| Journal of Intelligent Manufacturing, 14, 599-616, 2003
v © 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

A genetic algorithm-based solution methodology
for modular design

ALI K. KAMRANI' and RICARDO GONZALEZ?

!Department of Industrial Engineering, The University of Houston, Houston, TX 77204, USA
2Manufacturing Systems Engineering Department, The University of Michigan, Dearborn,
MI 48128-1491, USA

Combinatorial optimization problems usually have a finite number of feasible solutions. However,
the process of solving these types of problems can be a very long and tedious task. Moreover, the cost
and time for getting accurate and acceptable results is usually quite large. As the complexity and size
of these problems grow, the current methods for solving problems such as the scheduling problem or
the classification problem have become obsolete, and the need for an efficient method that will
ensure good solutions for these complicated problems has increased. This paper presents a genetic
algorithm (GA)-based method used in the solution of a set of combinatorial optimization problems.
A definition of a combinatorial optimization problem is first given. The definition is followed by an
introduction to genetic algorithms and an explanation of their role in solving combinatorial
optimization problems such as the traveling salesman problem. A heuristic GA is then developed and
used as a tool for solving various combinatorial optimization problems such as the modular design
problem. A modularity case study is used to test and measure the performance of the developed
algorithm.

Keywords: Modular design, similarity coefficients, combinatorial optimizations, genetic algorithms,

heuristic methods

1. Introduction

The family of combinatorial optimization problems is
characterized by having a finite number of feasible
solutions. These problems abound in everyday life,
particularly in engineering design. In principle,
finding the optimal solution for a finite problem
could be done by simple enumeration. However, real
life problems are much more complicated and
enumeration is frequently an impossible technique
to use because the number of feasible solutions can be
enormous.

Modular design is a design technique that can be
used to develop complex products using similar
components. Components used in a modular product
must have features that enable them to be coupled
together to form a complex product. Modular design
can also be viewed as the process of producing units
that perform discrete functions, which will then be

connected together to provide a variety of functions.
Modular design emphasizes the minimization of
interactions between components, which enables
components to be designed and produced indepen-
dently from each other. Each component, designed for
modularity, is supposed to support one or more
functions. When components are structured together
to form a product, they will support a larger or general
function.

Developing a modular product can be classified as a
combinatorial optimization problem as each company
works endlessly for the optimality of their products.
The family of combinatorial optimization problems is
characterized by having a finite number of feasible
solutions. These problems abound in everyday life,
particularly in engineering design. In principle,
finding the optimal solution for a finite problem
could be done by simple enumeration. However, real
life problems are much more complicated and

600

enumeration is frequently an impossible technique to
use because the number of feasible solutions can be
€normous.

Combinatorial optimization problems are derived
from combinatorics, a branch of mathematics con-
cerned with the problem of arranging and selecting
discrete objects. However, as Law (1976) points out,
while combinatorics tries to find if a particular
arrangement of objects exists in a solution set,
combinatorial optimization problems go a step
further, trying to determine if a given arrangement
can be an optimal solution to the problem at hand.
Several methods and algorithms have been used in the
solution of various combinatorial optimization prob-
lems. Sait and Youssef (1999) divided them into two
major categories: exact algorithms, and approxima-
tion algorithms. The first category includes linear
programming methods, dynamic programming,
branch-and-bound, among many others. Linear pro-
gramming approaches formulate the problem at hand
as either a maximization or a minimization of a
certain objective subject to a number of constraints.
Dynamic programming is a search method suitable for
optimization problems whose solution can be
obtained as the result of a sequence of decisions or
steps. Branch-and-bound searches the solution space
tree trying to find the optimal solution to the problem.
Most exact algorithms have the common problem that
in nature, they all are enumerative; a fact that creates a
problem when one tries to solve a real-life problem
that has a lot of constraints and difficulties. These
problems can have a very large number of solutions,
and simply enumerating them and finding the best
one is not efficient and sometimes impossible.
Approximation algorithms are a partial solution to
the problems found with enumeration techniques.
They constitute the second category of algorithms
discussed by Sait and Youssef (1999). Usually known
as heuristic methods, these algorithms give a viable
option when trying to solve very complex problems.
They search only a portion of the solution space
heuristically and find good solutions to a problem
based on a number of constraints. These techniques
are more efficient, as they give solutions ‘‘faster’’
than the enumeration methods discussed before.
However, there is a trade-off in using heuristics
instead of simple enumeration techniques. The trade-
off consists in ‘‘giving up’’ the possibility of getting
an optimal solution in order to achieve acceptable
results in a reasonable amount of time. A third option

Kamrani and Gonzalez

for solving difficult combinatorial optimization
problems are genetic algorithms (GAs). These are in
essence, an extension to the approximation algorithms
just discussed, but unlike those algorithms, GAs
search the solution space more broadly, giving the
user a better chance of getting an optimal solution in
less time than the other two options.

This paper is organized as follows. The following
section provides an introduction to modular design
and its approach to product design. An introduction to
GAs coupled with an explanation of their role in
solving combinatorial problems such as the modular
design problem is then given. A heuristic GA is then
developed and presented in the next section. The
algorithm developed in this paper is capable of
solving various kinds of combinatorial optimization
problems, but an emphasis is given to the modular
design problem. Finally, a case study is presented to
show how the heuristic GA developed in the previous
section works. The results of this experiment are then
discussed and a series of conclusions are presented to
emphasize the benefits and drawbacks of using GAs in
various optimization problems.

2. Design for modularity (DFMo)

The concept of modularity can provide the necessary
foundation for organizations to design products that
can respond rapidly to market needs and allow the
changes in product design to happen in a cost-
effective manner. Modularity can be applied to the
design processes to build modular products and
modular manufacturing processes. According to
Salhieh et al. (1999) and Shirly (1992), modular
products are products that fulfill various overall
functions through the combination of distinct building
blocks or modules, in the sense that the overall
function performed by the product can be divided into
sub-functions that can be implemented by different
modules or components. Using the concept of
modularity in product design focuses on decomposing
the overall design problem into functionally indepen-
dent sub-problems, in which interaction or inter-
dependence between sub-problems is minimized.
Thus, a change in the solution of one problem may
lead to a minor modification in other problems, or it
may have no effect on other sub-problems. That is, the
modular design concept attempts to establish a design
decomposition technique that reduces the interaction

A genetic algorithm-based solution methodology for modular design

between design components (or modules) to reduce
the complexity and development time of a product.
Kamrani and Salhiech (2000) introduced a new
methodology for design for modularity (DFMo).
The roadmap of this methodology is shown in Fig. 1.

2.1. DFMo approach to product design

To ensure that the voice of the customer is
incorporated in the design process, the concept of
DFMo has been extended to include the voice of
customer in the needs analysis phase. This was
facilitated by utilizing the concepts of Kano’s model
(Kano et al., 1984) and quality function deployment
(QFD) (Shillito, 1994) as shown in Fig. 2.

2.2. Needs analysis

Several sources of information can be used to identify
the needs. Such sources include potential customers,
the company for which the design is being made, the

601

competition, and any authorities that can impose
restrictions on the product (standards, safety, etc.).
Information collected from the customer are analyzed
and organized according to Kano’s model as
following:

® FExpected requirements: These are the basic
requirements that customers expect to exist
self-evidently. These requirements are satisfied
through basic product/service characteristics.

e Unspoken requirements: These are product
features that customers do not talk about and,
though silent, are important and cannot be
ignored.

® Spoken requirements: These are specific pro-
duct/service features customers say they want in
a product.

® Unexpected requirements: These are unspoken
features of a product that make the product
unique and distinguish it from the competition.

Existing product(s) are then decomposed into sub-

Simplification of
product structure

More economic
malterials, processes
and machines

Design concept i
(re)formulation >
; imizati e
Design for Optimization models
? —P and sub-system
modularity (DFMo) E ﬂ‘n ra:ltir;'rn
gene
Design for
assembly (DFA) -
= | |
; : Selection of material | Knowledge-based
= I and primary process D : engineering and
'or near net shape ecision trees
2 for near net shaj | decision tr
= I I
=] | | |
g : Feasible/optimum :
‘B | sesign concept F i
2 | [
| |
| . |
| Design for |
| manufacture |
[M|
T A |
Template-based Decision trees and
process planning group technology
Optimization models
Modular ; :
. : and manufacturing
manufacturing cells ells seneration
cells gener:

Fig. 1. Design for modularity life cycle.

Product decomposition

© Product features/metrics 2 needs analysis
Market info. \
L 1

Kamrani and Gonzalez

Step I:

Recognized

Product info.

Company info. Customer

req uirements|

need statement

-
Step 111: Concept analysis :
1
1

Functional) Product concept
decomposition

Physical e
.-

-
____________________ — * _~Impact
o

Voice of the customer | |

Product Operational functiona

concept

objectives

General functional

Requirements {weights)

analysis

Step II:
Requirements analysis

S!Sf"m I'_“'EI Similarity Similarity
specifications index matrix

Modules
or
sub-systems

Step IV:
Concept integration

Optimization
model

(e e e ——-————

Fig. 2. QFD/DFMo integrated product design.

systems and/or sub-assemblies (physical elements) in
order to identify the features. These physical elements
are described using metrics or product features.
Metrics describe the physical characteristics of the
product or component that allow the product to fulfill
its’ function. Metrics form the basis of the design
effort as design teams try to assign values to metrics
and ensure that the product functionality and
requirements has not been violated. It is important
to identify the metrics in a manner that will allow the
designer the freedom to be creative and the flexibility
to choose among different design approaches. The
house of quality is used for further analysis of the
requirements and specifications.

2.3. Requirement analysis

Functional objectives (FOs) are an abstraction of the
product function required to satisfy customer needs.
FOs can be thought of as the basic operations or
transformations that must be performed by the system
to satisfy customers’ primary needs. FOs are often

e om o e g e e) e i

somewhat general, but they should always employ
action phrases such as ‘‘to transform’’, ‘‘to support’’,
or ‘‘to lift’’. Operational functional requirements
(OFRs) are detailed and specific information repre-
senting a set of constraints that the design must
possess in order to satisfy the product intended
function. OFRs are usually presented in the form of
ranges. General functional requirements (GFRs) are
the criteria set by the designer, based on the needs
analysis, to evaluate the resulting design. FRS is those
requirements that satisfy the customers’ secondary
needs, which could form a critical factor for the
customer when comparing different competitive
products that accomplish the same function. Several
GFRs may exist for a product, some are more
important than others, therefore different weights
should be assigned to different requirements.
Customer needs are considered an essential factor in
weight assignment. Using a benchmarking study of
competitive products could make weight assignment.
Alternatively, it could be an input of the design team
based on previous knowledge of the importance of
such requirements.

A genetic algorithm-based solution methodology for modular design 603

2.4. Product concept analysis

Product/concept analysis is the decomposition of the
product into its basic functional and physical
elements. These elements must be capable of
achieving the product’s functions. Functional ele-
ments are defined as the individual operations and
transformations that contribute to the overall perfor-
mance of the product. Physical elements are defined
as the parts, components, and subassemblies that
ultimately implement the product’s function. Product
concept analysis consists of product physical decom-
position and product functional decomposition. In
product physical decomposition, the product is
decomposed into its basic physical components
which, when assembled together, will accomplish
the product function. Physical decomposition should
result in the identification of basic components that
must be designed or selected to perform the product
function. Product functional decomposition describes
the products overall functions and identifies compo-
nents functions. Also, the interfaces between
functional components are identified.

2.5. Product/concept integration

System level specifications (SLS) are the one-to-one
relationship between components with respect to their
functional and physical characteristics. Functional
characteristics are a result of the operations and
transformations that components perform in order to
contribute to the overall performance of the product.
Physical characteristics are a result of the compo-
nents’ arrangements, assemblies, and geometry that
implement the product function. Physical and func-
tional characteristics, forming the SLS, are arranged
into a hierarchy of descriptions that begins by the
component at the top level and ends with the detailed
descriptions at the bottom level. Bottom level
descriptions (detailed descriptions) are used to
determine the relationships between components, 1
if the relationship exists and 0 otherwise. This binary
relationship between components is arranged in a
vector form, ‘‘system level specifications vector’’
(SLSV). Figure 3 illustrates the hierarchy structure of
the physical and functional characteristics.

SLS identified in the previous step affects the GFRs
in the sense that some specifications may help satisfy
some GFRs, while other specifications might prevent
the implementation of some desired GFRs. The

impact of the SLS on GFR’s should be clearly
identified which will help in developing products
that will meet, up to a satisfactory degree, the GFRs
stated earlier. The impact will be determined based
on, (—1: Negative Impact, 0: No Impact, +1:
Positive Impact).

The degree of association between components
should be measured and used in grouping components
into modules. This can be done by incorporating the
GFR weights; in addition to the SLSV and their
impacts on the GFRs to provide an associativity
measure between components. The general form of
the associativity measure is as follows,

SLSV (CI1 and C2) SLS and FRs
1 RN bl‘,m
0
(S) Il — (1 0 a,)l,\'n *
bn,l bnﬁm nxm
Weights for FRs
1
0.9
*
Cmxl mxl1

The associativity measures associated with compo-
nents are arranged in a component vs. component
matrix.

3. Genetic algorithms

Many combinatorial optimization problems from the
manufacturing systems world are very complex and
hard to solve using conventional optimization
techniques. As it has been suggested, enumeration
techniques are usually obsolete if a problem is
extremely big. Since real life problems are in most
cases enormous, new techniques have to be developed
and used to solve these large and difficult problems.
Many algorithms have been proposed since the
development of the approximation techniques men-
tioned in the introduction. These techniques include
simulated annealing, tabu search, and GAs. The rapid
development of computer science, along with the
rapid development of artificial intelligence techniques
has created a great interest among engineers in

604

Kamrani and Gonzalez

Component level Component

Characteristic (A)

e.g. physical

Characteristics

Description 1 Description n

I

Characteristic (n)

e.g. functional

Description of I_I_I
characteristics

Description 1 Description n

| o e m——

Description 1,1| |Description 1,2] | Description 0| |Description n,n| |Description 1,1] [Description 1,n

1.0 1.0 1.0

Fig. 3. System level specification decomposition hierarchy.

imitating living beings to solve those kinds of difficult
problems. Michalewicz (1992) explained that the
simulation of the natural evolutionary process of
human beings results in stochastic optimization
techniques called evolutionary algorithms. The idea
is that by simulating the thought process that the
human uses to solve difficult problems, the algorithm
will be able to solve the same kind of problems.
Moreover, and unlike the normal local search
algorithm, evolutionary algorithms (and more speci-
fically GAs) will try to take into account a wider range
of possible solutions, which will then in turn reduce
the probability of not finding an optimal solution to a
given combinatorial problem.

Holland (1975), one of the pioneers in the area of
evolutionary algorithms, stated that GAs are sto-
chastic search techniques based on the mechanism of
natural selection and natural genetics. They start with
a set of random solutions called population. Each
individual or solution in the population is called a
chromosome. As Goldberg (1989) explained, a
chromosome is a string of symbols (usually, a
binary bit string), which represents a solution to the
problem being solved and discussed. The initial
population has to be determined by the user. Each
combinatorial optimization problem is different, so
special attention has to be given to the definition of a
solution. Solutions can be represented as binary bit
strings, number strings, word strings, among many
other options. However, if a representation does not
accurately represent what the solution actually means,
the algorithm will perform poorly, and no useful

1,0 1,0 1.0

information will be obtained. In essence, the
algorithm will search for an optimal solution in an
inaccurate solution space.

Chromosomes evolve via successive iterations
called generations. During each iteration, the chromo-
somes are evaluated using a fitness function that will
eventually decide if a chromosome passes to the next
generation or dies. After an iteration of the algorithm,
a new generation is created with new chromosomes
called offspring. They are formed by either merging
two chromosomes from the current generation using
the crossover operation or by modifying a single
chromosome using the mutation operation. The new
generation is then formed by selecting some of the
chromosomes according to their fitness value and by
rejecting others that do not qualify as valuable
individuals. Fitter chromosomes are more likely to
live longer. In essence, they have a higher probability
of survival. According to Holland (1975), after a few
runs (a few generations) the algorithm should
converge to the best chromosome, which hopefully,
represents the optimal solution to the problem.
However, as many researchers have emphasized,
this solution may not be the optimal one. This is due
to the fact that the algorithm may be ‘‘lost’’ in an area
that does not have the best feasible solution and/or the
initial solution given by the user does not accurately
represent a possible solution to the problem at hand.
Figure 4 illustrates the basic process of a GA. In this
case, the original population is composed of four
individuals, which are divided into two groups,
forming two pairs of ‘‘parents.’”’ Parents experience

A genetic algorithm-based solution methodology for modular design 605

Original population !

Crossover

! : i |
LefefofJofrfe]efo] [e]ofofofufu]ufo] [ufrfofofofuufifr]y
|I|U|G|t)|0|l|l|l|+|I|{l|0§t)|(l|l|l|l| |||::|u|u‘|“1.|-1|1|n||l
o]]i]1]o]Jo]1]o] :) I
EERETTTEE] A|u||||[|i](i]u[|[u| |i[|]|||[|]||n|0|:
[oJoJol 1 T1JoJo] [o]oJoltJofo]1]0]
! |
' Mutalion* |
Fitness Function - |
(e.z. Number of “1"'s . o, SieOEE
in the chromosome) 6 [t [1 [o ot |:'|'|'|
|:>, 4 [1JoJoJo TiTiTo]
s ol]o]o]
2 fofofoli]ololi]o]
< Population
good enough?
Terminate 6 |I[l[ﬂ|0[||l[ll I| Reproduce
6 (1] ifofol][]0
s Jol]t 1]olo]
4 [fofofof Jififo]

Fig. 4. Basic structure of a GA.

crossover (in this case, single-point crossover which
will be explained later) and become new chromo-
somes (called offsprings). After crossover, one of the
chromosomes undergoes mutation (one of its attri-
butes changes from 0 to 1).

When the crossover and mutation operations have
done their job, a fitness function is applied to the
chromosomes to determine the fitness of each
individual. In this case, the number of ones on a
chromosome determines the fitness value. The usage
of these values determines which chromosomes will
survive and which chromosomes will die. In this case,
the inferior individual (the one that has a fitness of 2)
is eliminated from the population and the superior
individual (the one with fitness 6) is duplicated. This
new population is then tested. If the population is not
good enough, another generation will be created and
the process is then repeated until a good population is
found (in essence, the creation of new generations
mimics the evolutionary process). At this point, an
optimal solution is found and no more iterations are

needed, so the process is terminated. Holland
described the basic structure of a genetic algorithm
in 1975. This structure follows the same basic process
shown in Fig. 4. The crossover operation used by
Holland (1975) was the single-point approach, and the
selection probability of chromosomes for reproduc-
tion is determined by the chromosome’s fitness value.
Based on Holland’s algorithm, Obitko (1998) sum-
marized the algorithm in his work. The algorithm
shown below is highly adaptive, and many combina-
torial optimization problems can and have been
solved using this basic outline:

Procedure: Genetic Algorithm

(1) [Initialization] Generate random population of
n chromosomes.

(2) [Evaluation] Evaluate the fitness f(x) of each
chromosome x in the population.

(3) [New population] Create a new population by
repeating the following steps until the new population
is complete:

606

o [Selection] Select two parent chromosomes
from a population according to their fitness
(the better fitness, the bigger chance to be
selected).

e [Crossover] Given a crossover probability,
crossover the parents to form new offspring.
If no crossover is performed, offspring is an
exact copy of parents.

® [Mutation] With a mutation probability,
mutate new offspring at given positions in a
chromosome.

® [Accepting] Place new offspring in a new
population.

(4) [Replace] Use new generated population for a
further run of algorithm (new generation).

(5) [Test] If the end condition is satisfied (usually,
required fitness value is obtained), STOP, and return
the best solution in current population.

(6) [Loop] Otherwise go to step 2 (a new
generation will be created).

For combinatorial optimization problems, the
evaluation process needs to be carefully defined.
The performance of the fitness function is crucial for
the algorithm’s performance. If the evaluation
technique is too general, the algorithm may never
reach an optimal solution because the fitness function
will not measure the chromosomes properly. On the
other hand, if the process is too strict, the algorithm
will be unable to find any kind of optimal solution. It
will just run forever trying to satisfy some impossible
conditions. This may be very costly if one takes into
account the cost associated with the use of GAs in
combinatorial optimization problems.

The three most important steps in a GA will now be
presented. These steps, coupled with the initialization
and evaluation of the solutions, give GAs an edge in
the solution of hard combinatorial optimization
problems. They introduce new information that
would not be otherwise searched and inspected by
regular optimization methods, a benefit that can prove
vital in the use of GAs as plausible optimization
techniques.

3.1. Genetic and evolution operations

The initialization and evaluation processes are very
important in the performance of a GA during the
solution of a combinatorial optimization problem.
However, the three steps that really measure the

Kamrani and Gonzalez

algorithm’s performance are the crossover and
mutation steps, and the selection step. These three
steps can be divided into two kinds of operations that
are performed within any GA:

(1) Genetic operations: crossover and mutation.
(2) Evolution operation: selection.

The genetic operations mimic the process of
heredity of genes to create new offspring at each
generation, while the evolution operation mimics the
process of Darwinian evolution to create populations
from generation to generation. Both operations
introduce a wide range of possibilities to the problem
being studied. By mixing and mutating existing
chromosomes in the solution space, the algorithm
explores solutions to the combinatorial problem that
would never be explored by a regular optimization
technique.

3.1.1. Crossover

Crossover may be the most important operation
performed by a GA for the solution of a combinatorial
optimization problem. It usually operates on two
chromosomes at a time and generates offspring by
combining them. A cut-point is randomly chosen and
the segments are combined to create two new
chromosomes. Cheng and Gen (1997) explained that
the cut point could be one or many. If the crossover
operation follows a one cut-point approach, then both
chromosomes are mixed together: the ‘‘head’’ of one
is paired with the “‘tail’’ of the other one and so, two
new chromosomes are created (check by looking back
at Fig. 4). If there is more than one cut point the new
chromosome will be an intercalated version of both
parents. The single-point crossover approach was first
denominated by Holland et al. (1986) as the canonical
approach. In the traveling salesman problem (TSP),
this approach may lead to solutions that do not include
some cities, or that may repeat several cities. This is
highly undesirable, as these solutions cannot be
accepted. Cheng and Gen (1997) embedded a
repairing procedure in their algorithm to resolve this
problem. However, the canonical approach is blind, a
characteristic that may be very costly in terms of the
repair procedure and the time it will take for the
algorithm to find a solution to the combinatorial
optimization problem (and more specifically to the
TSP). The second approach, called the heuristic
approach is a very problem dependant approach as
different heuristics can be used depending on the

A genetic algorithm-based solution methodology for modular design 607

combinatorial optimization problem being studied.
Many authors however, have used the Heuristic
crossover method presented by Grefenstette (1987)
for solving the TSP problem. This approach follows
the nearest neighbor heuristic for finding the best path
from one place to another. Crossover may be the most
important feature in a genetic algorithm. The
performance of the algorithm is closely related with
the performance of the crossover operation. A very
critical characteristic of the crossover operation is the
crossover rate, which controls the number of
chromosomes that undergo the crossover operation.
This rate should be carefully defined so that an
optimal solution can be found in a reasonable amount
of time. A high crossover rate allows a more deep
exploration of the solution space and reduces the
chances of settling for a false optimum; but if the rate
is too high, the result is wastage of computation time
in exploring bad regions of the solution space. In the
sample shown at the end of the section the crossover
rate used is 0.60, meaning that about 60% of the
chromosomes experience crossover.

3.1.2. Mutation

Mutation is an operation that produces spontaneous
random changes in some chromosomes. It serves one
of two roles: replacing genes lost from the population
during the selection process (so that they can be tried
in a new context), or providing the genes that were not
present in the initial population. There are two basic
ways of doing mutation. They are bit flipping and
random assignment. In bit flipping, bits in a
chromosome are changed with a certain probability.
Random assignment assigns zeros or ones at random
within the chromosome disregarding the values that
were already there. As for the crossover operation, a
mutation rate has to be carefully defined for each
problem. This mutation rate is defined as a percentage
of the total number of genes in the population. This
rate controls the pace at which new genes are
introduced into the population for trial. If the rate is
too low, many useful genes will never be tried out; but
if the rate is too high, there will be much random
perturbation and the offspring will start losing their
resemblance to the parents. In the experiment
performed at the end of the section the mutation rate
used is 0.15, meaning that about 15% of the total
number of genes will experience mutation.

3.1.3. Selection

The principle behind GAs, as it was mentioned earlier,
is Darwinian natural selection. Selection deals with
the problem of selecting the ‘‘valuable’’ individuals
or chromosomes that will survive and pass to the next
generation. Selection is the driving force in any
genetic algorithm, and thus, selection pressure is
critical on the performance of a GA in the solution of a
combinatorial optimization problem. Michalewicz
(1992) stated that usually, low-selection pressure is
indicated at the start of the GA search in favor of a
wide exploration of the search space, while high-
selection pressure is recommended at the end in order
to exploit the most promising regions in the search
space. The selection procedure may create a new
population for the next generation based on all parents
and offspring or only on part of them. Selection may
replace parent chromosomes by their offspring. Cheng
and Gen (1997) explained that when all parents are
replaced by their offspring, a generational replace-
ment has taken place. This occurrence is not
recommended and is highly undesirable, as GAs are
blind in nature and so, offspring chromosomes may be
worst than their parents. This would lead the GA to
some unwanted places when looking for an optimal
solution. Over the past few years, some solutions have
been suggested to overcome the problem of experien-
cing a generational replacement during the solution of
a combinatorial optimization problem. Holland
(1975) gave a first suggestion that involved a
random selection of a parent whenever an offspring
was born. This chosen parent was then replaced by the
offspring that was just created. De Jong (1975)
suggested another solution to the generational
replacement problem. It is called the crowding
strategy, which selects the parent to be replaced
depending on its similarities with the just created
offspring (the most similar parent dies and gives space
for the new offspring). The selection of chromosomes
is not completely determined by their fitness values.
One advantage that GAs bring to the solution of
various combinatorial optimization problems is the
fact that they search the solution space more broadly,
meaning that apparently ‘‘weak’’ solutions are not
disregarded right away, as they may lead the
algorithm to good final solutions. Holland (1975)
proposed the most common method for the selection
of chromosomes that pass from generation to
generation. It is called the roulette wheel selection

608

method, the most recognized method for selection
among stochastic techniques. The roulette wheel
selection method determines the selection probability
for each chromosome by proportionally assigning a
portion of the roulette to a chromosome depending on
its fitness value. After all probabilities have been
found, a roulette with the values is created. The
selection process is then started by ‘‘spinning’’ the
wheel as many times as required until a full
population is selected. The probability that a
chromosome will be chosen for survival is directly
related to its fitness value, as chromosomes with
higher fitness values occupy most of the roulette. In
essence, chromosomes with high fitness values will be
selected more times from this ‘‘biased’’ roulette.

4. A heuristic-based GA method

Throughout this work, the need of developing an
efficient algorithm that will produce acceptable
answers for a wide variety of combinatorial optimiza-
tion problems has been stressed. In this section, an
efficient heuristic GA is developed to solve various
instances of the diagnosis problem, more specifically,
of the modular design problem. The heuristic
algorithm developed in this paper can be used to
solve a vast variety of combinatorial optimization
problems, as the differences among these problems lie
only on the chromosome representation of the
answers. The objective of the problem can be different
as well, but a few modifications to the algorithm
would have to be made. These changes however,
would not affect the actual heuristic algorithm. They
would only affect the complexity of the developed
user interface for the problem. The objective of the
problem in this paper is to maximize the sum of all the
similarities between components, so that they can be
grouped together to form a modular product. The
heuristic developed in this paper, as well as many
other heuristic GAs (Chu and Tsai, 1998; Venugopal
and Narendran, 1992, among many others), try to give
good solutions to hard combinatorial optimization
problems that are too difficult or impossible to solve
with conventional solving methods.

4.1. Overview of the heuristic GA

Developing a heuristic GA involves various steps.
The proposed algorithm developed for this paper

Kamrani and Gonzalez

follows a total of 10 steps that can be divided into four
basic points:

e [nitialization:

1. Define the chromosomes and their repre-
sentation.

2. Determine the population size, crossover
probability, and mutation probability.

3. Generate initial population of solutions that
satisfy the problem constraints.

® Reproduction:

4. Compute the fitness value of each chromo-
some.

5. Calculate the total fitness of the population.

6. Find the reproduction probability for each
chromosome.

7. Calculate the cumulative reproduction prob-
ability for each chromosome.

8. Choose the best chromosomes for the next
generation.

e Crossover:

9. Do crossover on the selected chromosomes
based on a crossover probability defined in
the initialization procedure.

® Mutation:
10. Perform mutation on the chromosomes
based on a mutation probability defined in
the initialization procedure.

This list gives a basic outline of the various steps
one has to follow in order to develop an efficient
heuristic GA. As the objectives and the nature of each
problem is different, one has to pay close attention to
each of the 11 steps to develop clever heuristics that
will enhance the performance and the usability of the
algorithm. This work closely studies each step,
developing and proposing different methods that
improve the usability of the GA developed for this

paper.

4.1.1. The chromosomal representation

As it is discussed by Chu and Tsai (1998), the first step
in the implementation of a heuristic algorithm
involves the representation of the problem to be
solved with a finite-length string called chromosome.
As it has been explained before, each element of the
chromosome (each gene) represents a decision
variable, feature, or parameter of the problem. The
chromosome representation involves two related
decisions. The first decision has to do with the
problem of finding an effective way of encoding the

A genetic algorithm-based solution methodology for modular design 609

problem in terms of a string chromosome. This
decision can lead to the determination of the size
of each chromosome, which is completely depen-
dent on the nature of the problem. The second
decision involves the selection of a string format
for each gene in the chromosome. The value of a
gene can be either a binary number or an integer.
The binary format, which is the genetic one, has
been widely used by many researchers. Among
them, Karr and Gentry (1993), Cooper and Vidal
(1993), and Epsy et al. (1992), developed different
genetic algorithms for fuzzy control problems using
the binary format. Austin (1990) used the same
format for neural network applications that solved
the XOR problem. Maniezzo (1994) studied the
topology and weight distribution of neural networks
using binary genes.

The integer format (used in this work) is domain-
specific, and has been widely used by many
researchers in the areas of facility layout, TSPs,
scheduling, among many other problems. Chan and
Tansri (1994) studied the crossover operator using
integer format genes and chromosomes. Tam (1992)
used this format to solve various facility layout
problems. Biegel and Davern (1990) analyzed the job-
shop scheduling problem using the same kind of
genes. For the problem that will be presented in the
next section, the integer format is used. Each gene will
have an integer value, which will represent the
classification of components into groups depending
on their similarities. Encoding for this problem is
done as follows: the chromosome strings consist of #
integer genes, each of which represent a component in
the family of components (1,...,n). Each value in a
chromosome stands for the group number to which a
component is assigned. For example, if there are 10
components to be divided into three groups, then the
chromosome can be represented as (1, 1, 3, 2, 1, 2, 2,
3, 3, 3). Here, this chromosome indicates that group
1 has components 1, 2, and 5; group 2 has components
4, 6, and 7; and group 3 has components 3, 8, 9, and
10. The size of the chromosome depends only on the
size of the matrix being studied, so if a problem has 20
components, the size of the chromosome will be 20
(20 genes). Also, since the similarities between
components can and will be different, the integer
value of each gene is allowed to be any number
between 1 and the number of components being
grouped (n), which will basically mean that any group
from 1 to n could be selected in the process.

4.1.2. Determination of systems parameters

Some parameters, including population size, maxi-
mum number of generations, and the probability of
crossover and mutation, should be decided before the
algorithm starts to find a solution. These parameters
are very sensitive to the computational performance
of the algorithm, and although Holland (1975),
Goldberg (1989), and Grefenstette (1986) have all
proposed some standard values for these parameters,
it is usually with extensive experimentation that these
parameters are best set. The population size directly
affects the computation time of the algorithm, as
having a large population size will mean that the
algorithm will have to perform more calculations. A
default population size of 20 chromosomes is set. It is
important to note that a higher population size will
give the algorithm a higher chance of success, as the
solution space searched will be larger. However, if
good solutions are required in a reasonable amount of
time, the population size should be smaller. This will
allow the algorithm to quickly find a good solution to
the problem being studied. The crossover probability
is set to be 0.65. This basically means that about 65%
of the chromosomes in each generation will experi-
ence crossover. If the crossover probability is set to
100%, then all offspring will be created by crossover.
If it is 0%, the whole new generation will be made
from exact copies of chromosomes from old popula-
tions. Crossover is made in hope that new
chromosomes will have good parts of old chromo-
somes and maybe the new chromosomes will be
better. However, it is always good to allow some
chromosomes to survive without change in the next
generation, an occurrence called elitism. The muta-
tion probability is set to be 0.20. This means that
about 20% of the genes in a population will
experience mutation. If the mutation probability is
set to a 100%, all the chromosome will be changed, on
the other hand, if it is set to 0%, nothing will change.
Mutation occurs to prevent falling into local optima,
but it should not occur very often, as the GA will
become just a random search method. The number of
generations is directly affected by the performance of
the algorithm. A maximum number of generations can
be set, but the algorithm will usually find a solution to
the problem before this number is ever reached. This
means that many extra computations will be
performed after the algorithm has already found a
solution. The heuristic algorithm developed examines

610

the fitness of each population, and stops whenever the
global fitness cannot be greater than what it already is.
This means that the algorithm has found an optimal
solution, at which point, the solution is given to the
user while the algorithm starts another run to
investigate the grouping of components with a
different number of groups.

4.1.3. Generation of initial populations

After the problem is represented, a set of initial
solutions (chromosomes) called population has to be
determined. This first population will represent the
first generation, which will then evolve until a good
solution to the problem being studied is found. In
order to obtain feasible solutions, each chromosome
has to satisfy the problem constraints. Chu and Tsai
(1998) proposed the replacement policy as a way of
making sure that the chromosomes created for the first
generation (and for further generations as well) were
valid. Validity can be asserted in many ways, but one
easy method checks the problem constraints given by
the problem with each created chromosome. Chu and
Tsai (1998) discussed two different methods that have
been widely used and that are part of their
replacement policy. The first method is called the
variable restriction method, which only chooses the
chromosomes that meet the feasible region of
constraints. The second method is called the penalty
function method, which allows chromosomes to
violate the constraints by giving them a penalty,
which will then in turn lower their probability of
survival to zero.

In this work, a modification of the variable
restriction method is utilized. A random number
generator creates the initial population by randomly
generating numbers between 1 and n (where n is the
size of the chromosome). After each chromosome is
created, the algorithm checks which groups were
created, and with that information, the algorithm
checks the validity of the chromosome by comparing
it with the specified problem constraints. If the
chromosome is valid, no changes are made, but if it
violates one of the constraints specified in the
problem, the necessary changes are made to ensure
the wvalidity of the chromosome. Due to the
chromosomal representation chosen for the problem,
the only problem that can occur is the assignment of
components to groups that have not been created. That
problem is easily resolved by creating the groups that
are represented within the chromosome. For example,

Kamrani and Gonzalez

if the groups selected are 2, 5, and 8, and the
chromosome is (5, 2, 8, 8, 2, 5, 5, 8, 2, 2), one has to
make sure that position 2 in the chromosome has a 2,
position 5 in the chromosome has a 5, and position 8
in the chromosome has an 8. In this case, the
chromosome would not be valid, and the algorithm
would change the fifth position value froma2toa5 to
make the chromosome a valid one. This modification
of the variable restriction method is used after each
population is created, so that only valid chromosomes
are studied and manipulated.

4.1.4. Selection and use of the fitness function

In order to find better solutions, a fitness function is
needed for evaluating and selecting good generations
of chromosomes. The fitness function should give
domain-specific information about the value of each
chromosome. For this reason, it is usually a good idea
to define it in the form of a mathematical formulation,
either a maximization or a minimization of some
parameters and constraints.

In the case of this heuristic GA, the objective
function of the p-median model is selected as the
fitness function. Each chromosome, created by either
the initialization of the GA, or by the creation of a new
generation, will have a fitness value. Since the
objective of this model is to maximize the sum of
the similarities, the fitness values are continuously
increasing, until an optimal solution is found. Once
the fitness function is defined and used for the first
time (after the first generation of chromosomes are
created), the algorithm starts the selection and
reproduction process (steps 5-8). Using the fitness
values of each chromosome, the roulette wheel
selection process that was explained in the previous
section begins by finding the total fitness of the
population (step 5). Then, and using the roulette
principles, a reproduction probability is assigned to
each chromosome (based on their fitness values), and
the roulette is filled using the respective cumulative
probabilities of each chromosome (steps 6 and 7).
Since the space on the wheel is totally dependent on
the fitness value of each chromosome, fitter chromo-
somes will have a larger space in this bias roulette,
increasing their chances of survival. The algorithm
then randomly generates a number between 0 and 1,
and a chromosome is chosen as a parent based on that
random number and the cumulative reproduction
probability that was calculated in step 7.

In the previous subsection, a case for keeping the

A genetic algorithm-based solution methodology for modular design 611

best chromosomes in the new generation was made.
This is called elitism, and the heuristic developed for
this paper accounts for that occurrence. First, the best
three chromosomes of each population are reproduced
and chosen as part of the next generation of
chromosomes. However, there is still a chance that
either crossover and/or mutation will modify the
chromosomes. As it will be explained in the next
subsections, the best chromosome will be passed on
from generation to generation, as a way of ensuring
the algorithm’s success. At the end of the reproduc-
tion cycle, the new group of chromosomes is ready for
crossover and mutation. The new chromosomes are
the basis of a new generation; a generation that will be
altered by crossover and mutation, and that will be
examined after the two genetic operators have done
their part in introducing new areas of unvisited
solution space to the problem.

4.1.5. Crossover

After the better-fitted chromosomes are selected, each
pair of chromosomes is selected sequentially to
exchange information according to the crossover
probability previously determined. A random
number is generated, and if the number lies below
the crossover probability, crossover is performed. A
mode of single-point crossover is used in this
heuristic; a mode for which the cut point for doing
crossover is randomly selected at each instance. All
but one chromosome are subject to crossover. After
reproduction gives a new generation of chromosomes,
the best chromosome is assured to be a part of the next
generation unchanged, as it is always a good idea to
keep the best solution within a population. Elitism
ensures that the best chromosome will not suffer
crossover and/or mutation. The algorithm will also
benefit from elitism, as it will have a better chance of
finding good solutions to the problem without losing
the best solution found so far.

After the crossover cycle is over, and all
chromosomes have been exposed to crossover, the
new generation is subjected to mutation. A crossover
cycle is over whenever each pair of sequential
chromosomes have either experienced crossover
(because their probability of crossover fell within
the 65%), or have been passed without change
because their probabilities fell outside the crossover
probability. Note that if a pair of chromosomes
experience crossover, the next chromosomes to be
sequentially selected will not include any of these two

chromosomes, as it is not desired to double-crossover
a single chromosome.

4.1.6. Mutation

After crossover changes the chromosomes in the new
population, mutation in each chromosome occurs
according to some previously set mutation prob-
ability, which in this case is set to 20%. The mutation
operator occasionally alters genes within a chromo-
some by changing the value of a single gene within a
chromosome. The heuristic GA in this case alters the
genes based on the mutation probability as well as on
the groups or modules that have already been selected
for each chromosome. This ensures that new
chromosomes will be explored, and thus, the solution
space will be broader. It is important to note that the
changes due to mutation lie within the groups selected
for each chromosome. In essence, this means that
once a gene is randomly selected for mutation, the
change will only occur within the number of groups
being used. This ensures that the number of groups
within a population will not increase, as this is a
highly undesirable occurrence when the algorithm is
studying a number of groups. Once all chromosomes
are subjected to mutation (except the best one), the
new generation of chromosomes is set. The new run
will not require an initialization procedure, as the
generation that just experienced reproduction, cross-
over, and mutation, acts as the new generation.
However, another mode of mutation is introduced at
this point, as the chromosomes of this new generation
are subjected to a validity check. An illegal
chromosome should never be passed to the next
generation (replacement policy), and so, the required
changes to each chromosome are made in order to
ensure their validity.

The next section uses the developed GA to solve a
modular design problem. As it will be shown in the
next section, the algorithm is very efficient and
performs well in the solution of this problem, giving
the user fast and good solutions to the problem at
hand.

5. Case study: A classification problem

In order to be able to group components into families a
similarity matrix between components has to be
defined. Using the similarity matrices developed by
Kamrani and Salhieh (2000), the GA will group the

612

Table 1. Similarity matrix for modular design

Kamrani and Gonzalez

SS1C1 SS1C2 SS1C3 SS1C4 SS2C1 SS2C2 SS2C3 SS3C1 SS3C2 SS3C3 SS3C4 SS3C5 SS3C6 SS4C1 SS4C2 SS4C3 SS4C4

SS1C1 6 2 2 5 2 2 1 1 2 2 2 2 5 2 2 2
SS1C2 6 1 2 2 5 2 2 2 1 1 2 2 2 5 2 3
SS1C3 2 1 1 2 5 2 2 2 1 1 2 2 2 2 5 2
SS1C4 2 2 1 2 2 5 2 2 2 2 4 4 2 2 2 5
SS2C1 5 2 2 2 2 2 4 4 2 2 2 2 5 2 2 2
SS2C2 2 5 5 2 2 2 2 2 4 4 2 2 2 5 5 2
SS2C3 2 2 2 5 2 2 2 2 2 2 4 4 2 2 2 5
SS3C1 1 2 2 2 4 2 2 1 2 2 2 2 1 2 2 2
SS3C2 1 2 2 2 4 2 2 1 2 2 2 2 1 2 2 2
SS3C3 2 1 1 2 2 4 2 2 2 1 2 2 2 1 1 2
SS3C4 2 1 1 2 2 4 2 2 2 1 2 2 2 1 1 2
SS3Cs5 2 2 2 4 2 2 4 2 2 2 2 1 2 2 2 1
SS3C6 2 2 2 4 2 2 4 2 2 2 2 1 2 2 2 1
SS4C1 5 2 2 2 5 2 2 1 1 2 2 2 2 2 2 2
SS4C2 2 5 2 2 2 5 2 2 2 1 1 2 2 2 1 2
SS4C3 2 2 5 2 2 5 2 2 2 1 1 2 2 2 1 2
S5S4C4 2 3 2 5 2 2 5 2 2 2 2 1 1 2 2 2
components of a speed reducer in order to achieve an —_— Total fitness per generation (1 group)
optimal modular design. From there, the engineer will =

have the tools to develop a modular facility for the 1000

production of the product being studied, which will in 2 200 ”/—”—_—
turn, reduce costs and the time it takes to get the Z 556

product into the market. The similarities between ':g ’

components are calculated by taking into account = 400

their functional and physical characteristics. The 200

similarity matrix used in this case is shown in Table i

1 (SS stands for Sub-System, and C stands for a
Component within the sub-systems. There are 4 sub-
systems and a total of 17 components).

The GA developed in the previous section begins
by randomly generating the initial population of
solutions for the matrix shown. Since the first
generation of solutions group all the components
into one group, the algorithm just finds the column on
the matrix that yields the highest fitness values.

The fitness value for the best chromosome is 48.
The grouping for this case, at it was mentioned earlier,
does not give the user any valuable information as all
the components are grouped into one family. After 8
generations, the algorithm reaches the best solution
for this case, a solution with a total fitness (for the
generation) of 960, which is the sum of all the fitness
values of each chromosome in a generation composed
of 20 individuals. Figure 5 shows the improvement
made by the GA after every generation. A maximum
of 80 generations is allowed, but in this case, the
algorithm only needs 8 generations mainly because of

0 1 2 3 4 5 6 7 8 9
Generation

Fig. 5. GA behavior for a one-group solution.

the simplicity of the problem being studied (classifi-
cation of components into one group).

The second run of the algorithm is more interesting
since the GA works to group the components into two
separate groups given their similarities. At the end of
this run the fitness values of each chromosome should
be greater than the ones given in the previous run (48
was the best chromosome for the one group run).
However, if the groupings do not yield a better fitness
value, this will mean that grouping the components
into two groups does not give the best overall optimal
solution. It is important to note that some groupings,
even if they are not the optimal ones, will give
companies what they are looking for, as they may be
satisfied with good solutions that will improve their
operations.

A genetic algorithm-based solution methodology for modular design

Total fitness per generation (2 groups)

=

600 1

1200
1000
800

Total fitness

400 1

O T T T
0 10 20 30 40 50 60 70 80
Generation

Fig. 6. GA behavior for a two-group solution.

As it is shown on Fig. 6, the genetic algorithm does
in fact give a better solution in this case. The fitness
function value is 56, and the best grouping is (4, 6, 6,
4,4,6,4,6,6,06,6,4,4,6, 6, 6,4). This basically
means that for example components 1 and 4 within the
first sub-system (SS1C1 and SS1C4) are together in
one group (positions one and four are both fours), and
components 2 and 3 (within the same sub-system) are
together in another group. The rest of the groupings
for this solution follow the physical proximity of the
components being studied. Figure 6 shows the
improvement per generation of the total fitness of
the algorithm. Table 2 shows the final groupings on
the matrix. A total of 75 generations were needed this
time, as the problem got more interesting and
complicated.

The solution given by the GA for two groups is a

Table 2. Grouping for a two-group solution

613

very good solution, but it is not the optimal one, as
there are several high similarities left out of the two
groups (an occurrence that may imply that the solution
is not optimal). One can see obvious faults that cannot
be solved with just two groups. It is apparent from the
grouping that the addition of at least another group
would improve the arrangement of components, as the
assignment of the components into two groups can be
very restrictive.

The third run of the GA groups the components into
a total of three groups. Again, if the fitness of the final
arrangement yields a lower number than the one given
by the previous runs, one can conclude that a three
group arrangement may not be the optimal arrange-
ment one is looking for. However, and as it was
mentioned earlier, the physical characteristics of the
components being studied implies that at least three
groups should be used when arranging the compo-
nents of the system under study.

This new run of the GA brings a new improvement
with respect to the previous runs. In this case, the GA
yields a fitness value of 64, the highest one so far, and
a total fitness of 1263. As Fig. 7 shows, this run uses
up all 80 generations to get the optimal solution for
the problem, a solution that will end up being the
overall optimal solution for the speed reducer.

The grouping given by the GA is (5,6, 6,7, 5,6, 7,
5,5,6,6,7,7,5,6,6,7). Table 3 shows the actual
grouping given by the GA. This grouping of
components is the optimal one up to this point, and
if one looks at the way these groups were formed, one

SS1C1 SS1C4 SS2C1 SS2C3 SS3C5 SS3C6 SS4C4 SS1C2 SS1C3 SS2C2 SS3C1 SS3C2 SS3C3 SS3C4 SS4C1 SS4C2 SS4C3

SS1C1 2
SS1C4 2
SS2C1 5
SS2C3 2
SS3Cs5 2
SS3C6 2
SS4C4 2
SS1C2 6
SS1C3 2
SS2C2 2
SS3C1 1
SS3C2 1
SS3C3 2
SS3C4 2
SS4C1 5
SS4C2 2
SS4C3 2

W

2

S}

[\S IRV}
LS ST)
[t SN ST S)
—_— = N N
[SSIN NS RN (SR (ST (O I S o))

[SSRN SR ST SR (R SR NS T ST (S R R 4)
NN N AR NDDDNDNDNDNDND
[NSRN SR ST SR RN O RN S I (T SR (SRR RN SN
BN NN NDN— —

BN NN~

BB DN RN N NN W

N N = = NN W=

[l A NS I ST (SR SR S

NN = = NN W

2 1 1 2 2 5 2 2
2 2 2 2 2 2 2 2
2 4 4 2 2 5 2 2
2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2
5 2 2 1 1 2 5 2
5 2 2 1 1 2 2 5

2 2 4 4 2 5 5
2 1 2 2 1 2 2
2 1 2 2 1 2 2
4 2 2 1 2 1 1
4 2 2 1 2 1 1
2 1 1 2 2 2 2
5 2 2 1 1 2 1
5 2 2 1 1 2 1

614

Total fitness per generation (3 groups)

1400

1200 1
. 1000 1
£ 800
600 1
400 1
200 4

Total fitness

0 10 20 30 40 350 60 70 80 90
Generation

Fig. 7. GA behavior for a three-group solution.

can possibly affirm that this grouping may be the
overall optimum one. Although the solution for three
groups given by the GA seems to be the optimal one, it
is very difficult to assert the optimality of the solution.
Moreover, for bigger problems it may be impossible
to know if a solution is the optimal one or just a good
solution for the problem. In this case, since the
problem is not very big, one could try using an
optimization program such as LINDO to assert the
optimality of the solution given by the GA.

The solution for the three-group classification is in
fact, the optimal solution (LINDO gives the same
grouping). However, and as it was discussed before,
the GA cannot be 100% sure that this is the optimal
overall solution mainly because of the blind nature of
the procedure. This can be a drawback, but in this case

Table 3. Grouping for a three-group solution

Kamrani and Gonzalez

it is actually a benefit, because the algorithm stores the
best solution for a three-group arrangement and tries
to find better and perhaps more specific solutions in
the following runs. A company may want to work
with a five-group arrangement for example, even if
the arrangement is not the optimal one. Since a
program such as LINDO many not be readily
available, and the problem may be too large and
complicated for regular programs to handle, one has
to study and analyze the solutions given by the genetic
algorithm. The fourth run of the GA gives the user a
new arrangement of the components using four
groups. Again, if the solution does not reflect an
improvement against the three-group solution, and if
the difference is quite large between the fitness values,
one can start concluding that in fact, the three-group
classification is the optimal one.

The total fitness (as well as the fitness of the
chromosomes) of the new run goes down to almost
900, while for the previous run it was over 1200.
Moreover, the fitness value of the best chromosome
goes down from 64 to just 47, which is actually lower
than the fitness value of the first run, in which the
algorithm grouped all components into one group.
This sudden drop in fitness, along with the poor
grouping of the components (1, 1,6, 1,5,6,5,5,5, 6,
6, 15, 5,5, 15, 6, 15), gives the user a ‘‘preview’’ of
what is about to happen with the following groupings
(five, six, seven, eight, and nine groups) and their
fitness values (see Table 4 for the four-group
classification).

SS1C1 SS2C1 SS3C1 SS3C2 SS4C1 SS1C2 SS1C3 SS2C2 SS3C3 SS3C4 SS4C2 SS4C3 SS1C4 SS2C3 SS3C5 SS3C6 SS4C4

SS1C1 5 1 1
SS2C1 5 4 4
SS3C1 1 4 1
SS3C2 1 4
SS4C1 5 5
SS1C2 6 2
SS1C3 2 2
SS2C2 2 2
SS3C3 2 2
SS3C4 2 2
2
2
2
2
2
2
2

—_— N

[NS 2 NS I NS I \S o)}

— NN NN
(S NNV B (SR ST (SR ST)

SS4C2 2
SS4C3 2
SS1C4 2
SS2C3 2
SS3Cs5 2
SS3C6 2
SS4C4 2

RN RDNDRDNDNND NN = —
RN NNDNDNDNDND NN —
PN RN NN NN NN
WO RPN N — — U —
RN~ NN — — W

SIS I N IV N N

Bl NS T (S (SR S I S

NN NN = = =

[N N Sl SRR N
—_ N NN NN
[T IRV N Sl SIS N SR
RN RN — NN NN
DN RN RN NN NN
AR RDNDNDNDNDNNDNDNDRD DN

~
[l =~ S T NS SS TN NS 2 ST (S N NS (S I N (S T NS I S
iSO WAV B (O ST (ST (I (O I (S RRUVTN (ST (SR (I (R S

RN — -
A~
—_

NN NN~
[\SR NS I NS R S)
(O I SN)

A genetic algorithm-based solution methodology for modular design

Table 4. Grouping for a four-group solution

615

SS1C1 SS1C2 SS1C4 SS1C3 SS2C2 SS3C3 SS3C4 SS4C3 SS2C1 SS2C3 SS3C1 SS3C2 SS3C6 SS4C1 SS3C5 SS4C2 SS4C4

SS1C1 6 2 2
SS1C2 6
SS1C4 2
SS1C3 2
SS2C2 2
SS3C3 2
SS3C4 2
SS4C3 2
SS2C1 5
SS2C3 2
SS3CI1 1
SS3C2 1
SS3C6 2
SS4C1 5
SS3C5 2
SS4C2 2
SS4C4 2

[\

— =
[V 3 SRRV, I S
A==
—_— R =N = N
—_— N NN

[SSERV. RN RN ST SR S RN SRR S S S Y L)
NN RN R DPDNDVE= NN N~
[NST NS T S I NS N R (O I (ST (S I SRRV L ey
[NSRNU, T SO I ST NS I (ST S) (O S TRV, R N

DN = NN NN NN~ —

BN = NN NN NN~

DN = NN NN

NN NN~ N W

NI ST SRRV, T (O I SN A]

2 1 1 2 5 2 2 2
2 2 2 2 2 2 5 3
5 2 2 4 2 4 2 5
2 2 2 2 2 2 2 2
2 2 2 2 2 2 5 2
2 2 2 2 2 2 1 2
2 2 2 2 2 2 1 2
2 2 2 2 2 2 1 2
2 4 4 2 5 2 2 2

2 2 4 2 4 2 5
2 1 2 1 2 2 2
2 1 2 1 2 2 2
4 2 2 2 1 2 1
2 1 1 2 2 2 2
4 2 2 1 2 2 1
2 2 2 2 2 2 2
5 2 2 1 2 1 2

The grouping shown on Table 4 is a more specific
grouping of the components. However, as it can be
seen on the matrix, there are a lot of high similarity
values outside the groupings. This implies that the
solution is not optimal, although it may give the user a
much more specific arrangement of components.
Without the help of LINDO, one can see that the
best solution for the speed reducer has a total of three
groups.

6. Conclusions

This paper presents an introduction to the combina-
torial optimization problem, the various methods used
to solve these kinds of problems, and a sample
traveling salesman problem solved using GAs. An
overview on the history and the purpose of combina-
torial optimization problems was presented first.
These kinds of problems abound on a daily basis
throughout the industry, and the techniques readily
available to users are becoming more and more
obsolete. They either take too long to solve these
difficult problems or they cannot solve them at all.
GAs present a great alternative for users trying to
solve very large and complex problems because they
tend to find good solutions avoiding the common
problems that for example, local search may
experience. These algorithms have shown great
potential in various fields, as they are very adaptive,

they work well with all types of combinatorial
optimization problems, and they do not need a lot of
mathematical requirements in order to arrive at a
good, reasonable solution. GAs are for the most part
very efficient. Their complexity is rather low, so the
size of problems that can be solved using GAs is a lot
greater than the maximum size of problems that can
be solved using other techniques. Greater strides have
to be made in order to make GAs completely reliable,
as they may be the most viable and logic option to be
used in the solution of hard combinatorial optimiza-
tion problems. The heuristic GA developed in this
paper is a very efficient yet simple algorithm for
solving combinatorial optimization problems. The
algorithm is capable of handling harder and larger
problems, as it is very flexible in terms of the size of
the populations being used, the crossover and
mutation probabilities and their methods. For more
complicated problems, the algorithm can be easily
modified to include one or more of the crossover and
mutation methods discussed in this paper. The
solution of complex problems will benefit from the
use of these methodologies, as single-point crossover,
for example, does not always yield the results one may
expect from the crossover operation.

References

Austin, S. (1990) Genetic solutions to XOR problems. Al
Expert, 5, 53-57.

616

Biegel, J. E. and Davern, J. J. (1990) Genetic algorithms and
job shop scheduling. Computers and Industrial
Engineering, 19, 81-91.

Chan, K. C. and Tansri, H. (1994) A study of genetic
crossover operations on the facilities layout
problem. Computers and Industrial Engineering, 26,
537-550.

Cheng, R. and Gen, M. (1997) Genetic Algorithms and
Engineering Design, Wiley-Interscience Publication.

Chu, C. H. and Tsai, C. C. (1998) A heuristic genetic
algorithm for manufacturing cell formation. Group
Technology and Cellular Manufacturing:
Methodologies and Applications, 285-310.

Cooper, M. G. and Vidal, J. J. (1993) Genetic design of
fuzzy controllers. Proceedings of the Second
International Conference on Fuzzy Theory and
Technology.

De Jong, K. (1975) An analysis of the behavior of a class of
genetic adaptive systems, Ph.D. thesis, University of
Michigan, Ann Arbor.

Epsy, T., Vimbrack, E. and Aldridge, J. (1992) Application
of genetic algorithms to tuning fuzzy logic systems.
NASA International Workshop on Neural Networks and
Fuzzy Logic, 237-248.

Goldberg, D. (1989) Genetic Algorithms in Search,
Optimization and Machine Learning, Addison-
Wesley, Massachusetts.

Grefenstette, J. (1986) Optimization of control parameters
for genetic algorithm. IEEE Transactions on Systems,
Manufacturing, and Cybernetics, 16, 122—-128.

Grefenstette, J. (1987) Genetic algorithms for the traveling
salesman problem. Proceedings of the First
International Conference on Genetic Algorithms,
Lawrence Erlbaum Associates, New Jersey, pp. 160—
168.

Holland, J. H. (1975) Adaptation in Natural and Artificial
Systems, MIT press, Boston.

Holland, J. H., Smith, D. and Oliver, 1. (1986) A study of
permutation crossover operators on the traveling
salesman problem. European Journal of Operational
Research, 224-230.

Karr, C. L. and Gentry, E. J. (1993) Fuzzy control of pH
using genetic algorithms. /IEEE Transactions on Fuzzy
Systems, 1, 46-53.

Kamrani, A. and Salhieh, S. (2000) Product Design for
Modularity, Kluwer Academic Publishers.

Kamrani and Gonzalez

Kano, N., Seraku, N., Takahashi, F. and Tsuji, S. (1984)
Attractive quality and must-be quality. Hinshitsu: The
Journal of the Japanese Society for Quality Control,
39-48.

Law, A. G. (1976) Theory of approximation, with
applications. Proceedings of a Conference Conducted
by the University of Calgary and the University of
Regina, Alberta, Canada.

Maniezzo, V. (1994) Genetic evolution of the topology and
weight distribution of neural networks. [EEE
Transactions on Neural Networks, 5, 39-53.

Michalewicz, Z. (1992) Genetic Algorithms+ Data
Structures = Evolution Programs, Springer-Verlag,
Berlin Heidlberg.

Obitko, M. (1998) Introduction to Genetic Algorithms,
Czech Technical University, URL: http://cs.felk.
cvut.cz/ ~ xobitko/ga/.

Sait, S. and Youssef, H. (1999) I[terative Computer
Algorithms with Applications in Engineering: Solving
Combinatorial ~ Optimization — Problems, 1EEE
Computer Society, Washington.

Salhieh, S. M. (1998) Decomposition Methodology for
Complex Product Development, University of
Michigan-Dearborn.

Salhieh, S. and Kamrani, A. (1999) Macro level product
development using design for modularity. Robotics and
Computer Integrated Manufacturing Journal, 15, 319—
329.

Shillito, L. M. (1994) Advanced QFD: Linking Technology
to Market and Company Needs, John Wiley & Sons,
New York.

Shirly, G. V. (1992) Modular design and the economics of
design for manufacturing, in Susman G. (ed.),
Integrating Design and Manufacturing for
Competitive Advantage, Oxford University Press.

Tam, K. Y. (1992) Genetic algorithms, function optimiza-
tion, and facility layout design. European Journal of
Operations Research, 63, 322-346.

Venugopal, V. and Narendran, T. T. (1992) A genetic
algorithm approach to the machine component
grouping problem with multiple objectives.
Computers and Industrial Engineering, 22, 469—-480.

Wall, M. (1995) Introduction to Genetic Algorithms,
Massachusetts Institute of Technology, Boston, MA,
URL: http://lancet.mit.edu/ ~ mbwall/presentations/
IntroToGA.

