Biinvariant Operators on Nilpotent Lie Groups

David Wigner*
The University of Michigan, Department of Mathematics Ann Arbor, Michigan 48109, USA

The purpose of this article is to prove P-convexity for biinvariant differential operators on connected simply connected nilpotent Lie groups. More precisely, we show that for any compact subset K of a connected simply connected nilpotent Lie group N, and for any non-zero biinvariant differential operator P on N, there is a compact subset $L \supset K$ with the property that whenever the support of $P u$ is contained in L for a C^{∞} function of compact support u on N, then the support of u is contained in L. I am grateful to M. Duflo, to A. Cerezo, and to F. Rouvière for several helpful discussions.

Solubility properties of biinvariant operators have been considered by several authors. S. Helgason [6] proves local solvability of biinvariant operators on semisimple Lie groups. Rais [8] proves the existence of a fundamental solution for a biinvariant operator on a connected simply connected nilpotent Lie group. Duflo and Rais [4] prove the local solvability of biinvariant operators on a solvable Lie group and Rouvière [9] proves semi-global solvability for biinvariant operators on simply connected solvable groups. Finally, Duflo [3] proves local solvability of biinvariant operators on any Lie group whatsoever.

Semi-global solvability is in general false even for noncompact simple groups as was demonstrated by A. Cerezo and F. Rouvière [2]. Finally, even local solvability of left invariant operators is frequently false as was shown by L. Hormander, c.f. [6] and independently by A.Cerezo and F. Rouvière [1]. From our result and that of Rais [8] or Rouvière [9], we conclude the global solvability of biinvariant operators on simply connected nilpotent Lie groups, i.e. that for any C^{∞} function f and nonzero biinvariant operator P on a simply connected nilpotent Lie group N, there exists a C^{∞} function u on N such that $\mathrm{P} u=f$. For simply connected abelian Lie groups, this reduces to the theorem of Malgrange and Ehrenpreis that constant coefficient differential operators on R^{n} are globally solvable, c.f. [11]. Thus our Theorem 2 can be regarded as a generalization of the Malgrange-Ehrenpreis theorem.

Henceforward N will denote a connected simply connected nilpotent Lie group, and \mathfrak{N} its Lie algebra. We write exp: $\mathfrak{N \rightarrow N}$ for the exponential map of \mathfrak{R}

[^0]onto N, which is known to be an analytic diffeomorphism and log: $N \rightarrow \mathfrak{N}$ will denote the analytic diffeomorphism inverse to exp. We recall that the center of N is connected and simply connected. Since a connected and simply connected abelian Lie group has a natural translation invariant convex structure, we may define a subset S of N to be C-convex if its intersection with every coset of the center $C(N)$ of N is convex or in other words if $x^{-1}(S \cap x C(N))$ is a convex subset of $C(N)$ for every $x \in N$.

The support of a function will mean the set of points where it is non-zero (this is a departure from the usual usage). When we say a function has compact support, we mean that its support is contained in some compact set (this is the usual usage). $\operatorname{Supp} f$ will denote the support of f, a complex valued C^{∞} function. Z will denote a central one parameter subgroup of N, and z will denote a generator of the Lie algebra of Z. Thus z is a biinvariant vector field on N. We denote a Haar measure on Z by $d \mu(z)$. If f is a C^{∞} function of compact support on N then \tilde{f} will denote the function on N / Z defined by $\tilde{f}(x Z)=\int_{Z} f(x z) d \mu(z)$. We note that if $\hat{f} \equiv 0$ then there is a C^{∞} function u of compact support on N such that $z u=f$. We denote the natural projection of N onto N / Z by π and remark that the inverse image under π of a C-convex subset of N / Z is C-convex. P will denote a biinvariant differential operator on N. We shall identify the algebra of left invariant differential operators on N with the complexified universal envelopping algebra $U(\mathfrak{M})$ of \mathfrak{N}. Following Trèves [10], we say that a subset S of N is P-full if whenever $P u=f$ is a C^{∞} function of compact support whose support is contained in S, and u has compact support, then the support of u is contained in S. Since P is biinvariant, any (left or right) translate of a P-full set is P-full. A C-convex set is z-full for any biinvariant vector field z.

A C^{∞} function f on N will be called Z-invariant if $f(x z)=f(x)$ for all $x \in N$ and all $z \in Z$. When P is biinvariant differential operator on N, then the action of P on Z-invariant functions defines a differential operator on N / Z, denoted \tilde{P}. By "differentiating under the integral", we have $\widetilde{P u}=\tilde{P} \tilde{u}$ for a C^{∞} function u of compact support on N.

We begin with some preparatory lemmas.
Lemma 1. Let Z be a central one parameter subgroup of N, and let x be a generator of the Lie algebra of Z. Let D be a left invariant differential operator on N which annihilates all Z-invariant functions. Then $D=D_{1} \circ z$ where D_{1} is some left invariant operator on N. If D is biinvariant, so is D_{1}.
Proof. Let $\tilde{x}_{1}, \tilde{x}_{2}, \ldots, \tilde{x}_{n}$ be a basis of the Lie algebra of N / Z and let $x_{1}, x_{2}, \ldots, x_{n}, z$ be a basis of the Lie algebra \mathfrak{M} of N such that the projection of x_{i} onto the Lie algebra of N / Z is \tilde{x}_{i}. The Poincare-Birkhoff-Witt theorem implies that monomials of the form $x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots x_{n}^{a_{n}} x^{k}$, with $a_{1}, a_{2}, \ldots, a_{n}, k$ nonnegative integers form a basis of the vector space of left invariant differential operators on N so that we may write

$$
D=\sum_{\left(a_{1} \ldots a_{n}, k\right)} C_{\left(a_{1}, a_{2} \ldots a_{n}, k\right)} x_{1}^{a_{1}} \ldots x_{n}^{a_{n}} z^{k}
$$

where the sum runs over $(n+1)$-tuples of non-negative integers, and all but finitely many of the $C_{\left(a_{1} \ldots a_{n}, k\right)}$ are zero. The action of D on Z-invariant functions
defines an operator \tilde{D} on N / Z and we have

$$
0=\tilde{D}=\sum_{\substack{\left(a_{1}, \ldots a_{n}, k\right) \\ k=0}} C_{\left(a_{1}, \ldots, a_{n}, k\right)} \tilde{x}_{1}^{a_{1}} \tilde{x}_{2}^{a_{2}} \therefore \tilde{x}_{n}^{a_{n}} .
$$

The Poincare-Birkhoff-Witt theorem now implies that $C_{\left(a_{1}, a_{2}, \ldots, a_{n}, k\right)}=0$ whenever $k=0$ so that we may write

$$
\begin{aligned}
D & =\sum_{\substack{\left(a_{1} \ldots, a_{n}, k\right) \\
k>0}} C_{\left(a_{1} \ldots a_{n}, k\right)} x_{1}^{a_{1}} \ldots x_{n}^{a_{n}} z^{k} \\
& =\sum_{\substack{\left(a_{1} \ldots, a_{n}, k\right) \\
k>0}} C_{\left(a_{1} \ldots a_{n}, k\right)} x_{1}^{a_{1}} \ldots x_{n}^{a_{n}} z^{k-1} \rho_{z}=D_{1} \circ z
\end{aligned}
$$

where $D_{1}=\sum_{\substack{\left(a_{1}, \ldots n_{n}, k\right) \\ k>0}} C_{\left(a_{1} \ldots a_{n}, k\right)} x_{1}^{a_{1}} \ldots x_{n}^{a_{n}} z^{k-1}$.
Now suppose D is biinvariant and let ρ_{g} denote right translation by $g \in N$. We then have

$$
D_{1} \circ z=D=\rho_{g} D=\rho_{g}\left(D_{1} \circ z\right)=\left(\rho_{g} D_{1}\right) \circ\left(\rho_{g} z\right)=\rho_{g} D_{1} \circ z
$$

so that $\left(\rho_{g} D_{1}-D_{1}\right) \circ z=0$.
But the universal envelopping algebra has no divisors of zero and $z \neq 0$ so $\rho_{g} D_{1}-D_{1}=0$ and $\rho_{g} D_{1}=D_{1}$. Therefore D_{1} is biinvariant.
Lemma 2. If u has compact support on N, then $\pi \operatorname{supp} \approx u=\pi \operatorname{supp} u$.
Proof. Since $\operatorname{supp} z u \subset \operatorname{supp} u$, clearly $\pi \operatorname{supp} \approx u \subset \pi \operatorname{supp} u$. Now let $x \in \operatorname{supp} u$ so that $\pi(x) \in \pi \operatorname{supp} u$. Define

$$
\phi: Z \rightarrow \mathbb{C} \quad \text { by } \phi(z)=u(x z) .
$$

ϕ is a non-zero function on Z of compact support so $z \phi$ is non-zero of compact support on Z. But $z u(x z)=x \phi(z)$ so $z u$ is not identically zero on $x Z$ so $\pi(x) \in \operatorname{supp} z u$.

Proposition 1. If K is a P-full set in N / Z, then $L=\pi^{-1}(K)$ is a P-full set in N.
Proof. Let b be a smooth function of compact support on Z with $\int_{z} b(z) d \mu(z)=1$.
Let $\sigma: N / Z \rightarrow N$ be a continuous map satisfying $\pi \circ \sigma=\operatorname{Id}_{N / Z}$.
For any complex function f of compact support on N define $f^{*}: N \rightarrow \mathbb{C}$ by

$$
f^{*}(x)=f(x)-\tilde{f}(\pi(x)) \cdot b\left(x \cdot(\sigma(\pi(x)))^{-1}\right) .
$$

Then

$$
\begin{aligned}
\int f^{*}(x z) d \mu(z) & =\int f(x z) d \mu(z)-\int \tilde{f}(\pi(x z)) \cdot b\left(x z \cdot(\sigma(\pi(x z)))^{-1}\right) d \mu(z) \\
& =f(\pi(x))-\int \tilde{f}(\pi(x)) \cdot b\left(x z(\sigma(\pi(x)))^{-1}\right) d \mu(z) \\
& =\tilde{f}(\pi(x))-\tilde{f}(\pi(x)) \int b\left(x z(\sigma(\pi(x)))^{-1}\right) d \mu(z) \\
& =0 .
\end{aligned}
$$

Therefore, there is a function f^{\natural} of compact support on N satisfying $z f^{\natural}=f^{*}$. Let f be a function of compact support on N whose support is contained in L. Let $P u=f$, where u is also a function of compact support. Define inductively u_{0} $=u$ and $u_{n+1}=u_{n}^{\natural}$. We have $\pi \operatorname{supp} P u_{n+1}=\pi \operatorname{supp} P u_{n}^{\natural}=\pi \operatorname{supp} z P u_{n}^{\natural}=\pi \operatorname{supp} P$ $\approx u_{n}^{\natural}=\pi \operatorname{supp} P u_{n}^{*} \subset \pi \operatorname{supp} P u_{n} \cup \operatorname{supp} \tilde{u}_{n}$. If $\pi \operatorname{supp} P u_{n} \subset K$ then $\operatorname{supp} \tilde{u}_{n} \subset K$ since then $K \supset \operatorname{supp} \tilde{P}{u_{n}}_{n}=\operatorname{supp} \tilde{P} \tilde{u}_{n}$ and K is \tilde{P}-full. Therefore if $\pi \operatorname{supp} P u_{n} \subset K$ then $\pi \operatorname{supp} P u_{n+1} \subset K$ and also supp $\tilde{u}_{n} \subset K$. But $\pi \operatorname{supp} P u_{0} \subset K$ so by induction on n we have π supp $P u_{n} \subset K$ and supp $\tilde{u}_{n} \subset K$, for all n.

Furthermore $\pi \operatorname{supp}\left(u_{n}^{*}-u_{n}\right) \subset \operatorname{supp} \tilde{u}_{n} \subset K$ and $\pi \operatorname{supp} u_{n+1}=\pi \operatorname{supp} z u_{n+1}$ $=\pi \operatorname{supp} u_{n}^{*}$.

Suppose now that $x \notin L$. On the set $x Z$ we have

$$
u_{n}^{*}(x z)=u_{n}(x z) \quad \text { and } \quad z u_{n+1}(x z)=u_{n}^{*}(x z)
$$

since $x Z$ is disjoint from $L=\pi^{-1}(K)$. So on $x Z$ we have $\varepsilon u_{n+1}=u_{n}$ and $z^{n} u_{n}=u_{0}$ $=u$. Therefore, if $\phi_{n}(z)=u_{n}(x z)$, then ϕ_{0} is a function of compact support on Z such that for arbitrary n there exists a function ϕ_{n} of compact support on Z such that $z^{n} \phi_{n}=\phi_{0}$. Applying the Fourier transform to ϕ_{0}, we see that $\hat{\phi}_{0}$ is a real analytic function on the dual \hat{Z} of Z with a zero of arbitrary high order at $0 \in \hat{Z}$. Therefore $\widehat{\phi}_{0} \equiv 0$ and $\phi_{0} \equiv 0$. Therefore $u(x z)=0$ for all z and $x \notin \operatorname{supp} u$. QED.
Theorem 1. Let P be a non-zero biinvariant differential operator on a simply connected nilpotent Lie group N. Then any compact set of N is contained in a compact C-convex P-full subset of N.
Proof. The proof is by double induction on the dimension of N and the degree of P, the assertion being trivial if the dimension of N or the degree of P is $\leqq 1$. We, therefore, suppose the theorem true whenever the dimension of the nilpotent group is $<n=\operatorname{dim} N$ or the degree of the operator is $<p=$ degree P.

If Z is a one parameter central subgroup of N, the action of P on Z-invariant functions gives rise to a differential operator \tilde{P} on N / Z satisfying $P f(x)$ $=\tilde{P} f(\pi(x))$ whenever $f(x)=\tilde{f}(\pi(x))$ where \check{f} is a function on N / Z and π : $N \rightarrow N / Z$ is the natural projection. If $\tilde{P} \equiv 0$ it follows from lemma 1 that $P=\approx \circ P_{1}$ where z is a generator of the Lie algebra of Z and P_{1} is a biinvariant operator on N. Since degree $P_{1}=p-1$ any compact set of N is contained in a P_{1}-full compact C-convex subset K of N which is also z-full since this is the case for any C convex subset of N. Now if $P f=u$ where f and u are compactly supported functions on N with supp $u \subset K$, then $P f=z \circ P_{1} f=u$ so $P_{1} f$ is supported in K since K is z-full and f is supported in K since K is P_{1}-full. Thus the induction is valid whenever P annihilates all Z-invariant functions. Thus we can assume that whenever Z is a one-parameter central subgroup of N, the differential operator \tilde{P} on N / Z induced by the action of P on Z-invariant functions is non-zero and, therefore, by inductive hypothesis that any compact subset of N / Z is contained in a \tilde{P}-full compact C-convex subset of N / Z.

The remainder of the proof is divided into two cases, viz.
Case 1. The center of N has dimension 1.
Case 2. The center of N has dimension $\geqq 2$.

We deal with Case 1 first. Let Z be the center of N, and let z be a generator of the Lie algebra of Z. Since the center of N / Z is non-trivial, we can find a vector $y \in \mathfrak{M}$, the Lie algebra of N such that for all $x \in \mathfrak{N}$, we have $[y, x]=\phi(x)$ z where ϕ is a non-zero linear functional on \mathfrak{M}. Also $\left[y\left[x_{1}, x_{2}\right]\right]=\left[\left[z, x_{1}\right] x_{2}\right]$ $+\left[x_{1},\left[y, x_{2}\right]\right]=\left[\phi\left(x_{1}\right) z, x_{2}\right]+\left[x_{1}, \phi\left(x_{2}\right) z\right]=0$ so $\phi\left(\left[x_{1}, x_{2}\right]\right)=0$ and ϕ vanishes on the derived algebra of \mathfrak{M}. The kernel \mathfrak{M} of ϕ is, therefore, a codimension one ideal of \mathfrak{M} and we let $M=\exp \mathfrak{M}$ which is a simply connected nilpotent Lie subgroup of N with Lie algebra \mathfrak{M}. We pick $\omega \in \mathfrak{N}$ with $\phi(\omega)=1$. Let $i: U(\mathfrak{P})$ $\rightarrow U(\mathfrak{N})$ be the inclusion of envelopping algebras induced by the inclusion of \mathfrak{M} in \mathfrak{N}.

By the Poincaré-Birkhoff-Witt theorem we can write P uniquely as P $=w^{k} \circ i\left(p_{0}\right)+w_{-}^{k-1} \circ i\left(p_{1}\right)+\cdots+w \circ i\left(p_{k-1}\right)+i\left(p_{k}\right)$ where the p_{i}^{\prime} 's are elements of $U(\mathfrak{P})$ then

$$
0=[y, P]=\left[k w^{k-1} \circ i\left(p_{0}\right)+(k-1) w^{k-2} \circ i\left(p_{1}\right)+\cdots+i\left(p_{k-1}\right)\right] \circ z .
$$

This implies, again by the Poincaré-Birkhoff-Witt theorem that $0=p_{0}=p_{1}$ $=\cdots=p_{k-1}$ and, therefore, that $P=i\left(p_{k}\right)$. It follows that any subset S of N such that $x^{-1}(S \cap x M)$ is a p_{k}-full subset of M for all x is a P-full subset of N. Furthermore, since the center of N is contained in M, if $x^{-1}(S \cap x M)$ is a C convex subset of M for all $x \in N$, then S is a C-convex subset of N.

We pick a continuous M-equivariant projection $\psi: N \rightarrow M$ for instance

$$
\psi(x)=x[\exp \phi(-\log x) w] .
$$

Now let K be a compact subset of N. By inductive hypothesis $\psi(K)$ is contained in a compact C-convex p_{k}-full subset L of M. Also $\phi(\log K)$ is contained in a compact connected interval I of \mathbb{R}. Now $\exp \phi^{-1}(I) \cap \psi^{-1}(L)$ is a compact C-convex P-full subset of N. This completes the proof of case 1 .
Case 2. The center of N has dimension greater than 1 . Let z_{1} and z_{2} be vectors in the center of \mathfrak{N} which are orthonormal for a Euclidean metric ρ on \mathfrak{M}. Let Z_{1} $=\exp \mathbb{R} z_{1}$ respectively $Z_{2}=\exp \mathbb{R} z_{2}$, and let π_{1} respectively π_{2} be the projections of N on N / Z_{1}, respectively N / Z_{2}. Also let P_{1} respectively P_{2} be the differential operators on N / Z_{1} respectively N / Z_{2} induced by the action of P on Z_{1}-invariant respectively Z_{2}-invariant functions on N. We can assume that neither P_{1} nor P_{2} is the zero operator. Let K be a compact subset of N. Then $\pi_{1}(K)$ and $\pi_{2}(K)$ are compact subsets of N / Z_{1} and N / Z_{2} and by inductive hypothesis we can choose $F_{1} \supset \pi_{1}(K)$ and $F_{2} \supset \pi_{2}(K)$ such that F_{i} is a P_{i}-full compact C-convex subset of N / Z_{i}. Then $\pi_{i}^{-1}\left(F_{i}\right)$ is a C-convex P-full subset of N for $i=1,2$ by Proposition 1 and, therefore, $Q=\pi_{1}^{-1}\left(F_{1}\right) \cap \pi_{2}^{-1}\left(F_{2}\right)$ is a C-convex closed P-full subset of N containing K.

We assert Q is compact, or equivalently that $\log Q$ is compact. Let ρ_{1} and ρ_{2} be the Euclidean metrics induced by ρ on $\mathfrak{R}_{1} \cong z_{1}^{\perp}$ and $\mathfrak{N}_{2} \cong z_{2}^{\frac{1}{2}}$, the Lie algebras of N / Z_{1} and N / Z_{2}. We can find a real number r such that the ρ_{i} distance of $\log F_{i}$ from the origin of \mathfrak{M}_{i} is $\leqq r$ for $i=1,2$. Then if $v \in \log \left(\pi_{1}^{-1}\left(F_{1}\right) \cap \pi_{2}^{-1}\left(F_{2}\right)\right)$ we have $\rho\left(v, \mathbb{R} z_{1}\right) \leqq r$ and $\rho\left(v, \mathbb{R} z_{2}\right) \leqq r$ so we can choose t_{1} and t_{2} such that $\rho\left(v, t_{1} z_{1}\right) \leqq r$ and $\rho\left(v, t_{2} z_{2}\right) \leqq r$. Then $\rho\left(t_{1} z_{1}, t_{2} z_{2}\right) \leqq 2 r$ so $\sqrt{t_{1}^{2}+t_{2}^{2}} \leqq 2 r$ so
$t_{1}^{2} \leqq 4 r^{2}$ and $\rho\left(t_{1} z_{1}, 0\right)=\left|t_{1}\right| \leqq 2 r$. It follows that $\rho(v, 0) \leqq 3 r$ for all $v \in \log \left(\pi_{1}^{-1}\left(F_{1}\right) \cap \pi_{2}^{-1}\left(F_{2}\right)\right)$. Thus $\log \left(\pi_{1}^{-1}\left(F_{1}\right) \cap \pi_{2}^{-1}\left(F_{2}\right)\right)$ is a closed bounded subset of \mathfrak{N} and, therefore, compact. Therefore, $\pi_{1}^{-1}\left(F_{1}\right) \cap \pi_{2}^{-1}\left(F_{2}\right)$ is a compact C convex P-full subset of N containing K. This completes the inductive step in Case 2 and concludes the proof of the theorem.
Corollary. If K is any compact set in N, then there is a compact set L such that whenever $P u=f$ is a distribution supported in K and u is a distribution of compact support on N, then the support of u is contained in L.

Proof. This follows immediately from the theorem upon convoluting with a smooth approximate identity of N. Here L can be any compact P-full set containing a compact neighborhood of K.
Theorem 2. Any non-zero biinvariant differential operator on a connected simply connected nilpotent Lie group is globally solvable.

Proof. Semi-global solvability of such operators is contained in results of Rais [8] or Rouvière [9]. But by theorem 1.9 in the book of Trèves [11], global solvability follows from semi-global solvability and the P-convexity result proved above.

References

1. Cerezo, A., Rouvière, F.: Résolubilité locale d'un opérateur differentiel invariant du premier ordre. Annales Scientifiques de l'Ecole Normale Supérieure 4, 21-30 (1971)
2. Cerezo, A., Rouvière, F.: Opérateurs différentiels invariants sur un groupe de Lie. Séminaire Goulaouic-Schwartz 1972-3, École Polytechnique, Paris
3. Duflo, M.: Opérateurs différentiels bi-invariants sur un groupe de Lie. To appear
4. Duflo, M., Rais, M.: Sur l'analyse harmonique sur les groupes de Lie résolubles. Annales Scientifiques de l'Ecole Normale Supérieure 9, 107-144 (1976)
5. Helgason, S.: Differential Geometry and Symmetric Spaces. New York: Academic Press 1962
6. Helgason, S.: The surjectivity of invariant differential operators on symmetric spaces. I. Annals of Mathematics 98, 451-479 (1973)
7. Hochschild, G.P.: The Structure of Lie Groups. San Francisco: Holden Day 1965
8. Rais, M.: Solutions élémentaires des operateurs différentiels bi-invariants sur un groupe de Lie nilpotent. Comptes Rendus de l'Académie des Sciences, Paris 273, 495-498 (1971)
9. Rouvière, F.: Sur la résolubilité locale des opérateurs biinvariants. Annali Scuola Normale Superiore-Pisa 3, 231-244 (1976)
10. Trèves, F.: Lectures on Linear Partial Differential Equations. Instituto de Matematica Pura e Aplicada, Rio de Janeiro, 1961
11. Trèves, F.: Linear Partial Differential Equations with Constant Coefficients. New York: Gordon and Breach 1966

[^0]: * Partially supported by NSF MCS 74-07607

