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I. Introduction 

The main purpose of  this article is to prove a basic conjugacy result (1.1) 
for subsets of  the Lie group G2(C) and give a fast classification (1.4) o f  the 
conjugacy classes of  finite subgroups of  G2(C). 

An obvious difficulty in dealing with G2(C) is that it is defined by 
degree 3 conditions (making it the automorphism group of  an algebra, 
or o f  a cubic form). In contrast, the symplectic and orthogonal groups are 
generally easier to work with; these groups are defined by quadratic condi- 
tions. 

Our main idea is to embed G2(C) into a group of  type E8, where conjugacy 
phenomena in G2(C) acquire useful additional structures. Experience shows that 
E8 "completes" many themes found in the exceptional groups. 

Suppose G is a group, H a subgroup. Two subsets Hi and H2 are 
strongly f u s e d  in H with respect to G i f  they are conjugate in G and, when- 
ever x E G satisfies Hi  ~ = H2, there are y c H and c E C~(H~) so that 
x = c y .  
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We comment that we do not require reductive groups to be connected. It 
has been known for a long time that orthogonal and symplectic groups strongly 
control fusion of its subsets (Section 2). 

Regard G2(C) as a subgroup of 0(7, C) and let V be the natural 7- 
dimensional module for 0(7, C). The first result gives an affirmative answer 
to a question of J.-P. Serre; we thank him for his persistence. 

1.1 Theorem 1. G2(C) strongly controls fusion of its subsets with respect to 
GL(V). 

Theorem 1 can be implies the equivalence of the following properties, for 
a reductive group S and homomorphisms ~ and fl to G2(C): (a) ~ and fl are 
conjugate by an element of Gz(C); (b) the embeddings of S in GL(V), given 
by ~ and fl, are equivalent representations; (b ')  the embeddings of  S in GL(W), 
given by action on an arbitrary module W for G2(C), are equivalent represen- 
tations; (c) for every x E S, x ~ and x/~ are conjugate in GL(V); (c') for every 
semisimple element x 6 S, x ~ and x/~ are conjugate in GL(V). The equivalence 
of (b) and (b ')  is based on the fact that V generates the representation ring, 
as a lambda-ring. The analogous statements for subsets may be wrong. For 
example, in a group with just one conjugacy class of involutions (like G2(C)), 
any two pairs of  involutions form a pair of elementwise conjugate subsets; they 
are not conjugate if they generate nonisomorphic dihedral groups. 

Conjugacy in GL(n, C) for finite groups is decidable by character theory 
and for connected reductive groups it is decidable by weight theory. The fol- 
lowing is an immediate consequence of Theorem 1. 

1.2 Corollary 1. Two embeddings of a finite group in G2(C) are conjugate if 
and only if they are conjugate in GL(V) if and only if they afJord the same 
character on V. 

A p-local subgroup of a group, for some prime number p, is the normalizer 
of a nonidentity p-subgroup. A local subgroup is a p-local subgroup for some 
p. In G2(C), all maximal local subgroups are known. An irreducible linear 
group S < GL(V) is imprimitive if there is a nontrivial decomposition V = 
e i  V~ where the Vi are permuted by S; otherwise it is called primitive. A finite 
subgroup F of a connected Lie group G is Lie primitive if whenever H is a 
closed Lie subgroup such that F < H < G, then H is finite or H = G. 

1.3 Theorem 2. A finite subgroup of G2(C) lies in a local subgroup or is 
irreducible on the 7-dimensional module. 

The above involves a criterion (6.1) for subgroups of Spin(7, C) to be in a 
G2(C) subgroup. The next result gives a new classification of finite subgroups 
of G2(C) which is faster than the first such classification [CoWa]. 

1.4 Corollary 2. A finite subgroup of  G2(C) 
(1) is in one of  the following rank 2 reductive subgroups: a torus nor- 

malizer, a central product SL(2, C) o SL(2, C) or a subgroup SL(3, C) : 2; 
o r  
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(2) is isomorphic to one of  the followin9 irreducible linear 9roups (primi- 
tive linear 9roups, except for the first one and the second, which is a 2-local 
subgroup): 

GL(3, 2), 23"GL(3, 2), G2(2), GL(3, 2 ) : 2 ,  

PSU(3, 3) ---- G2(2);, SL(2, 8),PSL(2, 13). 

Also, there is just one G2(C)-conjuqacy class of  each isomorphism type 
of  finite 9roup in (2). All the 9roups in (2) are Lie primitive [Gr][CoGr] and 
all 9roups in (1) and the second in (2) are local. 

We have 
usefulness is 
conjugacy in 

an analogue of Theorem 1 for the exceptional group F4(C). Its 
unclear since there does not seem to be a simple criterion for 
E6(C). 

1.5 Theorem 3. Consider a natural containment F < H, where F has type 
F4 and H is simply connected o f  type E6. Then, F strongly controls fusion 
of  its subsets with re,spect to H. 

As a caution, we give a few negative results on control of fusion for ex- 
ceptional Lie groups. For each r C {2, 3, 4}, there is a pair of nonconjugate 
elementary abelian 3-groups of order 3 r in Es(C) with the property that all 
nonidentity elements are in the same conjugacy class, 3B (consequently, the 
associated pair of abstract embeddings of a group of order 3 r have the same 
character on the adjoint module). For r = 2, both groups are toral. For each 
r > 3, one member of each pair is toral in Es(C) and the other is nontoral. 
See [Gr] (13.2). This example shows that no module for E8(C) is good for 
strong control of fusion. For a second example, look in 2E7(C) to see that the 
numbers of classes of elements of orders 2, 3 and 4 are 3, 5, 11; these num- 
bers for Es(C) are 2,4 and 7 [CoGr, Gr] (and these classes do not fuse in 
GL(248, C)). 

Since submitting this paper, the articles [Lal, La2] have come to our at- 
tention. In [Lal], Larsen gives a proof of our Corollary 1; his method is quite 
different. Serre independently found a proof in a similar spirit. In [La2], Larsen 
proves that if a finite group has two homomorphisms to the Lie group G such 
that every element maps to a pair of G-conjugate elements, then the homomor- 
phisms are G-conjugate for G = G 2 ( C )  but not in general for F4(C), E6(C) 
E7(C) and E8(C) (the negative result for E8(C) had been known; A. Borovik 
gave an example in 1989; also see the previous paragraph). 

2. Conjugacy in classical groups 

We begin with a few results on conjugacy in automorphism groups of bilinear 
forms. Related results have appeared other places (e.g. [Fr], [Mal]). The fol- 
lowing proof of strong control of fusion (2.3) comes from ideas in the proof 
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o f  Theorem 7.3 in [T]. In this section, V denotes a vector space over a field F 
of  characteristic not 2 for which every finite degree extension is closed under 
taking square roots. 

2.1 Lemma.  Let  A be a finite dimensional algebra over E Every invertible 
element o f  A is a square. 

Proo f  Since A is Artinian, may assume that A is local with nilpotent maximal 
ideal, I.  Let y E A be invertible. We may assume that A = F[y], whence A/I  
is a field. The hypotheses on F allow us to assume that y = 1 + u, for u E I .  
There is a square root o f  the form 1 + ~ + . . .  (in (Z[ �89 

2.2 Corol lary .  I f  y E GL(V) ,  there is a polynomial P so that p(y)2  = y. 

Proo f  Apply  Lemma 1 to A :=  F[y]. 

2.3 Theorem. Let V be a vector space and suppose that f is a nondegenerate 
alternating or symmetric bilinear fo rm on V. Then A u t ( f )  strongly controls 
ji~sion o f  its subsets with respect to GL(V) .  

Proo f  There is an antiinvolution t H t ~ on End(V)  which is defined by 
the formula f ( a t ,  b) = f ( a ,  bt'), for a, b E V. Let S and S* be subsets of  
A u t ( f )  and g E GL(V)  so that S g = S*. Then, y :=  gg~ is hermitian (i.e., 
y = J ) .  By Lemma 2, there is a polynomial  P so that x :=  P ( y )  sat- 
isfies x 2 = y. Since y = y~,x = x ~. Now, given s E S , s  g E A u t ( f ) ,  
which is equivalent to sY(sg) ~ = 1, or sgg~s ~ = gg~, which means that 
y = g9 t E C(s)  since s ~ = s -1.  At once, x E C(S).  Now, set h :=  x - l g .  
We have hh ~ = x-lgg~x ~-1 = x - l y x  -1 = 1, and so h E A u t ( f )  and g = xh, as 
required. 

2.4 Remarks. (i)  (2.3) may be false i f  the form is degenerate. Consider the 
example of  a vector space V with basis el ,  e2 and bil inear form f defined by 
f ( e i ,  ej)  = 61,i81,j; and with two groups (9), ( - g )  o f  order 2 acting on V, 
with g fixing el and negating e2. 

(i i)  Two conjugate embeddings of  a set into O(n, C)  are conjugate under 
SO(n, C) if  and only i f  there is an orthogonal transformation o f  determinant 
- 1  centralizing one of  the subsets. This hypothesis is automatically satisfied i f  
n is odd. 

( i i i)  We ask i f  there are reasonable criteria for G: 2 strongly to control 
fusion o f  its subsets with respect so some larger group; here, G: 2 is GL(n, C) 
extended by the graph automorphism. The case n = 3 presents itself in the 
Gz(C)  situation. The same could be asked for G of  type D4 or E6 extended 
by a group o f  graph automorphisms. 
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3. Natural embeddings of Chevalley groups 

3.1 Notation. (See [Gr].) We let E = Es(C) and let G • F be a subgroup 
of E with G ~ G2(C) and F ~ F4(C). We also let D ~ HSpin(16, C) be 
the subgroup of type D8 which is the centralizer of an involution z E E of 
type 2B. Let VI6 be the 16-dimensional natural module for SO(16, C). The 
groups D ~ H Spin(16, C) and S0(16, C) are nonisomorphic binary quotients 
of Spin(16, C); thus, an element of SO(16, C) corresponds to a pair of ele- 
ments of D < E. 

3.2 Notation. Let L be a quasisimple group of Lie type, T a maximal torus 
and F a type of indecomposable root system. A subgroup M of L is called a 
standard subgroup of type F (with respect to T) if the root system of M has 
type F and there is a subgroup M0 of L generated by a set of standard root 
groups so that M = &Co or M is the fixed point subgroup of a standard graph 
automorphism of M0. A natural subgroup of type /" in L is a conjugate of a 
standard one. 

3.3 Lemma. Let g C W, a Weyl group for an indecomposable root system. 

(i) I f  V is the rational vector space containing the root lattice, then 
g is a product o f  reflections for roots in [V, g]. (Here, we identify a 
Cartan subalgebra with its dual and speak of  roots as elements of  this" 
subalgebra. ) 

(ii) I f  g has a single eigenvalue - 1  and the remaining eigenvalues equal 
to 1, g is a conjugate o f  a fundamental reflection. 

Proof See [Ca], 2.5.5. 

3.4 Lemma. Let L be any quasisimple Lie group. Suppose that K is a closed 
quasisimple subgroup of  L, that H is the subgroup of  K generated by standard 
root groups of  L with respect to some maximal torus and that rank H = 
rank K. 

(i) I f  U is a maximal torus o f  H, C(U) = UC(H). 

(ii) There is a maximal torus T of  E containing U such that Nx(U)  < 
NE( T ). 

(iii) Suppose that A is a connected reductive subgroup o f  L containing K. 
Then, there is a central factor Y of  A containing K with H as a subgroup 
generated by standard root groups of  Y. 

(iv) The set of  Y o f  a f ixed type which arise as in (iii) form an orbit 
under C(H), provided that (a) in a root system of  type Y, all root subsystems 
of  the type of  K Jorm an orbit under the Weyl group o f  Y; and (b) in a root 
system of  type L, all root subsystems of  the type of  Y form an orbit under 
the Weyl group of  L. 
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Proof By hypothesis, there is a maximal torus T of  L which normalizes the 
given set of  root groups o f  L. Set U :=  T N H,  a maximal toms o f  H. Since 
all roots in H are roots for T, (i) follows. 

(ii) In all cases, NI4(U) is normal in NK(U) and the quotient is metacyclic, 
so Nx(U) normalizes a toms in C(U) ~ = C(NH(U)) [BS]. 

(iii) I f  R is a maximal toms o f  A containing U, R normalizes each root 
group of  H. Thus, the set o f  standard root groups of  H may be expanded to 
a set o f  standard root groups of  A. Each root group of  HZ(A)/Z(A) must be 
in a simple direct factor o f  A/Z(A) since it is normalized by a maximal torus 
of  A/Z(A). Quasisimplicity o f  K finishes the proof. 

(iv) This follows from (i) and the conjugacy of  maximal tori in a Lie 
group. 

3.5 Lemma. A subgroup of E of type E. is natural. 

Proof Given a n  E6 type subgroup X of  E, we argue that it is a natural one. 
Expand a maximal torus T of  X to T, a maximal torus o f  E. Then Nx(T)' TM 

T.O-(6 ,  2) must act trivially on the reductive group C(I')~ because it has 
rank at most 2 so involves only tori or factors of  type A i or  A 2. It follows 
that T is normalized by Nx(T) ~ and that there is a rank 2 toms U in T which 
is an Nx(T)-invariant complement to ~? and such that Nx(T) is involved in 
the Weyl group o f  a component Y of  C(U) ;  such a component must have 
type among ADE. Therefore, Y is a natural subgroup of  E of  type En; since 
rank C(U) ~ < 6, n = 6. The argument is similar for n = 7 and is trivial for 
n = 8 .  

3.6 Lemma. Let A be a connected reductive subgroup of E containing F 
properly. Then 

(i) F < A <= F x G or A contains a natural E6 subgroup which contains 
F; 

(ii) if A does not contain F as a central factor, A is a natural subgroup 
of type En, for some n E {6, 7, 8}. 

(iii) the set of such type E, subgroups, as in (ii), jorms an orbit under 
G = C(F) ;  

(iv) any two F4 subgroups of an En subgroup are conjugate. 

Proof Let U be a maximal torus o f  F;  expand it to a maximal torus /) o f  
A, then expand 0 to T, a maximal torus o f  E. We have C(U) of  type T4D4. 
Let a, u, t be the Lie subalgebras associated to A, U and T, respectively. We 
may assume that NF(U) normalizes T. Let WF <= WA < We be the natural 
containment o f  Weyl groups. Then dim [t, WF] = 6. 

(i, ii) Consider a0 :=  a A [t, WF]. Since WF acts irreducibly as 2;3 on the 
2-dimensional space [t, WF]/U, a0 is u or [t, WF]. Suppose ao = u. Then, (3.3) 
implies that the short reflections of  WF are reflections o f  WA and so every root 
of  F is a root for A. Since a root system of  type F4 is not in a subsystem an 
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indecomposable root system of higher rank, we conclude that F is a central 
factor of A and s o F  < A  < F x G .  

We now assume that a0 = [t, WE]. We deduce from (3.5.i) that there are 
roots of A corresponding to points of a0\[t, WF]. Let A be the set of  roots 
of A in a0. Then, A has rank 6 and its span contains [t, WF]. Since its Weyl 
group contains WF, the only possibility is for A to have type E6. We have 
proved that a natural F4 subgroup is contained in the natural E6 subgroup of 
A determined by the maximal toms T; the set of  such E6 subgroups forms one 
orbit under conjugation by C(U). By (3.4), A has a central factor which is 
natural of  type En and so (i) and (ii) (and (iii) for n = 6) are proved. 

(iii) This follows since an E6 subgroup is a component in the centralizer 
of a unique class of  elements of order 3 in E or in an E 7 subgroup and an E7 
subgroup is a component in the centralizer of a unique class of elements of  
order 2 in E. 

(iv) Let X be an arbitrary F4 subgroup and F the standard one. We may 
assume that both are in Y, a standard E 6 subgroup. Weight theory for F4 shows 
that the only irreducibles of  dimension at most 27 are those of dimension 1 
and 26. Let M be a 27-dimensional irreducible for Y. Then, both X and F 
fix a 1-space in M pointwise. The analysis of elementary abelian 3-subgroups 
in Y (see [Gr] (1.8) Table II) shows that we may assume X N F contains a 
nontoral elementary abelian subgroup of order 27. The action of this group 
stabilizes a unique 1-space, which must be the 1-space fixed by both X and 
F; its stabilizer is an algebraic group proper in Y so, by (i), X = F. 

3.7 Lemma. Let W be a Weyl group o f  rank n and type B, D, E or F. Then, 
(i) for any integer m E {4, 5 . . . . .  n}, W acts transitively on subsystems of  
type Din, (ii) if  W has type B or F, W acts transitively on subsystems of  type 
Bm_l,Jbr any m E {4, 5 . . . . .  n}. 

Proof For type B or D, this is an exercise and for F4 it is trivial since the 
root system is the union of three maximal subsystems of type B4 which form 
an orbit under W. For type En, use Witt's theorem and the fact that W acts 
as the full orthogonal group on the root lattice modulo 2. 

3.8 Lemma. Suppose that an indecomposable root system �9 has a subsystem 
A of  type D4 which is closed under sums (i.e. (A + A ) A ~  C_ A). Then ~b has 
type D,, n > 4, Bn, n >= 5, F4 or En, n E {6, 7, 8}. 

Proof One just eliminates types A and C. 

3.9 Proposition. (i) Let H be a natural 194 subgroup of  E. I f  A is a connected, 
reductive subgroup o f  E containing H, then A has a quas&imple central factor, 
Y, which contains H as a subgroup generated by a subset o f  standard set of  
root groups and which has type Bn, n >= 4, Dn, n ~ 4, F4 or En, n E {6, 7, 8}. 

(ii) The set o f  Y as in (i) of  a given type form an orbit under C(H). 
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Proof (i) (3.4) and (3.8). 

(ii) (3.7) and (3.4.iv). 

3.10 Lemma.  (i) Let L be a natural G2-subyroup of  F. Then, CF(L) 
PSL(2, c). 

(ii) There is one conjugacy class of  subgroups of  F isomorphic to 
23"GL(3, 2). The centralizer of  one o f  these is conjugate to CF(L) as in (i). 

(iii) There is one conjugacy class o f  subgroups in F isomorphic to G2, 
whence there is in E one conjugaey class o f  subgroups of  the form L1 x L2, 
where LI ~ L2 and one of  the Li is" a conjugate of  G. 

(iv) I f  L is as in (i) and K := CE(G • L) = CF(L), then CE(K) = 
[G • L] (p), where p is an involution interchanging G and L under conjugation. 

Proof (i) By definition, L < J ,  a natural type D4-subgroup, so J ~ Spin(8, C). 
I f z  is an involution of  Z ( J )  ~ 22, z is in the E-class 2B and so we may assume 
that L < J < D (3.1). Let G be as in (3.1). The action of  L • G on V16 
has decomposition into irreducibles of  the shape 1 | 1 7 4  1 + 1 | 1 + 
1 | 1 and summands may be chosen to be nonsingular. Therefore, there is 
a l - toms in CF(L), so this reductive group is positive dimensional. We have 
C(L) A NF(J) ~ Alt4. Since Z(J)  is selfcentralizing in CF(L), we conclude 
that CF(L) ~ PSL(2, C). 

(ii) Let M < F, M ~ 23"GL(3, 2). Then, all involutions of  02(M) are 
in the same F-class. By  [Gr], this class must be 2A and O2(M) is nontoral. 
There is a unique class of  nontoral maximal elementary abelian 2-groups in 
F and if R is one such containing O2(M), R = 25 and all three elements of  
R N 2B lie in a four-group P in R. All complements to P in R are conjugate 
in NF(R). We conclude that CF(Oz(M))N NF(R) = O2(M) • Z, where P = 
O2(Z) and Z ~ 224. From here, it is not hard to show, arguing as in (i), that 
CF(Oz(M))/O2(M) ~- PSL(2, C) since P maps to a selfcentralizing fours group 
in the quotient. Once we notice that M acts trivially on this copy of  PSL(2, C), 
we get (ii). 

(iii) Let H be a subgroup of  F isomorphic to G2(C).  Let R be an eights 
group in H;  NH(R) ~ 23"GL(3, 2). We have NF(R) = S • NH(R), where 
S ~ PSL(2, C), by (ii). This means that the action of  S • NH(R) on the 26- 
dimensional irreducible module for F has the irreducible decomposition 3 | 
7 + X | 1 + 1 | 1 + 1 | 1, where X is a 3-dimensional irreducible or a 
3-dimensional trivial module. We now claim that W, the sum of  the three 7- 
dimensional modules for NH(R), is a 21-dimensional irreducible for H .  There 
are just four H-irreducibles of  dimensions at most 26, namely the modules of  
dimensions 1,7, 14 and 21 (use the dimension formula, p. 140 [Hum]). The 
claim follows and so W • the orthogonal complement of  W, which is the 
5-dimensional space o f  fixed points for NH(R), is also an H-submodule.  In 
this 5-space, we take the 2-dimensional fixed point subspace, W0 of  a fours 
group in S; since the stabilizer of  W0 in F is a natural subgroup of  type D4, 

extended by graph automorphisms, we have an embedding of  H into a natural 
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D4-subgroup; Since H x S does not embed, X is a 3-dimensional irreducible. 
Thus, H is natural, by highest weight theory and (2.3). 

(iv) Let U be a fours group in K. Then NK(U) -~ Sym 4 and U is 2B-pure 
(this follows from [Gr](7.3)). Thus, G x L is in the type D]-subgroup NE(U) 
where we can see the involution p in Ce(NK(U)) -~ G2(C) wr 2. Since p acts 
on K TM PSL(2, C) and centralizes NK(U), it centralizes K. 

3.11 Lemma. Let A be a reductive subgroup o f  E which contains G. 

(i) Then, G is" contained in a central quasisimple factor Y o f  A and either 
(a) Y is a natural subgroup o f  type G2 or B3; or (b) G is contained in a 
natural subgroup X o f  type D4 in Y; also Y has type as in (3.9.i). 

(ii) The set o f  such Y in (i) of  a 9iven type is an orbit under C(G) and 
so is' the set o f  X in (b). 

Proof (i) Use (3.4). We may suppose that the subsystem of long roots of 
A has type among ADE and rank n > 3. Since a type A2 subgroup of G 
is normalized by an element of G inducing its graph automorphism, we elim- 
inate type A for n _>_ 4. If  the type is A 3 = D3, G "< Y implies that Y has 
t y p e  B 3 . 

Now suppose that n > 4. Then (3.8) implies that Y has type B, D F or 
E. As in the proof of (3.4), we study the containment of  Cartan subalgebras 
u < t for U < T, maximal tori of G and Y, respectively, and the action of 
Wc on t, the Lie algebra for T. We have dim [t, We] E {2, 3, 4}. If  2 or 3, we 
use (3.3.i) to deduce that Y has two root lengths hence Y must have type B, 
for n > 4 or F4 and dim [t, We] = 3. Thus, the intersection of the root system 
for T with [t, We] is a root system of type B3; but then from (3.7) we deduce 
an embedding of G in a natural subgroup of type D4 in Y, contradiction. 
We conclude that dim [t, Wa] = 4 and that G lies in some subgroup Y of 
type B4, D4 or F4. If  Y has type B4 or D4, the conclusion follows from weight 
theory since the only dimensions for a G-irreducible constituent on the standard 
module for Y are 1 and 7. If  Y has type F4, use (3.10.iii). 

(ii) The conjugacy statement is proved as follows. Weight theory for G 
tells us that there is just one nontrivial irreducible of degree at most 8, namely 
the 7-dimensional one. Any two embeddings of G in a group of type B3 or D4 
are conjugate, by (2.4). Now use (3.7) and the fact that in CE(U), where U 
is a maximal toms of G, all maximal tori are conjugate (3.4). 

4. Proof  of  Theorem 1 

(4.1) Notation. We need to compare two occurrences of G2(C), namely the 
group G in (3.1) and the subgroup J ~ G2(C) of 0(7, C), as in the hypoth- 
esis of Theorem 1. Consider V to be an orthogonal direct summand of V16 
(3.1). The isometry of V into Vl6 gives an embedding o f J  < S0(7, C) into 
SO(16, C). Since J is simply connected, we deduce from (3.1) well defined 
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embeddings of  J into Spin(16, C) and into H Spin(16, C ) ~  D = C(z) < E; 
in the notation of  (3.1), we take G as the image in the latter group. 

(4.2) We assume that G has an embedding in GL(V) such that conjugation 
by an element o f  GL(V) gives a bijection b of  S to S*. Then, since any two 
embeddings of  G in GL(V) are equivalent, by highest weight theory, b is 
realized by such a conjugation for any embedding of  G in GL(V). 

(4.3) Define Z :=  (z). Suppose that p E GL(V) conjugates S to S*. We 
now use (4.2), (2.4) and (2.5.ii) to get g E C(B) such that s g _---- sP(mod Z), 
for all s E S. We have (SZ) g = S 'Z;  we might guess that S o = S*, but this is 
so only for certain g. To prove that p factors suitably, we prove that g does. 

We know (9.8) that the intersection Y :=  G A G  0 is one of: G;U, where P 
is a parabolic subgroup of  G; or L ~ where L is a natural SL(3, C): 2-subgroup 
of  G. For all such Y, there is one G-conjugacy class of  algebraic subgroups 

isomorphic to Y. Since Y ~ < G, there is u E G so that y~j-~u = y. 

For all these groups, Y, the natural map of  NG(Y) to Aut(Y) is onto 
(9.8.ii). So, there are y C NG(Y) and c E Cc(B)(Y) so that g- lu  = cy, i.e., 
g = u y - l c  -1. Since yu -I C G, we have a factorization of  the required kind if 
c E C(S*), but this may not be the case. We have S* < Y* :=  G M Z G  g. 
We assume that c ~ C(S*), whence c ~ C(Y*) and Y < Y*. Then, as 
Y* maps isomorphically into C(B)/Z ~ S0(7, C) and the image is the in- 
tersection of  two G2(C)-subgroups of  C(B)/Z (since Y*Z = ZG A ZGg), we 
see from the list (9.12) that Y* is a natural SL(3, C): 2-subgroup of  G and 
Y = (Y*)~ We conclude that a c = a if  a E Y and a c = az if a E Y*\Y.  
This means that the image of  c in S0(7, C) is an involution o f  the form 
diag(1, - 1, - 1, - 1, - 1, - 1, - 1, ), fixing elementwise the fixed points on V 
of  Y. Although c does not centralize S*, it does centralize S* modulo Z. So, 
taking images o f  9 = (uY -1 ) c-1 in C(B)/Z, we have the required factorization 
of  the conjugating element. Note that replacing 9 by 9c, we retain the condition 
s ~ --- sP(mod Z) and moreover have G n G ~ TM SL(3, C):2 and S o = S*. 

(4.4) Remark. In step (4.3), if  the element g satisfies S o = S*, we have a 
different proof of  a suitable factorization. Let C :=  CE(S) and C* :=  CE(S*). 
Both algebraic groups C and C* contain F ;  in fact F is contained in a Levi 
factor L of  C and in a Levi factor L* of  C*. Each of  L ~ (L*)~ contains F 
in a unique central factor o f  type F4 or En, by (3.3). By conjugacy of  Levi 
factors in C* = C o and (3.5.iv), there is h C C(S*) so that F oh = F. So, 
9h E NE(F) = G • F and there are x E G and y C F such that gh = x y  = yx 
and 9 = x(Y h-1 ), as required. This kind of  argument recurs in Section 7. 

5. Proof  of  Theorem 2 

This section is independent of  the proof o f  Theorem 1. We use the notation o f  
(4.1) here. 
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(5.l)  We assume that S is a finite subgroup of J not in a local subgroup 
and which is reducible on V, the 7-dimensional module. 

(5.2) We now shift to K, the compact form of J .  Any compact subgroup of 
J is conjugate to a subgroup of K. On the associated real form of V, K operates 
transitively on 1-spaces and the stabilizer in K of a 1-space is H TM SU(3, R):2. 
We deduce that if S has a 1-dimensional irreducible, it is in the standard Az- 
subgroup of J containing H; it is isomorphic to SL(3, C):2, a local subgroup, 
contradiction. An alternate argument: (avoiding compactness) uses (9.8) to get 
a finite subgroup in a natural SL(3, C):2 or in the derived group of a parabolic 
associated to the long root of the Dynkin diagram; but then a finite subgroup 
is conjugate to a subgroup of the Levi factor, which is in a natural SL(3, C): 
2-subgroup. 

(5.3) We now assume that no irreducible submodule is 1-dimensional. Since 
S is assumed to be not in a local subgroup, the socle of  S (i.e., the product 
of the minimal normal subgroups) is a direct product of nonabelian simple 
groups; denote the socle by X. 

(5.4) We claim that any irreducible constituent of S has dimension at least 
3. Suppose otherwise. Then, there is a 2-dimensional submodule, say U, and 
X acts on U trivially since GL(2, C) has no finite simple subgroups. After 
conjugation, if necessary, we deduce that X is contained in a natural SL(3, C) 
as above. By Blichfeldt's Theorem (see Section 8), X is isomorphic to one of 
Alts, GL(3, 2), whose outer automorphism groups are cyclic. Since S embeds 
in Aut(X), S/X is cyclic, whence S fixes a 1-space in U, contradiction. 

(5.5) We now take S-irreducible submodules U and W, of dimensions 
3 and 4, respectively. Both subspaces are nonsingular. Define to to be the 
involution on V which is 1 on U and - 1  on W. We extend to to an orthogonal 
transformation on VI6 via trivial action on the orthogonal complement of  V. 

(5.6) Let t be one of  the two elements in E corresponding to to in the 
sense of (3.1); then It[ = 2 [Gr], (2.8.b) and Z := (t, z) is a four group with 
distribution AAB [Gr](1.4)(2.14). We shall prove that t or tz is in G. 

Since (S, Z) = Z • S and C(S) contains F, whence by (3.6), C(S) ~ has 
a component Y which is a natural subgroup of type F4 or En. Since (C(S) A 
C(Z)) ~ = B, the only possibility is that Y = F (reason: otherwise, by (3.6.i), 
Y contains a natural E6 subgroup, whose centralizer is a natural A2 subgroup 
of G; but then S is in a local subgroup, contradiction). 

We know that CF(Z) is contained in CD(S)', a group of type 9 4. The 
structures of involution centralizers in F (types B4 and AIC3 [Gr](2.14); the 
latter is not in a group of type B4) imply that CF(Z) = CD(S) t is a group of type 
B4 and that there is no fours group with centralizer of type B4. Consequently, 
z induces on F an inner automorphism of order 2. The definition of to makes 
it clear that [t, CF(Z)] = 1. Therefore, the image of Z in Aut(F) has order 2 
and the kernel of the action has order 2. Replacing t with tz if necessary, we 
may assume that t E G = C(F). We now have that S x (t) is in C~(t) TM 

SL(2, C ) o  SL(2, C), a local subgroup, contradiction. Theorem 2 follows. 
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6. Proof of Corollary 2 

We continue to use the notations of  (4.1). 

6.1 Proposition. Let R be a reductive subgroup of B* := CE(B) ~ TM Spin(7, C). 
(i) R is contained in a B*-conjugate of G if and only if CE(R) ~ contains 

a conjugate of F by B*. 
(ii) I f  R acts irreducibly on V, the only possible fixed point subalgebras for 

its action on the Lie algebra of type E8 are of type B4 and F4 (of respective 
dimensions 36 and 52); R is in a G2 subgroup of 0(7, C) if  and only if the 
fixed point subalgebra has type dimension 52. 

Proof (i) Trivial. (ii) We claim that, if R is irreducible on V ~ C 7, then 
CE(R) is a natural B4 or F4. If  not, it contains a natural D5 (3.8) and so its 
centralizer is contained in a natural D3 subgroup of B*; but then R fixes a 
1-space in V, contradiction. Thus, (ii) follows. 

6.2 Remarks. (i) For an irreducible finite subgroup, if we get the traces of  its 
elements on the adjoint module for E8 and compute the inner product with the 
trivial character, (6.1.ii) implies that the only possible multiplicities are 36 or 
52, which correspond to fixed point subalgebra of type B4 or F4 respectively. 
We get R in a G2 subgroup if and only if the multiplicity is 52. Note that 
since all involutions of G are of type 2A, z ~ G. 

(ii) The spectrum of a semisimple element of D on the adjoint module of E 
is obtained straightforwardly by extending the relevant character on a D8 lattice 
to an E8 overlattice. Therefore, if R is a finite subgroup of D, the centralizer 
condition in (i) is checked mechanically by taking the inner product of the 
trivial character of  R with the restriction to R of the adjoint character of E. 

(iii) It would be interesting to find a simple criterion, internal to GL(7, C) 
or 0(7, C), to decide containment of  a subgroup in a conjugate of  G2(C). 

6.3. The calculations The discussion of Section 5 shows that to treat the 
reducible case, it suffices to survey finite subgroups of SL(3,C) : 2 and 
SL(2,C) o SL(2, C), which can be obtained from well-known results; see Sec- 
tion 8. So, we go over the groups in Wales's list of irreducible finite groups, 
given in the Section 8. In [CoWa], the authors could have quoted [Wa] but 
instead do analysis for 7-dimensional finite linear groups in the more restricted 
case that they lie in a G2(C)-subgroup. Our method for settling existence and 
uniqueness up to conjugacy for the larger list of  candidates from [Wa] is so 
short that we present it in full. 

Uniqueness of  an embedding of finite subgroup up to conjugacy follows 
from applying Theorem 1 and the fact that, in all cases on Wales' list, the set 
of irreducible degree 7 characters of  the finite group R which give embeddings 
form an orbit under Aut(R). Of  course, Theorem 1 implies strong control of 
fusion in the case of two embeddings with the same characters. 
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6.3.1 Nonembeddin9 results. An irreducible subgroup is, modulo scalars, a 
group X as in the Section 8. Since G2(C) preserves an algebra structure on 
the 7 dimensional module, the only scalar transformation it may contain is the 
identity. 

The 2-rank of G2(C) is 3 and the p-rank is 2 if p is an odd prime; also, 
any finite p-subgroup is abelian for p > 5 [Gr]. 

For odd p, elementary abelian groups in G2(C) are toral and this means 
that p-local subgroups are reducible on V; therefore, no irreducible, imprim- 
itive subgroup of GL(V) with an abelian normal p-subgroup is in Gz(C). 
Consequently, all imprimitive groups on Wales's list are eliminated except for 
PSL(2, 7) and 23"GL(3, 2). 

We eliminate X =~ Altg, Sym8 and Sp(6,2) by 2-rank (theirs are trivially 
seen to be at least 4,4 and 6, respectively) and all groups containing the non- 
abelian group 71+2. 

6.3.2 Embeddin9 results. The remaining nonsolvable groups on Wales's list 
embed in a way unique up to conjugation. Existence of embeddings may be 
verified by a sequence of inner product computations to execute the procedure 
(6.2.i, ii). This was done for the determinant 1 irreducible 7-dimensional rep- 
resentations of PGL(2, 7), PSL(2, 13) and G2(2) -~ PSU(3, 3) : 2. For SL(2, 8), 
there are four degree 7 irreducibles; the rational one does not lead to an em- 
bedding in G2(C) but any irrational one does (the three such form an orbit 
under Aut(SL(2, 8)) ~ SL(2, 8) : 3). 

Verifications are straightforward except that when we determine the pairs 
of  elements (more precisely, of spectra of  elements) in E corresponding to the 
elements of  our finite subgroup (see (3.1) and (6.2)), it was not obvious in 
certain cases which spectrum of the pair was the right one for an element of 
G. We now discuss these cases. 

We note the two pairs of elements in E corresponding to the two classes 
of  outer elements of order 8 from PGL(2,7); each pair consists of elements 
of E of order 8 with two different traces, namely 78 and 14. The respective 
inner products with the trivial character are 36 and 52. If  Y is the preimage in 
E of this linear group, Y ~ 2 x PGL(2, 7) (since the outer involutions lift to 
involutions). Conjugating if necessary, we arrange for Y~ to be in G = C(F). 
The argument of (5.6) may be used here to see that Y induces a group of 
order 2 on F (generated by conjugation with z) and that Y • G ~ PGL(2, 7). 
(This argument is repeated below for G2(2); we solve the PGL(2,7) problem 
by quoting the G2(2) result and the fact that PGL(2,7) <= G2(2)). 

In the case of G2(2) ~, there are characters of  degrees 6 and 7 but only the 
real character of degree 7 is possible here. At five classes, we have the above 
ambiguity. Use of the power maps settles the choices, starting with classes of 
elements of 'order 8, and we are led to dimension 52. 

This degree 7 character of  G2(2) r extends to a determinant 1 character for 
G2(2). Recall that the Schur multiplier of G2(2)' is 1 [Gr 72] but that the 
nonperfect group G2(2) does have nonsplit central extensions. The spectrum of 
outer elements of order 2 in Gz(2) is {13, --14}, so the corresponding group in 
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Spin(7, C) is G2(2) • 2. Conjugating if necessary, we arrange for X ~ G2(2)' 
to be in G = C(F). Then our above G2(2) subgroup of  S0(7, C) gives us a 
group Y > X of B* such that Y ~ G2(2) •  The argument of  (5.6) may 
be used here to see that Y induces a group of  order 2 on F (generated by 
conjugation with z) and that Y A G --- G2(2). 

The imprimitive cases in Wales 's  list are easy to handle. The PSL(2,7) 
subgroup is just the commutator subgroup of the above PGL(2, 7) and the 
23"GL(3,2) subgroup is the normalizer o f  an elementary abelian group of  order 
8; this subgroup is well-known and is discussed, for instance, in [Gr] (1.8) 
Table II. 

We now summarize the results. 

Table 1. Es(C)-Spec t ra  for elements of finite primitive subgroups of GL(7, C) 
which are in G2(C) 

Notation. A spectrum sequence gives the respective multiplicities o f  C ~ ~1 . . . . .  
~n-l of  an group element of  order n in some representation of  the group. For 
an element of  order n in G, we list its trace and (r,s . . . .  ), its spectrum sequence 
on the 7 dimensional module; below it, we give [a, b . . . .  ], its spectrum on the 
E8 adjoint module (G < E as in (3.1)); The enriched character tables and 
notations for algebraic integers and conjugation come from [Atlas]; = is a 
horizontal ditto mark. 

PGL(2,7) = ~ GL(3,2)  - 2. 

1A 2A 3A 4A 7A 7B 
7 - 1  1 - 1  0 0 

(7) (3 ,4)  (3 ,2 ,2)  (1 ,2 ,2 ,2 )  (1, 1, 1, 1, 1, 1, 1) ( = )  
[248] [136,112] [134,57,57] [82,56,54,56] [80,28,28,28,28,28,28]  [=] 

2B 6A 8A 8B 
- 1  - 1  1 1 

(3 ,4)  (1 ,1 ,1 ,2 ,1 ,1 )  (1, 1, 1, 1,0, 1, 1, 1) ( = )  
[136,112] [80,29,28,54,28,29] [80,28,27,28,2,28,27,28]  [=] 

PsL(2, 13). 

1A 2A 3A 6A 7A 
7 - 1  1 - 1  0 

(7) (3 ,4)  (3 ,2 ,2)  (1 ,1 ,1 ,2 ,1 ,1 )  (1, 1, 1, 1, 1, 1, 1) 
[248] [136,112] [134,57,57] [80,29,28,54,28,29] [80,28,28,28,28,28,28]  
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7B 7C 13A 13B 
0 0 - b l 3  �9 

(=)  (=)  (0,0,1,3,4,9,10,12) ( , )  
[=] [=] [80,27,1,27,27,1,1,1,1,27,27,1,27] [,] 

1A 
7 

(7) 
[248] 

SL(2, 8). 

2A 3A 7A 7B 7C 
( - 1 )  1 o o o 
(3,4) (3,2,2) (1, 1, 1, 1, 1, 1, 1) (=)  (=)  

[136,112] [134,57,57] [80,28,28,28,28,28,28] [=] [=] 

9A 9B 9C 
- y 9  * ** 

(1, 1, 1,0, 1, l,O, l, 1) (=)  (=)  
[80,2,28,27,27,27,27,28,2] [,] [**] 

G2(2)'. 

1A 2A 3A 3B 4A 4B 
7 -1  - 2  1 3 3 

(7) (3,4) (1,3,3) (3,2,2) (3,2,0,2) (=)  
[248] [136,112] [86,81,81] [134,57,57] [134,56,2,56] [---] 

4C 6A 7A 7B 
-1  0 0 -1  

(1,2,2,2) (1,2, 1,0, 1,2) (1,1, 1, 1,1, 1,1) (=)  
[82, 56, 54, 56] [82, 54,27,4, 27, 54] [80,28,28,28,28, 28,28] [=] 

8A 8B 
-1  2 

(1, 1,0, 1,2, 1,0, 1) (1, 1,0, 1,2, 1,0, 1) 
[80, 28, 1,28, 54, 28, 1,28] [80, 28, 1,28, 54, 28, 1,28] 

12A 12B 
0 0 

(1, 1,0,0, 1, 1,0, 1, 1,0,0, 1) (1, 1,0,0, 1, 1,0, 1, 1,0,0, I) 
[80,27,0,2,27,27,2,27,27,2,0,27] [80,27,0,2,27,27,2,27,27,2,0,27] 
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7. Proof of Theorem 3 

Suppose that S and S* are subsets of F which are conjugate by 9 E H, where 
H is a natural 3E6(C)-subgroup containing F. Now imitate the argument in 
(4.4), reversing the roles of G and F, and using (3.11). One step must be 
modified; in (4.4), there is a unique central factor of the Levi factor containing 
a conjugate of F,  whereas in this case, possibly C* := CE(S*) contains G • G, 
a direct product of two E-conjugates of G (three factors is not possible (3.10)). 
To carry out the argument, we need two such direct products to be conjugate 
in C*. Let J := CE(G • G), an adjoint group of type Aj. Then, J contains S 
and S* and C~(J) is a wreath product of G with a cyclic group of order 2 
(3.10.iv). The desired conjugacy follows. 

Notice that the situation treated in (4.3) does not arise here. 

8. Appendix: Assumed classifications 

First, we recall two old results of H.F. Blichfeldt [B]: 

The classification of finite subgroups of SL(2, C). The conjugacy classes con- 
sist of two infinite families (cyclic groups and generalized quatemion groups) 
and the three finite groups SL(2,3), SL(2,3)'2 ~ 2"Sym 4 and SL(2, 5). 

The classification of finite irreducible subyroups of SL(3, C). Such a finite 
group is solvable or is conjugate to one of SX, where S is a group of scalars 
and X is isomorphic to one of Alts, 3"Alt6, PSL(2,7). 

Secondly, we recall the theorem of David Wales [Wa]: 

The classification of finite primitive subgroups of GL(7, C). The conjugacy 
classes of primitive linear groups are represented, modulo scalars, by one of: 

(1) a subgroup of 71+2 : SL(2,7) containing 07(71+2 : SL(2,7)). 
(2) PSL(2,13), PSL(2,8), PSL(2,8) : 3, Alt8, Sym8, 
(3) PGL(2,7), PSU(3,3), PU(3,3)  ~ G2(2), Sp(6,2). There are additional 

irreducible subgroups, namely the imprimitive groups: 
(4) PSL(2,7); any finite irreducible subgroup of GL(7, C) with a non- 

central normal abelian subgroup (this family includes the nonsplit extension 
2 3. GL(3, 2)). 

For additional background on linear groups, see the summary in [F]. 

9. Appendix: Cosets of G2(C) in SO(7,C) and Spin(7,C) 

In this appendix, we prove transitivity of the automorphism group of split 
Cayley algebras on each sphere in the trace 0 part and we deduce the double 
coset structure of such an automorphism group in the associated orthogonal 
and spin groups. 
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9.1 Notation. (See [J].) Let K be a field o f  characteristic not 2 and O a Cayley 
(octonian) algebra over K. Let V be the subspace o f  trace 0 vectors (this is 
the orthogonal complement o f  I G O; see (9.2) for further notation on O). 

We prove that if G = Aut (O)  is transitive on all nonempty sets o f  the 
form {x C VI(x,x ) = a}, for a E K, provided V has singular vectors. We 
prove this by using results on Cayley algebras from [J]. Two Cayley algebras 
which are not division algebras are isomorphic and have useful degree 2 matrix 
subalgebras; this is the situation if a Cayley algebra has nontrivial singular 
vectors o f  trace 0, 

9.2 Notation. (See [J].) x ~ Y, Cayley conjugation; N, the norm; tr, the trace; 
they are related by the formulas N(x)  = x.? = Yx, tr(x) = x + 2 ,  x 2 - tr(x)x + 
N ( x )  = 0 and have the properties N ( x y )  = N ( x ) N ( y ) ,  tr(xy) = tr(yx) and 
( x , y )  : =  �89 + y2)  is a symmetric, nondegerate bilinear form; t r ( x y ) =  - t r  
(x f ) =  - t r ( 2 y )  if  x , y  E V and x 2 = 0 if x E V is singular. 

9.3 Lemma.  Suppose that the trace 0 element x 4= 0 is singular. Choose y C V 
so that (x, y )  = - 1  and, Ji~rthermore, that y is singular. Then, the subalge- 
bra generated by x and y is a degree 2 matrix algebra. Furthermore, the 
correspondence 

(o (o o) Oo) 
x ~-~ 0 ' Y ~--~ 1 0 ' x y ~--~ 0 ' 0 

extends to an isomorphism o f  algebras. 

Proo f  For any element p C O, the subalgebra generated by p is at most 2 
dimensional (use the rule p2 _ t r ( p ) p  + N ( p )  = 0). Now, use the fact that 
any 2-generator subalgebra is associative and the formula xy  + yx  = 1 to get 
that the algebras, A, generated by x and y is spanned by l,x, y, x y  and so has 
dimension at most 4. Since clearly dim A > 3, we need to see that dimA > 3. 

We suppose that dimA = 3 and seek a contradiction. Since the commutator 
c :=  x y - y x  has trace 0, c C span{x,y}. By associativity of  the symmetric 
form, (x, x y )  -- (x, yx)  = (y, x y )  = (y, yx )  = 0 and so (x, y )  = - 1  implies that 
c = 0 and xy  is a multiple of  1, say xy  = yx = 2. We have 22 = (xy, x y )  = 
( x , y ( x y ) )  = ( x , y ( y x ) )  = (x, y2x) = (x,0) = 0, whence xy  = yx = 0 and 
1 = xy  + yx = 0, contradiction. 

Thus, d imA = 4 and {x,y,  xy,  yx}  is a basis for A. Since x y + y x  = 1, 
it is straightforward to verify that A is isomorphic to the algebra o f  degree 2 
matrices over K via the stated correspondence. 

9.4 Notation. Let a E K, S(a)  :=  { 0 + x  ~ V[Nx = a}. 

9.5 Lemma.  I f  V has singular vectors, the), span V. 
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Proof Let S := spanS(0) and assume that 0 # $ 4 :  V. Let x E S(0). Since V\S 
spans V, there is u E V\S so that (x, u) = 1. Then, y := ~ x  - u is singular 
and in V\S, contradiction. 

9.6 Proposition. I f  V has singular vectors and S(a)4=O, then G acts transi- 
tively on S(a). 

Proof Given u E S(a),  let y be a singular vector satisfying (u ,y)  = 1. 
Set x := -~y - u, a singular vector; (x, y)  = 1. Both {u, y} and {x, y} gen- 
erate the same four dimensional subalgebra, isomorphic to degree 2 matrices 
over K. Now, let u ~ be another element of  S(a); choose y~ and define x' 
analogously. There is an automorphism of  O which carries x, y to x', y ,  re- 
spectively ([J], Theorem 3) and it must carry u to u ~ since it preserves the inner 
product. 

9.7 Proposition, Let H be a connected reductive algebraic group and M a 
finite dimensional irreducible module. Let U be a maximal unipotent subgroup 
of H. Then, dim CM(U) = 1. If there is an invariant &vmmetric bilinear form 
on 34, CM(U) is singular. 

Proof Since M is a highest weight module, the first statement follows from 
the fact that the highest weight space is 1-dimensional. The second statement 
follows since the stabilizer of a nonsingular subspace in the orthogonal group 
preserves a complement, whereas this is not the case for the (upper triangular) 
action of U on M. 

9.8 Corollary, (i) IJ K is algebraically closed, V has singular vectors and 
G acts transitively on S(a), Jbr all a C K. Therefore, G has one orbit on 
nonsingular 1-spaces, and the stabilizer is a group of the form SL(3,K) : 2; 
the stabilizer of a nonsingular vector is a natural SL(3,K)-subgroup. The 
stabilizer of a singular 1-space is a parabolic subgroup, P whose Levi factor 
has type TIA1, with semisimple part a Jundamental SL(2,K) associated to a 
long root. The subgroup of it stabilizing a nontrivial vector in that 1-space 
is pi 

(ii) If  Y is a stabilizer, every automorphism oJ" Y or Y~ (as an algebraic' 
group) is induced by an element of Nc(Y). 

Proof (i) All is clear except possibly for the statement about the stabilizer of  
a singular 1-space. Consider a natural A T subgroup of G, say LM, where L,M 
are fundamental SL(2,K)-subgroups associated to orthogonal long and short 
root, respectively. This subgroup is C(z), for some involution z, and on V, z 
has spectrum { 13, -14}.  On the -1-eigenspace, LM acts faithfully as SO(4,K) 
and on the +i-eigenspace, L acts trivially and M acts as SO(3,K). Since L 
fixes pointwise the invariant 1-space in the +l-eigenspace, its stabilizer, R, 
contains a maximal unipotent ((9.6), (9.7)) and L so is contained in a maximal 
parabolic, P and contains U.  Since we can see the action of a maximal torus in 
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G as a subgroup of  a natural SL(3,K) acting dually on a pair of  3-dimensional 
isotropic subspaces, we conclude that R = P ' .  

(ii) For an SL(3,C):  2-subgroup, this is obvious. Suppose that Y = U .  
Then, Y = yo has the structure: the unipotent radical R(Y) has nilpotence class 
3 with descending central factors o f  shapes 2, 1,2 where 2 and 1 denote the 
irreducible for the Levi factor L ~ SL(2,K) of  dimension 2 and 1, respectively. 
I f  a is an automorphism, we may assume, by conjugacy of  Levi factors and 
the fact that Aut(L) = Inn(L), that a centralizes L and so is scalar on the 
top factor o f  the descending central series. Since there is an element o f  the 
1-torus Cp(L) acting the same way on the top factor, we may assume that a is 
trivial on the top factor and so [R(Y),a] is 1 or is the center of  R(Y) (because 
[a,L] = 1). Let U :=  CR~r)(L), a root group for a short root perpendicular to 
the long root associated to a root group of  L. By Schur 's  Lemma, there is just 
a 1-dimensional space o f  L-invariant homomorphisms from the top factor to 
the bottom factor, so we may replace a by ab, where b is conjugation by an 
element of  U, to get [R(Y),a] = 1. Since [Y,a] = 1, we are done. 

Double cosets of (]2(C) in SO(7, C) and Spin(7, C)  

The following procedure offers an interpretation of  the spaces o f  cosets and 
double cosets of  G in H +- SO(7, C)  and S :=  Spin(7, C). We thank J.-P 
Serre for describing it. We take the field to be the complex numbers, C; the 
results (9.6) and (9.8) apply. 

9.9 Notat ion.  We consider V the subspace 1 • in the Cayley numbers, or 
octonians; we have O = C.1 | V = {(p,q)ip E C l , q  E V}. Let X be the set 
of  unit vectors in O, where we use the usual octonian norm; so (p,q) E X 
if  and only i f  p2 + Nq = 1. We take the natural action of  H on O and get 
an action of  S by lifting H to Spin(8 ,C) ,  then applying triality, 0. Since 0 
centralizes G, we may view S as an overgroup of  G in S0(8, C). The orbits of  
G on X are distinguished by their inner products with (1,0),  i.e., by the first 
coordinate o f  (p,q) E X, when p 4 :  + 1; when p = =~ 1, there are two orbits. 

9.10 Lemma.  S acts transitively on X, with point stabilizer G. 

Proof The stabilizer o f  (1 ,0)  E X in G since G stabilizes 1 and is a maximal 
algebraic subgroup of  H.  Let J be the stabilizer in S of  a point x = (u, v) E X 
(9.8). Assume that u +  + 1; then v is nonsingular and J:~G. Note that JAG 
SL(3,C).  

We want to prove that J ~ G. Since d i m X  = 1 and d i m S  = 21, we 
have d i m J  > 2 1 - 7 =  14, so S > J >  J n G .  Let L be a Levi factor of  J 
containing J • G. Since on a half  spin module for S, the weight 0 does not 
occur, rank L = 2 and so L ~ = J A G or L = L ~ = J has type G2. Assume the 
former. Thus, the unipotent radical R(J) of  J has dimension at least 1 4 - 8  = 6. 
It follows that J is QI, where Q is the parabolic subgroup of  S with a Levi 



276 R.L. Griess, Jr. 

factor of  type A2 and is the stabilizer o f  a maximal isotropic subspace on 
the natural 7-dimensional representation o f  S. In O, there is a unique 1-space 
fixed by Q~ and it is singular (9.7), a contradiction since x is nonsingular. So, 
J ~ - G .  

Since a nontrivial action of  G2(C) on an 8-space is a unique sum of  1 and 
7 dimensional irreducibles, it follows that we have a bijection between pairs of  
elements {x, - x }  from X and subgroups o f  S isomorphic to G. Since - t E S, 
transitivity o f  S on X follows. 

9.11 Notat ion.  By (9.10), we identify X with the space of  right cosets {Gxlx E 
S}. An orbit o f  G thus corresponds to a double coset GxG. We may view the 
orbits as a set of  the form { (p ,q) lp  E C l ,q  E VIp 2 +Nq = 1} ,  with p fixed; 
when p 4: • 1, this set is an orbit for G due to transitivity of  G on the spheres 
of  a give radius in V (9.7). When p = •  there are two orbits, according to 
whether q = 0 or is a nonzero singular point. 

9.12 Remark. For s E S, the possibilities for G n G s are G,P' and L ~ (9.7). 
We use the map X --+ X / { •  and H ~ S / { •  to get an action of  H.  Now 
identify G with its image in H.  The intersections G N G h, for h E H,  look the 
same as within S except that we get both L and L ~ for the nonsingular case. 
The reason for the difference is that L acts on sets {q , -q } ,  for q4 :0  in the 
L-invariant 1-space; the action has kernel L~ so i f  we take (p ,q)  E X,  as in 
(9.11), it is stabilized by L modulo the action of  - 1  i f  and only i f  p = 0; 
thus, G fq G s is conjugate to L i f  p = 0 and to L ~ i f  p 4: 0. 
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