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Summary. We establish that the infinitesimal "H-definit ion" for quasiconfor- 
real mappings on Carnot  groups implies global quasisymmetry,  and hence the 
absolute cont inui ty on almost all lines. Our  method is new even in R" where 
we obta in  that the "limsup" condit ion in the H-definit ion can be replaced by 
a "liminf" condit ion.  This leads to a new removabili ty result for 
(quasi)conformal mappings in Euclidean spaces. An application to parametri-  
zations of chord-arc surfaces is also given. 

1. Introduction 

A homeomorphism f : X  ~ Y between metric spaces X and Y can be de- 
clared to be quasiconformal if it satisfies 

sup{ I f (x )  - f ( y ) l : l x  - Yl = r} 
(1.1) limr~oSUp inf{ I f (x)  - - f ( y ) l : [ x  - y[ = r}  < n < 

for all x e X and some H independent  of x. We use the distance notat ion 
Ix - Yl and assume that our  spaces have no isolated points. General ly (1.l) is 
a weak condi t ion and does not  lead to an interesting class of maps; for 
instance, a homeomorphism f : R  * + R 1 satisfies (1.1) if it is everywhere 
differentiable with nonzero derivative. However, it is a fundamental  fact in the 
theory of quasiconformal maps  that if X = Y = R" and n > 2, then the 
infinitesimal condi t ion (1.1) implies a global distort ion condit ion,  nowadays 
known as quasisymmetry. A homeomorphism f :  X + Y is called q-quas i sym-  
metric if there is a homeomorphism q : [0, ~ )  ~ [0, ~ ) such that 

(12) I x - a l  < t l x - b l  ~ I f ( x ) - f ( a ) l < q ( t ) l f ( x ) - f ( b ) l  
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for each t > 0 and for each triple x, a, b of points in X. We simply call 
f quasisymmetric if f is r/-quasisymmetric for some r/. 

Various versions of (1.2) have been used in the literature to define 
quasiconformality in R 1, and in spaces other than R". Tukia and V~iis~il/i 
[TV], IV2] in particular have studied quasisymmetric maps in general situ- 
ations and the above definition is theirs. In his studies of rigidity of rank one 
symmetric spaces, Pansu [P1], [P2] defines quasiconformal maps between 
Carnot groups (see the definition below in Section 2) as homeomorphisms 
fsuch that both f a n d  f 1 satisfy (1.2) locally. This definition, which is a priori 
stronger than (1.1), was required in [P1] to prove the important "absolute 
continuity on lines" or ACL property of quasiconformal maps on Carnot 
groups. This was also the case in Mostow's celebrated work [M3], where 
quasiconformal maps in a non-Riemannian setting first appeared. [Mostow in 
fact defines quasiconformality by (1.1) but never uses this weaker definition 
as the maps in his situation automatically satisfy (1.2) locally; see [M3, 
p. 161-163] and especially formulas (21.10), (21.18) there.] 

The proof of the fact that (1.1) implies (1.2) in R" is based on the 
Rademacher-Stepanov theorem and appropriate capacity estimates; the cru- 
cial point is that enough analytic information (ACL, that is) can be extracted 
from (1.1) to perform change of variables, which then leads to a quasi- 
invariance of the conformal capacity. In the case n = 2, this problem was 
completely settled by Gehring in [G1], and later both Gehring and V~iis/il/i 
extended the result for all n > 2. See IV1] for a complete discussion. A similar 
program faces formidable technical difficulties on general Carnotgroups, due 
to their rather complicated non-Riemannian local geometry. Mostow showed 
recently in [M4] that (1.1) implies the ACL property for homeomorphisms on 
Carnot groups which are the Iwasawa components of semisimple rank one 
groups; these are the groups associated with the complex, quaternionic and 
Cayley hyperbolic spaces. Consequently, in these cases we obtain quasisym- 
metry (1.2) as a result of (1.1). For a thorough treatment of quasiconformal 
maps on the Heisenberg group, we refer to [KR]. 

It has been an open problem whether it is possible to conclude the ACL 
property of homeomorphisms satisfying (1.1) on general Carnot groups. In 
[M4, w Mostow specifically conjectures that the answer to this question is 
yes, and the main purpose of this paper is to establish this conjecture. In fact, 
we present an elementary combinatorial argument which avoids the questions 
of differentiability and directly proves the equivalence of (1.1) and (1.2) for 
homeomorphisms of an arbitrary Carnot group G. 

1.3. Theorem. Let f :  G ~ G be a homeomorphism of a Carnot 9roup G onto 
itself. I f  f satisfies (1.1), then f satisfies (1.2) with fl = rl(H, G). 

That (1.1) implies the ACL property for homeomorphisms on Carnot 
groups, follows now from Theorem 1.3 and from the results in [P1]. 

It is generally an open problem for which spaces (1.1) and (1.2) are 
equivalent. Gromov and Pansu [GP, p. 93] ask for which negatively curved 
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complete simply-connected manifolds M a boundary homeomorphism 
f :  M(  ~ ) ~ M(  o0 ) which is quasiconformal in the sense of (1.1) is induced by 
a quasiisometry F : M  ~ M. Here M ( ~ )  denotes the sphere at infinity 
equipped with a natural "Margulis conformal structure". Theorem 1.3 shows 
that this happens if M( ~ ) has a realization as a Carnot group. Heintze [H2] 
has classified homogeneous spaces with this property. See also 4.4 below. 

Our approach to Theorem 1.3 should have some independent interest also 
in the classical Euclidean case, for as far we are aware, there is no previous 
proof of the equivalence of (1.1) and (1.2) that avoids the analytic machinery. 
Furthermore, in R" the argument allows us to replace "lim sup" with "lim inf" 
in (1.1); this seems to be a new observation and it came as a surprise to us. 

1.4. Theorem. Let f :  R" -~ R" be a homeomorphism, n > 2. Suppose that 

. . . .  sup{ If(x) -- f ( y ) l : J x  -- Yl = r} 
(1.5) nm mi . < H < 

r~0 mf{ I f ( x )  - - f ( y ) [ : l x  -- Yl = r} = 

for all x ~ R" and .for some H independent of  x. Then f satisfies (1.2) with 
~I = rl(n, H). In particular, f is quasiconformal. 

We do not know whether (1.5) suffices for quasisymmetry on general 
Carnot groups. Our argument fails in the absence of appropriate covering 
theorems. 

Because the inverse ofa quasisymmetric map is easily seen to be quasisym- 
metric, we obtain a new and a short proof of the fact that if f :R"  ~ R" is 
quasiconformal, so is its inverse f - 1  Traditionally, it takes some effort to 
prove this result; see IV1]. 

As the issues of differentiability and change of variables are removed, we 
can further relax the conditions in Theorems 1.3 and 1.4 and replace the target 
by a more general metric space Y. We shall postulate two conditions on Y and 
show that neither of them can be dropped if we are to obtain analogous 
results. Here, and hereafter, B(z,r)  denotes a closed ball in a metric space, 
centered at z and of radius r. For a set A in a metric space, intA denotes its 
interior. 

A metric space Y is said to be c-linearly locally connected if there is c > 1 
such that for each y ~ Y and R > 0 any two points in Y \ i n t B ( y ,  R) belong to 
the same component of Y \ i n t B ( y ,  R/c) and any two points in B(y, R) belong 
to the same component B(y, Rc). 

Next, assume that/~ is a measure on Y. We say that # is p-regular if there is 
a positive real number p and a constant Cu > 1 such that 

(1.6) Cul  R p ~ flBR <= CuR p 

for each ball B R of radius R in Y. 
Each Carnot group G is both l-linearly locally connected and carries 

a Q-regular measure, where Q is the homogeneous dimension of G (see 2.1). 
Thus Theorems 1.4 and 1.3 are corollaries of the following result: 
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1.7. Theorem. Let  G be a Carnot group of  homogeneous dimension Q and let 
Y be a c-linearly locally connected metric space that carries a Q-regular measure 
~. I f  a homeomorphism f : G  ~ Y satisfies (1.1), then f satisfies (1.2) with 
q = q(G,H,c,  C,). l f G  = R", it suffices to assume that fsatisf ies (1.5). 

Theorem 1.7 is new even if we used (1.1) instead of (1.5) in R"; the known 
analytic proofs do not allow for a general metric space as a target. Both 
conditions placed on Y in Theorem 1.7 are necessary in the following sense. 
First V~is~il~i [V2, Section 5] has exhibited an embedding f : R "  ~ R "+~, 
n > 2, such that (1.1) is satisfied but f i s  not quasisymmetric in any neighbor- 
hood of the origin; moreover, the image Y = f ( R " )  admits an n-regular 
measure, which is the restriction to Y of the n-dimensional Hausdorffmeasure 
in R "+ 1. Second, in 4.7 below we show that the linear local connectivity of 
Y alone is not sufficient for the equivalence of (1.1) and (1.2), at least if 
a quantitative statement akin to Theorem 1.7 is required. 

The paper is organized as follows. Section 2 is preparatory and we 
introduce the concept of discrete modulus, which plays a crucial role in the 
proof of the main theorem 1.7 in Section 3. In Section 4 we give three 
applications: First we establish a new removability theorem for quasiconfor- 
real maps in R" by using Theorem 1.4; then we show how Theorem 1.7 can be 
used in deciding whether a given complete, simply connected manifold of 
negative sectional curvature is quasi-isometric to real hyperbolic space; 
finally, we point out how Theorem 1.7 can be used to give a simple proof for 
a result of Semmes on the parametrization of chord arc surfaces. Section 5 is 
devoted to the proof of Proposition 2.4. 

1.8. Remarks. (a) The condition we really will be using in the proof of 
Theorem 1.7 is 

( d i a m f ( B ( x ,  r))) r 
(1.9) l imsup < H < ~ ,  

r~o ~ f ( B ( x ,  r)) - 

which is a priori a weaker requirement than (1.1). Similarly, if G = R", we can 
replace "limsup" by "liminf" in (1.9). 

(b) Theorem 1.7 has a local version as well: Suppose that f :  U ~ U' is 
a homeomorphism between open subsets U and U' of G. If f satisfies (1.1)~ 
then fsatisfies (1.2) in a neighborhood of each point in U. The proof of this 
requires only trivial modifications to the proof presented in Section 3. For 
notational simplicity we consider maps that are defined in all of G. 

2. Preliminaries 

2.1. Carnot groups 

A Carnot group is a connected and simply connected nilpotent Lie groLq3 
G with graded Lie algebra g = Vx �9 -" �9 V, such that [V1, V~] = Vl+i. We 
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also assume that dimG > 2. Assuming that the generators X1, . . . ,  Xm of V~ 
are fixed, G admits a natural left-invariant Carnot-Carathbodory metric 
dc(x, y) which is defined as the infimum of the lengths of all horizontal paths 
joining x and y; the length is measured in a Riemannian metric in which 
{Xi:i = 1, . . . ,  m} is orthonormal,  and a path is said to be horizontal if its 
tangents lie in Vt. Then the Hausdorff dimension of (G, dc) is equal to its 
homogeneous dimension Q = )~= ~ idim Vi (see [M2]). Moreover, the bi-invari- 
ant Haar measure p in G can be normalized so that each ball B, of radius r in 
the metric dc has measure r e. We refer to [P1] and [FS]  for more information 
about Carnot groups. 

2.2. Capacity and modulus 

Let E and F be two disjoint closed subsets of a Carnot group G. We suppose 
further that E is compact and that the open set U = G\(EuF)  is bounded. 
The Q-capacity between E and F in G is the number 

Cape(E, F) = inf ~ IVoul e d#, 
G 

where Vou denotes the horizontal gradient of u and the infimum is taken over 
all smooth functions u on G with u l E > 1 and u ] F = 0. Standard approxima- 
tion procedures allow us to enlarge the pool of admissible functions: the same 
value Cape(E , F) results if u is merely assumed to be continuous with distribu- 
tional horizontal derivatives in L e. The Q-capacity is conformally invariant, 
hence an important  tool in quasiconformal analysis. See [P1], [R], and [H1]. 

Next, the Q-modulus Mode(E,  F) between E and F is defined by 

Mode(E,  F)  = inf ~ pe d/t, 
U 

where the infimum is over all Borel functions p in U such that 

~2.3) ~ p ds > 1 
Y 

for all horizontal paths 7 joining E and F in U. 
It is well known that Cap,(E, F) = Mod,(E,  F) in R"; this was first proved 

by Gehring [G2]. We require an analogous result on general Carnot groups. 

2.4. Proposition. With the above notation 

Cape(E, F)  = Mode(E,  F) .  

By refining Ziemer's [Z3 argument in the Euclidean case, Eichmann [E] 
verified Proposition 2.4 on the first Heisenberg group. To reach the general 
~'ase, both of these proofs need to be modified slightly, and to be on the safe 
s~de we outline a proof for Proposit ion 2.4 in Section 6 below. 
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2.5. Discrete modulus 

Let E and F be closed subsets of G as in 2.2. We define a "discrete modulus" 
between E and F and then show that it majorizes the standard modulus. IfB is 
a ball, we use the notation 2B for the ball which has same center as B but 
radius dilated by 2. 

Let M be a countable collection of closed balls contained in 
U = G \ ( E u F ) ,  let v : ~  --* [0, oo) be a function, and let m be a positive 
integer. Then we call the pair (v,M) m-admissible if the following three 
conditions hold: 

(2.6) U B -- U; 
B~.#t 

there is a partition of ,~ into disjoint subcollections M1, . .- ,  M,, such that 

(2.7) �89 Bc~�89 B' = 0 

whenever B, B' e ~i ,  B # B', and i = 1, . . . ,  m; 

(2.8) ~, v(B)>= 1 

for all chains a in ~ joining E and F. Here by definition a subset ~ of ~ is 
a chain joining E and F if UB~ B contains a connected set whose closure meets 
both E and F. 

The need for the middle condition (2.7) will become apparent below; the 
factor !5 comes from classical covering theorems. Note that by the Besicovitch 
covering theorem (see e.g. [M1, 2.7]), one often has a situation where a collec- 
tion of balls in R" can be divided into C(n)-subcollections satisfying (2.7). 
However, in this paper we shall only need the cases m = 1 or m = 2, of which 
the latter occurs only if G # R". 

Next, for 6 > 0 set 

d-Mod~,m(E,F) = inf ~ v(B) Q, 

where Q is the homogeneous dimension of G and the infimum is taken over all 
m-admissible pairs (v ,~)  such that diamB < 6 for each B e ~ .  Then the 
discrete (Q,m)-modulus between E and F is the number 

d-ModQ,,,(E, F) = lim d-Mod~.m (E, F). 
6 ~ 0  

The next proposition shows that the discrete modulus majorizes the usual 
modulus defined in 2.2, up to a constant. 

2.9. Proposition. There is a constant C = C( G,m) ~ 1 such that 

ModQ(E, F) ~ C d-ModQ, m(E, F). 
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Proof Let (v, ~ )  be an m-admissible pair for E and F. It suffices to exhibit an 
admissible density p such that 

(2.1o) ~ ped~ __< c Y v(B)Q. 
G BE~.~ 

We may assume that diam B < 6 < �89 dist(E, F) for each B e ~.  Set 

p(x) = E aiz21~,(x), 

where ai = v(Bi)/diam Bi and Za denotes the characteristic function of a set A. 
Now let ? be a path joining E and F in U. We find 

S P(x )ds= ~. ~,aiZ2B,(X)ds>= S E aiZ2B,(X)ds 

= ~ ai ~ ds= ~, ailength(Tc~2Bi) 
i,~,,c~B,*O y c~ 2B, i ,?c~B,*O 

1 1 
= ~ v(B3 > 

Thus 2p satisfies (2.3). It remains to show that (2.10) holds. 
To this end, let ~1, .--, ~m be a partition of M into disjoint subcollections 

such that (2.7) holds. We use a standard maximal function argument (see e.g. 
[B, Lemma 4.2] or the remark after the proof) and infer that 

sCz / )~ (2.11) aiZ2B,(X) d# < C aiz1/s~,(x) dl~ <= C E v(Bi) Q 
G \ B , ~ . ~  k / B k B,E~+~k 

for each k = 1 . . . .  , m. To achieve (2.10), we use (2.11) m-times and conclude 
that 

~. POdI~ = I + "'" + 2 aiz2n.(x) dl~ 
G G B B, ,E ,#1 m 

m O - 1  a i Z 2 B , ( X  ) d# 
k = l  B k 

<= C Z v(Bi) Q" 
B, ~ ,~ 

This proves the proposition. 
The first inequality in (2.11) is an exercise to the reader given the following 

two hints: use the boundedness of the Hardy-Littlewood maximal operator 
([FS, p. 67]) and the duality of L Q and L O/~Q-1). 

2.12. Corollary. Suppose that E contains a connected set joining the center of 
a ball B, to its boundary aBr and that F contains a connected set joining the 
boundary of ~3Br to the complement of BEt. Then 

d-ModQ,,,(E,F) _-> C( G,m) > O. 
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Proof By Proposition 2.4 it suffices to have a lower bound for cape(E, F). This 
is classical and due to Loewner [L] in the case of R", proved by Reimann JR] in 
the Heisenberg group, and by the first author [H1] in general Carnot groups. 

We close this section by recording, for any easy reference, the following 
well known covering lemma; see e.9. [FS, p. 53] or [M1, 2.1]. 

2.13. Covering lemma. Let Y be a metric space as in Theorem 1.7 and let A be 
a bounded subset of Y. Suppose that for each x ~ A we are given a radius 
r~ > 0. Then there is a countable sequence of points (x~) in A such that 

A ~ U B(xj,  rxj) and e(x~,�89 r~,)c~n(x~,�89 rx) = 0 if i # j .  
J 

3. Proof of Theorem 1.7 

In this section we prove Theorem 1.7. For x e G and r > 0 we employ the 
following notation: 

L ( x , r ) =  sup ] f ( x ) - f ( y ) t ,  l ( x , r )=  inf ] f ( x ) - f ( y ) [ ,  
l x -y l=r  ]x--yl=r 

and 

L(x,r)  
H(x ,r)  - 

l(x,r) " 

For notational simplicity, and obviously without loss of generality, we assume 
that 

lim sup H(x, r) < H 
r ~ O  

for all x e G; similarly, if G = R", we assume that 

l iminfH(x ,r )  < H 
r~O 

for all x e R". 
We remark that the ensuing proof, where Y is a metric space satisfying the 

assumptions of the theorem, is not essentially more complicated than it would 
be in the special case Y - - G .  The reader who is interested only in this 
particular situation, should choose c = C u = 1 throughout the proof. For 
those readers who are interested only in the case Y - - G  = R", we shall 
indicate where the argument splits below. 

3.1. Preliminary steps 

To begin the proof, we first observe that both G and Y are HTB-spaces in the 
sense of Tukia and V/iis~il/i [TV, 2.7]; this follows from the existence of 
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a measure satisfying (1.6) together with the covering lemma 2.13. Therefore, by 
an i teration argument  [TV, 2.15], it suffices to verify (1.2) only for t = 1. 

Let xo,a,b~G be such that ] x 0 - a l < l x o - b ] ,  and write 
L = If(xo) - f ( a ) ] ,  l = ]f(xo) - f ( b ) [ .  We want to show that 

L 
(3.2) 7 < C < oo, 

where C = C(G, H, c, C,). Because both G and Y are unbounded,  we can pick 
a point  w e G such that 

(3.3) I x o -  w[ > 21Xo-  b[ and I f ( x o ) - f ( w ) l  > L = I f ( x o ) - f ( a ) l .  

Next we assume, as we may, that L > cZl, where c is the constant  in the 
linear local connectivity condition. Now denote 

E =f - l (B( f (xo) ,c l ) )  

and 

F = f -  1( Y \ in t  B(f(xo), L/c)), 

and notice that by the c-linear local connectedness, the closed sets E and 
F contain connected subsets joining Xo to b and a to w, respectively. In 
particular, Corollary 2.12 implies 

(3.4) d-ModQ,m(E,F) > C(G,m) > O. 

We shall show that a large ratio of L/1 will contradict  (3.4) for m = 2. 
To do so, we need to exhibit an appropriate 2-admissible pair (v, 2 )  for the 

sets E and F as above. 

3.5. Description of 2 

Let U = G\(EwF)  and fix 6 > 0, to be determined later. 
Suppose first that G = R". Then for each x E U choose a radius rx, 

0 < rx < 6, such that 

(3.6) B(x,4rx) = U 

and that 

(3.7) H(x, rx) < H. 

Then from the collection { B(x, rx):x e U } we can pick a countable  subcollec- 
tion 2 such that 0B~.~B U, that 1 ~ 1 ~ ,  = 51",, ~,-, = ~ whenever B, B ' e  2 and 
B ~ B', and that 

(3.8) ~, Z,(x)  < C(n). 
B~,~  

This is possible by the Besicovitch covering theorem [M1, 2.7]. Thus we have 
a collection 2 which satisfies (2.6) and (2.7) with 21  = 2 and 2 z  = {e}. 
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It is well known that the Besicovitch covering theorem need not hold in 
a general Carnot group (see e.g. [KR, 1.4]) and hence our selection for ~ is 
more intricate in this case. The reader who is interested only in the case 
G = R", may now move on to 3.17. 

Suppose G 4: R". We divide U into two subsets ~ff and ~ ,  where ~ con- 
sists of those points x ~ U for which 

(3.9) l imsup ~ f ( B ( x , 2 r ) )  < D = 2(5H2c4)QC~ 
~ o  # f (B(x ,  r)) 

and ~ = U \ ~ .  We shall cover the sets ~ and ~ separately, which leads to 
two different subfamilies of balls. For points x s ~ we choose a radius rx, 
0 < r~ < 6, such that (3.6) holds, and, moreover, such that both 

(3.10) 

and 

H(x, r) < H 

k~f(B(x, 2r)) 
(3.11) < D 

I~f(B(x, r)) 

hold for 0 < r < rx. We use the covering lemma 2.13 and subtract from the 
family {B(x, rx):x e ~ }  a countable subfamily ~1 such that ~ c ~)~,~, B 
and that � 89189  = 0 whenever B, B' ~ l  with B 4= B'. 

Next we determine M2. For each x ~ N choose a radius r~, 0 < rx < 6, such 
that (3.6) holds, that (3.10) holds for 0 < r < 2rx, and, moreover, such that 

gf(B(x,2rx))  > 0/2. 
p f (B(x ,  rx)) = 

We record the following inclusions which follow from the c-local connecti- 
vity: 

(3.12) B(f(y),  1 l(y,s)) c f ( B ( y , s ) )  c B( f (y ) ,cL(y , s ) )  
c 

for any y e G and s > 0. By using this, the choice of D, plus the fact that 

C~ t s e <= ~B(y,s) <= Cus Q, 

we obtain for points x e ~ that 

L(x, r~) a <= Hel(x, rx) e <= (Hc) a C.l~f(B(x, r~)) 

(Hc)QC. (Hc2)eC~ a 
< D/2 I~f(a(x,2r~)) < ~ L(x,2r~) 

(H~c~)eC2" l(x, 2r~) e < ~ l(x, 2r~) e. 
<= D/2 = (5C2)  Q 
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We thus find 

(3.13) B( f (x ) ,  5cL(x, rx)) c f (B(x ,  2r~)) 

for each x �9 :~. 
Now we use the covering lemma 2.13 in Y and subtract from the collection 

{ B(f(x),  5cL(x, rx)):x e ~ } 

a countable subcollection 

:8r = {B(f(xl),5cL(xi,rx.)):i = 1,2 . . . .  } 

such that f ( ~ )  ~ Us~.e~B and 

(3.14) B(f(xi) ,cL(xi ,  r~))nB(.f(xj) ,cL(xj ,  r~)) = O, i # j .  

Next, for each x~ �9 ~ as above denote by ri the least radius r > 0 such that 
the ball B(xi, r) contains the set f l (B(f(xi) ,  5cL(xi, r~,))). Take notice that 
ri <= 2rx, by (3.13). Then put  

:82 = {B(xi, ri):i = 1,2 ... }. 

Because 

f (  B(xi, �89 ri)) c f (B(x i ,  r~,)) ~ B(f(xi) ,  cL(xl, r~,)), 

we see from (3.14) that 

B(xi,~ri)c~B(xj,�89 = O, i # j .  

Moreover, ~ ~ U s ~  B by construction. We conclude that :8 = :81w:82 
satisfies (2.6) and (2.7). 

Observe the following crucial property of the families :81 and :82: 

t~f(Bi) < Cl#f(�89 Bi�9 (3.15) 

and 

(3.16) 

where 

pf(Bi)  <= Clpf(V~), Bie:82, 

Vi = f - l ( B ( f ( x i ) , c L ( x i ,  rx,))) c Bi 

,qnd C1 = CI(G,H,c,  Cu). Indeed, (3.15) follows from (3.11) as soon as 
C1 >= D 3, and to see why (3.16) holds, we estimate 

l~f(Bi) ~ pB(f(xi),  cL(xi, ri)) <= CucQL(xi, ri) e 

< C,(Hc) ~ l(xi, ri) e < C~,(Hc)O(5cL(xi, rx,)) Q 

=< C~'( 5Hc)O pf( Vi ), 

where the penul t imate inequali ty follows from the choice of ri. Thus (3.16) 
holds if C1 >= C~,(5Hc) e. 
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We have circumvented the possible failure of Besicovitch's theorem by 
introducing the sets Vi; they play the role in ~2 played by the sets �89 for 
B~ e ~x.  Besides (3.15) and (3.16), notice the further similarity: 

1 1 ~ �89 -~Bic~-~Bj O, i # j ,  BI, BjE~I,  

Vi~Bi, VinVj=O, i# j ,  Bi,Bj6~2. 

3.17. Definition for v and admissibility 

The next step is to define v:.r ~ (0, oo ) by 

/ L'", - 1 d i amf (B)  
v(B) = ~ l o g T )  

dist(f(B),f(xo))' 

where L' = L/c > I' = el. 
We claim that (C2v,~) is a 2-admissible pair for E and F, where 

C2 = C2(G,H,c, C,) is some positive constant. For  this, it suffices to show 
(2.8), as we have already verified (2.6) and (2.7). 

To this end, let a be a chain in N joining E and F. Then 

( L ' ) - l v d i a m f ( B )  
~ v ( B )  = ~ log T ~dist(f(B),f(xo)) 

( L ' )  -1 d i a m f ( B )  
= l ~  ~ o  E - ' , �9 ~, dast(f(B),J(xo)) 

where aj consists of those B e a for which f(B) either lies in the annular region 
B(f(xo), 2-JL')\B(f(xo), 2-J -1  L ') or touches OB(f(xo), 2-JL'). 

At this point we make a restriction on 6; we choose 6 > 0 so small that for 
B c U, d iamB < 26 implies d i a m f ( B )  < 2 - j ~  L', where j0 is the smallest 
integer such that 2-J"L ' < I'. In particular this means that {aj} forms a parti- 
tion of a. 

For  the rest of the proof, we use the notation A~_A' to indicate that 
CA ~ A' for some constant C = C(G,H,c,C,). 

All said, we obtain 

/ L " ~  - 1  
~v(B)>'~log-~7) ~, 2(2-JL')-adiamf(B) 
a j>=O aj 

_> log y, (2-JL')-*ydiamf(B) 
j=> 0 ~, 

( ;> log ~ (2-JL')-I2-JL'>'I, 
j = O  

which shows that (C2v, ~) is 2-admissible for some appropriate constant C2 
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3.18. Final step 

To finish the proof, we estimate the sum y, :~ v(B) a. Our choices (3.7) and (3.10) 
for the radii of the balls B in ~ guarantee that 

( L ' ) a v ( d i a m f ( B ) ) ~  
v(B) a = log~- j~o ~ (dist(f(B),f(xo))) Q 

( ~__ log ~, (2-JL')-~ 
j >  0 ~s 

where ~J consists of those B ~ ~ for which f (B)  either lies in the annular 
region J ' B(f(xo),2 L ) \B(f(xo) ,2 - j-1L')  or touches ~B(f(xo),2-JL'). To 
deal with the second sum above, we use (3.15) and (3.16) together with 
disjointness of the families -~M1 and { Vi}: 

~,pf(B) <__ Z pf(B) + Z I~f(B) 
.$~ BJc~B~ BSc~B2 

Z P.f(IB) + Z pf(V~) 
BSc~Bl BSc~B2 

(3.19) ~_pB(f(xo),2 JL'))~_(2-JL') e. 

Note that the finite overlapping condition (3.8) guarantees that (3.19) holds 
in R" as well with ~2 = {0}. 

By combining the last two estimates we arrive at 

(2-JL')  e(2-JL' )Q~ l o g ~ ' ]  1-a ~v(B)a~--(l~ aj~=o ( , , /  

In conclusion, by letting 6 ~ 0, we find 

ff  L " ~  I - e  

t l~ , 

which contradicts (3.4), provided the ratio L'/l' is large enough. The theorem 
follows. 

4. Three applications 

,l.1. Removability theorem 

We apply Theorem 1.3 and pr6ve the following result, which may be new even 
for conformal maps in the plane. 

4.2. Theorem. Suppose that f is a quasiconformal map of the complement of 
a closed set E in R" into R', n > 2, and suppose that each point x E E has the 
following property: there is a sequence of radii r j, r j -* 0 as j -~ ~ , such that the 
annular region B( x, ar fl \ B( x, r ffa) does not meet E for some a > 1 independent 
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of x. Then f has a quasiconformal extension to R"~{ oo }. Moreover, the 
dilatation of the extension agrees with the dilatation of f 

Proof First we observe that f has a homeomorphic extension to R"u  { oo }; 
see [MN, Theorem 1]. We call the extension f a s  well. By Theorem 1.3 it then 
suffices to show that (1.5) holds for each x e R " \ f -  1( oo ) (note that one point 
is a removable singularity for quasiconformal maps). This is clear for x not in 
E, so pick a point x e E .  Let rj be a radius such that 
B(x, arj)\B(x, rJa) c R"\E. Then 

(4.3) sup I f ( Y ) - f ( x ) l  =< c inf [ f ( y ) - f ( x ) l ,  
lY - x l  = r j  lY - x l  = r j  

where C => 1 depends only on a, n and the dilatation of f i n  R"\E. Inequality 
(4.3) can be proved via a standard modulus argument, or, alternatively, by 
observing that the quasihyperbolic diameter of the sphere ~B(x, rj) in the 
domain intB(x, ar2)\B(x, rJa) is bounded by a constant depending only on 
a and then using the uniform continuity of quasiconformal maps in the 
quasihyperbolic metric. We leave this to the reader. In any case, C is indepen- 
dent of rj and x, and by letting r i -* 0 we infer that (1.5) holds everywhere in 
R". Thus f i s  quasiconformal in all of R ". On the other hand, because E clearly 
has zero n-measure (no point of E can be a point of density), the dilatation of 
the extension does not exceed the dilatation of the original map f (see  IV1, 
Chapter 4]). The theorem follows. 

By the aid of Theorem 4.2 (cf. Remarks 1.8 (b)) one easily constructs 
Cantor type sets in R" whose Hausdorffdimension is equal to n and which are 
removable for all quasiconformal maps. Astala and the second author have 
previously pointed out that there exist compact sets of Hausdorff dimension 
n in R" which are similarly removable; see [AK, Example 2.5]. The condition 
given in Theorem 4.2 is unrelated to the example in [AK]. For  recent results 
on removable sets for conformal maps, see the paper by He and Schramm 
[HS]. 

4.4. Remark on manifolds with negative curvature. 

Suppose that M is a complete simply connected Riemannian manifold, of 
dimension at least three, with sectional curvature bounded from above by 
a negative constant. Then M is a Gromov hyperbolic space and the sphere at 
infinity M( oo ) has a natural conformal structure determined by metric balls. 
We refer to [GP]  for both an excellent discussion on these matters and some 
of the terminology, and to [GH]  for facts about Gromov hyperbolic spaces. 
Now for each p ~ M, there is a natural homeomorphism q~ from the unit 
sphere Sp in TpM onto M( oo ), and one can ask when q~ is quasiconformal or 
quasisymmetric, or, rather, quasim'dbius because we are working on a sphere 
where a four-point condition is more natural  than the three-point condition 
(1.2). To use Theorem 1.7, we first perform a conformal "stereographic 
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projection" from M( oo ) \  {a} onto an unbounded space M( oo, a), where a is 
a fixed point in M( oo ) (see [GH, Chapitre 8]). Call this map ~ka. Then if rca 
denotes the usual stereographic projection from Sp\{ r onto R" 1, we 
obtain a map ~b = ~Ja o r o ~,- 1 : R"- 1 ~ M( ~ ,a), and clearly ~b satisfies (I.1) 
if and only if rp does (in respective metrics). 

Now if r is quasim6bius, it extends to a quasi-isometry between the ball 
model of the real hyperbolic space and M (see [GP, p. 91-93[, and also [P3]). 
Thus we obtain from Theorem 1.7 the following result. 

4.5. Theorem. Suppose that M (  oo , a) carries an (n - 1)-regular measure and is 
linearly locally connected. Then if  tp satisfies (1.5), M has to be quasi-isometric 
to the real hyperbolic space. 

The existence of measures on the boundary of a hyperbolic space has been 
studied by Coornaert  [C]. 

4.6. Parametrizing surfaces 

Suppose that E is a smooth simply-connected 2-dimensional surface in R 3 
such that E u { oo } is a smooth submanifold of R 3 u { oo } ~ S 3. Then E is 
a chord arc surface if there is a constant C~ > 0 such that 

CE1R 2 ~ J f 2 ( E n B ( x , R ) )  <= CER 2 

for all x ~ E and R > 0, where jg~2 denotes the Hausdorff2-measure, and if the 
two complementary components of E in R 3 are so-called uniform domains. See 
[S], [DS]. 

Now E inherits a Riemannian metric from R s and by Gauss's theorem 
there is a conformal map f :  R :  ~ E. One can show that the internal metric on 
E and the metric E inherits from R 3 are bi-Lipschitz equivalent; moreover, due 
to the uniformity of the complementary components of E, it is not hard to see 
that E satisfies a linear local connectivity condition as described in the 
introduction. Because the conformal map f obviously satisfies (1.1), we can 
conclude from Theorem 1.7 that f i s  quasisymmetric in the Euclidean metrics 
of R 2 and R3; moreover, the quasisymmetry function tl depends only on the 
chord arc constants associated with E, and not  on the smoothness. 

That the uniformizing map f is globally quasisymmetric was proved by 
Semmes in I-S] for surfaces with small constants. Later  David and Semmes 
[DS] showed that a general smooth 2-dimensional chord-arc surface as 
above satisfies the crucial properties needed in the proof  in l-S], and hence 
parametrizations were found in general. We find the above argument sub- 
stantially simpler than that given in [S] and [DS]. It is an open prob- 
lem whether the a priori smoothness assumption for 2-dimensional surfaces 
can be dropped. Very recently Semmes found examples of nonsmooth 
3-dimensional chord-arc surfaces in R 4 which do not admit quasisymmetric 
parametrizations in R s as well as smooth such surfaces which do not admit 
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quasisymmetric parametrizations in R 3 with constants depending only on the 
chord-arc structure. 

4.Z Example 

We can use the uniformization theorem as above to construct examples which 
show that in Theorem 1.7 condition (1.6) cannot be dropped even if we retain 
the linear local connectedness of the target space Y. To see this, consider 
a sequence of smooth surfaces Yi in R 3 of the form Yi = R 1 x Fi, where Fi is 
the graph of a smooth function hi: R ~ ~ R 1. We choose hi such that the 
resulting surface Yi is linearly locally connected with a constant that does not 
depend on i and that 

lim sup length hi ([ O, 1 ] ) = ~ .  

We also assume that Yi is uniformized by the plane. Then any conformal map 
f~: R 2 ~ Yi satisfies (1.1) with a constant independent of i, but the forced 
asymmetry of Yi prevents f~ from being quasisymmetric with a function r/that 
is independent of i IV3]. 

5. Appendix: Proof of Proposition 2.4 

We use the notation of Section 2. First, the proof of the inequality 

(5.1) ModQ(E, F)  < CapQ(E, F) 

is straightforward: Pick u ~ C~(U)  such that u > 1 on E and pick a rectifiable 
path ~; [0, 1] ~ U joining E and F. It is easily seen that u o 7 is Lipschitz on 
[0, 1], whence 

1 

1 ~ lu o ~ ( 0 ) -  uo ~(1)1-< S IVou(~)l I~,ldt = ~ lVou lds .  
0 y 

Thus p = IVuol satisfies (2.3), and (5.1) follows. (Above we need the fact, 
proved by Pansu in [P1, Proposition 4.1], that a locally rectifiable path c: 
R ~ G is almost everywhere differentiable.) 

The reverse inequality is trickier. Fix p satisfying (2.3). By the Vitali- 
Carath6odory theorem any function f in L~(U) can be approximated by 
a lower semicontinuous function g > f i n  L p (U) with arbitrary precision. Thus 
we may assume that p is lower semicontinuous. By considering the lower 
semicontinuous functions Pl -- max { p, i -  1 }, i = 1, 2 . . . . .  if necessary, we may 
further assume that p is bounded away from zero in U. We set p = 0 in G\U 
so that p is defined everywhere on G. 

The proof  of I-Z, Lemma 3.3] applies practically verbatim to yield the 
following fact: Let (/~i) be a sequence of paths on G with uniformly bounded 
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length such that for two sequences (xi) and (yi), x ,  yi ~ fli, we have X i ~ X and 
Yi ~ Y. Then 

(5.2) lira inf I P ds > I P ds 

for some path fl joining x and y. The lower semicontinuity of p is used here, as 
well as, again, [P1, 4.1]. 

Next, set p k = m i n { p , k }  for k = l , 2 , . . . .  Then p k e L ~ ( G )  is lower 
semicontinuous. D~fine for x E G 

( 5 . 3 )  Uk(X) = inf~ Ok ds, 

where the infimum is taken over all paths fl meeting both x and F. By (5.2), 
there exists a path fix where the infimum is attained. Pick x, y e U, and let fl be 
a path from x to y. Then 

Uk(y) < UR(X) + fpkdS <= Uk(X) + klength ft. 

This shows that Uk is (locally) Lipschitz with constant k. Consequently, 
Pansu's theorem [P1, p. 7-8] implies that the horizontal gradient VoUk exists 
almost everywhere on G. We are going to show that 

(5.4) IVoUk(X)l ~ pk(X) 

for almost every x ~ G. 
To this end, pick x such that VoUk(X) exists and recall that 

where 

IVoUk(X)I = sup [Xu(x)l, 
X e V .  IXI = 1 

Xu(x)  = lim u(x exp(tX)) - u(x) 
t ~ O  t 

Now fix X ~ V1 such that IX[ = 1 and denote by F the family of orbits of X. 
Then ix(Vol), the interior product of X and the fixed bi-invariant volume 
form on G, yields a natural measure @ on F, (cf. [P1, p. 21]). Fix a surface 
S transversal to F. We can parametrize the paths in F by 7p(t) = pexp(tX) ,  
p ~ S, t ~ R. By a standard argument (see IV1, Section 28]) we infer that p, is 
Borel measurable on almost every path 7 ~ F. Now it follows by a straightfor- 
ward argument (cf. [P1, p. 31]) that for almost every x ~ G the function Pk is 
approximately continuous at x, when restricted to the path t ~ xexp( tX) .  
(Recall that a function h is approximately continuous at a point Yo if 
h(y) --, h(yo) when y approaches Yo along a set with measure density 1 at Yo; 
it is well known that bounded measurable functions on a measure space are 
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approximately continuous at almost every point [F, p. 159]). Thus for all such 
x we have that 

u k ( x e x p ( t X ) )  < UR(X) + ~ pkdS, 

where flx,,(s) = x e x p ( s X ) ,  0 <_ s < t. It follows that 

lim u ( x e x p ( t X ) )  - u(x)  < lira -1 ~ pkdS = pk(X) 
,~0  t ~ 0  t ~, 

by approximate continuity. This proves (5.4). 
The rest of the proof goes exactly as in [Z]. By using (5.2) and the fact that 

p is bounded away from zero, we first infer that m k =  minx~EUk(X) ~ 1 as 
k ~ ~ and then that 

CapQ(E, F) _-< lim inf m~- Q ~ I Vo min { Uk, mk} ]e dx 
k ~  G 

__< l iminfmf Q ~ p~dx  <= ~p~dx .  
k ~  U U 

Because p was arbitrary, this completes the proof. 

Acknowledgements. We wish to thank Fred Gehring and Jussi Vfiis~ilfi for their interest in 
this work and for their helpful comments on the manuscript. 

References 

[AK] 

[a] 

[c] 

[DS] 

[E] 

IF3 
[FS] 

[G1] 

[G2] 

IGH] 

[GP] 

Astala K., Koskela P.: Quasiconformal mappings and global integrability of the 
derivative. J. Anal. Math. 57, 203-220 (1991) 
Bojarski B.: Remarks on Sobolev imbedding inequalities, In Proc. of the Confer- 
ence on Complex Analysis, Joensuu 1987. Lecture Notes in Math. 1351, Springer 
Verlag 1988 
Coornaert M.: Mesures de Patterson-Sullivan sur le bord d'un espace hyper- 
bolique au sens de Gromov, Pacific J. Math. 159, 241-270 (1993) 
David G., Semmes S.: Quantitative rectifiability and Lipschitz mappings, Trans. 
Amer. Math. Soc. 337, 855-889 (1993) 
Eichmann R.: Variationsprobleme auf der Heisenberggruppe, Lizentiatsarbeit. 
Universit~it Bern (1990) 
Federer H.: Geometric Measure Theory, Springer, New York, 1969. 
Folland G.B., Stein E.M.: Hardy spaces on homogeneous groups, Princetol~ 
University Press, Princeton, New Jersey, 1982 
Gehring F.W.: The definitions and exceptional sets for quasiconformal mappings. 
Ann. Acad. Sci. Fenn. Ser. A I Math. 281, 1-28 (1960) 
Gehring F.W.: Extremal length definitions for the conformal capacity of rings i~ 
space, Michigan Math. J. 9, 137-150 (1962) 
Ghys E., de la Harpe P.: Sur les Groupes Hyperboliques d'aprbs Mikhae~ 
Gromov, Birkh~iuser, Progress in Mathematics, Boston-Basel-Berlin, 1990 
Gromov M., Pansu P.: Rigidity of Lattices: An Introduction, Geometric Topo~ 
ogy: Recent Developments. Lecture Notes in Mathematics 1504, Springer-Verla/~'-- 
Berlin-New York-Heidelberg, 1991 



Definitions of quasiconformality 79 

[HS] He Z.-X., Schramm O.: Rigidity of circle domains whose boundary has a-finite 
linear measure, Invent. Math. 115, 297 310 (1994) 

[H1] Heinonen J.: A capacity estimate on Carnot groups, Bull. Sci. Math. Fr. (to 
appear) 

[H2] Heintze E.: On homogeneous manifolds of negative curvature, Math. Ann. 211, 
23-34 (1974) 

[KR] Korfinyi A., Reimann H.M.: Foundations for the theory of quasiconformal 
mappings on the Heisenberg group, Adv. in Math. (to appear) 

[L] Loewner C.: On the conformal capacity in space, J. Math. Mech. 8, 411-414 
(1959) 

[MN] Martio O., N~ikki R.: Continuation of quasiconformal mappings, (in Russian) Sib. 
Mat. Zh. 28, 162 170 (1987), English translation: Siberian Math. J. 28, 645-652 
(1988) 

[M1] Mattila P.: Geometry of sets and measures in Euclidean spaces, to appear in 
Cambridge Univ. Press 

[M2] Mitchell J.: On Carnot-Carath6odory metrices, J. Diff. Geom. 21, 35-45 (1985) 
[M3] Mostow G.D.: Strong rigidity of locally symmetric spaces, Princeton University 

Press, Princeton, New Jersey, 1973 
[M4] Mostow G.D.: A remark on quasiconformal mappings on Carnot groups, Michi- 

gan Math. J. 41, 31 37 (1994) 
[P1] Pansu P.: M6triques de Carnot-Carath6odory et quasiisom6tries des espaces 

sym6triques de rang un, Ann. Math. 129, 1 60 (1989) 
[P2] Pansu P.: Dimension conforme et sph6re fi l'infini des veribt6s 5. courbure 

nagative, Ann. Acad. Sci. Fenn. Set. A I Math. 14, 177 212 (1989) 
[P3] Paulin F.: Un groupe hyperbolique est d6termin6 par son bord, preprint (1993) 
[R] Reimann H.M.: An estimate for pseudoconformal capacities on the sphere, Ann. 

Acad. Sci. Fenn. Set. A I Math 14, 315 324 (1989) 
[S] Semmes S.: Chord-arc surfaces with small constant. II. Good parameterizations, 

Adv. in Math. 88, 170-199 
[TV] Tukia P., V~iisfil/i J.: Quasisymmetric embeddings of metric spaces, Ann. Acad. 

Sci. Fenn. Ser. A I Math. 5, 97 114 (1980) 
[V1] V~iisfilfi J.: Lectures on n-dimensional quasiconformal mappings, Lecture Notes 

in Math. 229, Springer-Vertag, Berlin-Heidelberg-New York, 1971 
[V2] V~iis~il~i J.: Quasisymmetric embeddings in euclidean spaces, Trans. Amer. Math. 

Soc. 264, 191 204 (1981) 
[V3] V~iis/ilS. J.: Quasisymmetric maps of products of curves into the plane, Rev. 

Roumaine Math. Pures Appl. 33, 147 156 (1988) 
[Z ] Ziemer W.P.: Extremal length and p-capacity, Michigan Math. J. 16, 43 51 (1969) 


