u (r, p)) + dr 

= (L~ r q~) <0, 

from which the result follows. [] 

Corollary 5.3. I f  u(-,p) is a monotone solution of (4.2), (4.3), then Pi+l > Pi for 
all i>=N. 

1 It was shown in [SWs, Propositions 4.3 and 4.5], that if i>__/V cr(L~) <0  for certain p's, sl < P < 7  
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Proof. Our lemma implies Pi+ ~ >Pi, and since u'(r, p)<O, it follows from [SWs, 
Theorem 3.4] that Pi+ 1 > Pi if i > N. []  

We can now complete the proof of Theorem 5.1. Thus fix i>N, and consider 
solutions aN of the initial-value problem for the equation L~ a = 0, for varying 
N. The orbit segments (ai(r),a}(r)), (ay(r),a'i(r)), j<i,  and (al(r), ai(r)), l>i, at r 
= T(pi), are depicted in Fig. 2. That is, if j < i, the orbit (aj(r), a~i(r)) has crossed 
the boundary line A = c(a-fl0(' =0,  and for l>  i, the orbit (at(r), a'l(r)) has not 
crossed this line. In fact each operator ~ '  has exactly one positive eigenvalue 
if i<  N and has negative spectrum if i>  N. These facts are consequences of 
Proposition 3.16 in [SW3]. 

r : T (Pi) 

~ (at, all 

(% a;) 

a '  

~ A: aa-13a'=0 

P a 

t>i>j 

Fig. 2 

Thus the operator A + f ' ( u ( . ,  Pi)), (defined on C2-functions ~ on Ix[ < T(p), 
satisfying the given boundary conditions), has exactly ( i -  1)-positive eigenvalues; 
namely 

[ai(pi): i <j < i-- 1}, 

where 

pJ (p) = sup ( L~ q~, ~b ). 
4, 

Let 2(p) denote the number of positive eigenvalues of the operator A +f'(u( ' ,  p)), 
again on functions in C2(Ixl __< Tip)) which satisfy the boundary conditions. 

Now #i- l (p)  must become positive for some p<p~; namely, since the orbit 
(ai- 1 (r), a~_ 1 (r)) at r = T(p~) has crossed A, (see Fig. 2), #i- 1 (p) cannot stay < 0 
for all P<Pi. Thus (see Fig. 3), there exists points qi, Pi-l<qi<pi such that 
#i-l(qi)>O, 2(q~)= i - 1 ,  and 

Pi-1 qi Pi qi*l Pi*l 

Fig. 3 
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this is true for every i>/V. Now we claim that zero is not in the spectrum 
of the operator A +f ' (u( ' ,  p)), satisfying the given boundary conditions. To see 
this, note that /~q'-i has no zero eigenvalue (since #i-~(qi)>O), and i f j> i ,  ~ '  
has negative spectrum, while if j < i - 1 ,  the orbit (ai(r),a~(r)) has crossed the 
boundary line A when r =  T(qi). Thus our claim holds so that the solutions 
u(',qi) are non-degenerate for each i>N.  It follows that the peigenspaces P/ 
= P(u(., qi)) satisfy 

P/=t=P/+ 1, as O(n) representations for i ~ N .  (5.4) 

Thus Theorem 3.1 together with the result in the appendix, imply that there 
are points qi, qi<q~<qi§ such that u ( ' , ~ )  is a bifurcation point. Now as in 
I-SW3], we can show that q~--*7 as i ~ .  Moreover, as T'(p)>0, s l < P < 7 ,  
it follows that there is an integer ioeTl+ for which 

T'(~i) >0,  i>io. (5.5) 

Next, as shown in I-SW2], condition (5.5) together with hypothesis (4.1) (v) implies 
that radial bifurcation cannot occur. It follows then, that the symmetry breaks 
on u(-, qi), if i>  io. This completes the proof of the theorem. [] 

We now turn to the case where the radial solutions are not monotone; 
i.e., the case where u'(., p) changes sign. As we have mentioned above, we find 
it necessary to assume here that f is analytic. 

Theorem 5.4. Let f be an analytic function satisfying conditions (4.1), and consider 
radial solutions of (4.2), (4.3), (4.6), (which are not necessarily monotone). Then 
there exists an increasing sequence of points, p,~ ~ 7, for which the corresponding 
radial solutions, u(', ~,~), are symmetry-breaking bifurcation points. Equivalently, 
there is a sequence ).m~oo for which the corresponding radial solution u(.,2m) 
are symmetry-breaking bifurcation points. 

Proof. Since f is analytic, it follows that any (smooth) radial solution u(r, p) 
of (4.2) is analytic as a function of both r and p. (The proof of this statement 
for p is the same as in the Ck-case; see the appendix in [SWl].) Now denote 
by a(r, p) the solution of 

a "  q- - -  n-la '+(f ' (u(r 'P))+~-~)  O<r<T(p), (5.6) 

a(O) = 0 = ~a( T (p), p)-- fl a' ( T (p), p). (5.7) 

Since (5.6) has a regular singular point at r = 0, the well-known result of Froben- 
ius shows that this equation has a one-dimensional space of solutions analytic 
in r and p at r = 0, and hence for all r > 0. Let aN be the unique analytic solution 
satisfying aN(r)/r N ~ 1 as r ~ 0 (c.f. Lemma 3.6 of l-SWs]). 
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Now define the function (oN(r, p) by 

(oN(r, p)= T a n -  l (a'N(r, p)/aN(r, p)), (5.8) 

and note that (oN(T(p), p) is an analytic function if T(p) is analytic, where T(p) 
is defined in (4.6). Moreover, using the implicit function theorem, we see that 
T(p) is analytic provided that 0'(T(p), p)4: O. 

Lemma 5.5. Let f be analytic; then for p near ~, (oN(T(p), p) is an analytic function. 

Proof We have, from (4.5), and (4.6) 

(u 2 + v 2) O'(T(p), p) = - - -  n - I  
T(p) u v - uf(u) - v 2, (5.9) 

where u and v are evaluated at (T(p), p). Note that if ~ = 0  or f l=0,  (5.9) implies 
O'(T(p),p),t=O if p is near 7; this follows easily from hypothesis (4.1) (v). We 
may thus assume ~ + 0 in what follows. Now along the level curve H(u, v)-v2/2 
+F(u)=H(7, 0), (v=u'), we have v2= 2(F(v)- f (u))  , so that (4.2) (v) implies that 
uf(u)+ v 2 > 0  along this level curve. We claim that this level curve meets the 
boundary line A: ~ u - f l v = O  transversally. Indeed, if we compute the derivative 
dH/d# of H in the direction tangent to A, we find dH/dl~=(fl ,~).VH= 
fl f(u)+~v.  Thus on the line fl/~=u/v, we find that (v /~)dH/d#=uf(u)+v2>O 
along the level curve; this proves the claim. Let Q=(~i,v-) denote the point of 
intersection of A with H(u,v)=H(7,0); c.f. Fig. 4. Now using the same sort 
of arguments as Proposition 2.2 of [-SWs], we find that for p near 7, the orbit 
(u(r, p), v(r, p)) meets A at a point (up, vp) near Q. If J(u, v)= uf(u) + v 2, then 
d(ti, f ) > 0  so for p near V, d(up, vp)>=J(fi, ~)/2. Choosing p so 

\ 
(u (r,p), v (r ,p))  

P 

- - H ( u , v ) = F ( ~ ) u  
[up %) 

I 

A : au -~v  = 0 

Fig. 4 

close to 7 so that [ (n-  1) uv/T(p)[ <J(u, v)/4, we see that for such p, O'(T(p), p)<0,  
and this completes the proof of the lemma. []  

We can now complete the proof of Theorem 5.4. To this end, note first 
that from our lemma, there is an interval I = [ p o ,  Y], po>0 ,  such that T(p) 
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is analytic on I; thus q~N(p)=c~N(T(p),p) is analytic on I for all N. Choose 
M o ~ g + ,  M o > N  such that 

~bMo (po) > 0o (5.10) 

(c.f. Fig. 5a); this can be achieved using Lemma 3.6 of [SWs]. Thus in some 
interval Uo about Po, 

Y 
~@Mo(p 

A : aa-13a'  : 0 

o) 
= a 

( k = 2 )  

Fig. 5 

a '  

A 

max2(p) < (k + 1) (1 + 11 + 12 + ... IMo- 1) = L, 
p e UO 

(5.11) 

where lM is defined in (5.1), and as above, 2(p) denotes the number of positive 
eigenvalues of the operator A +f'(u(', p)) defined on functions in CZ(lx[ < T(p)) 
satisfying the given boundary conditions. 

Choose M l e Z +  such that M1 > M o  and 

(k+ 1) IM, > L  (5.12) 

Using Proposition 3.15 in [SWs], we can find a point Pl, po<p~ <7 such that 
(c.f. Fig. 5 b), 

4m,(pl)<Oo-kr~ (5.13) 

It follows that in some interval U1 about  p~, 

(oM,(p)<Oo--k~, peU1 (5.14) 

Note that Uo~ Ua =q~ since (5.12) and (5.14) imply that 

2(p)>(k+l)lMl>L, if peU1. (5.15) 

Now q~N(P) is an analytic function of p for every integer N. Thus for each 
N, qSN(p)= 0o for at most a finite number of p's. We can thus find points qoe Uo, 
and q 1 �9 UI such that (bMo (qo) + 0o, 4~Mo (q 1) + 0o; i.e., the radial functions u (', qo), 
and u(-, q0 are non-degenerate. Consequently (5.11) and (5.15) imply that the 
peigenspaces P(u(', qo)) and P(u(', qO) satisfy 

dimP(u(',qo))=r, and dimP(u(.,qO)=s, r<L<s, 
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r=2(qo), and s=2(q0 .  That is, the dimensions of the peigenspaces, at these 
non-degenerate solutions are different. 

Next choose M z ~ R  + such that (k+ 1)lM~>2(qO, and M2>M1. As before, 
we can find a point P2, ql<P2<7 such that OM~(P2)<Oo--kn. We can choose 
a neighborhood U2 of P2 for which OM~(q)<Oo--kn if qeU2. Also, for such 
q, we have 2 (q)> (k + 1) lM2 > 2 (ql). Again using the fact that 0M~ (p) is an analytic 
function of p, we can conclude that there is a point qzEU2 with 2(q2)>2(q0;  
i.e., 

dim P(u(', q2))= ),(q2)&,~(ql)=dim P(u(., qx)) 

Continuing this procedure yields a monotone sequence  {qk} having the property 
that 

dim P(u(., qk))~ dim P(u(', qk + 0), k = 1, 2 . . . . .  (5.16) 

and each u( ' ,  qk) is non-degenerate. Another application of Theorem 3.1 yields 
the existence of bifurcation points {U(',i0k): k =  1, 2, ... }, and as in the proof 
of the last theorem, the symmetry breaks on each such solution if k is sufficiently 
large. []  

Using Theorem 3.1, we can do a finer analysis. For  example, we can find 
points q~, 1 < j  < k in (s l, 7) such that j J qN<qN+l for each j, and u(., q~) is non- 
degenerate, and the peigenspace P(u(., q~)) has j-copies of EN- 1 but < j  copies 
of EN. Thus Theorem 3.1 implies that there is a point ~ ( q ~ ,  q~.  1) such that 
u(., q~v) is a bifurcation point. We thus get a k-fold infinite family of bifurcation 
points. To see this, set, for 1 < j  < k, 

p~=inf{pe(sl, 7): ~bN(P) = 00 --jn}. 

Then from the results in [SWs], 4~N- 1 (P~) < 00 --jn SO q~N- 1 (P) < 00 --jn for p < p~ 
and p close to p~. Choose q~ to be such a point where u(-, q~) is non-degenerate. 
Then at u( ' ,  q~) the peigenspace has j-copies of EN-1 and < j  copies of EN. 

w 6. Distinguishing solutions by their symmetry subgroups 

In this section we shall show how to obtain different asymmetric solutions 
of (1.1), (1.2) at each bifurcation point. (Of course, we assume that f satisfies 
hypotheses (4.1) and that f is analytic if k >  1.) How this will be achieved can 
best be understood by reviewing the non-equivariant case. Thus, from [SWs, 
Theorem 3.1], we know that for every N ~ Z + ,  there is a point sN, 0<SN<7,  
SN<SN+I, SN~7, such that if sN<p<7, then the spectrum of L~ (c.f. (5.3)) con- 
tains k-positive elements. If lj is the dimension of E j, the jth eigenspace of the 
Laplacian on S"-1, then (c.f. (5.1)) 

l j=( j+n-2~[2 j+n-2~  
j ] \ j + n - - 2 ] "  
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Thus if Ap denotes the peigenspace of the radial solution u(-, p), then dim Ap 
N 

> k  ~ lj. It follows that as P--+7, d imAp~oe .  These changes in dimensions 
j=0  

are what enabled us to prove the existence of infinitely-many symmetry-breaking 
solutions. We want to use similar techniques, now taking the group action 
into account, in order to show that solutions bifurcate out having different 
symmetry groups. 

Let H be a subgroup of O(n), and consider the set 

u _  {weAp:w(hx)=w(x) VheH, Vx~D].tp)}. A p -  

Ap n is called the fixed-point set of H in the peigenspace Ap of the radial solution 
u(.,p). By Theorem 3.1, if Apl@Ap2 and dMtu<..p,),p,l are non-singular, i=  1, 2 
there is a point p between Pl and P2 for which u(.,p) is a bifurcation point. 

f/ n (as representa- But the hypothesis Ap, + Ap2 does not necessarily imply Ap~ =l = Apz 
tions of N(H)/H, where N(H) denotes the normalizer of H; Ap n is not necessarily 
invariant under G but is invariant under N(H), and in fact N(H)/H acts on 

H H this space.) Moreover, even if Ap,+Ap2, this does not imply bifurcation on 
some u(.,p) (for p between Pl and P2), since N(H)/H may have more than 
four components, and we cannot apply the results in Sect. 3; in particular the 
results in [LW] do not apply. On the other hand, if dim Ap n, +d im Ap~, then 
there is a p between Pl and PE such that u(., p) is a bifurcation point. (Proof: 
In a manner similar to what we have done in Sect. 2, consider M: B2 n x A--*Bo n, 
perform the same Lyapunov-Schmidt reduction, and conclude as before, that 
on the finite dimensional space, the Conley indices are distinct at Pl and P2 
so bifurcation occurs.) The following abstract general theorem will allow us 
to assert the existence of many bifurcating solutions at each bifurcation point. 

Theorem 6.1. Suppose that the hypotheses of Theorem 3.1 hold and assume that 
(0, 2) are the only invariant solutions of M(u, 2)=0 for each 2~[21,22], and that 
ker [dMz] contains no invariant elements. Let H and K be subgroups of G satisfy- 
ing 

d imP~*dimPa~ ,  and dimP~#:dimP~r~, (6.1) 2 

HK, the group generated by H and K satisfies HK = G. (6.2) 

Then there exist 2n and 2K in (21,22) such that (0, 2r) (resp. (0, 2H)) is a bifurcation 
point of solutions with symmetry (at least) H (resp. K). The bifurcating solutions 
do not coincide. 

Proof The existence of bifurcation points (0, 2n) and (0, 2r) follows from (i) 
in view of our above remarks. Since ker(dMz) contains no invariant elements, 
no invariant bifurcation is possible (see [D, Remark on p. 288]). On the other 
hand, any solution fixed by both H and K must be fixed by HK and thus 
must be invariant, because of (ii). It follows that the bifurcating solutions must 
be distinct. [] 

We now apply this result to the problem (1.1), (1.2). 

2 More generally, hmmm(O, 21)+ ht+~mm(O, 22) and hint)Ix(O, ).1)=1= hmr~/r(O, 22); see [LW] 



86 J. Smoller and A.G. Wasserman 

Theorem 6.2. Assume that f satisfies hypotheses (4.1) and consider radial solutions 
of (4.2), (4.3), (4.6). I f  k> 1, assume that f is also analytic. Let H and K be 
subgroups of O(n) satisfying condition (ii) of Theorem 6.1. Suppose that for p 
near 7, the kernel of the linearized operator about u(', p) contains no purely radial 
element. Assume too that at each degenerate solution both a K-invariant and 
an H invariant element comes into the peigenspace. Then there exist Pn ~ 7  such 
that u(',pn) is a bifurcation point. At each u( ' ,p,)  there bifurcates out solutions 

U H U K { .,~}, and { n,a} having symmetry groups at least H and K respectively, and 
these solutions are distinct; i.e., un,~:#un, r for all c~ and ft. 

Proof. We have seen in Sect. 4 that the points where 0 lies in the spectrum 
of the linearized operators forms a discrete set. At these degenerate points the 
H- and K-invariant peigenspaces change; hence Theorem 6.1 is applicable and 
the theorem is proved. [] 

We shall now find subgroups of 0 (n) for which the hypotheses of our theorem 
can be verified. We first need some notation. For p, qEIR, 1 <p, q<n, let On(p) 
be that subgroup of O(n) consisting of matrices of the form 

p n--p 

pC[, 0 l  ' 
n--p{[0 I 1 

and let O,(q) denote the subgroup of O(n) consisting of matrices of the form 

n - q  

q 

Lemma 6.3. Let l < p < q < n, and let H = Odp) x O , (n -  p), K = O~(q) x O.(n -- q). 
Then K H  = 0 (n). 

Proof We shall prove the stronger statement 

O~(p + 1) O~ (n - p )  = O(n); (6.3) 

then as the elements in K are of the form 

q n--q 

n - q  0 

we see that O,(p+ 1)oK.  Since O , ( n - p ) c H ,  (6.5) implies that KHcO(n) .  
Our proof of (6.3) will be by induction. To this end, we fix n - p ,  and proceed 

by induction on n. Let LeO(n), and set L(el)= vi, i= 1, 2, ..., n, where {e~} denotes 
the standard unit vector basis in N". We first show that there exist elements 

TleO,(p+ 1), S l e O . ( n - p )  such that SI(T1 eO=vl .  (6.4) 
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To do this, let Vl =(x l  . . . .  , x,), and choose T1 eO,(p+ i) such that 

[ n \1 /2  
Tel=(Xl,  . . . ,xv, t,O . . . . .  0) where t = {  2 x~) . 

\ p +  1 / 

This can be done since O,(p+ 1) acts transitively on S p. Now if t = 0  then (6.4) 
obviously holds. Thus suppose t :V0, and choose S~ e O,(n-p) such that 

81 (ep+ 1) = l  t (0, ..., 0, xv+ 1, " ' ' ,  Xn)" 

Then 

$1 T1 e l - = S l ( X l  . . . . .  xv, t,O . . . . .  O) 

~- (X1 ,  . . . ,  Xp,  Xp+ l , . . . , X n ) ~ V  1 , 

so (6.4) holds. 
Now the orthogonal transformation T1-1 S~- 1 L fixes el so 

T1- 1 $11 L ~ ( n - -  1). Thus _ by our induction hypothesis, 
7"1- ~ S? ~ LEO,(p) O,(n--p), where O,(p) denotes the subset of O(n) of consisting 
of matrices of the form 

n - ( p + l )  

1 p n - ( p +  1) 

1 - 1 0 . . . . . .  

0 

that is, 0 , ( p+  1) operates on e2 . . . .  , ee+ 1. Thus TI- ~ S;  l LeO.(p+ 1) O.(n--p) 
so that LeO,(p+ 1) O,(n-p), and this completes the proof. []  

Now in order to apply Theorem 6.2, we must verify (6.1) and (6.2) for the 
groups H=O,(p)xO, (n -p)  and g=O,(q )xO, (n -q ) ,  l<=p<q<=n. To do this, 
we need the notion of "isotropy group". Thus, if u is a solution of (1.1), (1.2), 
the isotropy group at u, or the stability subgroup of u, O (n)u is defined by 

O (n),, = {geO(n): u(gx)= u(x), VxeD]} 

Now it is sometimes possible to prove the existence of a solution ul whose 
isotropy group contains a given group H1; i.e., O(n),1~H 1. If u2 is another 
solution and O(n),2=H 2, then u~ can be distinguished from u2 if we know 
that H1 H2=O(n), and not both ul and u2 are radial. In particular since we 
know that for p near 7, radial bifurcation cannot occur [SW2,4], then if for 
each p, 1 <=p<__n, we can prove the existence of a solution having isotropy sub- 
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group  conta ining O ( p ) x  O(n--p) then L e m m a  5.2 shows that  solutions with 
i so t ropy g roup  H ~ O ( p l ) x O ( n - p l ) ,  and solut ions with i so t ropy g roup  
H 2 ~ O ( p 2 ) x O ( n - p 2 ) ,  (O<pl<p2<=n), do not  lie in the same orbit. Thus  we 
can say tha t  solut ions have distinct orbi ts  by considering their  stability sub- 
groups.  In this way we can obta in  m a n y  different bifurcat ing solutions via Theo-  
rem 6.1. [No te  too tha t  the g roups  O(p) x O ( n - p )  and O ( n - p )  x 0(p)  are conju- 
gate in O(n); namely  if u is a solut ion with symmet ry  g roup  O(p)x O(n -p ) ,  
there is a geO(n) such tha t  gu is a solut ion having symmet ry  group  
0 ( n - p )  x O(p). In order to rule out this trivial case, we shall assume 1 < p < n/2.] 

The  existence of bifurcat ing solut ions having symmet ry  g roup  0 (p) x 0 (n - p) 
is a consequence of  the next two lemmas ;  they will imply that  (6.1) is satisfied; 
we have  a l ready p roved  (6.2) in L e m m a  6.3. 

L e m m a  6.4. Let 1 < p < n ,  and set H = O ( p ) x  O(n-p ) .  I f  ~ [ X l ,  . . . ,Xn" ] denotes 
the set of all polynomials in n variables, with real coefficients, then 

N i x 1  . . . .  , x.]H = N i t  z, ~2], 

where ] R [ x  1 . . . . .  Xn'] H denotes the set of  elements in ] R [ x  1 . . . . .  Xn] f ixed by H, 
r 2 = x  2 + . . . + x  2,andr'2-x,+l+- 2 . . . + x  2. 

Proof Let p e ~ _ [ r 2 ,  r2].  If  TeO(p)x~ ,  then T preserves r 2 and  doesn ' t  affect 
Xp+ 1 . . . . .  Xn, SO r 2 and ~2 are  unchanged  by T. Similarly, if See  x O(n -p ) ,  r 2 
and ~2 are likewise unchanged  by S. It  follows that  ~ [ r  2, f2] _ ] R [ x 1  . . . . .  xn]H.  

For  the reverse inclusion, assume p (x l ,  . . . ,  x , ) e l R [ x l ,  . . . ,  x,] n. N o w  there are 
elements  TeO(p), S e O ( n - p )  such tha t  

Thus  

T(x I . . . . .  xp)=(t,O . . . . .  0), t 2 = r  2 

S(xp+ 1 . . . . .  Xn)=(s,O . . . . .  0), s 2 = r  2. 

p(x l ,  . . . ,  x , ) =  ( T x  S) p(xl  . . . . .  x,) = p(t, 0 . . . . .  O, s, 0 . . . .  ,0). 

Next,  3 T' eO(p) such that  T'(x l ,  x2 . . . .  , X p ) = ( - -  X l ,  x 2 . . . . .  Xp), and 3S' ~ O ( n - p )  
such that  S'(xp + 1 . . . .  , x,) = ( -  xp + 1, xp + 2 . . . . .  x,). Thus  

p(xl . . . .  , x , ) = ( T '  T x  S) p(xl  , ..., x,) 

= p(( T '  r x S) ( x l  . . . . .  x . ))  

= p ( (T'  T)  (x 1, . . . ,  xp)), S (xe  + 1 . . . . .  x,,)) 

= p ( - - t ,  0 . . . .  ,0, s, 0 . . . .  ,0). 

Similarly, p (xl ,  . . . ,  x,) = p (t, 0 . . . .  ,0, - s, 0 . . . .  ,0). Thus  p (x 1, . . . ,  x~) = q (t 2, S2), 
where q is a po lynomia l ,  so tha t  p (x l ,  . . . ,  x,) = q(r 2, ~2)E]R [r 2, ~2-]. [ ]  

L e m m a  6.5. Let E k denote the k th eigenspace of the Laplacian on S"-1, and let 
H = O(p) x O(n -p ) ,  1 < p < n. Then dim E~ = 1, if k is even. 
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Proof We identify E k with the space of homogeneous, harmonic polynomials 
of degree k in n-variables. Let Pk denote the homogeneous polynomials of degree 
k in n-variables, and consider the following commutative diagram: 

Pk d ) 

pk n ~ , 

ik- 2 

where i k and ik_ 2 are inclusion maps. We shall show that A Ip~ is surjective. 
Once having proved this, it follows that 

dim Egk = dim P2~ - dim P2/~k_ , )= (k + 1) -- k = 1, 

since by our last lemma, a basis for P~ is given by the (k+l)-elements 
r 2 k  ~2 r 2 k -  2, . . .  ~ ~-2k. 

Now it is well known that A: Pk ~ Pk-2 is surjective (c.f. [SW2] ). Thus let 
q~pkH2; then there is a PePR such that Ap=q. If # denotes (normalized) Haar  
measure on H1 then as hq=q for all h~H, we have 

It follows that 

hqd#= I qd#=q l dp=q. 
H H H 

q= ~ hApd#= ~ A(hp )d#=A[I  (hp)d#]. 
H H H 

But since/5 = ~ (hp) dp is invariant under H, we see that i6~Pk H and thus A le/~ 
H 

is surjective. 
Alternatively, we take as a basis for P2~ the elements r2"f 2(k-"), a = 0 ,  1 . . . . .  k, 

(Lemma 6.4), and we compute" 

A (r 2" f2 (k -,)) = (A r 2") f2 (k - ,) + r 2. A (f2 (k -,)) 

= 2a(p + 2a-- 2) r 2(a- x)f2(k-a) 

+ 2 (k - a) [(k - p) + 2 (k - a) - 2] r 2 a f2 (k - -  a - -  1). 

If S is the subspace of P2nK generated by the set {r2"f2(k-"): l<-a<-k}, then we 
see that the matrix for the Laplacian defined on S to P2~-2 is triangular in 
this basis, with all non-zero entries on the diagonal. Hence A Is is injective and 
thus surjective. It follows that A restricted to P2~ is surjective. [ ]  

Notice that this lemma implies that (6.1) holds for the groups 0 (q) x O(n-q),  
1 <=q<n, since as p--*7, P>PN, implies that dim(A~)>=kN. We thus have the 
following theorem. 

Theorem 6.6. Let f satisfy hypotheses (4.1), and assume that f is analytic if k > 2. 
Let Hp=O(p)x O(n-p),  l <=p<=n/2. Then there are points qj-~7, (qj<7), such 
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that at the radial solution u(., qi) the symmetry breaks, and there bifurcate out 
distinct solutions having symmetry groups (at least) Hp, 1 <p < n/2, and 0 (n-1). 
(The statement regarding O(n-  1) was proved in [SW2]. ) 

It is still an open problem to describe the entire bifurcation set; i.e., what 
else bifurcates out ? 

Appendix 

The quantity p=u(0) ,  which has been used to parametrize the family of radial 
solutions u(',p) of (1.1), (1.2) is unsuitable as a bifurcation parameter. This 
is due to the fact that in bifurcation theory, one must work on a fixed product 
space B • A where B is a Banach space of functions, and A denotes the parameter 
space. But in our case, choosing p as parameter forces the radii R of the balls 
to vary with p, (i.e., R =  T(p)), so that the parameter appears in the function 
space. The obvious way to overcome this difficulty is to perform a change of 
scale, taking ]xJ<R to the unit ball, and indeed, for homogeneous Dirichlet 
or Neumann boundary conditions, (~ fl = 0), this technique works and we recover 
the desired product structure. However, if c~b 4: 0, it turns out that the parameter 
enters the boundary conditions and we again do not have a product structure. 
It is the purpose of this section to show that our problem nevertheless is equiva- 
lent to one on a fixed ball with fixed boundary conditions. In fact, our develop- 
ment will be such that all of the usual bifurcation theorems, e.g. the Crandall- 
Rabinowitz Theorem, [-S], as well as the bifurcation results obtainable via the 
Conley Index Theory, (as discussed in w 2 and w 3), are applicable. Our technique 
is to prove that the relevant space forms a vector bundle over IR, and is thus 
locally a product. We then show that this local product structure suffices for 
doing bifurcation theory. 

Consider the system (1.1), (1.2), which we rewrite for convenience as 

AU(z)+f(U(z))=O, z6D~, 

~U(z)-fldU(z)/dn=O, z~D"R. 

(AO 

(A2) 

Here, as we have seen in w 4, R = T(p) on radial solutions U( ' ,  p). Thus, if we 
change scale by writing 

x=z/2, u(x )=  U()ox), )c=R, (A3) 

then the problem (A1), (A2) goes over into the problem 

Au(x)+22f(u(x))=O, xED"---D] 

o~u(x)-fl2du(x)/dn=O, x~OD", 
(a4) 

(As) 

where now 2 is considered as the parameter, and 24:0. Notice however that 
the boundary conditions (As) vary with 2, unless e = 0  or f l=0 ;  i.e., unless 
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we are considering the Dirichlet or Neumann problem. Hence, if ~fl=0, the 
p r o b l e m  (A4)  , (As) can be considered as one defined on a (product) space 

{(U, 2)ECZ(D n) • ~x+ : u ( x ) = 0  ifx6~D'}, 

{(U, 2)~C2 (D n) • ~x + : du(x)/dn = 0 if xeD"}, 

if fl=O, 

if ~=0.  

In either of these cases we have the usual framework for bifurcation theorems. 
But if ~f14:0, (the only case we consider, in what follows), the space of functions 
again depends on the parameter 2, and we still do not have a product structure. 
We shall show, however, that the space of functions forms a "vector bundle" 
over IR (c.f. I-L]) and is thus locally a product space of the desired form. We 
shall then transport the differential equation to this product space, so that the 
transformed system fits into the standard framework of bifurcation theory. We 
can then check that the eigenvalues of the transformed operator are the same 
as the eigenvalues of the original operator, and in particular the transformed 
linearized operator is Fredholm iff the original is Fredholm, the Crandall-Rabin- 
owitz transversality condition holds in one problem iff it holds in the other, 
and the peigenspaces of the transformed rest points are isomorphic to those 
of the corresponding rest points in the original problem. Then having proved 
that bifurcation occurs in the transformed system, this immediately implies bifur- 
cation in the original system. We shall now carry out this program. 

For any 2o > 0 consider the boundary condition 

,u(x)-/~2o du(x)/dn=O, Ixl = 1. (A6)  

Then for 2 near 2o, and k=0,  1, 2 . . . . .  consider the bounded linear maps S~o: 
C~(D ") ~ Ck(O'), given by 

(S~oU)(X)=[~ (20-2)222 (1-]xl2)+~oo]U(X). 

An easy calculation shows that if u satisfies the boundary condition (As), then 
S~ o u satisfies the boundary condition (A6). Note that S~o is equivariant with 
respect to the action of O(n); i.e., it commutes with O(n) operations. Note too 
that S~o ~ is the identity map, and 

( 2 _ 2 0 ) 2  ~2 
~'.~or ~'~.'~'~ u(x)=u(x) 42222 f12 (Ix[ 2 -  1) u(x). 

Thus S,~ o is invertible if 2 is near 203 

3 More generally, we could consider equation (A4) with the boundary conditions a(2). 
u(x) + fl(2) d u(x)/d n = 0 on Ix[ = 1, where a2 + flz = 1, and fl(2) + 0 for all 2. Then the transformation 

SZ ~ ,  [ ~ ( 2 ) f l ( 2 0 ) - f l ( 2 ) ~ ( 2 0 ) ( l _ [ x 1 2 ) + ~ ] u ( x  ) 
zoUtXj=[ 2fl(,~0)2 

takes functions satisfying the variable (i.e. 2) boundary conditions to the fixed 2o boundary conditions. 
The development we give below, can be carried over immediately to this more general case 



92 J. Smoller and A.G. Wasserman 

Next, for k = 1, 2 . . . . .  let 

E k = {(u, }OECk(D n) • ~ :  ~ u ( x ) - f l 2 d u ( x ) / d n  =0, Ixl = 1}, (As) 

and define the projection p: E* ~ ~,. + by 

p (U, 2 )=  ,~. (A9) 

We shall show that E k is a vector bundle over l~ +, whose fiber at 2 is p-  ~ (2). 
Thus, for fixed 2o, let 

F~o = {u~Ck(O"): o~u(x)-- fl 2 o du(x)/dn =0, Ixl = 1}, (A10) 

and for any e > 0, define a map 

S: F~ o x (2o--e, 4o + 5 ) ~ p - 1  [(20-5,  )-0+5] =E* (Al l )  

by 

S(u, ,~)=(2, S~o u). (A12) 

Now S is a vector bundle homomorphism, and for sufficiently small 5>0,  it 
is one-one and onto, so it is an isomorphism. It follows that 

p -  1 [-(20 - e, 20 + e)] ~ F~o x (20 - e, 2o + e), (A13) 

so that p-  1 [ (2o -  e, 20 + 0] is a product, and hence E k is indeed a vector bundle. 
Note too that S~o induces an isomorphism between the spaces F~o and F] if 
12-2o l  is small enough. 

Now for l~Z, 1> 2, consider the operator, M: C--* C g- 2 (D") defined by 

M(u, 2) = A (u + ux) + 22f(u + uz), (A14) 

where {ux: 2~A} is a family of smooth solutions of (A4), (As); thus in particular 

M (0, ,~) = 0. 

Next, for each fixed 2o, and each l~Z, I>2,  for sufficiently small e>0 ,  define 
a mapping 

L: F]o x (4o -- e, 20 + e) --* C I- 2 (D"), 

by 

L(V, 2) = (S~ ~ -~ M(2, S~ o V). (A15) 

Notice that solutions of L = 0 correspond under S in a 1 - 1 manner to solutions 
of M =0.  Indeed, if L(V, 2 )=0  for some (V, 2), then MS(V, 2)=0,  and conversely, 
if M(u, 4)=0,  then as (u, 2)=S(V, 2) for some V~F~o, it follows that L(V, 4)=0. 
Finally, observe that since S~Zo and (Sz~o) - 1 are linear, taking derivatives in the 
V-direction gives 

dL = (S~o)-1 dM(S~o), 
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so that dL and d M  have the same eigenvalues, and corresponding eigenspaces 
and kernels. Thus dL is Fredholm iff d M  is Fredholm, and the CrandaU-Rabin- 

transversality condition, (see IS]), d~2 Z=Xo#0 holds for dL at an eigen- owitz 

value p iff it holds for d M  at p because the eigenvalues are identical. 
It follows from our above remarks that the rest points of the equation 

Vt=L(V, 2), (A16) 

correspond in a one-one way to rest points of the equation 

ut = M(u, 2), (A17) 

where 2 is held fixed in both cases. The equation (A17) corresponds to solutions 
of (A4), (A5). Thus, given any rest point of (AI7), it corresponds to a unique 
rest point of (A16), and the peigenspaces of both are isomorphic. Moreover, 
if �9 is a Lyapunov function for (A16), then tl >t2 implies cb(V(tl))>~(V(t2)), 
so that ~((S~o) -1 u(tO)>~((S~o) -1 u(t2)), and hence ~o(S]o) -1 is a Lyapunov 
function for (Alv). Since the argument is easily seen to work in the other direc- 
tion, we see that (A16) is gradient-like if and only if (A17) is gradient-like. We 
can now state the main theorem in this section. 

Theorem A1. Assume that f satisfies (4.1), and consider radial solutions u(' ,  p) 
of (1.1), (1.2) which lie in the k th nodal class. Suppose that there are points Pl, P2, 
with 4 sl <Pl < p 2 < y  such that the peigenspaces are not isomorphic, P(u( ' ,pO) 
# P(u(', P2)), and 0 is not in the spectrum of the associated linearized operators 
about u(.,p~), i=1 ,2 .  Then for some Po, Pl<Po<P2,  u(' ,po) is a bifurcation 
point. 

Equivalently, we have the following statement. 

Theorem A2. Assume that f satisfies (2.1), and that under the change of scale 
(A3), the radial solutions ua, and uz 2 of (A4), (As) satisfy Pzl# P~2, and 0 does 
not lie in the spectrum of the associated linearized operators about uz,, i= 1, 2. 
Then there is some 2o, 21 < )~o < 22 for which (U~o, 2o) is a bifurcation point. 

We shall only give the proof of Theorem Az. Note first that since the map 
u ~ u+ua does not affect the dimensions of the peigenspaces, we see that we 
may replace problem (A4) , (As) by the problem M(2, u)=0,  where M is defined 
in (A14). We are thus studying bifurcation from the trivial solution u=0 .  In 
these terms the condition Pz, # Pz2 becomes 

P(0, 21)# P(0, 22). (A18) 

Suppose first that ) .2- ) .1<e,  where e is so small that S]~' is invertible. Then 
the rest point solutions (0,20, (0,22) of (A14) also satisfy (A18). Since (Als) 
is defined on a product space, we may apply Theorem 2.1 (see Lemma A3) to 
conclude the existence of a bifurcation point (0, 2o), 21 <2o <22. Now assume 
that 2 2 - 2 1  is not necessarily small. If (0, 2) is not a bifurcation point for each 

4 Recall that T'(p)>O ifp>sl 
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2e [21,22], then (0, 2) is an isolated invariant set for the finite-dimensional equa- 
tions obtained by our Lyapunov-Schmidt reduction in the proof of Theorem 2.1. 
By what we have just shown, the Conley index h~ 2) is locally constant, 
and hence constant on the entire range 21 < 2 < 22. This contradicts h~ 20 
+-h~ 22), and the proof is thus complete. 

To conclude these set of ideas, we must show that (A16) is a gradient-like 
system. 

Lemma A3. The equation (A17), where ueE k and {uz} is a smooth family of 
solutions of (A3), (A4) is a gradient system. In fact, for any fixed 2, if 

�9 (u, 2)= S [�89 dx, 
Ixl-<_l 

where F' =f, then d~u = M(u, 2). 

Proof. For u, weE k, 

dO.(w)= S -2(u+uz) Aw(u+u~)+~wA(u+u~)+22f(u+uz)w dx 
Ixl<=l 

= 

Ixb<-I 

dw 1 $1 +~- 
Ixl= d n  ] 

after integrating twice by parts. But as u + uz and w both satisfy the boundary 
conditions (As), we see that the above boundary integral vanishes. Thus 

dq~,(w) = < M (u, 2), w>, 

and the proof is complete. [] 

Lemma A, .  The equations (e.f (A4), (As)), 

ut=Au+22f(u),  ( x , t ) eO"x~+ 

~u(x, t)- f l2du(x, t) /dn=O, (x , t )eOD"x~+,  

form a gradient system, and if 

F' ~(u)(t)= S [�89 uAu+22F(u)]dx'  ( = f ) '  
Ixl<l 

then d 61), = A u + 22f(u). 
The proof of this result is similar to the last lemma. 
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