Invent. math. 116, 393-408 (1994) Inventiones

mathematicae

© Springer-Verlag 1994

Unrefined minimal K-types for p-adic groups

Allen Moy and Gopal Prasad
Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA

Oblatum 23-11-1993 & 18-V-1993

Dedicated to Armand Borel

1. Introduction

Let G be a reductive group over a p-adic field k. The study of admissible representa-
tions of G(k) via their restriction to compact open subgroups was begun by
Mautner, Shalika and Tanaka for groups of type 4;..In contrast to real reductive
groups where the representation theory of a maximal compact subgroup K is given
in terms of slight modifications to Cartan’s theory of the highest weight, the
representation theory of a (compact) parahoric subgroup 2 is quite complicated.
There is still no comprehensive theory for classifying the irreducible representa-
tions. In the case of GL,(k), Howe, in [8], defined the notion of an essential
character of a filtration subgroup K; of GL,(0) based on realizing characters of
Ki/K; (2i Z j) as cosets in M, (k). In particular, Howe proved that any admissible
representation of GL, (k) has only finitely many essential characters.

In [12], based on work of Howe and the first author in regard to Hecke algebra
isomorphisms, the first author gave a more precise formulation of Howe’s ideas
and defined the notion of an unrefined minimal K-type as certain representations of
parahoric filtrations subgroups #; in terms of semisimple and nilpotent elements in
M, (k). It was conjectured in [12] that every irreducible admissible representation
of GL,(k) contained an unrefined minimal K-type. This conjecture was proved by
Howe and the first author via a combinatorial argument and it was also shown that
any two unrefined minimal K-types contained in an irreducible representation
must be closely related, namely they must be associates of one another.

The term “minimal K-type” was used by the first author in analogy with
a similar notion in the case of real groups. In both cases there is a measure of the
depth of a representation. In the real case Vogan [16] defines the depth of an
irreducible representation of K as the length of the highest weight with a rho shift.
A minimal K-type of an admissible irreducible representation = is then defined as
a K-type whose depth is minimal among all K-types occuring in . In particular, in
the real case, a representation of K can be a minimal K-type in one representation
and not in another. In the p-adic case an unrefined minimal K-type is intrinsically
defined (see 5.1), i.e. its definition depends only on the representation and not on
how it sits in the restriction of an admissible representation relative to other
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representations of filtration subgroups. Because the definition is intrinsic, one
must now prove that there is an unrefined minimal K-type in any irreducible
admissible representation . In both the real and p-adic setting a minimal
or unrefined minimal K-type is a very important constituent of a representa-
tion. In the real case Vogan has proved that a minimal K-type occurs
with multiplicity one and used minimal K-types as an anchor in classifying
the irreducible admissible representations. Unrefined minimal K-types and
their refinements to “refined” minimal K-types should hopefully play a similar
role in the classification of irreducible admissible representations of a p-adic
group.

Based on insight obtained from the combinatorial proof with Howe, the first
author discovered that the existence of unrefined minimal K-types would follow
quite easily if certain cosets, which realize characters of filtrations subgroups,
satisfy a descent property whenever a coset contains a nilpotent element. The
descent property for M, (k) was established in [5] and [9] and for Lie algebras of
certain classical groups in [11]. The formulation of the descent property in terms of
the Lie algebra leads to certain unnecessary restrictions. In the case of GL,(k), the
vector space M (k) is both naturally the Lie algebra and the dual of the Lie algebra.
This double role of M (k) obscures the distinction between the Lie algebra and its
dual.

In this paper, the existence of unrefined minimal K-types is established for all
reductive p-adic groups (Theorem 5.2). We also prove that any two unrefined
minimal K-types occuring in an irreducible admissible representation are associ-
ates of each other. Depth is defined in terms of the congruence level of a filtration
subgroup and it is proved that an unrefined minimal K-type minimizes depth. To
each point x in the Bruhat-Tits building of G/k there is a naturally attached
filtration {2, ,,} of the parahoric subgroup £, which is the isotropy subgroup at x.
These filtrations include as special cases the filtrations introduced in [14]. The
point x also defines filtrations {a, .} (resp. {g¥ _,.}) of the Lie algebra g (resp. its
dual g*). In particular, cosets in the dual g* naturally parametrize characters of the
abelian group 2,.,,/%, ...,.T: > 0. The descent property can be formulated in the
proper setting of the nilpotent, i.e. unstable, elements in the dual, and its truth
implies the existence of unrefined minimal K-types.

The proof of existence of unrefined minimal K-types presented in this paper is
conceptually different from the approach followed by earlier authors to prove the
existence in particular cases. Qur proofs are uniform and do not require explicit
realizations of the reductive groups over local fields.

The existence and associativity properties of unrefined minimal K-type allows
one to attach a nonnegative rational number g(n)—the depth of an unrefined
minimal K-type contained in n—to any irreducible admissible representation n.
This number should be important for certain aspects of the representation . Thus,
itis quite natural to conjecture that Harish-Chandra’s local character expansion of
the character @, of = is valid for all regular g € 2, ;- for any point x in the
Bruhat-Tits building of G/k.

2. Parahoric subgroups and their natural filtrations

The goal of this section is to introduce natural filtrations of any parahoric
subgroup in terms of the (absolute) affine root system.
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2.1. Let k be a nonarchimedean local field and K be a fixed maximal unramified
extension of k. Let o (resp. ) be the ring of integers in k (resp. K) and f (resp. §) be
the residue field of k (resp. K). Note that & is an algebraic closure of f. Let
I' = Gal(K/k) be the Galois group of K/k; I' has a natural identification with the
Galois group of &/f. We fix a uniformizing element w in 0. Let w be the discrete
valuation of K such that w(K*) = Z.

Let G be an absolutely quasi-simple, simply connected algebraic group defined
over k. Let g be the Lie algebra of G/k and g = g ®, K. Recall that the Bruhat-Tits
building of G/K is a contractible simplicial complex on which G(K) and the Galois
group I operate by simplicial automorphisms. The Bruhat-Tits building of G/k is
the set of points in the building (of G/K) fixed under I'. For a point x of the
Bruhat-Tits building of G/K, P, will denote the isotropy subgroup at x in the
natural action of G(K) on the building; P, is a parahoric subgroup of G(K) and all
the parahoric subgroups of G(K) arise this way. If x is fixed under I', then P, is
defined over k (i.e. it is I'-stable) and we shall denote P, n G(k) by £,.

In the sequel when we say that a point lies in a particular simplex of the
building, we shall mean that it lies in the interior of the simplex.

2.2. Let S be a maximal k-split torus of G and let T be a maximal K-split torus of
G defined over k and containing S. According to the Bruhat-Tits theory such
a torus T exists [4, 5.1.12]. Since the residue field of K is algebraically closed,
according to a welt known result of Steinberg, G is quasi-split over K i.e., it contains
a Borel subgroup defined over K. Equivalently, the centralizer Z of T in G is
a (maximal) torus; it is defined over k since T is. Let N be the normalizer of 7'in G.

Let X*(T) be the group of characters of T, and X,(T) be the group of
1-parameter subgroups of 7 (recall that a 1-parameter subgroup of 7" is a rational
homomorphism 4:GL; — T). There is a nondegenerate pairing

GO XHT)x X (T) - Z,

defined as follows: For y € X*(TYand 4 € X (T), y° Ais an endomorphism of GL ;.
Now End(GL;) = Z and {yx, ) is set to be equal to the integer corresponding to
xeh Let ¥ = X, (T)®,R, and ¥™* = X*(T) ®zR. Then ¥* is the vector space
dual of ¥".

The apartment A associated with the torus 7 in the Bruhat-Tits building of
G/K is an affine space under ¥". As T is defined over k, A4 is stable under the action
of the Galois group I on the building of G/K. There is a natural transitive action of
¥ on A by translations; for x € 4 and v € ¥", we shall denote the translate of x by
v by x + v. In particular, if Ais a 1-parameter subgroup of T and r is a real number,
then the translate of x € A4 under ri(€ ¥")is denoted x + rA. For a given x € 4, the
subset {x + ri|re R and A € X (T} is clearly dense in A.

Let F be the space of R-valued affine-linear functions on A. The function which
takes the value 1 at all the points of A will be denoted by J in the sequel.

2.3. Let (< X*(T)) be the set of roots of G with respect to 7 and JT be the basis of
the root system determined by a Borel subgroup containing 7" and defined over the
splitting field of 7. For a root b € &, let U, be the corresponding root subgroup. It is
a connected unipotent subgroup of G defined over K, normalized by Z, and of
dimension < 3. The Lie algebra of U, consists of root spaces corresponding to the
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roots which are positive integral multiples of b. For b € &, let G, be the subgroup
generated by U, and U_,; G, is a simply connected semi-simple subgroup of
G defined over K. Set Z, = G, nZ. Then Z, is a maximal torus of G, and Z is
a direct product of the subtori Z,, a € IT. Let Z§ be the maximal bounded subgroup
of Z,(K) and for any positive integer s, let Z% be the congruence subgroup
described in [14: 2.6]. Let Z, be the maximal bounded subgroup of Z(K); then Z,
is a direct product of the subgroups Z§, a e IT.

2.4. The subgroup U,,. To every affine function y € F, with gradient b belonging to
@, one associates a subgroup Uy, of U,(K). (This subgroup has been denoted by X,
in [15].) As we shall need to make extensive use of this subgroup, for the reader’s
convenience we reproduce its description from [15: 1.4} below. An equivalent
description of the subgroup, which uses a “Chevalley basis” over the splitting field
of the torus Z, is given in [14: §2].

The group X§(Z) of K-rational characters of Z can be identified with a sub-
group of finite index of the character group X*(T). Let v:Z(K)— ¥ be the
homomorphism defined by

x(v(@) = — o(x(2),

for ze Z(K) and y € X§(Z). Then the maximal bounded subgroup Z, of Z(K) is
precisely the kernel of v, and A: = Z(K)/Z,, is a free abelian group whose rank is the
K-rank of G (which is equal to dim¥"). The affine Weyl group N(K)/Z, is an
extension of the K-Weyl group N(K)/Z(K) by A. There is an extension of v to
a homomorphism of N(K) in the group of affine transformations of 4. This
extension will be denoted again by v.

Let be &, and ue Uy(K) — {1}. It is known ([2: §5]) that the intersection
U_,uU_, n N(K) consists of a single element m(xz) whose image in the K-Weyl
group is the reflection r, associated with b. Hence r{u):= v(m(u)) is an affine
reflection whose gradient is r,. Let a(b, u) (€ F) denote the affine function on
A whose gradient is b and which vanishes on the hyperplane of points fixed by r(u).
Now for any affine function i € F with gradient b € &, let

Uy, = {ue UyK)u=1or alb, u) = y}.

Then U, is a subgroup and it is normalized by Z,. If b is a multipliable root (i.e. 2b
is also a root), then U,, = U,.

2.5. An affine function  with gradient b € @ is called an affine roor of G (relative to
T and K) if U, is not contained in U, . U (K) { = Uy, if 2b is not a root) for
any ¢ > 0. Let Y (< F) be the set of affine-roots of G relative to T and K. As T'is
defined over k, there is a natural action of the Galois group I" on ¥. Now let x be
a point of the apartment A, then the parahoric subgroup P, is generated by Z, and
the subgroups Uy, ¥ € ¥ such that y(x) = 0.

2.6. Filtrations of parahoric subgroups. Let x € A. There is a natural filtration of P,
defined as follows: For any nonnegative real number r, let P, , be the subgroup of
P, generated by Zis,aell and neZ, n=r, and the U,, for ¢ € ¥ such that
Y(x) = r. It is obvious that P, o = P,, and if s = r, then P, ;< P, ,. For r 2 0, let
P., = J;>,Py . It follows easily from Lemmas 2.4 and 2.7 of [14] that for
all r20,P,, is a normal subgroup of P,. In fact, for any nonnegative real
numbers r and s, the commutator subgroup [ P, ,, P, ,] is contained in P, .. This
implies in particular that for all r >0, P.,/P,,. is abelian; moreover as
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[P. o+, Py,] < P, .-, the conjugation action of P, = P, , on P, , induces an action
of the group P, ¢/P, o on P, /P, ,-. If x is fixed under I, i.. if it is a point of the
Bruhat-Tits building of G/k, then for all r =2 0, P, , is I'-stable.

The apartment A" corresponding to 2 maximal K-split torus 7" of G contains
x if, and only if, 7(K) P, is the maximal bounded subgroup of 7T'(K) (see
[15:3.6.17), and if this is the case, then T" (resp. 4') is conjugate to T (resp. A) under
an element of P,. This at once implies that the filtration introduced above is
independent of the choice of the apartment containing x.

Now let y = g+ x, g € G(K), be a point of the Bruhat-Tits building of G/K. Then
P, = gP.g " Forrz0,weset P,, = gP.,g ' Then P, , depends only on r and
y and not on the choice of the conjugating element g. Note that if x and y are points
contained in the same simplex, then P, = P, and P, . = P, o+ ; however, for r > 0,
P.., may not in general be equal to P, ,.

For a parahoric subgroup P = P, defined over k, the group P,/P, o+ has
a natural identification with the group of §-rational points of a connected reduc-
tive f-group (see 3.2 below). The pro-nil radical R,(P) of P is by definition the
subgroup Py o-. The pro-nil radical R, (%) of the parahoric subgroup # = P n G(k)
of G{k) is R,{ Py G{k).

2.7. Standard parahoric subgroups. We fix a chamber (i.e., a simplex of maximal
dimension) C lying in A, which is stable under I'. Then given a point y of the
Bruhat-Tits building of G/K, there is a unique point x in the closure C of C (C consists
of points lying in C and all its faces) and an element g € G(K) such that y = g-x. If
yis fixed under I', then so is x and the element g can be chosen to be k-rational. The
isotropy I of C in G(K) is an Iwahori subgroup defined over k. I determines a basis
A of the affine-root system ¥. An affine root ¢ € ¥ is said to be positive (y > 0)if it
is a nonnegative integral linear combination of roots in 4. Equivalently, ¢ > 0 if,
and only if, U, < I. An affine root i is said to be negative (y < 0)if — y is positive.
As 1 is defined over k, 4 is stable under the action of the Galois group I" on the
affine root system ¥. For a subset @ of 4, let Pg be the subgroup of G(K) generated
by I and the U _,, 0 € ®. Then Pg is a parahoric subgroup of G(K) and any
parahoric subgroup {of G{K)) containing I equals Pg for a unique © < 4. The
parahoric subgroup Pg is defined over k if, and only if, @ is stable under I'. Any
parahoric subgroup P of G{K) is conjugate (in G(K)) to a unique Pg, moreover if
P is defined over k, then the unique Py to which it can be conjugated is also defined
over k, and then P and Pg are in fact conjugate to each other under an element of
G{k). The parahoric subgroups Pg, for @ = 4, will be referred to as the standard
parahoric subgroups. These are the isotropy subgroups of points lying in C. _

Let x be a point of C and let @ = {0 € 4|0(x) = 0}, then P, = Pg. Since x € C, if
for an affine root ¥, y(x) > O, then y is positive. This implies that P, , is contained
in the Iwahori subgroup I for all r > 0.

It is obvious that for a suitable point x in the simplex fixed by a parahoric
subgroup P, the filtration subgroups P, , of P = P,, defined above, coincide with
the filtration subgroups introduced in [14: 2.14].

3. The associated filtrations of the Lie algebra g and its dual g*

Every point of the Bruhat-Tits building of G/k determines a natural filtration of the
Lie algebra g and its dual g*. The purpose of this section is to describe these
filtrations.
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3.1. If G/K is not a triality form of type ®D,, let L be the smallest Galois extension
of K over which G splits. If G/K is a triality form of type °D,, let L be a
fixed extension of K of degree 3 contained in the Galois extension of K, of degree 6,
over which G splits. There are three such extensions, all isomorphic to each other
over K. We fix a uniformizing element w, of L. Let £ = [L:K]. Then w}/w
1s a umt.

Forarootbhe @, let L, equal K or L according as b is a long or a short root. (If
alt the roots of the root system @ are of equal length, then by convention all roots
are long: if @ is nonreduced, then all divisible roots are long and all nondivisible
roots are short) Let w, = w if L, = K and w, = w, if L, = L. We shall denote the
ring of integers of L, by o(L,) and let £, = [L: L,]. If ¥ is an affine root whose
gradient is b, set L, = L,, w, = w, and £, = ¢),; then for an integer n, ¥ + nd is an
affine root if, and only if, n is a multiple of £, (cf. [ 14: §2]). We shall denote the affine
rooty + £, 8 by ¥ *.

If b e @ is a nonmultipliable root, then U,(K) is isomorphic to L,. Also, if b is
a multipliable root, then U,(K)/U,,(K) is isomorphic to L, as well. For any affine
root , Uy /U, is isomorphic to o(L,)/w,o(L,); see [14: §2].

3.2. Let x be a I'-invariant point of C. We shall now describe the filtration of the
Lie algebra g associated with x.

The Bruhat-Tits theory associates a smooth affine o-group scheme .# (resp. %)
to I (resp. P,) whose generic fiber # ®,k (resp. 4, ®,.k) is G and whose group of
O-rational points is P, (resp. I). Let L(#) and L(%,) be the Lie algebras of .# and
4. respectively. Since the generic fibers of both .# and ¥, are equal to G, we have
L(#) ®.k = g = L(%,) ®.k. In particular, both L(#) and L(%,) are lattices in g.
We denote them by i and g, respectively. Set

i=i®,0
9x = Ox ®.0.

The inclusion of I into P, induces an o-group scheme homomorphism of .# into 4,;
we use it to identify i with a o-Lie subalgebra of g, and i with a O-Lie subalgebra of
a.- Note that g, is itself a lattice in the Lie algebra ¢ = ¢ ® K.

The special fiber ¥, ®,f of %, is a connected algebraic group defined over the
residue field f; it admits a Levi decomposition over f. Let M, be the quotient of
9, ®,{ by its unipotent radical. Then P, o/P, o, has a natural identification with
the group of F-rational points of the reductive group M,.

Let 3 = g be the Lie algebra of Z, and let

3=3®K.

For any b € @, let 3, = 3 be the subalgebra corresponding to the subgroup Z, and
let g, be the root subspace in g corresponding to b.
1t is known that for each b e @, both

"=ing, and 3 :=in3

are “canonically” isomorphic to o(L,) as O-modules. For any nonnegative integral
multiple n of ¢,, denote the O-submodule of i (resp. 35) corresponding to the
submodule w}*o(L;) of o(L,) by i’ (resp. 3%). Let iy be an affine root, b be
its gradient, and let , be the smallest positive affine root with gradient b.
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Then ¢ — ¥, = nd; where n is a multiple of £,. Define the O-submodule

P fn=0
n, = . .
v " -1y, f <O

If n is a negative integral multiple of £,, set 31 = @"3%, - 1,. It is clear that the u,’s
and the 3,’s do not depend on the choice of the uniformizing elements w of K and
@, of L.

Now for any real number r, let 3, be the O-submodule of 3 spanned by the
3ns,acll,and ne/,Z with n = r. Let g, , be the O-submodule of g spanned by 3,
and the u,’s for affine roots ¥ such that y(x) = r. It is obvious that g, ¢ = g, and
forr =2 0,4, .1s anideal in g,. For any r, g, , is stable under the action of the Galois
group I' and the adjoint action of P, on g.

For r <5, we have g, > g..,. Set 8.,+ = | .. 8., The induced action of
P, o+ ong,,,/8, - is trivial, so there is a natural action of M (§) = P, ¢/P. 0+ On it.
Note that for all r, mg, , = g,.,+, and so g, ,+ 2 wa,,.

For all r > 0, there is a natural isomorphism of P, /P, ,. with g, ,/g, ,: which
is I'p< M, () equivariant,

The o-submodule of g, , (resp. g, ,+) consisting of the elements fixed under I' will
be denoted by g, , (resp. g..,-) in the sequel.

3.3. Now let y be a point of the Bruhat--Tits building of G/k which is conjugate to
x and choose g € G(k) such that y = g-x. We define

4= Ad g(gx,r) and Ay, r = Adg(gxr)

Then since P, keeps g, , stable, it is clear that g, , and g, , depend on y and r and
not on the choice of g(e G(k)). If y € A4, it can be conjugated in C by an element of
N(k), and hence g, , is the O-submodule of g spanned by 3, and the u’s for affine
roots  such that y/(y) = r.

3.4. Toevery point x of the Bruhat-Tits building of G/K, we associate a monotone
increasing sequence of nonnegative numbers as follows: If x is in C, let
{rilie N'U {0}} be the set of nonnegative values assumed by the affine functions in
Y U (ndlne N} at x arranged in a monotone increasing sequence. Now to an
arbitrary point x of the building of G/K, we associate the sequence associated to the
(unique) point of C conjugate to x. Thenforr;,_; < s <r, wehave P, ;= P, , and
8:s = G In particular, P,,. = P, .., and g, = @x»,.,-

3.5. Filtration of the dual. Let g* = Homy(g, k) and ¢* = Homg(g, K). There is
a natural action of the Galois group I" on g¢* by semi-linear automorphisms, and g*
is the k-subspace of g* of elements fixed under I'. In this paper we shall always view
g* as a G-module under the coadjoint action of G. An element X of g* will be called
nilpotent (resp. semi-simple), if in the coadjoint action, the G-orbit through X
contains zero in its closure (resp. is closed) in the Zariski-topology. As confusion is
unlikely, we shall denote the coadjoint action also by Ad. Let

g*=05Dd PeF

hed
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be the weight space decomposition of g* with respect to 7. Here,
af = {Xeg*Ad)X =b(t)X forall te T}.

Note that for X € ¢f and Yegq,, if X(¥) #+ 0, then b = — ¢. Thus, we can identify
g with the dual 3* = Hom(3, K) of 3, and for every b € §, g¥ with the dual of g_,.
For an affine root y, with gradient b, let

u, ={XegX(¥Y)eO forall Yeu_,}.

Let x be a I'-invariant point of the apartment A. For r € R, let

8urr = Xeg*X(Y)eD forall Yeg,, }
For teR, let

3#={Xez*X(Y)eD forall Ye3, and s> —t—7¢},
and let g% , be the O-submodule of g* spanned by 3* and u}’s for affine roots ¥ such
that y(x) =2 t + (£ — £). Then
8er = 8F -0
and
(*) 8f ,=wg¥_,.,={Xeg*X(Y)ewD foral Yeg,,}

From the above description it is clear that for all r, g¥ _, is stable under the
action of the Galois group I" and also under the coadjoint action of the parahoric
subgroup P, on g* Forr = s,¢% , > 8% _,. Set g% _, = | Ji<, 8% _,. Then for all r,
aF _,+ o wa} _,. The induced action of P, o- on g¥ _,/g¥ -+ is trivial and hence
there is a natural action of M (&) = P, ¢/Px o+ On it.

The o-submodule of g} _, (resp. g¥ -,-) consisting of the elements fixed under
I' will be denoted by g3 —, (resp. g¥ _, ).

3.6. If y is a point of the Bruhat-Tits building of G/k which is conjugate to x under
an element g of G(k), we set

8-, = Adg(ei ) and gf , = Adg(g¥ -,
Then gf _, and g} _, are well defined i.e,, they depend only on y and r and not on

the choice of the conjugating element g.

3.7. Now let x be a point of the Bruhat-Tits building of G/k and let {r:} be the
sequence associated to it in 3.4. Then 8x.rf = Bxr, for allj. For i = 1, the {-bilinear
map
8%, —ri/ 0%~ 1y X Qxri/ G
(X, V) X(Y) mod mo
is a nondegenerate M (f)-invariant pairing. This nondegenerate pairing composed

with a fixed nontrivial character of the prime field of | provides an M.()-
equivariant isomorphism of the Pontrjagin dual of g, ,./a,,.., With g% _,./a¥ -, .-

38 Let @, =P, nG(k)and forr =20, #,, = P., N Gk), Prps = Prp 0GR
Then for r >0, the natural isomorphism of P, /P, .. with g.,/q., gives an
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isomorphism of 2, ,/#, ,+ onto g, /6., which is M, (f)}-equivariant (cf. [14: 2.24]).
Thus the above also provides an identification of the Pontrjagin dual of
PvidPrvi,, With g¥ _,./a¥ _, . The character of 2,,/2?,,, , corresponding
to the coset X =X +g¥_,, . will be denoted by y,. We shall say that this
character is nondegenerate if the coset X + g¥ _,, , does not contain any nilpotent
clements.

4. Unstable elements in integral representations

4.1. Let P be a parahoric subgroup of G(K ) and T be a maximal K-split torus such
that the apartment corresponding to 7 in the Bruhat-Tits building of G/K contains
the simplex whose isotropy subgroup is P, or, equivalently, P contains the maximal
bounded subgroup T, of T(K). We assume that both P and T are defined over
k and further that T contains a maximal k-split torus S of G.

Let J be the smooth affine o-group scheme with generic fiber 7" and which is
diagonalizable over ©. (The ring of regular function of 7 is (D[ X*(T)])"; where
D[ X*(T)] is the group ring of the character group X*(T') with coefficients in D.)
The group of O-rational points of 7 is T,. Let & be the closed v-subgroup scheme
of J corresponding to the subtorus Sof . Let S = ¥ ®,fand T = 7 ®,f. Then
S is the maximal {-split subtorus of T. There is a canonical identification of the
character group X *(S) (resp. X *(T)) of S (resp. T) with the character group X *(S)
(resp. X*(T)) of S (resp. T), and of the group X .(S) (resp. X (7)) of 1-parameter
subgroups of S (resp. T) with the group X.(S) (resp. X, (T)) of 1-parameter
subgroups of S (resp. 7).

Let V be a free p-module of finite rank and p:J — GL(V) be a rational
representation of 7 defined over o. Then p is completely reducible over D ie.,
V®,0 is a direct sum of the weight submodules (see [6: Proposition on p. 177]).
p induces a rational representation p; of T = 7 ®,k on V®,k and a representa-
tion g of T =7 ®,f on ¥V ®,f. The weights of p, and p are the same if we use the
canonical identification of X *(T) with X *(T).

Now let 4 be the smooth affine o-group scheme associated to P by the
Bruhat-Tits theory. The generic fiber ¢ ® .k of 4 is G/k, the group of its O-rational
points is P and the special fiber ¥ = ¢ ®,f is a connected algebraic {-group
which admits a Levi decomposition defined over f. Let M be the quotient of
% by its unipotent radical. Then M is a reductive f-group. There is a natural
embedding of T in M, defined over §f, which corresponds to the inclusion of T,
in P. In this embedding, T is a maximal torus of M and S{ < T) is a maximal {-split
torus.

4.2. Tn the rest of this section we shall use the notation introduced in §§2, 3. Thus
x is a I'-invariant element of C, P, = Pg is the associated parahoric subgroup, and
% is the o-group scheme associated with the parahoric subgroup P,. Denote by M,
the quotient of the special fiber %, ®,f (of ¥,) by its unipotent radical; M, is
a connected reductive group defined over {. The filtration lattices g, , {resp. g¥ ),
are free o-modules. The adjoint (resp. coadjoint) action of %, on g, , (resp. g¥ ;) can
be placed in the context of a rational representation p:%,— GL(V) of ¢, on
a finite rank free o-module V. We also denote by p, the extended representation of
G=9%,.®,kon V®,k In what follows, we shorten p(g)X to either g- X or gX. As
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usual, we shall say that an element X € V is unstable if the Zariski closure of the
orbit G- X contains zero. If k is of characteristic zero and X € ¥ is an unstable
element then, according to a result of Kempf [10] and Rousseau, there exists a
1-parameter subgroup 4:GL, — G, defined over k, such that Lim,.,i(5)X = 0.

Nilpotent elements contained in g, (resp. g},) are unstable for the adjoint
(resp. coadjoint) action of %,.

4.3. Proposition. Suppose that p: %, — GL(V) is a rational representation of 4, on
a free finite rank o-module V and W is a % (0)-submodule containing wV. Assume that
the induced action of 9, ®,f on V/W has the unipotent radical acting trivially so that
p gives rise to a representation of M, on V/W. Let X € V be such that there is
a 1-parameter subgroup .:GL, - G, defined over K, so that

LimA()X = 0.
t—0

Then the M -orbit through the image X of X in V/W contains zero in its closure.

Proof. Let Q be a special maximal parahoric subgroup of G(K) containing the
Iwahori subgroup I. Let

PB,={ge G|Lir(r)1)~(t)g)v(t)’1 exists in G}.
P

Then B, is a parabolic subgroup of G defined over K. Since by Iwasawa decompo-
sition ([15: 3.3.2]), G(K) = Q- R,(K), and for any p € B,;(K), Lim,_opA(t)p~ ' X = 0,
after replacing the 1-parameter subgroup 4 by a conjugate under an element of
B,(K), we may, and we shall, assume that it is contained in the maximal K-split
torus T:= qTq™*; where g is an element of Q. Then 7" < B;.

Let 2 be the ©-group scheme associated to the parahoric subgroup Q by the
Bruhat-Tits theory. The generic fiber 2®cK of 2 is G/K and the special fiber
Q:= 2®c ¥ is a connected algebraic F-group. The group of O-rational points of
2 is Q and the reduction “mod p” map @ — Q(E) is known to be surjective. Let
R,(Q) be the unipotent radical of Q and M = Q/R,(Q). Now observe that the image
of I « Q under the composite of the reduction map Q - Q(§) and the natural
projection Q(§) — M(F) is the group of F-rational points of a Borel subgroup B of
M; the image of P,(K)  Q is the group of F-rational points of a parabolic
subgroup P (of M) and the image of T'(K) n Q is the group of §-rational points of
a maximal torus T’ contained in P (recall that 7' < B, and as T’ = qTq ! with ¢ in
0, T'(K) n Q is the maximal bounded subgroup of 7'(K)). By the Bruhat de-
composition, the intersection B n P contains a maximal torus T” ([1:14.13]). Then
T" is conjugate to T' in P. Fix a p e B,(K} n Q such that the image of p in M(§)
conjugates T' to T” and let 7" = pT’p~!. Then as T" < B, the maximal bounded
subgroup of T”(K) is contained in I which in turn is contained in P,. This implies
that T” embedds in a natural way in M, as a maximal §-torus. Let A" be the
conjugate of the 1-parameter subgroup i under p. Then as p is in P (K)
Lim,_oA"(#)X = 0. On reduction A" gives a 1-parameter subgroup 77 of T” such

that le,..o,l”(t)X =0. Hence T"+ X, and so a fortiori M, - X, contains zero in its
closure.

Notation. For an affine root ¢, we let ¢ denote its gradient, then ¢ € ¢( = X*(T)).
For 1 X (T), we set @, 1) = (@, A).



Unrefined minimal K-types for p-adic groups 403

4.4. Proposition. Let V, W, p and X € V be as in the preceding proposition. Then
there is a pe P, = P, G(k) and a 1-parameter subgroup p:GL,;— S( < G),
defined over k, such that

(1) Limu(6)(pX) = 0 (mod W),
) forall 0 O, <6, 1> = 0.

Proof. Let X denote the projection of X on V//W. Then according to the preceding
proposition, the closure of M, - X contains zero. Now in view of a result of Kempf
[10] and Rousseau, there is a 1-parameter subgroup 2: GL; — M, defined over the
finite field | such that Lim,.oA()X = 0. Let T be the maximal f-torus of M,
corresponding to T it contains a maximal f-split torus S of M. Now we recall that
the set consisting of the restrictions to S of the gradients of the affine roots
belonging to @ is a basis of the root system of M, with respect to S (X*(S)
identified with X*(S) here), cf. [15: 3.5.1]. By conjugacy of maximal f-split tori
under M, (f) and the fact that the j-Weyl group of M, acts transitively on the set of
Weyl chambers in X ,(S), we conclude now that there is a conjugate A’ of 4, under
an element of M, (f), such that 4’ is contained in X .(S)( = X .(M,))and <0, "> = 0
for all 0 € ©. Let u be the lift of A’ to S. Then u has the desired properties. To
determine p € 2., use the fact that the natural map 2, — M,(f) is surjective.

5. Unrefined minimal K-types and the main theorem

Given a point x of the Bruhat-Tits building of G/k, let P, be the associated
parahoric subgroup. Let Z, = P, n G(k)and for r 2 0, let 2, , = P, , n G(k). Let
the sequence {r;} be as in 3.4. For i > 1, realize the characters of 2, ,./#, ,, , asin
3.8

5.1. Definition. An unrefined minimal K-type is a pair (#,,, x), where x is a point of
the Bruhat-Tits building of G/k, r is a nonnegative real number, y is a representa-
tion of 2, , trivial on 2, ., and
i) if r =0, then y is a cuspidal representation of 2, /%, inflated to
*@x ( = *@x.O)
ii) if r > 0, then 2, , # 2., and y is a nondegenerate character of 2, ,/2, ,-.
In the remainder of the paper, we shall drop the adjective “unrefined”. The
nonnegative number r is called the depth of the minimal K-type. Let y be another
point of the Bruhat-Tits building of G/k, and let {s;} be the monotone increasing
sequence of nonnegative real numbers associated to it as in 3.4. Then two minimal
K-types (2., x) and (2, ,, £), are said to be associates if they have the same depth
(ie. r; = s;), and
i) in the case of zero depth, there is an element g € G(k) so that . n P,
surjects onto both M, (f) and M, (f) and y is isomorphic to Ad(g)<.
if) in the case of positive depth, the G(k) orbit of the coset X + g} _,,_,, which
realizes y, intersects the coset ¥ + g _;, ,, which realizes &.

5.2. Theorem. Assume that k is of characteristic zero. Given an irreducible admiss-
ible complex representation (n, V,) of G(k), there is a nonnegative rational number
o(m) with the following properties.
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(1) For some x in the Bruhat-Tits building of G/k, the space VZ=e" of P ,ny-
fixed vectors is nonzero and o(n) is the smallest number with this property.
(2) For any y in the Bruhat-Tits building, if W = Vo £ {0}, then
1) if o(ry =0, any irreducible P, ,ysubmodule of W contains a minimal
K-type of depth zero of a parahoric 4 < P;
i) if o(m) > 0, any irreducible P, yy-submodule of W is a minimal K-type

Moreover, any two minimal K-types contained in © are associates of each other.

6. Three key propositions

6.1. Optimal points. Let
F={ye¥y>0 and ¥ —¢£5<0}.

Then X is a finite set. For any nonempty subset & of Z, let f: be the real valued
function on C defined as follows:

feo(x)=min{y(x) — (£ — £,)ly € &} for xe C.

Now for each nonempty I'-stable subset € of X, we fix an element x¢ of C such that
i) the function f; takes its maximum value at xg,

ii) Y(xg) is a rational number for all affine roots ¥,

iii) xg is fixed under I'.

Note that the set of points where f takes its maximum value is the intersection
of C with a I'-stable hyperplane of A which is defined over Q. Hence there exist
elements in C satisfying the above conditions. We shall call x; an optimal point for
the subset S of Z. Let ¢ be the (finite) set consisting of the optimal points x¢’s, for
all I'-stable nonempty subsets S of X.

Finding optimal points explicitly is a problem of linear programming. For the
basic results and techniques of this theory see [13]. That there exists a point xg
such that the function f; takes its maximum value at xg, and for all affine roots ¥,
W(xg) is rational, also follows from an observation on page 33 of [13].

Remark. It can be shown that if G = SL,, then given any nonempty subset & of 2,
the barycenter of a suitable face of C is an optimal point for &.

6.2. We say that a subset Z of the affine root system ¥ is bounded below if there
exists an integer n such that for all € Z, ¢ + £nd > 0. Now let = be a nonempty
I'-stable subset of ¥ which is bounded below and let n be the smallest integer such
that every root in the set Z:= {{ + ¢£nd}jy € E} is positive. To = we associate the
subset S(&):=X N E* of Z, and set xg = xg; where Z, and for a I'-stable
nonempty subset & of X, the optimal point xg(€ C), are as in 6.1.

6.3. Proposition. Assume that k is of characteristic zero. Let x be a I'-invariant point
of C. Let r be a real number such that g, properly contains g¥,. and let X € g¥, be
a nilpotent element. Then there is a pe @, = P, n G(k) and ay € O such that for
some s >r

pX +g¥,: <o,

or, equivalently, X + g%, < g¥, ;.
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Proof. From Proposition 4.4 applied to the case where V' = g¥,and W = g¥,., we
conclude that there is a p e 2, and a l-parameter subgroup p:GL, — S defined
over k such that Lim,_ ,u(t)pX = 0(mod g¥,.)and (0, x> = Ofor all § € . Denote
pX by Y. Then Y =Y, + 27, (mod gk, ) where Y, € 3%, Y, € uf, and the summa-
tion is over the set of affine roots  such that y(x) = r + (£ — ¢,). Now let S be the
set of affine roots ¢ such that W(x) =r + (/ — 4y) and Y, #0 (mod g¥,-). As X is
k-rational, & is I'-stable.

Since u is a 1-parameter subgroup contained in S, the coadjoint action of y on 3*
is trivial. From this and the fact that Lim,_,1(t) ¥ = O(mod g¥ ,-), we conclude that

(1) Yo =0 (mod gt ,.),

2) fu> >0forye€.

Now, for & = 0, consider the element x + guc A. As x is I-invariant and yu is
defined over k, the point x + gu is I'-invariant for all e. Recall that for any affine
root 6, 0(x + eu) = 6(x) + <0, uy. Now,

(1) if 6 O, then 8(x) = 0 and {6, u> = 0 so that O(x + eu) = 0 for all £ = 0,

(2) if 6 € 4 — O, then H(x) > 0 and hence for all sufficiently small ¢ = 0, we have

O(x +¢eu)= 0. B
Therefore, for all sufficiently small 6 20, x + eu C.

For ye© and £>0 we have f(x+ eu)=(x)+ ey, 1) > y(x)
(=r+(—2¢,)) since (Y, pu> >0. Also, for the affine roots ¥ such that
Y(x) >r + (£ — ¢,),itis clear that y(x + eu) > r + (£ — ¢,) for all sufficiently small
positive &. Hence, if z = x + ey, where ¢ is a sufﬁciently small positive number, we
can find a real number u > r such that gz 2V +af,

Let £ = Su {y|u) < g¥,-}. Then Z is clearly I- stable and bounded below.
Take y = xz; where x: isin 6.2. Then as y is an optimal point for the subset Z, there
exists a s, s ; u > r such that g}, > Y + g¥,.. This proves the proposition.

The following is a converse to the above proposition.

6.4. Proposition. Let x be an element of the Bruhar-Tits building of G/k, and r be
a real number such that gf , contains g} ,- properly. Suppose X € g¥, is such that the
coset X + g¥ ,- does not contain any nilpotent elements. Then for all y in the building,
grsn(X +af.)=g fors>r.

Progf. We argue by contradiction. Assume there is a y in the building and a real
number s > r such that g¥, n (X + g¥,.) #+ & After replacing x, y and X by their
conjugates under an element of G(k), we assume that both x and y lie on A.
Replacing X by X + Z for suitable Z € g%, -, we further assume that X e g};. Let
X=Xo+ ZX,,,; where X, € 3%, X, € uj and the summation is over a {finite) set of
affine roots ¥ with distinct gradients and such that Y/(x) = r + (£ — £,). Let & be
the set of affine roots  such that Y (x) = r + (£ — £,) and X, #£0(mod g¥,-). Then,
as gf,N3*=3*=gf,n3* and s>r we conclude that X,eqg¥,.. Hence
X= ZWE:X‘,, {mod g¥,). Since X, and so also Xy, isin g}, y(¥) 25+ (£ —£y) >
r+ (¢ — Zw) for every affine root y such that X, + 0. Now as the set of elements in
A of the form x + ud, with u € R and 4 € X, (T), 1s dense, we can find an u > 0 and
a 1-parameter subgroup 4 defined over k such that y{x + ud) >r + (£ — £,) for all
Ye®. But as ¢(x + ud) = (x) + uly, A) =1+ (£ — &) + ulY, ), it follows
that (Y, 1> >0 for all y € €. This implies that Lim,.qA(t) Z X,,, = 0. Thus
zwe X, is nilpotent and we have shown that X is congruent to a mlpotent element
modulo g}, , . This contradiction completes the proof of the proposition.
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6.5. Proposition. Let x and y be two points of the Bruhat—Tits building of G/k and let
r and s be real numbers so that 9., > g, ;. Then P, , > P, ; and hence, ?,, > P, .

Proof. After replacing x and y by their conjugates under a suitable element of G(k),
we assume that both x and y lie in the apartment 4. Recall that P, , (resp. P, ;) is
generated by the subgroups Uy, ¥ € ¥ such that y(x) = r, and the subgroups Z;,
aell, n 2 r (resp. by the subgroups U,, ¢ € ¥ such that y(y)= s, and the
subgroups Z;, a€ll, n 2 s). As g,,, contains g, ,, §.,, contains g, ;.. Now since
My < g, (resp.uy, < g, ) if, and only if, Y (x) = r (resp. Y (x) = 5) and 3; < g, (resp.
3. < @, if, and only if, n = r (resp. n = s), the assertion of the proposition is
obvious.

7. Proof of Theorem 5.2

In this section the local field k is assumed to be of characteristic zero.

Suppose (n, V) is an irreducible admissible complex representation of G(k) and
@ be as in 6.1.

Given a point x of the Bruhat-Tits building of G/k, we shall let {r,} with ry = 0,
denote the monotone increasing sequence associated to it in 3.4. If y is another
point of the building, we shall denote the monotone increasing sequence associated
to it by {s;} below.

7.1. Existence of minimal K-types. We claim (n, V) contains a minimal K-type.
Let r be the smallest nonnegative rational number such that there is a point x e ¢
so that the subspace W of elements of V, fixed under 2, .. is nontrivial. (The
existence of r is assured since @ is finite.) Then r = r; for some i. As 2, .. is a normal
subgroup of 2, ,, there is an induced representation of #, ,/ #,,. on W.Ifr = 0,
then 2, ,/2, .. = M,(). By Harish-Chandra’s theory of Eisenstein series for reduc-
tive groups over finite fields, [7: Vol V], there is a parahoric subgroup 2 < £, and
a cuspidal representation y of 2/R,(2) whose inflation to 2 is contained in W},. In
particular, 7 contains a minimal K-type of depth zero in this case. Therefore, we can
assume that i > 0 and thus the group 2.,/ 2,.,,., is abelian. Realize its characters
as the cosets of g¥ —,, , in g¥ -, (see 3.8). Let x = yx.qy _, be any character of
Z..., which occurs in the decomposition of W into irreducible 2, ,-submodules.
We claim that X + g} _,, , contains no nilpotent elements and therefore y is
a minimal K-type. To prove the claim suppose X + g¥ _,,_, contains a nilpotent
element. Then we may assume that X itself is nilpotent. According to Proposi-
tion 6.3, there is an optimal point ye @, pe 2, and aj = O such that —s; > — r;,
ie. s;<r, and X4g¥ ,  capi, . This implies that if z= p
g¥ . ,<.aF_, from which we conclude by taking duals (see 3.5(«)) that
Oxr 2 Ozs;,,- From Proposition 6.5 we infer now that

‘@x,ri =) ‘@

Z.8j0 1"

For Yeg.,,.,, we have X(Y)ewo since X € g¥ _, (3.5(%)). So the restriction of
xto P, , is trivial. Hence V2%, and therefore V7**/*! also, is nontrivial. Now
note that 2, = Pys) and as s; < r; =r, this contradicts the minimality of r.
Hence any irreducible 2, ,-submodule in W is a nondegenerate representation.
This completes the proof of existence of a minimal K-type.
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7.2. Associativity of minimal K-types. Suppose x and y are two points of the
Bruhat-Tits building of G/k. Let 3 be the representation of the group £, ,, on an
irreducible 2, , -submodule V, of V. We assume that (Z, ,,, x) is a minimal K-type.
Let £ be the representation of 2, on an irreducible 2, , -submodule V; of V;
which is fixed pointwise by 2, ,, .. Let E; be an 2, ; -equivariant projection of ¥,
onto V. Since V, is irreducible, there is a g € G(k) so that

@ =Em(g ) V,-> ¥
is nonzero. For he 2., ng#, 9" "' we have

(#} @oyh) =g thg)e @

We shall consider now three cases according to whether r; and s; are both greater
than zero, r; >0 and 5; =0, or r; = 5; = 0.

Case 1. Bothr;,s; > 0. Let X + g¥ ., , and Y + gf _, | be the cosets which give
the characters y and ¢ respectively. As y 1s nondegenerate, X + g¥f _,, , does
not contain any nilpotent elements. By the intertwining principle (*), the two
characters h+ y(h) and h &(g~ 'hg) agree on &, , ng®P, g ' This implies
(X —Ad(g)Y)(Z)ewo for all Zeg,, nAd(g)g,,, and s0 X —Ad(g)Y lies
in g¥f_, , +Ad(g)g} ,,,. Hence, X +gf., , and Ad(g)(Y+af-, )
(<= Ad(g)(g¥ -5) = g5.—,) intersect. By Proposition 6.4, then —s; < — 1, ie.
s; 2 r;. In particular, if (2,5, €) is another minimal K-type in 7, it follows that
¢ and & are associates.

Case 2. r; > 0, s; = 0. The representation ¢ of 2, is the inflation of a representation
of P, /2,0~ In particular, this means the trivial representation of 2, 4+, which
corresponds to the coset g}, occurs in 7. By the same reasoning as in case 1, the
two cosets g, and X + g¥ _,, , must intersect. However, X + g% _,. , contains no
nilpotent elements. This contradicts Proposition 6.4. Hence this case can not occur.

In the above argument, interchanging the roles of x and y, we conclude that if
¢ is a minimal K-type and r; = 0, then 5; = 0.

Case 3. r; = 0,5; = 0. In this case the only assertion which requires a proof is that
when ¢ is also a minimal K-type, then it is an associate of x. So we assume £ is also
a minimal K-type. Then, y (resp. &) is the inflation to 2, o(resp. 2, o) of a cuspidal
representation of M (f) = 2, ¢/P..o (tesp. M,(f) = £, 0/P,.¢+). Observe that the
image of 2, N2, in M,({) (resp. in M,()) is the group of f-rational points of
a parabolic f-subgroup P, (resp. P,,) of M, (resp. M,,). If P, = M, and P,, = M,
then ¢ is an isomorphism of y to Ad(g)¢. Thus, y and & are associates. Suppose
P.& M,. Using the fact that there is an apartment of the Bruhat-Tits building of
G/K containing both x and gy and the description of parahoric subgroups given in
2.5, it is easy to check that the image of 2.~ R, (#,,) in M (f) contains the
unipotent radical of P.(f). Let # be the inverse image in 2, N R,(%,,) of the
unipotent radical of P,(f). As % is contained in R,(2,,), the restriction of Ad(g)¢ to
% is trivial. On the other hand, since y is assumed to be cuspidal, the restriction of
¥ to % cannot contain the trivial representation of %. This is a contradiction;
therefore P, = M,. A similar argument shows that P,, = M.

7.3. Minimality of g(n). With the notation as in 7.1, we claim o(n):=r is the
smallest nonnegative number such that there is a point y in the building with
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VZveer £ {0}. By 7.1, VZxew+ 3£ {0}. Suppose by way of contradiction that there is
a nonnegative real number s < r and a point y in the building so that VZ»=+ % {0}.
By case 2in 7.2, s > 0. Let & be any character of 2, ,/#, .. occurring in V'Z>++. By
case 1 in 7.2, s = r, a contradiction,

7.4. It remains to show that if o(x) > 0, and y is a point in the building of G/k with
VZven {0}, then any irreducible 2, ,.-constituent of V7>e~' is a minimal
K-type. Let j be such that s;= o(n) and let Y + g, , be the coset which
represents such a constituent. If ¥ + g _, | contains a nilpotent element, the
argument of 7.1 shows that o(r) is not minimal, a contradiction. Thus the constitu-
ent must be a minimal K-type. This completes the proof of Theorem 5.2.
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