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1 Introduction 

Let X be a compact K~ihler manifold of complex dimension n and K~ihler form 
~2, equipped with a holomorphic Hermitian line bundle L ~ X such that the 
curvature of its natural connection is ~2. Such an L is called a quantizing line 
bundle. For each positive integer k, let 

~ = H~ L | (1) 

be the complex inner-product space of holomorphic sections of the k-th tensor 
power of L. Philosophically, ~k is the quantum phase space of X where k is 
the inverse of  Planck's constant. In this paper we do the following: 

1. We associate, to certain immersed Lagrangian submanifolds A --~ X, se- 
quences of sections uk E ~k, k = 1,2,. . . .  These sections represent quantum- 
mechanical states that are associated semi-classically with A. The A 's  in 
question (defined below) will be called Bohr-Sommerfeld 
Lagrangians. 

2. To each such sequence, we associate a symbol which is a half-form 

on A. 
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** Research supported in part by NSF grant DMS-9303778. 
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3. We compute the large k asymptotics of  matrix coefficients (Tuk, uk) where T 
is a Toeplitz operator. The dependence on T of the leading order term is an 
integral of the symbol of T over A, proving that these sections concentrate 
on A. By taking T = I we obtain estimates on the L 2 norms of the uk. 
In particular we show that these sections are not zero for k large. We 
also estimate (Tuk, vk) where {vk} is a sequence associated with a second 
immersed Lagrangian intersecting A cleanly. 

4. For X a Riemann surface, the elements of  ~k are holomorphic cusp forms of 
weight 2k. We show that the relative Poincar6 series associated to geodesics 
[12] are particular cases of our construction. As a corollary of the asymp- 
totic expansion, we find that the Poincar6 series associated to a fixed periodic 
geodesic is non-vanishing for large weight. We extend this result to hyper- 
cycles and circles. The classical Poincar6 series associated with cusps are 
also a particular case of our construction, but the proof of  the estimates 
needs the fact that X is a manifold. 

Our main results are Theorem 3.2, which gives the asymptotics of the matrix 
elements, and Theorem 3.12, in which we establish the local realization: 

uk(x ) = kn/2 ( Gaussian ) + O( k (n- i)/2). (2) 

We thus establish a precise correspondence between Bohr-Sommerfeld 
Lagrangian submanifolds of X (equipped with half-forms, see below) and cer- 
tain sequences of  states depending on k -- l ib.  Motivation for this comes from 
general quantization/semi-classical ideas in the context of  K~ihler phase spaces. 
As with many others working in this area, we were very influenced by the 
pioneering work of F.A. Berezin, [2]. He was one of the first to study the 
semi-classical (i.e. large k) limit of Toeplitz operators with multipliers given 
by functions of  X. For further developments of  Berezin's ideas, see [7] and ref- 
erences therein, and also [13], [4], [3]. To our knowledge, no systematic method 
of quantization of Bohr-Sommerfeld Lagrangians has been developed. In addi- 
tion to the applications to Poincar6 series presented in Sect.4 of  this paper, our 
construction can be applied, e.g., to the quantization and semi-classical limit 
of symplectomorphisms X ~ X, and to the construction of quasi-modes for 
Toeplitz operators (both in progress). 

Our methods use heavily the machinery of Fourier integral operators of  
Hermite type, developed by Louis Boutet de Monvel and Victor Guillemin in 
[5]. In fact, we associate to closed Legendrian submanifolds of a strictly pseu- 
doconvex domain, P, distributions in the generalized Hardy space of P (see 
Sect. 2). The Szeg6 projector is an Hermite FIO, and we show that our Leg- 
endrian distributions posses a symbol calculus inherited from that of Hermite 
distributions (symplectic spinors). 

The sections Uk are defined as follows. Let P C L* the unit circle bundle in 
the dual of L. We denote by ~ the connection form on P; then the pair (P, c~) 
is a contact manifold and so it has a natural volume form, 

@ = ~ / ~  (u~,)". (3) 
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The disk bundle in L* is a strictly pseudoconvex domain; we will consider the 
Hardy space of  P, ~ C L2(p), and the Szeg6 projector 

H : L2(P) --+ ~ (4) 

given by orthogonal projection onto ~ .  The natural action of  S I on P com- 
mutes with H, and hence ~ decomposes as a Hilbert space direct sum of  
isotypes. Only positive frequencies arise in the decomposition, and in fact the 
k-th summand is naturally identified with ~k. Therefore we identify 

= ( ~  ~k �9 (5) 
k=0 

Since we will use the calculus of  Hermite Fourier integral operators, we will 
actually need a metalinear structure on P. This is a way of  keeping track of  
the Maslov factors. 

Let A C P be a compact Legendrian submanifold, and v a half-form on 
A. It turns out that H extends to a class of  distributions including the delta 
function defined by (A,v). We will suppress v from the notation, and denote 
the latter by hA. 

Definition 1.1 For each k, we denote by uk the k-th component of  u := II(6A) 
in the decomposition (5). 

Remarks. 1. Instead of  a delta function along A one can just as well take a 
conormal distribution to A, but to leading order asymptotics the resulting states 
are not more general. 

2. We regard the sequence {uk} as being associated with the immersed 
Lagrangian A0 := n(A),  where n : P ~ X is the projection. Not all immersed 
Lagrangians in X are of  this form; those that are labeled Bohr-Sommerfeld 
Lagrangians. 

3. In case the restriction n[A : A ~ Ao is a covering map with deck 
transformation group the group of  k0 roots o f  unity, and the density v is cho- 
sen invariant under it, then the Fourier coefficients uk will be zero unless k0 
divides k. 

The matrix element estimate, Theorem 3.2, gives in particular the asymp- 
totics of  the L 2 norms Ilukll. The resulting estimate can be explained rather 
simply as follows. For every p E P, let 

q)~) := Ilk(bp) (6) 

be the orthogonal projection of  the delta function at p into ~k. (In case X is a 
coadjoint orbit of  a Lie group these are the "coherent states" of  the physicists.) 
That is, if  ~k (q ,  P)  is the Schwartz kernel o f  the orthogonal projection F/k, 

~0~)(q) := ~k(q ,  P ) ,  (7) 

and the reproducing property follows: 

Vf E ~k f ( P )  = ( f ,  qo~)) . (8) 
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Applying this to f = ~o~ ) itself gives 

~Z(p,  p) = I1~o~)112 , 

and so 

D. Bor thwick  et al. 

(9) 

dim ~k f~ '~(p ,  p)dp (k) 2 = = f J l %  I1 d p .  (10) 
P P 

By Riemann-Roch, we know this is a polynomial in k of  degree n and leading 
term (2~) -~Vol (X)k  =. Thus we get that on average II(0(f~)[I 2 is of  size (2~z)-=k ". 

I f  we assume that II@k)ll 2 is independent of  p (true for example if there is a 
transitive symmetry group present), then we actually get 

I1~o~)112 = (2~r)-"k = + 1 .o . t .  (1 l )  

On the other hand, by definition 

(12) 

and so the square of  the norm is 

A 

(uk, uk) = f f /,o(k) ..(~), - ( i s )  \ ~ p  ,q~q }l))Vq . 
A •  

It turns out that this' integral can be estimated Jbr large k by the method of  
stationary phase. For this' it is' crucial that A be a Leoendrian subman~ld. 
The relevant critical points are on the diagonal, p = q E A, which is a non- 
degenerate manifold of  critical points. Since the dimension of  A is n, we see 
from (11) that we should have 

(14) (u~, u~)  ~ f l y [  z . 
A 

We will prove that this is indeed the case. 

2 Legendrian distributions and their symbols 

In [5] Boutet de Monvel and Guillemin associate spaces of  distributions 
Im(,/g, ,Z) on ,/{r (called Hermite distributions) to a conic closed isotropic 
submanifold Z C T*.zg\{0}. In case Z is Lagrangian, these distributions 
are precisely the classical Lagrangian distributions of  H6rmander except that 
amplitudes of  elements in I r a ( J ,  Z) have asymptotic expansions decreasing 
by half-integer powers of  the fibre variables. (There is also a discrepancy 
in the definition of  order; we will follow the conventions in [5].) Elements 
in lm(J/l, Z)  have symbols, which are symplectic spinors on 2;. Boutet de 
Monvel and Guillemin prove a series of  composition theorems regarding Her- 
mite distributions. We will review this material as needed. 
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2.1 The definition 

For all o f  Sect. 2 the setting is the following. Let P be a strictly pseudoconvex 
domain in a Stein manifold, and let ~ be the pull-back to P of  3~p,  where p 
is a defining function for P. Then (P,~) is a contact manifold, and at every 
point p the null space of  :r is the maximal complex subspace o f  TpP. The null 
space has a symplectic structure, namely the one induced from da; therefore it 
has an associated Hermitian structure. Thus P has a so-called pseudo-Hermitian 
structure. Denote by ~ C LZ(P) the Hardy space and let f / :  L2(p) ~ ~ be 
the Szeg6 projector. Let A C P be a closed Legendrian submanifold. 

Definition 2.1 The space of  Leqendrian distributions of  order m associated 
with A is' defined to be 

jm(p, A)  = 17(1 m+n/2 (P, N ' A ) ) .  

Here I*(P, N ' A )  denotes the spaces of  conormal distributions to A. We 
must justify this definition; that is, we must show that f /ex tends  to distributions 
conormal to A. 

Define a submanifold ~ C T*P by 

o,~y** :=  {(p ,r~p);p  E P,r > 0} ,  (15) 

where ~ is the connection form on P. ff~ is in fact a symplectic submanifold 
o f  T* P. 

Theorem 2.2 ([5], Thm. 11.1) Let 

~ = {(p, rCr > 0 and p E P } ,  (16) 

where ~ is the connection form on P. Then ~ is an isotropic subman(fold of  
T*(P x P), and the Schwartz kernel of  H is" an lHermite distribution in the 
space ll/2(P x p, o~). 

We will use various composition theorems of  [5]. For completeness, we make 
a definition that encapsulates the hypotheses of  all of  these theorems ([5], 
conditions (7.4)). 

Definition 2.3 Let P and Q be manijolds, and F C T*(Q x P) \{0}  and 
S C T ' P \ { 0 }  be two closed homogeneous submaniJblds. We will say that F 
and Z are composible iff the Jbllowing hold: 

I. F shouM not contain vectors o f  the Jorm (q, p; p, 0). 
2. F o S shouM not contain zero vectors. 
3. I f  Fo is the projection o f  F onto Q • P, then the projection Fo --* Q is 

proper. 
4. The .fiber product 

g ~ F 

1 b 
Z ~ T*P 

where the riyht vertical arrow p is' the obvious projection, is clean. 

(17) 
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5. The map ~ : ~ --+ T*Q defined as the composition of  the top arrow in 
(17) and the projection F --~ T*Q is o f  constant rank. 

We now recall the two conditions which define the cleanness of a fiber 
product such as (17). The first requirement is that ~-, which by definition is 

= {(> (,) ~ r x r ; p ( ~ )  = ~ } ,  (18) 

is a submanifold of F x Z. In addition, we require that for all (?, a) C g ,  

T v , ~  = d p T l ( T ~ Z ) .  (19) 

The following integer plays an important role in the calculations: 

Definition 2.4 The excess of  the diagram (17) is 

e = dim (W) + dim (T 'P )  - dim (F) - dim ( Z ) .  

The geometrical meaning of the clean intersection is this: that locally near 
every point in Y there is a submanifold of  T*M of codimension e, contain- 
ing neighborhoods of the point in the intersecting manifolds, which intersect 
transversely in the submanifold. 

Now consider 

A ~ := o~e~ A N * A  = {(p,r~p);r > 0 and p E A} , (20) 

where the second equality follows from A being Legendrian. A ~ is a subman- 
ifold of  the conormal bundle of A and hence is an isotropic submanifold of  
T*P. It is a Lagrangian submanifold of ~e~. 

Proposition 2.5 The Sze96 projector extends by continuity o f  the space of  
distributions on P conormal to A. The extension maps Ira(P, N ' A )  to the 
space Im-n/2(P, A~). 

Proof  We apply Theorem 9.4 in [5], which in the present case says that if 
and N*A are composible (in the sense of Definition 2.3), then an Hermite FIO 
associated with ~ can be applied to a Lagrange distribution associated with 
N ' A ,  and the result is an Hermite distribution associated with A ~. Therefore 
all we need to do is to check that ~ and N*A are composible, which is 
straightforward. (The excess of the composition diagram turns out to be equal 
to n.) [] 

By Proposition (2.5) not only the spaces J are well-defined, but in fact one 
has the inclusion 

Jm(P, A) C lm(P, A~). (21) 

Although we won' t  need it here, we mention that these distributions can also 
be described as "marked Lagrangian distributions" in the sense of Melrose, 
[14], associated to the conormal bundle of A marked by the submanifold A ~. 
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2.2 The symbols of  Leqendrian distributions 

Our next task is to show that one can identify the symbol of  an element 
in jm(p, A) with a half-form on A. The symbol of  a Lagrangian distribution 
is a half form on the Lagrangian submanifold. The symbol o f  an Hermite 
distribution is more complicated object, a symplectic spinor. For the sake of  
completeness, we review briefly the construction of  symplectic spinors. 

To any symplectic vector space V there is naturally associated a Heisenberg 
Lie algebra, denoted by heis(V), which as a vector space is just V | 1R. The 
Stone-yon Neumann theorem gives us a unitary representation p o f  the asso- 
ciated Heisenberg group on a Hilbert space H(V) ~ L2(lRdimV/2). If  V carries 
a metaplectic structure, then we can use the action of  Sp(V) on heis(V) to 
construct a unitary representation o f  Mp(V) on H(V), the Segal-Shale-Weyl 
representation. Denote by H ~ ( V )  the space o f  smooth vectors for this rep- 
resentation, which is identified with the Schwartz functions ~P(IRdimV/2). NOW 
let Y C V be an isotropic subspace of  dimension k. Then Y• inherits a 
symplectic structure from V. Moreover, the metaplectic structure on V gives 
us the product o f  a metalinear structure on Y and a metaplectic structure on 
Y• The space Spin(Y) is defined by 

Spin(Y) :=  Hoo(Y• /Y) | A I/2 Y . (22) 

Let H~(V) I denote the topological dual to H ~ ( V ) ,  which is identified 
with the space of  tempered distributions ,~t(lRdimV/2). The representation dp 
of  heis(V) on H(V) extends to a representation on Hoo(V)( Identifying a 
subspace Y C V as a subalgebra of  heis(V), we define 

kerdp(Y) = { f  E H ~ ( V ) ' : d p ( u ) f  = 0 Vu E Y}. (23) 

Theorem 2.6 (Kostant) For a Lagranyian subspace Y C V, the space ker 

dp(Y) is one-dimensional and isomorphic to AI/2Y. 

The bundle o f  symplectic spinors is defined as follows. Let M be a metalin- 
ear manifold (a manifold possesses a metalinear structure whenever the square 
of  the first Stiefel-Whitney class vanishes). The choice of  a metalinear structure 
on M gives a canonical metaplectic structure on T*M. Now let S C T*M be 
an isotropic subspace. Let Sx denote the tangent space to 2; at the point x. The 
symplectic normal bundle, S• is the bundle whose fiber at x is the space 
S~/Xx, where Sx x is the perpendicular space to Zx in Tx(T*M). As above the 
metaplectic structure on T*M gives us the product of  a metalinear structure 
on Z" with a metaplectic structure on S• We can now define Spin(Z) to be 
the vector bundle on S whose fiber at a point x is given by 

Spin (S)x = H~(S~X/Sx) | A1/2Sx. (24) 

Note that the fiber of  Spin(S) is an infinite dimensional vector space. 
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A symplectic spinor on S is a smooth section of Spin(Z). There is an 
action of 1R + on Spin(Z) coming from the action of ~ +  on T 'M\{0}  given 
by r �9 (x, ~) ~-+ (x, r~). Denote by SS m the space of symplectic spinors which 
are homogeneous of degree m under this action. 

Proposition 2.7 ([5], Proposition 7.4) There & a canonical symbol map, 

Im(M,S) -+ SS'n(N), (25) 

whose kernel is" Im- I /2 (M, • ) .  

In the present case, all of  the relevant metalinear and metaplectic structures 
derive from the choice of  a metalinear structure on P. In particular, T*P inherits 
a metaplectic structure, as do the horizontal subspaces of  TP. These metaplectic 
structures on the horizontal subspaces of TP in turn give rise to metalinear 
structures on Legendrian submanifolds of P. 

Lemma 2.8 A pseudo-hermitian manifoM P always possesses a metalinear 
structure. 

Proof Let wl be the first Stiefel-Whitney class of TP, an element of HI(P, 
�9 /2). The obstruction to the existence of a metalinear structure is w~. Now TP 
is orientable if and only if wl = 0. Note that this would take care of  the case 
where P is a circle bundle over X as in Sect. 1. In general, we have 

TP = H | E (26) 

(a Whitney direct sum of bundles), where H is the horizontal distribution (the 
kernel of  ~), and E is the trivial rank-one bundle spanned by c')0. By the axioms 
of Stiefel-Whitney classes, wl = wl(H).  H is a complex vector bundle, so in 
fact wj (H)  = 0 since a complex bundle is always orientable. ~3 

A metalinear structure of  P is not necessarily unique. The set of all metalinear 
structures on P has the same cardinality as Hi(P,  Z/2). 

We will next describe the symbol of the Szeg6 projector, /7. Define ~,~v~ C 
T*P as in Sect. 2.1, and ~ by 

~ = {(p,-rO~p) : p C P,r  > 0} , (27) 

and note that the space ~ is the diagonal subspace ~ +  ~ ~ Note that 5 "~ 
and ~ are symplectic submanifolds, whereas ~ is an isotropic submanifold. 
From Theorem 2.2, the Schwarz kernel of / /  is an Hermite distribution in 
I1/2(P x P , ~ ) ,  so ~r(//) is an element of SS1/2(~). 

Since it is sufficient to describe ~( / / )  locally, we begin by linearizing the 
problem. Choose a point (p, rep) E ~g~ and let V = T(p, rap)(T*P).  Define 

Z = T(p,r~p)~ ~ , (28) 

which is a symplectic subspace of V. As vector spaces we can identify V with 
T~p_~p)(T*P) and Z with T(p,-rxe)~ ~, b u t  then V and Z carry the opposite 
symplectic structures. To avoid notational complications, we will use V and 
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Z to denote both of the respective vector spaces and point out the differing 
symplectic structures where necessary. We therefore write 

T(p,r~,,, p,-r~t,)~' = Z ~ Z .  (29) 

Note that Z ~ Z is isomorphic to Z but is an isotropic subspace of  V x V. At 
the point (p, rep, p , -r~p) ,  the fiber of Spin(~)  is 

Spin (Z ~ Z) = H~((Z  ~ Z)•  ~ Z))  | A~/2( /~  z ) .  (30) 

Lemma 2.9 We have the canonical ident(lication 

Spin(Z # Z) = H~(Z • |  •  @ At/2Z. (3 l )  

Proqf. The spaces of  half forms are identified through the isomorphism between 
Z and Zr By definition (Z ~ Z )  • is the space of all (v,w) E V x V such that 
w - v  E Z • Since V = Z@Z • it is clear that ( Z ~ Z )  • = (Z~Z)@(Z  • xZ•  
Thus we have 

(Z ~ Z)• ~ Z) ~ Z • x Z • , (32) 

which is a symplectic isomorphism. D 

The pseudo-Hermitian structure of P enters into the description of a(/7) in 
the following. 

Proposition 2.10 Associated to the pseudo-lHermitian structure of P is a pos- 
itive definite Lagran.qian subspace of Z• | 112. 

Proof A K/ihler structure on a vector space V is equivalent to the combination 
of a symplectic structure on V and the choice of a positive definite Lagrangian 
subspace of V @ if7 (the type (1,0) subspace). Thus we need to show only that 
Z • inherits a K~hler structure. This follows from: 

Claim. Under the projection T(p,r~p)(T*P) ---+ TpP, the ima,qe o[" Z • is the 
null space oJ'c~ in TpP. 

Indeed, let s : P • IR + ---+ T*P be the map (p ,r )  H (p, rep), whose image 
is 2:~. Then Z is the image of the differential map ds at the point (p, r) singled 
out above. Explicitly, 

ds(p,r)(Vr, Vp) = (Vp, V,.3~p + rd~p(Vp))  . (33) 

We quickly see that the perpendicular space to Z is given by 

Z • = {(w,-r(V'pO~,w)): (O~p,W) = 0},  (34) 

from which the Claim follows. [] 

Proposition 2.11 ([15], Prop. 4.2) I f  W is a positive definite Lagrangian 
subspace of Z • @ Ir, then ker dp(W) C Hoo(Z• ) ' is one-dimensional and 
contained in Hoo(Z • ). 
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Combining Propositions 2.10 and 2.11, the pseudo-Hermitian structure on 
P determines a one-dimensional subspace o f  H~(Z•  To write the symbol o f  
/7, we need to choose an element e of  norm one in this space (the symbol is 
of  course independent of  the choice). For our purposes it is convenient to fix 
a particular choice of  e. We can do this because Z • is a symplectic vector 
space with a K~ihler structure. Therefore there is a canonical realization of  the 
metaplectic representation H(Z • on Bargmann space. We require that e be 
real and positive under this representation. 

Theorem 2.12 ([5], Thm. 11.2) The symbol o f  the Szego projector is 

,7(n) = e | F | ~ e Hoo(Z• ) | Hoo(Z• ) | A I/2e , (35) 

where volz is the canonical volume form on ~ given by the symplectic 
structure. 

We now will describe the symbol o f  a Legendrian distribution, as a sym- 
plectic spinor. Let ~ denote the Schwartz kernel of  H, and define the maps: 

P x P  ~ P x P x P  (36) 

P 

where A : (P l ,P2 )  H (PI,P2, P2) and ~ : (P l ,P2 )  H pl.  Let ~ be a distribu- 
tion on P conormal to A. Then u = / / ( ~ )  is given by 

u = = , a * ( y  [ ]  if). (37) 

J,( [ ]  ~ is an Hermite distribution on P x P x P whose isotropic relation is 
x N*A C T*(P • P x P). The operator ~,A* is an ordinary FIO with 

associated relation 

= {(P1,~I),(Pl,P2, P2,--~I,~2,--~2)} C T*P • T*(P •  • P). (38) 

Once again we proceed by linearizing the problem. Fix a point (p,  {) C A ~, 
and define V and Z as in Sect. 4.1. Define 

B = T( (p ,~ ) , (p ,p ,p ,_~ ,~ ,_~) )~  (39) 

We identify B as a subspace of  V x W, where W = V x V x V, keeping track 
o f  the signs of  the symplectic forms as needed. We further define 

Y = T{p,~_)(N*A), (40) 

and 
A = (Z 5% Z) x r .  (41) 

Our starting point for the calculation o f  or(u) is a ( ag  [ ]  ()  E Spin(A). Because 
Y is Lagrangian, 

A• ~-- (Z 9 Z)• 9 Z) .  (42) 
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Using Lemma 2.9, we can thus canonically identify 

Spin(A) = Hoo(Z • | Hoo(Z • Q A1/2Z Q A I / 2 y  . (43) 

Denote the symbol of [ by It E AI/2N*A. This corresponds to an element 

of i J/2Y which we also denote by/a. According to Theorem 2.12, we therefore 
have 

a ( . ~  [ ]  ~) = e | F Q V/volz | I t . (44) 

The symbol of u will be an element of Spin(A~). The linearization of A s is 
T(p,~)A ~ = Y N Z. As remarked in Sect. 2.1, A s is a Lagrangian submanifold 
of  ~ s ,  and thus Y n Z is a Lagrangian subspace of Z. 

Lemma 2.13 We have 

(Y n z ) Z / ( Y  n Z) ~- Z • , (45) 

so that we can identify, 

Spin(Y n Z) = Ho~(Z • ~ f l/2(Y N Z) .  (46) 

Proof Since Y N Z is a Lagrangian subspace of Z and V = Z @ Z • we have 
(Y NZ)  • = Z • �9 (Y NZ). [ ]  

Lemma 2.14 For a fixed choice of  e E H~o(Z • ) there is a natural isomorphism 

q)e : i 1/2Y --+ i l /2 (  Y n Z ) .  (47) 

Proof We begin by noting that the direct sum decomposition V = Z | Z • 
induces the direct sum decomposition 

Y = (Y NZ)  | (Y n Z •  (48) 

Since Y and Y n Z are Lagrangian subspaces of V and Z respectively, Y N Z • 
must be a kagrangian subspace of Z ~. 

We thus have 

A1/ZY '~ AI/Z(Y n Z) @ i l /2 (Y n Z •  (49) 

Theorem 2.6 gives the identification 

AI/Z(Y n Z • ) ~ Kerdp(Y n Z •  C Hoo(Z• ' . (50) 

Thus the Hilbert space inner product extends to a pairing 

Hoo(Z • | A~/2(Y n •  • ) ~ ~3, (51) 

which, combined with (49), yields the map ~Oe. 
TO see that ~e is an isomorphism, note that the unitary group U(Z • C 

Sp(Z •  acts transitively on the set of Lagrangian subspaces of  Z • while 
preserving the Kiihler structure. Thus we can choose an identification Z • ~ IR 2" 
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such that e E 6(IR n) is a Gauss• centered at the origin, and Kerdp(Y N Z •  
consists of  constant multiples of  the delta function at the origin. Therefore (47) 
is an isomorphism. [] 

Proposition 2.15 As a symplectic spin| the symbol of  u = II(~) is" 

a(u)  = e | q~(p.) E Hoc(Z •  | A1/Z(Y o z )  (52) 

(which is" independent of the choice of  e). 

Proof Consider B C V • W as a canonical relation from W to V: 

B 

W V 
(53) 

where ~ and fi are the obvious projections. The result of  the composition is 
B o A  := f l (~- l (A))  -= Y N Z. Proposition 6.5 o f  [5] gives, in the present case, 
the symbol map 

Spin(A) | AI/2B --+ Spin(B o A ) .  (54) 

The construction of  the map (54) has two essential components. The first 
is an exact sequence 

O---~ Kerp--+ B |  s U~ -+0,  (55) 

where v : BOA ---+ W is defined by ((a,b),c) H b - c ,  and U1 = ~(B)• NA • C 
W. A simple computation reveals Ul ~ Y N Z • in our case, Ker p ~ B o A = 
Y N Z, so that this exact sequence gives an isomorphism 

A ' / 2 B | 1 7 4 1 7 4  (56) 

Let U be the image of U1 in the quotient A• (note that U ~ U1 ). Under the 
identification of  A• with Z • x Z • U is just given by to {0} x (Y N Z•  

The other component of  the map (54) is the isomorphism ([5], 4.15) 

Ker dp(U) ~- AI/2U | H~(U•  ' . (57) 

It is clear from the remarks above that U• = Z • • {0}. Since Kerdp(U) C 
H~(A• ', taking the dual o f  the isomorphism (57) gives a map 

H ~ ( Z  • ) @ H ~ ( Z  • ) | AI/2(Y N Z  ~ ) ~-+ Hoo(Z• ) . (58) 

Note that this is not an isomorphism. 
These components fit together as follows. We begin with 

Spin(A)OAI/2B=H~o(Z•174174174 (59) 
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The isomorphism (56) takes us to 

Hoo(Z • ) (~ I - I~ (Z  • ) @ Al/2(U~ ) Q A~'2(Y n z).  (60) 

Now because of the natural isomorphism Up ~- (W/UI)*, we have 

Al"2u~ ~ A- ' /2w G A'/2u. (61) 

W possesses a canonical half-form, which gives us a map A-I /2W ---+ ~, so 
that we can naturally identify 

Ab'2U~ ~ Ah/2(Y N Z •  (62) 

Thus (60) is isomorphic to 

H ~ ( Z  • ) | H ~ ( Z  • ) | A1/2( Y N Z • ) | A I/Z(Y N Z) . (63) 

The map (58), the only stage which is not an isomorphism, completes con- 
struction of the map (54). 

We now simply trace what happens to the combination of o-(,X/ l'ffl ~') E 

Spin(A) and a0z.A*) C AI/2B under this map. First of all, we note that rt.A* 
is a naturally defined operator, and a(zr.A*) is just the canonical element of 
A1/2B determined by the symplectic structure on B ~ V x V. 

Consider the point (60) in the construction of the map. In the present case, 

g ~  ~- V x V x [ Z @ ( Y N Z •  C W,  (64) 

so that the isomorphism 

/~I /2B@/~I/2Z@/~I/2Y~/~I /Z(uI~)@/~I/2(yNZ)  (65) 

simply arises from the decomposition Y = (Y n Z ) |  (Y n Z• In view of 
(64), the isomorphism (62) consists simply of dividing out by the canonical 
half-forms on B and Z. Since the symbol of ~.A* and the half-form part of  
the symbol o f / /  are in fact just the canonical half-forms, these cancel out. At 
the stage (63) we end up with 

a(,X(' [ ]  ~) | a0r .A*) = e @ ~ | p ,  (66) 

where # is thought of as an element of AI/Z(Y n Z • @ AI/2(Y N Z). The final 
stage is to apply the map (58), which takes e | ~ | to e | q)e(ff). [] 

Observe that ~oe(/~) E Al/2(T(p,r~p)/lt*). Letting p and r vary, q0e(/z) defines 

a half-form on A ~ which is homogeneous. In view of the previous results, this 
half-form is the non-trivial part of  the symbol of  u, as an Hermite distribution. 
Since ~oe(/~) is homogeneous, it is determined by the restriction to the image 
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of the section 

s~ : A --~ A ~ 

p~--+ ~p. (67) 

Upon division by the natural radial half-form, this restriction becomes a half- 
form on A. We will refer to this half-form as the pull-back of %(10 to A via 
s~ and denote it by S*~Oe(l~). 

Definition 2.16 For a Legendrian distribution u, we will identiJ)~ the symbol 
o f  u with the half-jorm on A, s~%(lO. Precisely, we call the (well-defined) 
map 

a(m) . Jm(p,A ) ~ A1/2A 

u r l ( ~ )  ~ * = S ~ q ) e ( # )  

the symbol map o f  order m. 

2.3 Exactness of  the symbol sequence 

Our goal here is to prove the following: 

Theorem 2.17 The following is an exact sequence: 

0 --+ jm- I /2 (p ,A)  --+ Jm(p ,A)  ~ AI/2A ~ O. (68) 

Moreover this" sequence has a natural splitting, namely 

AI/ZA __.+ Jm(p ,A)  

m 1 
v ~-+ T - : H ( b v )  (69) 

where T =/TOvlI  and ~r is the contact vector field (defined by the conditions 
l~r~ = 1 and t~rd~ = 0). 

Remark. The operator T is non-negative. This follows from the fact that the 
symbol of Or restricted to ~ is positive. Then, as in Proposition 2.14 of [5], 
there exists a non-negative, elliptic self-adjoint pseudodifferential operator, A, 
on P such that 

[A,/7] = 0 and HAH = HOTH = T .  (70) 

Therefore the powers T s = HASH (A s defined to be zero in the kernel of A) 
are Toeplitz operators of order s, Vs E lR. 

We first check that (69) is a fight inverse of the symbol map. We need 
the following result on the behavior of the spaces J under Toeplitz operators: 

Lemma 2.18 I f  u E Jm(p ,A)  and S = IIBFI is a Toeplitz operator o f  order 
p, then S(u) E jm+p(P,A)  and its symbol is s*(aB)a(u). In particular, Vs E 
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~ ,  T s maps Jm(p,A)  into Jm+'~'(P,A), and this map is the identity at the 
symbol level. 

Proof  By [5], without loss o f  generality [B, H] = 0. Therefore S(u) = liB(u), 
and since B(u) is another conormal distribution the proof is complete. [] 

Corollary 2.19 Indeed (69) is a right inverse of  the symbol map. 

Next we prove that the kernel of  the symbol map is precisely jm-I/2(p, A). 
The non-trivial part is to show that if u = li(~) E jm(p,A) has zero symbol 
of  order m, then it is the projection of  a conormal distribution of  order 
o r d ( ~ ) -  1/2. This is a consequence of  the following: 

Theorem 2.20 

{u E Im(p, A~); l l (u)  = u} = jm(p, A) modulo smooth functions. 

Proof  Suppose that u E Im(p,A ~) is invariant under H. Then the symbol a,  
of  u (as an Hermite distribution) is a symplectic spinor which equals its own 
composition with the symbol o f  H. From the discussion of  the symbol of  H 
one can see that this implies that au is of  the form 

au = e |  (71) 

where # C A1/ZA ~. By Corollary 2.19 it is possible to construct a conormal dis- 
tribution ~l E Im+n/Z(P,N*A) such that H ( ( I )  and u are Hermite distributions 
with the same symbol. Therefore, by the general symbol calculus of  [10], 

Ul :=  u - H(~l)  E Im-t/2(p,A~).  (72) 

Observe furthermore that H(ul)  = Ul; therefore we can repeat the same ar- 
gument with Ul. Continuing by induction, we see that there is a sequence of  
conormal distributions, {{j} whose orders are monotonically decreasing such 
that gk E 7/+ 

u -  II ~/ E Im-k/2(P,A~). (73) 

Now let ~ be a conormal distribution such that ~ ~ ~ :=1  ~J" Then u -  H(~) is 
a smooth function. The converse inclusion is trivial. [] 

3 Matrix element estimates 

For this section we return to the case described in Sect. 1, where P is a unit 
circle bundle over a compact Kahler manifold X. In Sect. 2, we saw that at 
the symbolic level all Legendrian distributions look like delta functions or their 
derivatives. In view of  this fact, we will restrict ourselves to the delta function 
case for the sake o f  simplicity. Let A1 and A2 be compact Legendrian subman- 
ifolds of  P, and define Legendrian distributions u = H(6A~ ) E jl/2(p, AI ) with 
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symbol vl E /~l/'2Ai and v = I1(6A2) E jI/2(p, A2) with symbol v2 E AI/2A2. 
Let A be a zeroth order classical pseudodifferential operator on P and let 
TA = I1AH be the corresponding Toeplitz operator. In this section we esti- 
mate the matrix elements (TA u~, vk) = (Auk, vk). 

3.1 The main statements 

Let F : P • S I --+ P be the action map, and define 

02 := F - I ( A 2 )  = {(p, ~o); p .  co E A2}, (74) 

where co c S 1 and the action is denoted by a dot. 02 is a submanifold since 
F is a submersion; in fact 02  ~ A2 • S 1 by the map (p,  eg) ~ (p .o , , co) .  

Assumption. We will assume that Al x S 1 and 02 intersect cleanly, meaning: 

1. The intersection 

~ : = ( A l  x S J ) n O 2 = { ( p , o ) ; p E A 1  and p . f o c A 2 }  (75) 

is a submanifold of  P • S I. Different connected components of  ~ are 
allowed to have difJerent dimensions. 

2. At every (p, co) E :~, 

T(p:o): ~a = T(p,(o)02 N T(p,~))(A1 x S I ) .  

Equivalently, we may assume that the image of  the map 4~ : .~ --+ S l 
induced by the natural projection is finite, and that for co C q~(:)T), the inter- 
section (A1 �9 og)NA2 is clean. That this is equivalent to the above assumption 
follows from the fact that AI and A2 are Legendrian. 

We label the points in the image of  �9 by 

4 , ( ~ )  = {("l . . . . .  coN},  (76) 

For each l E {1 . . . . .  } let d/ be the dimension of  the fiber 4 '-I(egt) ,  i.e., 

dt = dim(Aj �9 e)l) n A2 �9 (77) 

L e m m a  3.1 I f  A1 and A2 are two cleanly intersectin 9 Legendrian submaniJoMs 
o f  P and lq and P2 are half-forms on the respective submanifolds, then the 
intersection Al N A2 inherits a top degree form PI#P2. 

Proof Let Z by a symplectic vector space, with Lagrangian subspaces Lt and 
L2. The exact sequence, 

0 --+L1NL2 ---~ Li |  --~ Ll + L 2  --+ 0,  (78) 

where the third arrow takes ( v ,  w )  ~ v - w ,  leads to an isomorphism 

A1/2LI @ AI/2L2 ~ A1/2(LI n L2) @ AI/2(LI + L2).  (79) 
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Now, since (Lt NL2) • =L1 +L2,  we have 

Li + L2 ~- [Z/(L~ N L2)]*. 

This in turn allows us to identify 

AI/2(LI +L2)  ~ A 1/2 = (LI NL2),  

(80) 

(81) 

by using the canonical half-form on Z to map /~ 1/2Z ~ C. Finally, there is 
a natural map 

AI/2(LI n L2) @ AI/2(LI n L2) --+ Ad(L1 n L2), (82) 

where d = dim(L1 n L2). 
This construction thus associates to a pair of half-forms on the Lagrangian 

subspaces a top degree form on their intersection. Clearly the procedure gen- 
eralizes to the case of  two cleanly intersecting Lagrangian submanifolds of a 
symplectic manifold. 

Define A~,A~, and ~ as in Sect. 2.1. ~ is a symplectic manifold, and 
A~ and A~ are Lagrangian submanifolds. To a half-form v / on Aj we naturally 
associate a half-form on A~ by 

vj H ~,~ ~ v ~ r .  (83) 

The result proven above gives us a top degree form (vl | vQSZ)#(v2 (~ v / ~ )  
on A~ N A2 ~. We define V 1 #V 2 as this form divided by ~. [] 

Proceeding by analogy with the Fourier integral operator calculus, one might 
guess that the leading coefficient in the estimates for the matrix elements would 
involve only universal constants and the natural pairing described in Lemma 
3.1. In fact, this coefficient involves an additional term, which we now describe. 

Consider the tangent space TxP at a point x E P. In Sect. 2 we noted that 
the null space of e in TxP (the horizontal space) is a symplectic vector space. 
Thus we can define an action of the symplectic group Sp(n) on TxP by its 
action on the null space of e, and acting trivially on vertical vectors. In a 
symplectic vector space the unitary group, U(n), regarded as a subgroup of 
Sp(n), acts transitively on the set of Lagrangian subspaces, in our case U(n) 
acts transitively on the set of tangent spaces (at x) to oriented Legendrian sub- 
manifolds, with isotropy subgroup SO(n). Thus, given two oriented Legendrian 
subspaces Al and A2 of P, we have a well-defined function on Ai NA2 which 
is the determinant of  the unitary matrix mapping 7~A1 to TxA 2. We denote 
this function by det{A1,A2}. Alternatively, if positive orthonormal bases {ej} 
and {J~} are chosen for the respective tangent spaces at x, we may define 

det{Aj, A2}(x) = det{h(e/, f j ) } ,  (84) 

where h is the hermitian form (on the null space of ~) at x. 
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In what follows, we will need to make sense o f  the square root o f  this func- 
tion. This is precisely the role of  the metalinear and metaplectic structures. As 
we remarked in Sect.2, the metalinear structure on P gives rise to a metaplectic 
structure on the horizontal subspace o f  TP and to metalinear structures on the 
Legendrian submanifolds. To a unitary transformation as described above, we 
can associate a well-defined element in the double cover o f  U(n) by taking 
the unique element of  Mp(n) which lies over the given transformation and 
which is a metalinear map from the tangent space of  one Legendrian to the 
other. This association allows us to define the square root of  det{A1,A2}: the 
function x/det is well-defined on the double cover of  U(n). 

With these assumption and notation, we are now prepared to state our main 
result. 

Theorem 3.2 As k --~ cxz there is an asymptotic expansion 

with 

N oo 

(~rA uk, v~) ~ ~ o~ ~ ~v,l k td'-j)/2 , (85) 
!=1 j=0 

co,! = 2(n-al)/2~z -cl/2 f det{A1 �9 ~o, A2}-l/eavl #T2, (86) 
(A 1 �9 O~l)fqA 2 

where a is the pullback to AI of  the symbol of  A by the connection one- 
form, ~. Furthermore, i f  7z(Al) and rt(A2) do not intersect, then (TAUk, Vk) 
decreases rapidly in k. 

Consider now the case of  a single u E Jm(p,A), with symbol v. Observe that 
A • { 1 } C ~ and is always a component of  maximal dimension, n. Furthermore, 
if  ~ : A --* rt(A) is a covering map with covering group the group of  k0-th 
roots o f  unit, then A • {e 2~ij/kO }, j = 0 . . . . .  k0 - 1, are n-dimensional components 
as well. This leads us to the following corollary. 

Corollary 3.3 Let ~[A be a coverin9 map with coverin9 9roup the 9roup of  
ko-th roots of unity, and suppose the half-form v on A is invariant under the 
action of  the coverin9 9roup. Then (uk, uk) has the asymptotic behavior: 

(u~,u~) ~ ko f l v l  2 (87) 
A 

i f  ko divides k (uk = 0 otherw#e). In particular, Jor k a sufficiently large 
multiple of  ko, (uk, uk) is non-zero. 

The remainder o f  Sect. 3 is devoted to the proof  of  the asymptotic expan- 
sion o f  Theorem 3.2. We begin by dealing with the case where the immersed 
Lagrangians corresponding to the Legendrian submanifolds do not intersect. 
The strategy is to study the singularities of  the periodic distribution 

T(O) :=  ~ (Auk, vk)e ikO , (88) 
k = 0  
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as in [10]. Knowledge of the singularities of T translates into the asymptotic 
expansion of its Fourier coefficients. In particular, we will show that the wave- 
front set of T is empty when ~ = ~. In this case, T is smooth and the matrix 
elements must decrease rapidly in k. 

To construct T we proceed as follows. Choose ~ E I ( '+I) /2(P,N*A2) ,  such 
that v = / / ( ~ ) .  We will demonstrate that 

~ := F*(~) (89) 

(well-defined because F is a submersion), is a Lagrangian distribution on P x 
S I. Here ~ is the complex conjugate of the distribution ~ as defined by the 
identity 

(~, ~0) = (~ ,~) .  

Furthermore, 
.;V(p, e ~~ = ~(p  . eiO). (90) 

We can regard uS as the Schwartz kernel of an operator, V, from P to the 
circle. Since H is an orthogonal projection which has already been applied to 
obtain u, it is clear that 

T =  V O T A ( U ) ,  (91) 

independently of the choice of  ~. 
We begin by describing the canonical relation of the standard FIO F*. If  

q E TpP, denote by q~ the horizontal part of r/. Thus we decompose 

t 1 = q ( O 0 ) O ~  p -i- 7 ~ �9 

For every co C S l, we denote by R~o : P --~ P the map induced by the action 
of e) on the right. We define an operator k~o : Tp .  ,oP --* TpP by 

R~o : tl w+ q(OO)~p + Ro*~q ~ (92) 

The canonical relation of the Schwartz kernel of  F* is 

= { (p ,  e);Roj(q), q(e?0)),(p" ~o; q)) C T*(P  • S 1 ) • T * P .  (93) 

The following result is well-known. 

Proposition 3.4 The pul l -back operator, F*, ex tends  to a map  

F* : I m ( p , N * A 2 )  --+ Im(p  • S 1 , F )  , (94) 

where 

F = { (p ,  co;ko, (q) ,q(Oo)); (p  �9 e) ,q)  E N*A2} C T*(P  • S l ) .  (95) 

In particular, ~F" E I(n+l)/2(P x St,F).  
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As noted above, we can now consider ~" as the Schwartz kernel of an 
operator, V, from P to the circle. Specifically, 

V( f ) (o ) )  = f f ( p ) ~ ( p  �9 o ) d p .  (96) 
P 

We apply V to TA(U), to obtain the following 

Proposition 3.5 T V(TA(U)), and WF( T)  N IR+. = = U j = [  {e~j} x In particular, 
i f  ,~ = ~ then T is' smooth. 

Proof  By Proposition 2.13 of [5], we can assume that [A, II] = 0, and so 
TA : Im(p,A~) ~ Im(p,A~).  Therefore we need only to apply e.g. Theorem 
8.2.13 in [11]. We omit the details. [] 

Corollary 3.6 I f  g(Al )N g(A2) = ~ then the matrix elements (TAUk, Vk} de- 
crease rapidly in k. 

Remark. I f  ~ is non-empty one can ask whether the above construction shows 
that T is a Lagrangian distribution, i.e. whether the composition fiber product 
diagram 

~# --~ F 
.[ (97) 

A ~ --~ T* P 

(where 

~# = {[(q, eJ, rC~q,r),(p,r)]; p = q �9 o), p E ~ }  (98) 

and the arrows are the obvious ones) is clean. This is not so because condition 
(19) is not satisfied. To proceed, we will estimate the Fourier coefficients of  
T directly using the stationary phase lemma. This is the content of  Sects. 3.2 
and 3.3. 

3.2 Oscillatory integrals 

The strategy for computing the asymptotic estimates of  Sect. 3.1 is to write 
the Hermite distributions as oscillatory integrals and approximate the matrix 
elements by stationary phase. By definition, the space Im(p ,A  ~) consists of  
distributions that are locally expressible as oscillatory integrals of a certain type. 
For the remainder of  this section, we will be working with open neighborhoods 
in P and A. References to P and A below are to be interpreted as statements 
concerning local neighborhoods in these spaces (else the notation becomes 
excessively complex). 

In order to write the oscillatory integrals, we must first find a phase function 
parametrizing A ~, in a sense to be described below. We need only consider 
the case of  a non-degenerate phase function. The set up is as follows. Let B 
be an open conic subset of  (IR x IR')\{0}.  We give IR x lR n the coordinates 
(~,~). 
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Definition 3.7 A non-degenerate phase Junction & a function 6, r C ~ ( P  x 
B, lR ) which satisfies: 

1. 49 is homogeneous in (z,q). 
2. d~b is nowhere zero. 
3. The critical set o f  49, 

C~ = {(x,z, rl);(d~49)(x,~,,1) = (d,149)(x,~,,1) = 0} , (99) 

intersects the the space qt = . . . =  qn = 0 transversally. 
t ~4, ~4~ ~'/~ ) has rank n + 1 at every point o f  C4,, 4. The map (x ,r ,q)  H ,  ~5, c,l~ . . . .  c,1,~, 

i.e. 49 is non-degenerate. 

Define the map F " Cr ~ T ' P \ { 0 }  by (x ,z ,q)  ~ (x,(dr49)ix,~,,1)). We quote 
the following result. 

Proposition 3.8 The image under F o f  the sub~Taee of  C 4, given by ql . . . . .  
q,, = 0 is a homogeneous isotropic submaniJold o f  T ' P \ { 0 }  o f  dimension 
n + l .  

Definition 3.9 A phase function 49 is said to parametrize A ~ provided A ~ is 
the image under F of  C~ N {ql . . . . .  qn = 0}. 

We are now prepared to describe the oscillatory integrals. A distribution 
(generalized half-form) in Im(p,A ~) can be written as a finite sum of  locally 
defined oscillatory integrals. Specifically, given a non-degenerate phase function 
49 parametrizing A ~ locally, we can write the distribution locally as 

f ei4~'x'~'") a (x,  r, ~ ) dz drl , (100) 

where the amplitude a(x,z ,u)  has the following properties (see Sect. 3 of  [5] 
for the precise formulation o f  the estimates): 
1. a(x, r,u) is rapidly decreasing as a function of  u. 

2. a(x, r, u) is cutoff to be zero near r = 0. 

3. For sufficiently large ~,a(x,z,u) admits an expansion of  the form 

CX3 

a(x,~,u) ~ ~ T m ' a i ( x , u ) ,  (101) 
i = 0  

where each mi is either integer or half-integer, with m0 = m -  1/2 and 

mi --+ - ~ .  
A change in the cutoff function used to enforce item 2 results only in a smooth 
correction to (100). Because of  this, the cutoff function is generally suppressed 
from the notation. 

Our next task is to actually construct a phase function that is linear in T 
II  

and ~. Suppose that 49(x,z,q)= r f ( x ) +  ~j=tqjgj (x) .  We will hereafter adopt 
a vector notation 

q . g  :=  ~ q j g j ( x ) ,  q .dg  :=  ~ t l j d g  i . (102) 
j=l j=l 
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The critical set is C~b = { ( x , r , q ) ; f ( x )  = gj(x)  . . . . .  gn(x) = 0}, and 
the map F is given by F ( x , r , q )  = ( x ; r d f ( x ) +  q �9 dg(x)).  In order for ~b to 
parametrize A ~, we take the conic subset B to be (IR+ x IRn)\{0}, and choose 
functions f and gj satisfying two conditions. We require that the zero locus 
{ f ( x )  = gl(x)  . . . . .  gn(x) = 0} define A in our local patch, and also that 
dJx = C~x for x E A (locally). 

By the Darboux theorem for contact manifolds, we can introduce local 
coordinates {qi, Pi, 0} on P such that 

= O -  p .  d q .  (103) 

Because A is Legendrian, by taking a small enough neighborhood we can 
assume there exists a local generating function which gives the relationship 
between p and q on A. At least one o f  the following two cases will occur: 

eh on A. In this case we Case 1. There exists a function h(q) such that pj  = Oq-~l 

take 
0h 

f = O - h ,  y j = p j  Oqj " (104) 

e Eh on A. We take Case 2. There exists a function h(p)  such that qj = opj 

Oh 
f = O + h - p . q ,  g j = q j  Opj (105) 

Note that in either case d f  = ~ on A. 
If  we write u E J m ( P , A )  as an integral o f  the form (100), the highest order 

term in the expansion (101) is determined by the symbol o f  u computed in 
Sect. 2. The symbol map associating amplitudes with symplectic spinors 
is given as follows. Let ~ be the projection P x B ~ P.  The pull-back 
n* extends to a morphism on half-forms once we fix the convention that 
g*v/dx = ~ .  This map is an FIO with canonical relation F given 
by the conormal bundle of  the graph r~ in T*(P x P x B). We can parametrize 

F = {(x,x,  ~, q; ~, ~, O, 0)} .  (106) 

The symbol of  n* is just the canonical half-form on F, which in terms of  these 
coordinates is just v /dx  d~ d~ dtl. 

Consider d~b as a map P x B ~ T*(P x B). We have 

dO : (x,~,tl) ~ ( x , z , q ; r d f  + q �9 dg, f d r , 9  �9 d q ) .  (107) 

Let 22~ denote the image under dq5 of  the subspace ql . . . . .  t/n = 0, 

Z~ = { (x, r, 0; re  f ,  f a r ,  E g j a t l j )  } . (108) 

_r~ is an isotropic submanifold of  T*(P x B). Furthermore, F intersects 2;~ 
transversally and F o ,!;~ = A ~. 
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We define a symplectic spinor on S o by 

K = d~rd~zxdz | zm-1/Zao(x , q ) x / ~ ,  (109) 

where ao(x,q) is the leading term of  the expansion (101). 

Definition 3.10 The symbol a(u) r sSm(A ~) is the image o f  K under the 
canonically defined map (see [8]) 

s s ~ ( s + )  -~ s s ~ ( r  o s ~ )  . ( l lO)  

The symbol map in this definition comes from the composition formula used 
in Proposition 2.15. We note that in [5], there is an apparent typo in the degree 
o f  homogeneity in r of  the amplitude a0. 

For the following Proposition, let f and g be chosen as above in accordance 

with either Case 1 or Case 2. For Case 1 let Hjk -- a2h and for Case 2, 
~ql ?qk ' 

a2h In terms of  the Darboux coordinates, we write the metric as a Hjk - -  ~3piOp k . 
matrix 

9 = B t , (111) 

with A and D symmetric. The matrix of  the symplectic form is 

and the complex structure is given by J = Qt 9. The requirement that j z  __ - I  
implies the following conditions: 

AD - B 2 = I ,  

B t D =  DB,  (113) 

AB t = BA . 

Proposition 3.11 Let u E Jm(p ,A)  with symbol e | v C H~( (A~)L /A  ~) | 

AI/ZA ~. We can write u locally as an oscillatory integral o f  the Jorm (100) 
with 

ao(x, q) = C,~(x) detM-1/2e -�89162 , (114) 

where Cn depends only on the dimension, ~ is an extension of  v to be defined 
below, and 

(I  + iB t + iDH)-1D for Case 1 , (115) 

M = ( I -  i B -  iAH)-IA for Case 2 

(note that M is symmetric in either case). 

Proof  We need to compute the preimage of  e |  v under the symbol map (110) 
associated to ~*. The details o f  the map are given in Proposition 6.5 o f  [5]. 
This map can be broken into two parts: the map of  half-forms which takes ~7 to 
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v and the map o f  Schwarz functions which takes the Gaussian above to e. Fix 
a point x = ( p , q , O )  E A and r E IR+. Let W = T~,~,o;~,o,o)T*(P x G).  Recall 
that G = IR+ x IR ~ and 22 = T(x,~). Similarly let F now denote the tangent 
space to the F defined above. 

The half-form part o f  the map is particularly trivial in this case. We have 
an exact sequence 

O ~ F o  X ~ F O S---+ W - ~  O , (116) 

which, together with the natural half-forms on F and W, furnishes an isomor- 
phism 

A I / 2 s  ~- A I / 2 ( F o Z ) .  (117) 

The map o f  half-forms reduces simply to this isomorphism, so that ~ can be 
any smooth function on P such that the isomorphism (1 17) takes ~(x)x/-dx dr  
to v at points o f  A ~. 

The non-trivial portion o f  the symbol map is really the isomorphism of  
the Schwarz spaces H o ~ ( X •  ~- Ho~((F o Z ) •  o S ) ) ,  which arises from 
a canonical symplectic isomorphism Z •  ~ ( F  o S ) •  o X )  (Proposition 6.4 
o f  [5]). This map is given as follows. Given a E N•  we choose ( b , c )  C F 
such that c E X • and the image o f c  in g •  is a. Then b E F o X  • = ( F O X )  • 

and the association a --~ b descends to an isomorphism when we mod out by  2;. 
Because e was defined through the identification o f  ( F  o X ) •  o S )  with the 
horizontal subspace o f  TxP, we will construct the map directly to this horizontal 
subspace. 

We break the problem up into the two cases described above. Assume first 
~h ~2 h 

that we are in Case 1, where p = N on A and f = 0 -  h. Define H/h- - 
('~ql ~qk 

? 0 In terms o f  the basis { ~ / '  ep/ '  8~ . . . .  }, a straightforward computation gives 

X = { ( v , w , t , r , O ; - r p - H v ,  O , r , t -  p �9 v , w  - H v ) }  (118) 

(where v and w are n-vectors and t and r are real numbers). From this we 
compute that 

Z • = { ( v , w , t , r ,  f l ; v - r p - w - H f l ,  fl, r , t - p ,  v, 7)} �9 (119) 

Define ~ : Z ~ IR" x IR n by 

~p : (v, w , t , r ,  fl; v - r p  - w - Hfi,  fl, r , t ,  - p . v, 7) ~--~ (fl, 7 - w + H v )  . (120) 

The kernel of  this map is 22, so it descends to an isomorphism 22• -+ IRnq~lR ~ 
(with the natural symplectic structure on the latter). We will henceforth identify 
these spaces through this isomorphism, giving S •  the coordinates (fl, a ) .  

To a = (fi, a )  E S •  we associate the vector c = ( 0 , - a ,  O, O, fi; a -  l i f t ,  fi, 
0 ,0 ,0 )  E Z • so that O(c) = a. In view of  (106), for ( b , c )  to be in F we 
must  take b = (0, - a ,  0; a - Hfl, fl, O) E F o 22• In the notation of  Sect. 2, we 
have a decomposit ion V = T l x , ~ ) ( T * P )  = Z | Z •  and terms o f  the Darboux 
coordinates: 

Z = { ( v , w , t ; - r p - w , O , r ) } ,  (121) 
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and 
Z • = {(v,w, p �9 v ; - r p -  w, 0,r )}  . (122) 

Recall that the linearization of the symplectic normal to A ~ (here written (F  o 
S ) •  o S) )  was isomorphic to the symplectic vector space Z • Thus to 
complete the map we need only project b E F o X• into Z • In order to 
pull-back the Gaussian e we then identify Z • with the horizontal subspace of  
7~P by (v ,w,p  �9 v ; - r p  - w,O,r) ~ (v,w). The result is that the symplectic 
isomorphism from S ~ / S  to Z • can be written 

( ,6, a ) F-+ ( - , 6 , - c ~  - H ,6 ) , (123) 

where the symplectic structure on both sides is the natural structure on 
IR n | IR'. 

Consider how e was constructed (Proposition 4.2 of  [5]). If  the set o f  com- 
plex vectors {xj + i y / }  gives a basis for the (1,0)-subspace of the complexified 
horizontal tangent space to P at x, then e is defined as a solution (of  norm 
one) to the equations ( x / +  iyj)e = 0, where y/ acts as - i ~ ; .  In the present 

( X  / 

case, given that 

J = A B ' (124) 

the (1,0)-subspace is spanned by vectors o f  the form {v + iBtv + iDw}. Com- 
posing with the inverse o f  the symplectic map (123), we see that e(,6) should 
satisfy the differential equation 

[ ,6 + iBtfi + iD - i  ~,fl + Hfi e ( , 6 )  = O . (125) 

The solution (up to a constant depending only on the dimension) is 

e(fl) = det M-I/Ze -�89162 t / i V @ ,  (126) 

where M = (l + iB t + iDH) lD. The factor det M -I/2 appears because e 
transforms as a half-form under symplectic transformations. This completes the 
proof  for Case I. 

ch as the defining The proof  is quite similar for Case 2. Here we have q / =  ,~t,--)- 

relation o f  A. Taking Hjk - ~'zh the symplectic map (123) turns out to be c~plt~pk 

(tq, a )  H ( - a  + H,6, fl).  (127) 

This leads to the Gaussian given above. [] 

Theorem 3.12 Let u E Jm(p,A)  with symbol v. Choose f and g locally as 
above, and define f o(P,q) := 0 - f ( p , q ,  0). For sufficiently large k the k-th 
isotype o f  u under the S 1 action has the local representation 

uk = Cm, nkm+(n-1)/2~(p,q, fo)eikl-~/m~l + O(k (re+n~2-1)) (128) 
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(in the sup norm topology), where Cm, n is a constant depending only on m 
and n. (In fact, there is full asymptotic expansion in decreasin9 half-inteyer 
powers of  k. ) 

Proof We start with the local oscillatory integral representation 

u(p,q ,O)=fei~l+i '1"~a(p,q ,O,z ,~z)dzdr  I (129) 

with 

a(p,q,O,z,u) ~ ~zmlaj(p,q,O,u).  (130) 
j=0 

To pick off the k-th isotype, we project onto the e ikO component by integrating 
the above expression against e -ik~ for 0 < 0 < 2~. The expression (129) is 
cutoff in 0 so we may in fact extend the integration limits to infinity. 

We will consider one term in the expansion at a time. Let 

Wk ( p , q , O ) = e~k~ f e-  ik~ ei~ f ( P'q'~ ) z' a ( p , q , O', ~ ) d z d O ' . (131) 

Rescaling z ~ kz yields 

( ") Wk(p,q,O) = kl+leik~176176176176 p,q,O', ~ dzdO ~ (132) 

This expression can be estimated for large k by stationary phase. The only 
stationary point occurs at r = 1, 0' = fo(P,q), so we obtain the estimate 

Wk(p,q,O) - 2~kl eikf [l + k-'L~,o, zi a (p ,q ,O ' , -~z  ) ] 

< Ck'- '  f~ sup D~z 'a(p ,q ,O' ,~kz  ) , (133) 
I~I<4 

where L~,0, is a second order differential operator in z and 0', evaluated at the 
critical point, and D represents only derivaties with respect to ~ and 0 ~. Note 
that the sup is finite if  and only if l < 0. By applying successive integrations 
by parts in the original expression, we may assume that this is the case. 

Derivatives of  a with respect to r bring out a factor of  k -~/2, and derivatives 
with respect to 0' have no effect in terms of  k. The first correction and the 
error term are thus both well-behaved in terms of  k. So in terms of  the sup 
norm we have 

Wk(p,q,O) = 2~kleikf + O(k l-1 ) . (134) 

Applying this result to uk, we obtain 

uk(p,q,O) = 2r~km-l/Zeik(~176 P,q, fo, ~ dq + O ( k m - l ) .  (135) 
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From Proposition 3.11, we see that the remaining r/ integration is just the 
Fourier transform of a Gaussian: 

f ei~'~Je-~"a4-1'ldq = Ck"/2 detMl/2e-~.'/M~J . [] (136) 

3.3 Proof  of  the estimates 

For this subsection, we assume that u = 17(6vj ) E JI/Z(P, AI ) and v = H(6,. 2 ) E 
JUZ(P, A2). Consider the inner product (uk,vk). Because of the reproducing 
property of the kernel o f / 7  and the fact that the states come from delta func- 
tions, (uk,vk} can be written as the integral of uk (represented as a function 
on P )  over A2 (with a measure determined by re). 

Because of this fact, the following proposition (a restatement of Corollary 
3.3) follows from Theorem 3.12. 

Proposition 3.13 Let u = YI(6~) E J~/2(p,A), and suppose that A is a ko-fold 
covering o f  ~r(A), with v invariant under the action of  the covering group. 
Then as k -+ oc 

(uk,uk)  ~ k0 flY[ 2 , ( 1 3 7 )  
A 

for k a sufficiently large multiple of  ko. 

Proof From Theorem 3.12 and the reproducing property we find 

k o . k I 

(uk,uk) ~ C ~  e2"'Fo k"/2 j'lv] 2 . (138) 
j=l  A 

The sum is zero unless ko divides k, in which case it yields the factor ko. 
Since the constant out front is universal, it may be computed in a particular 

example. This is easily done for the Bargmann space IIY, where the kernel of 
/ /  can be written explicitly. [] 

Let Al and A2 be two distinct intersecting Legendrian submanifolds. The 
following lemmas are a prelude to taking the stationary phase approximation 
of the inner product of  states defined on A1 and A2. Let f and gj be chosen 
to parametrize A~ as in the last subsection (according to whether Aj satisfies 
Case 1 or 2). Recall that the highest order term in uk involved the phase 

i .. tm. .  function ~b = f + ~y y, with M determined by f and g. Choose a set of 

local parameters {tl,.. . ,t, ,} to describe A2, so that {05T~ . . . . .  ':}~t, gives locally 
an orthononnat frame for TA2. We will use primes to denote derivatives with 
respect to these parameters. 

Lemma 3.14 The stationary points of  ~, with respect to the parametrization 
described above, correspond precisely with points o f  ~. 
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Proo f  The proof is similar for either case, so we assume Case 1. Then 

t ~ ( p , q , O ) = O - h ( q ) +  5 p -  ~ q j M  p -  ~ q j  , 

with derivative 

= o' , ( ) - -;-q + i p -  M ( p  r - Hq ~) 
~q ~q J 

M '  p -  . (140)  

Since the horizontality o f  A2 implies that 0 '  = pq' ,  we see immediately that 
_ ,~h implies ~t  = 0. This is the case whenever there exists an ~o E S ~ and P - ~  

x E A1 such that x .  ~o E A2. 
It follows directly from Proposition 3.5 that there are no other possible 

stationary points. [] 

Lemma 3.15 The IHessian oJ" ~ = f + ~g~Mg at a stationary point x 

~ l t t  t t ~ ~t - - I  = ~2Q C.1(~.19~.1) ~.'1(9+i~)~.2, (141) 

where ~ 2 =  p ,  andS1 = �9 

Proo f  The Hessian of  ~ is 

~9" = p, tq,  _ q,tHq, + i ( p "  - q " H ) M ( p '  - H q ' ) ,  (142) 

where we have used the fact that 0 '  = pq '  because A2 is horizontal. Recalling 
the definition of  M, we can write this as 

tp" = ( p '  - Hq') t[q '  + i(I + iB' + i D H ) - I D ( p  ' - Hq')] 

= ( p ' - H q ' ) t ( l + i B t + i D H ) - l [ q ' + i B t q ' + i D p ' ] .  (143) 

We insert the matrix ( I -  iB t -  iDH)  and its inverse and use the identities 
(113) to obtain 

~9" = ( p '  - Hq ' ) t (A  + B H  + HB t + H D H )  -~ 

• [ ( A + H B t ) q ' + ( B + H D ) p ' + i ( p  ' - H q ' ) ] .  (144) 

Note that this is exactly the expression given above. D 

Proposition 3.16 The inner product (Uk,Vk) has an asymptotic  expansion 
whose terms correspond to elements o f  ~ ( ~ ) .  The leading contribution f rom 
a particular co E ~(g2) is 

(2i) ("-a)/2 e) k f det {AI �9 co, A2}-l /2vl  # ~ ,  (145) 
A I �9 (o71A 2 

where d is the dimension o f  ~-I(~o). 
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Proof We start with the representation of Theorem 3.12. Choose the paramet- 
rization of A2 so that the first d variables parametrize Al �9 toN A2. The method 
of proof is to apply stationary phase to the integral over the n - d transverse 
parameters of A2. The integral over the remaining d variables survives in the 
final expression. For notational clarity, consider only the case where Al �9 ~o and 
A2 intersect transversally (d = 0). From Theorem 3.12, the highest order term 
contribution to the inner product is 

(uk, vk) = f ~(p,q,O)~l(p,q, fo)eikf-~'~ + O(kC"-l)/2), (146) 

where we have filled in the constant based on the computation in Proposi- 
tion 3.13. According to Lemma 3.14, when we apply stationary phase to this 
integral, we obtain a term for each component of  ~ ,  i.e. for each point in 
~ ( ~ ) .  

In the transverse case, at the point x E AIO 60 f)A2, the stationary phase 
lemma yields the term 

(k)n/2vl(x.~o)W2(x)ogk(2Ti)n/2(dett~")-~/e. (147) 

We can reinterpret Lemma 3.15 in the following way. Given an orthonormal 
basis {el} for TxA1 and {fi} for Az, 

det ~," = det {~o(ei, J~)} det{h(ei, f j)},  (148) 

where e~ is the symplectic form and h the hermitian form. The first term on the 
right-hand side is (when raised to the - 1 / 2  power) the factor which appears 
in the construction of vl #~5 when we divide out by the square root of the 
Liouville form. The second term is the function det{Ai. ~o, Az}, as defined in 
Sect. 3.1. 

In general, the stationary phase approximation is done over n -  d variables, 
so the last factors in (147) are (27ti/k)~n-a)/2(det ~k " ) -  1/2, with the determinant 
taken over the transverse variables. It is straightforward to see the this deter- 
minant yields again the intersection of the half-forms with the same unitary 
factor. [] 

To conclude this section, we note that Theorem 3.2 follows directly from 
Propositions 3.13 and 3.16. The insertion of the Toeplitz operator TA in the 
inner product is an essentially trivial modification. 

4 Bohr-Sommerfeid curves and Poincar~ series 

In this Section we examine in the case where X is the quotient of  the up- 
per half plane by a Fuchsian group of the first kind. The natural quantizing 
line bundle L is simply the holomorphic tangent bundle. We will perform the 
general constructions outlined in Section I quite explicitly for this case. In 
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particular, we compute the states associated to Bohr-Sommerfeld curves given 
by hypercycles, horocycles, or circles in H and show that these correspond to 
well-known Poincar6 series. 

4.1 Bohr-Sommerfeld  curves 

Let H be the upper-half plane {z E (U : I m  z > 0}, and let SH denote the unit 
circle bundle of  the holomorphic cotangent bundle of  H,  

SO = { ( z , C )  H • :1 1 = I m z } .  (149)  

The group G = SL(2,1R) acts on SH by fractional linear transformations. In 
fact, there is a homeomorphism S H  -~ G/{:kid},  such that the action of  G on 
SH corresponds to the left action of  G on G/{zkid}. Explicitly, for 

g----- c ' 

we have 

where 

g" (z, ~) = (g . z , j (g , z  ) -2 ~) , (151) 

a z +  b 
9 -z -- (152) 

c z +  d 

and j ( g , z )  = cz + d. G is represented on the space of  functions on SH by 

(g �9 F)(z,  ~) ---- F(g  - l .  ( z , ( ) ) .  (153) 

The contact form cr is given by 

dx 
= d ~ b -  - - ,  (154)  

Y 

where z = x + iy, and ~ = ye  i'~. The volume form d V  = (2~z)-le A d~ is the 
G-invariant volume form on SH: 

a v -  axaya  (155) 
y2 27z 

The connection on SH corresponding to ~ is naturally defined as follows. 
Letting I denote the point (i, 1) E SH, we identify G/{:kid} with SH by the 
map g ~-~ g " I. We thus have TI(SH) ~ sl(2,1R) ----- t o p .  Since we also know 
that Till  ~ p, we can define a left-invariant connection simply by declaring p 
to be the horizontal space at I E SH. Using the identification T q. t SH -~ ToG, 
we see that the horizontal tangent space o f  T o �9 tSH is g . p .  Therefore, if 
g(t) : ~ ~ G is a smooth curve, 9( t ) .  I will be horizontal iff 

g(t) - l  .~  ( t ) E  p ,  (156) 

i.e., g(t)  - 1 .  ~ ( t)  must be traceless and symmetric. 
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Recall that SH is the boundary of a strictly pseudoconvex domain (the unit 
disk bundle over H).  Let ~ ( H )  C L2(SH) denote the Hardy space of boundary 
values of  holomorphic functions on the unit disk bundle. The k-th isotype of 
~ ( H )  under the action of S 1 is the space of holomorphic k-differentials on H, 
which we denote by ~k(H).  This consists of functions F : SH ~ ~ of the 
form F(z, ~) = ~kf(z),  where f : H  ~ �9 is holomorphic. In other words, 

~k (H)  = { ~kf(z) : Hflf(z)12y2k dxdyT__ <cx~)  . (157) 

Let F be a discrete subgroup of G such that X = F \ H  has finite volume, 
i.e., a Fuchsian group of the first kind. The unit circle bundle of the holo- 
morphic cotangent bundle of X, denoted by SX, is again the boundary of a 
strictly pseudoconvex domain, and we let ~ ( X )  denote the Hardy space for 
this domain. As above, ~k(X) denotes the space of holomorphic k-differentials 
on X. Define the orthogonal projections 

H :L2(SX) ~ ~ ( X )  and Ilk :L2(SX) ~ ~ k ( X ) .  (158) 

If  F is a function on SH which is invariant under the action of G, then F 
corresponds to a function on SX. Thus we can identify ~k(X)  with the space 
of cusp forms Szk(r): 

~ k ( x )  = & k ( r )  

f ( z )  f ( g . z )  z " z 2~ dxdy } = " = f (  )J(g' ) ' f[ f (z)[2YZk y2 < ~ ' (159) 

where .~- is a fundamental domain for F. 
In what follows, by a smooth closed curve with domain [0, T] we mean the 

restriction to [0, T] of  a smooth T-periodic map with domain IR. Generally, we 
will think of a closed curve 7 on X as the projection to X of a curve 7 : IR --~ H 
such that the points 7(t) and 7(t + T) are related by an element of F. 

Definition 4.1 Let k be a positive integer. A parametrized smooth closed 
curve, 7 : [0, T] --~ X is said to satisfy the Bohr-Sommerfeld condition of  
order k, or BSk for short, iff its holonomy in SX is an k-th root o f  unit. 

Note that the BSk property is invariant under reparametrizations. Also note that 
a curve which satisfies BSk satisfies the BS condition for any integer multiple 
of k. 

To any curve satisfying BSko we now describe how to associate a vector 
in ~k(X) ,  where k is a multiple of k0. 

Definition 4.2 Assume 7 satisfies BSko, and let ~ be its horizontal lift as in 
definition (4.1). I f  6f denotes the delta function integrated along ~ using the 
parametrization, jor k a multiple of  ko we define 

Iv, k) = / / k ( 6 f ) .  (160) 
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Remark. If  k is not a multiple of k0 then the projection in (160) clearly zero 
gives zero. The definition of  17,k) depends on the choice of  the horizontal 
lift, ~7, but it's easy to see that changing the horizontal lift amounts to multi- 
plying the state by a complex number of  modulus one. 

Lemma 4.3 Two BSk curves defined as above are immersed Lagran#ian sub- 
manifolds of  X satisfyin9 the cleanness assumption of Sect. 3.1 provided they 
have no common tangents. 

Note that in particular any pair of geodesic BSk curves satisfy the assumption 
(including a geodesic with itself). We will see below that all geodesic curves 
are BSI. 

In order to apply the theory developed in Sect. 3, X must be a compact 
manifold, i.e. a Riemann surface. In addition, SX must be given a metalinear 
structure. To do this, note that SX is naturally identified with G/F, so that 
T(SX) "~ P • g, where ~ is the Lie algebra of G. Thus SX inherits a metalinear 
structure from the metalinear structure on the vector space 5- From this, we 
obtain metalinear structures on the BSk curves. For our purposes here these 
structures will be invisible, since by Definition 4.2 we will deal only with 
half-forms defined through parametrizations. 

From Theorem 3.2 and Corollary 3.3 we obtain the following result. 

Theorem 4.4 Let X be a Riemann surface and 7 a BSko curve with no self- 
tangents, parametrized by arclength. For k a sufficiently laroe multiple of  ko 
we have 

(7,klT, k ) = k~T +O(1 ) .  (161) 

Furthermore, if  yl and Yz are two distinct intersectin9 BSko curves with no 
common tan#ents, then for k a sufficiently large multiple of  ko, 

(71, k172, k) = 21/2k2 ~ ~176 .4_ O(k-1/2), 
PC'~I fq72 

(162) 

where tgp is the angle from yl to 72 at p, and Ogp E S t is determined by the 
condition that ~l .COp intersects ~2 over the point p. 

4.2 Relative Poincark series 

We seek to write out the state tT, k} explicitly as a function on SH that is 
invariant under F. Let ~b(w,,) denote the coherent state in ~k(H)  associated 
to the point (w, rl) E SH, i.e., the function on SH which is the orthogonal 
projection of the delta function at (w, q) into ~k(H) .  By definition, the coherent 
states are equivariant under the action of  G, 

9" ~b(w,,) = ~o" (w,,) �9 (163) 
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To obtain coherent states in ~k(X),  we average over the action of G. It follows 
from a theorem of Katok [12] that for any function F E ~k(H) ,  

~--~. g .  F E ~ k ( X ) ,  (164) 
.qEF 

where the convergence is absolute and uniform on compact sets. The coherent 
state in ~k(X) associated to an equivalence class [(w, q)] E SX ~ F \ S H  is 
thus 

~P[(w,~)] = ~ g "  r (165) 
aEr 

Because of the equivariance (163), the sum on the right depends only on the 
class [(w, ~/)]. 

The following proposition realizes our states 17, k} as relative Poincar6 series 
for functions given by integrals over coherent states. The proof is clear from 
the absolute convergence of (164). 

Proposition 4.5 Let 7 be a BSk curve on X and let ~ be a horizontal lift o f  
7 to SX. Then the state I~,,,k) E ~ k ( S )  corresponds to the function 

where F(z, ~) is given by 

eb.~,(z,~) = ~ g . F ( z , ~ ) ,  (166) 
gEF 

T 

F(z, ~) = f ~kr ~)dt . (167) 
0 

We can improve upon the realization given above if 7 is not closed as a curve 
on H,  using the Rankin-Selberg technique. 

Proposition 4.6 Suppose that 7o E F is not elliptic, and let 7 be a BSk curve 
defined as a map 7 : ~ --~ H such that 70" 7(0 = 7(t + T). Then the state 
17, k} corresponds to the function 

g o  

~bT(z,~)= ~ f r162 (168) 
g C F o \ F  --oo 

where Fo is the cyclic group {7o} and ~ is a horizontal lift o f  7 to SH. 

Proof  First of all, note that since the connection is lefl-invariant, the horizontal 
lift ~ also satisfies 70" ~ ( t ) =  ~(t + T). We break the sum over F in (166) up 
into a sum over cosets of  F0: 

oo T 

�9 ~(z ,~)= ~ ~ f(g?~).~br (169) 
,qEF/F 0 n = - o o  0 

Now, since 

7~ " t~(,) = r162 , (170) 
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we can reduce the sum in the above integral to 

�9 ~.(z, ( )  = ~ ~ f g . ~ ( t ) ( z , ~ ) d t .  (171) 
g E F / F  0 - -oc  

To complete the proof, we note that g E F/Fo implies g-l  C Fo\F. [] 

In order to realize the relative Poincar6 series given in these propositions 
more concretely we need to compute explicitly the coherent state @w,,1). 

Lemma  4.7 The orthoqonal projection o f  the delta function at (w, q) E SH 
into ~ ( H )  is the function 

@w, ,)(z, ( )  = A, (z --- ~-)2k , (172) 

where 
Ak = (-- 1 )k22k--2 2k - 1 (173) 

Proof The fact that @w,n) = Hk(5(w, 7)) is equivalent to the reproducing prop- 
erty: 

F(w, ~) = f @w,,) (z ,~)F(z , ( )dV,  (174) 
SH 

for all F E ~ k ( H ) .  Given any orthonormal basis {Fl, k} for ~ k ( H ) ,  we can 
write the reproducing kernel as the series 

~(w,,)(z,~) = ~ Fl,k(w, q)Ft , , (z , ( ) ,  (175) 
l 

which converges absolutely and uniformly on compact sets. Using the well- 

1/2 ~k (z - il I 
( z + i ) l + 2 k  ' 

(176) 

[] 

known orthonormal basis 

F"k(z '~ )= 22k-1 [ l (2k + l-1)']~fc--~,p. J 

we obtain the result given above. 

4.3 lHypercycles and geodesics 

We consider now the application of  Proposition 4.6 to the special case when 
70 is hyperbolic and the associated curve 7 is a hypercycle in H.  We first 
consider the question of  when a hypercycle corresponds to a BSk curve on X. 

Proposit ion 4.8 Let 70 E F be hyperbolic, and suppose that 7 is a hypercycle 
lR --+ H such that 7o" 7(t) = 7( t + T). Let z denote the cotangent o f  the angle 
from the real axis to 7 at the -o o  limit point o f  7. Then 7 is BSk as a curve 
on X if  and only i f  

2rtj 
z = - -  (177) 

kT 
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.for some j E 7/. In particular, all geodesics (for which z = O) are BSk curves 
for  any value o f  k. 

Proo f  It suffices to consider the case where ~(t) = et(r  + i),  since the BSk 
property is equivariant. The horizontal lifting of  ~ to a curve on G is 

( e ~  2 zet /2)  ( c o s t z / 2  - s i n t z / 2 )  

g(t) = e -t/2 J sin tz/2 cos tz/2 " 
(178) 

On SH this corresponds to 

~(t) = (et(i + z) ,e  '(l-'~)) (179) 

The BSk condition requires that ( e - ' r~ )  k = 1, which implies that kTr = 2ztj 
for some j E 7/. [] 

For the remainder of  this subsection we will assume that 7 is a BSk0 curve 
such that 

2~j 
-- koT ' (180) 

for some j C 7/. To compute the state associated to a general hypercycle, we 
first consider the hypercycle which connects the origin to the point at infinity, 
and then use the equivariance o f  the coherent states. 

Lemma 4.9. Let ~ be the hypercycle ~(t) = et(~ + i) in H, with the lifting 
defined as in (179). Then 

OQ 

f r ( )d t  = o ,k ik~-k ok,~ z , (181) 

where 

Bk,0 = .  " ( 2 k -  1)! ' (182) 

and for  ~ # O, 

2rci (z - i) -k-i~ F(ikr + k) 
Bk,~ -- 1 -- e -2~k~ (2k - 1)!F(ikr - k + 1) " (183) 

Proo f  We integrate the coherent states along the curve ~: 

~ ~ k e k t ( l + i c )  

f ~((t)(z, ~)dt = / ~  (z - e ' ( - i  + "r)) 2kdt 
- -  o o  

(184) 

The results are obtained by substituting u = e I and performing a contour inte- 
gration. [] 

Given a hypercycle ? whose limit point both lie on the real axis, define 

w ~ =  lim 7(t) and w 2 =  l i m T ( t ) .  (185) 
t - - ~ - - O 0  t - ~ O C  
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I f  wl < w2, then we can set define h E G by  

1 ( 1 - W l )  (186) 
h - -  ~ 1 w2 ' 

such that h - 7 ( t )  = ~(t). We make the obvious modifications to h if  w2 < Wl. 
In what follows we will define the lifting ~ by taking ~7(t) = h - l  �9 ~(t), where 

is given in (179). From Proposition 4.6 we immediately obtain the following. 

Proposit ion 4.10 Suppose 7o is hyperbolic and that 7 is a corresponding hy- 
percyclic BSko curve as in Proposition (4.8). Suppose fur ther  the limit points 
wl and w2 f o r  7 lie on the real axis, and that the lifting ~ is defined as 
discussed above. Then 17,k) is given by the function 

ZW,z) 4~,~(z,~) = AkBk,~ k ~ w~ 2-~ 
oero\r 

ikr 
1 

j(g,Z) 2k 

[ ]' W 2 - -  W 1 
(187) 

Consider the quadratic polynomial 

( w 2  - z ) ( z  - w l  ) 

W 2 - -  W I 

(188) 

which appears on the right side in the preceding proposition. In [12], Katok 

associates to a hyperbolic transformation 7o = ( a d b ) the quadratic polynomial 

QTo(Z) = cz 2 + (d - a)z  - b . (189) 

Since the roots of  this polynomial are the fixed points of  7O, Wl and w2, it 
differs from (188) by a constant factor. In fact 

(w2 - z ) ( z  - w~) 
W 2  - -  W I  

sgn Tr (70) ,~ . . 

- -~T/~ ~g~otZ), 
~ 7 0  

(190) 

where Dr0 is the discriminant of  Y0 as a matrix, i.e. Dro = (d - a) 2 + 4bc = 
(Try0)  z - 4 .  From Theorem 4.4 we obtain the following. 

Theorem 4.11 For X a Riemann surface, the relative Poincard series 

) ik~: 
g �9 Z - W l  1 

w2---~ : z j(9,z)ZkQ~o( 9 �9 z)  k o~ro\r 
(191) 

associated to a BSko hypercycle 7, is non-vanishing fo r  sufficiently large values 
o f  the weight k (such that ko divides k). 
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For the remainder of  this subsection we focus on the case of  geodesics on 
Riemann surfaces. We begin by illustrating the implications of  Theorem 3.12 
for Poincar~ series. 

T h e o r e m  4.12 Suppose X is" a Riemann surface and that 70 r F is a dilation. 
In a sufficiently narrow band surrounding the imaginary axis  we can estimate 

yk 1 ~ eik(~-~) ~ (192) 
,~q , \r  J(,q,z) 2k (g " z )  k 

Jor k sufficiently large. 

P r o o f  Consider the geodesic 4(t) = ie'. The associated state is 

[k 1 
q~(z,[)  = A~-Bh~,o ~ (193) 

- ,qEFo\Fj(g,z)Zk (g �9 Z)~" ' 

where 

= , (194) 
/E 

A direct application of  Theorem 3.12 yields the following: near the imaginary 
axis and for k sufficiently large 

_ . 2 . , , =  (195) q,~(z ,~)  ~ e ' k l~  ~ 

The above result follows because, by Stirling's formula, 

2), 22k-2 -- ~ V / ~  (196) 

for large k. [] 

Lemma 4.13 Let  r = Ux .  IJ'~ > 1/2 then Jbr f i x e d  r and y, 

k . ~ x  ~ k ~  2 

(197) 

as k ---~ ~ .  

This lemma is a simple calculus exercise, which allows us to conclude the 
following. 

Corollary 4.14 We can f ind  a band surrounding the imaginary axis  whose 
width decreases as k -~ j o r  ~ > 1/2, in which the relative PoincarO series 
appearing in (192) is dominated Jbr  large k by the g = id term. 

Similar results can of  course established for the other Poincar6 series defined 
above. 

We turn next to applications o f  our results to the relative Poincar6 series 
associated to geodesics by Katok [12]. Given any hyperbolic element 7o E F, 
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we have a parametrized geodesic 7(t) = h -1 �9 ~(t) with a distinguished lifting 
~7(t) = h - l  �9 ~(t), where ~ is given by (179). The resulting states 17,k) can be 
related to Katok's relative Poincar6 series, Ok,ro(z ). Katok's definition is 

( 2 k  2 ) - '  1 O~#o(Z) := D~ol/2(-sgnTrTo)22n 2 5 s 
,qEvo\v J(g,z)2kQTo(g �9 z) k " 

(198) 

Denote the function associated to ]7,k) by ~7(z,() .  By Proposition 4.10 and 
(194) we have 

q~r (z, ~) = ik ( - sgn  Tr 7o) k- IDG(k--I)/2(k Ok,70(Z). (199) 

For geodesics there is a nice relation between the intersection angles ~Op and 
the phases fOp. Assume that the fixed points of  70 are given by real numbers 
co d: ro. By the prescription above, we have 

( iro sinh~t + i )  
~(t) = co + ro tanh et + cosh~' - t o  c~ 2 t , (200) 

where e. = •  depending on the orientation. We can parametrize the curve by 
angle instead or arclength by taking 0 = cos -1 (tanh e.t), which gives 

i(0) = (Co + roe iO, --ro eiO sin 0), (201) 

where 0 < 0 < n. Now consider the case of  two intersecting geodesics, 
parametrized by angles 01 and 02. Since at the point where they intersect we 
have rl sin 0j = r2 sin 02, it is easy to see from (201) that the relative phase at 
such a point is 

~2 __ ei(02-Ol ) , (202) f O p -  ~1 

A simple geometric exercise shows that 02 - 01 = ~gp, the intersection angle. 

Theorem 4.15 Let X be a Riemann surface and 70 E F. Then Ok#o(Z) is 
non-vanishing for sufficiently large k. Moreover, 

IlOk,~01122 = o k- '  T + O(1) (203) 70 

where T = 2cosh-l( �89 For 71,72 E F not conjugate to each other, we 
have 

( Ok,~ [ Ok#2 ) = 21/2 (D?~ D72 )(k- 1 )/2 (sgn Tr 7oTr y I )k- l 

ei(k -- 1/2 )0 p + irt/4 ] 
X ~ -~- O ( k  - l / 2 ) j  , 

PE[Yl]n[72] 

where [Tj] denotes the geodesic' on X corresponding to 7j. 
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In [12], Katok gives a period formula for the case in which F is symmetric 
(with respect to the imaginary axis), and 71 and Y2 are primitive. This yields 
the following exact result for the imaginary part of  the inner product: 

Im(Ok,~, ,[Ok~,,2)=2zk-z(D,, , iDz,2)(k-l) /Z(sgnTrToTryl)k- '(2k--_2) - '  

x ~ sgn(sinOp)Pk_l(cOSOp), 
pc[Ti]n[y2] 

where P~._ l is the Legendre polynomial o f  order k - 1. This can be compared to 
our formula using (196) and the theorem of  Darboux on the large n asymptotics 
o f  Pn(cos 0): 

Pk_I(COS 0) = sin((k - 1/2)0 + x/4) + 0(k_3/2) (204) 
V/~(k - a)sin 0 

(Theorem 8.21.2 in [15]). The asymptotic estimate o f  Theorem 4.15 is seen to 
agree precisely with Katok's result. 

4.4 IHorocycles 

We turn now to the horocycles, curves in H which correspond to parabolic 
elements o f  F. Note that these do not exist when X is a Riemann surface, 
since F must be hyperbolic in this case. Horocyclic curves are given either by 
circles tangent to the real axis or straight lines parallel to the real axis. Given 
a horocycle 7 and parabolic 7o c F such that Y0 �9 y(t) = y(t + T), there exists 
a unique g E G such 97o9 -1 : z ~ z + T and g .7 (0 )  lies on the imaginary 
axis. The real number 2 = - i g .  7(0) depends only on 7 and T, Alternatively, 
we may use the definition 

T 
2 = 2 sinh[lp(y(0),  y(T))] ' (205) 

where p is the hyperbolic distance. 

Proposition 4.16 Let  7o E F be parabolic', and suppose that y is a curve 
IR ~ H such that 70 �9 y(t) = y(t + T). Then 7 satisfies BSk ( f  and only i f  

kT  
Z - (206) 

2xm 

f o r  some m C Z, where 2 is defined as above. 

Proo f  By equivariance, we assume that y(t) = i2 + z  and Y0 : z  ~ z + T. The 
horizontal lift of  7 to G is 

(; 0) cos  sin ) 
g(t) = 0 2-I/2 k, sin ~ cos ~ ' (207) 
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which corresponds to 

~(t) = (i2 + t, 2 e - i ' / ; ) .  (208) 

The BSk condition then reduces to the requirement kT/2 = 2~zm for some 
m E  77. D 

For the remainder of  the subsection we assume that 7' in a BSko curve and 
that 2 and T satisfy 

koT 
2 = 27zm (209) 

for some m E 77. 

Lemma 4.17 Let  7 be the horocycle 7(t) = i2 + t. Then 

oc k 
f ~9~(,)(z,~)dt = Ck,;~ e ;~ , (210) 

where 
2 ~ ( _ 1 )  k k 2k-1 

e -k ( 2 l l )  
Ck,;~ = ( 2 k -  1)! 2 k-1 

Proof  The curve ~7 is given by (208), so that 

k k tkt oo r ~  ~ 2 e 7  , 
f ~.,~(z. ~)dt t i t .  

j ~  (z + i2 - t) zk - - O O  

(212) 

The result follows from a contour integration. [] 

Proposi t ion 4.18 Suppose 7o E F is parabolic element that f ixes  cxD and that 
7 is a corresponding BSko curve. The state 17,k) corresponds to the f imct ion  

e ~,q. z 
q~,(z ,()=AkCk,r  ~ (213) 

oct~to J (g , z  ) ek " 

ik Corol la ry  4.19 Let  F = SL(2, 77), and let 7(0  = ~ + t ,  which is a BSk curve. 

Then the state 17,k) is represented by ~kPm, k(z)  (up tO a constant depending 
on m and k), where Pm, k is the classical Poincarb series: 

e2=im(g "z) 
Pm, k(z)  = ~ , v (214) 

~jer~\r  J (g . z )  2~ 

with Fo~ the subgroup f ix ing cx~. 

4. < Circles 

We complete our discussion o f  specific BSk curves on X by considering the 
circles on H.  
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Proposit ion 4.20 Let 7 be a circle in H with (hyperbolic) radius p, with 
70 E F such that To �9 7(t) = 7(t + T) (70 is either elliptic o f  finite order or 
the identity). Let n denote the minimal integer such that 7~ is the identity 
transformation. Then ? satisfies BSk if  and only i f  

nl 
cosh p k ' (215) 

for some 1 C 7/. 

Proof By equivariance, we assume that the center o f  the circle is i, and that 
7(0) = ie- ' .  The location of  the center implies that 

= ( cos rc/n sin ~z/n 
70 \ - s i n ~ z / n  c o s ~ / n J  " (216) 

The curve, Let a ----- ~7' 

( c o s a t  s inat~ ( e  -'/2 0 ) ( c o s b t / 2  sinbt/2~ 
g(t) = - s i n a t  cosa t  / 0 e/(2 sin bt/2 cos bt/2 J ' (217) 

lies over 7 and will be horizontal provided 

b = 2 a c o s h p .  (218) 

The corresponding curve in SH is 

( e ' s i na t_+icosa t  e"e - 'b '  ) 
y( t ) = \ e' cos at -- i sin at ' ( e" cos at Z i sin at ) 2 ' (219) 

so that 7 is BS~ iff kbT = 27rl for some 1 E Z, i.e., b = ~2a. The claim 
follows. 

[] 

For the remainder of  this section, we assume that 7 is a BS~ 0 curve and that 
p and l satisfy 

nl 
cosh p ko (220) 

for some l E 7/. Note that the BSk0 condition requires nl > ko. 

Proposit ion 4.21 Let 7 be a circle in IH of  radius p which is a BSk curve on 
X as above. Then 

nT 
f ~b:;(t)(z, ( )  = D/,k,,Fnl-ka(z, ~), (221 ) 
0 

where Fnt-k,k is the element o f  the orthonormal basis o f  ~k (H)  given by 
(176), and 

Dk,~=zl_2knT [ ~_ ( n l k / k o + k - 1 ) !  ] 1/2(sinhp/z)"tk/~~ (222) 
2k 1 ( 2 k -  1)!(nlk/ko + k)! (cosh p/2)"lk/ko +k 
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Remark. In case n = 1, the states coming from BSk circles on H give an 
orthonormal basis of  ~k. This is an example of a more general phenomenon: 
I f  we have a lHamiltonian action o f  the n torus o f  the Kahler manifoM pre- 
serving all structures, our construction applied to the BSk level sets o f  the 
moment  map yield an orthonormal basis for  ~k. This actually follows from 
the quantum reduction theorem of Guillemin and Sternberg, [9]. In the case 
envisioned the reduced spaces are points, and so their quantization is one- 
dimensional. Other examples of  this situation include the Bargmann metric on 
I/~, where the BSk circles correspond to eigenstates of  the 1-dimensional har- 
monic oscillator problem, and the sphere, where the BSk circles give spherical 
harmonics. 

Proof  The curve ~ is given by (219), and we seek to compute 

n T n T ~k ekP eibkt  

f ~b?(t)(z,~) = fo at)]2kdt.  (223) o [(eUcos at + i sin at)z -- (e~' sin at -- i cos 

Using the fact that b = 2nla ko we can rewrite this as 

nT nT e2iatk(nl /ko+ l ) 

f ~.?(t)(z,() = 4kek~( k f l ) e  2iat (z i)(e~ 1)] f f d t "  (224) o o [ (z  + i ) ( e ~  + + - - 

Changing variables to u = e 2iat, we have 

n T U n lk/k 0 +k 

f~7(t)(z, ~) = 4 k e / ' l ' ~  (225) o ~[(z + i)(eU + 1)u + (z -- i)(e~ -- 1)] 2kdt '  

where the contour is the unit circle. Noting that the pole is always inside the 
contour, we find 

nr { nlk/ko + k - l ) (sinh/t/2) "lk/ko-k (k ( i - z )  nlk/ko-k 
f t~(tl(Z,~) = nT \ 2 k -  1 (coshp/2)nlk/ko+ k (i + z)ntk/ko+ k . (226) 
0 

[] 

Proposition 4.22 Suppose ?o E F is an elliptic element which fixes i, and that 
? is a corresponding BSko circle on X. The state [~,,k) is given by the function 

~7(z,~) = AkDk,~ ~ F,  Ik/ko-k,k(g " (z ,~)) .  (227) 
y~ ro \ ro 

I f  X is a Riemann surface, then the only possibility for 70 is the identity, 
so the curves must close on H (thus n = 1). 

Theorem 4.23 Let  X be a Riemann surface. The relative Poincard series 

1 (i - g " z)  l~/k~ 
z )tk/ko+ ~ , (228) ,q~r j ( g , z )  2k (i + g �9 

is non-vanishing for  sufficiently large k. 
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4.6 Towards a 9eometric construction of  a basis 

By Riemann-Roch, 

dim ~k = k(29 - 2) - (9 - 1) ,  (229) 

where 9 is the genus o f  X.  We now indicate a strategy for choosing, Vk, the 
same number of  non-intersecting BSk curves on X. We conjecture that the 
associated states form a basis o f  ~k.  

Divide X into 29 - 2 pairs o f  pants, each bounded by three simple closed 
geodesics (therefore there are 3 9 -  3 different geodesics on X involved as 
boundaries).  Consider a pair o f  pants, Y. By Gauss-Bonnet, it has an area o f  
2~. By the Collar Theorem, there are collar neighborhoods o f  the boundary 
geodesics of  Y which are hyperbolic cylinders. Let Ac denote their total area. 
Their complement is the union of  two identical hexagons, let Ah the area o f  
one hexagon so that Ac + 2Ah = 27z. 

We choose BSk curves according to the following principle: �9 
�9 On each hyperbolic cylinder, the BSk hypercycles parallel to the boundary 

geodesic. 
�9 In each of  the hexagons, the BSk curves of  a function with a single critical 

point in the interior. Now count BSk curves in each region: 

Proposi t ion 4.24 The above scheme produces exactly dim ~k BSk curves, Vk. 
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