

Biinvariant Operators on Nilpotent Lie Groups

David Wigner*

The University of Michigan, Department of Mathematics Ann Arbor, Michigan 48109, USA

The purpose of this article is to prove *P*-convexity for biinvariant differential operators on connected simply connected nilpotent Lie groups. More precisely, we show that for any compact subset K of a connected simply connected nilpotent Lie group N, and for any non-zero biinvariant differential operator P on N, there is a compact subset $L \supset K$ with the property that whenever the support of Pu is contained in L for a C^{∞} function of compact support u on N, then the support of u is contained in L. I am grateful to M. Duflo, to A. Cerezo, and to F. Rouvière for several helpful discussions.

Solubility properties of biinvariant operators have been considered by several authors. S. Helgason [6] proves local solvability of biinvariant operators on semisimple Lie groups. Rais [8] proves the existence of a fundamental solution for a biinvariant operator on a connected simply connected nilpotent Lie group. Duflo and Rais [4] prove the local solvability of biinvariant operators on a solvable Lie group and Rouvière [9] proves semi-global solvability for biinvariant operators on simply connected solvable groups. Finally, Duflo [3] proves local solvability of biinvariant operators on any Lie group whatsoever.

Semi-global solvability is in general false even for noncompact simple groups as was demonstrated by A. Cerezo and F. Rouvière [2]. Finally, even local solvability of left invariant operators is frequently false as was shown by L. Hormander, c.f. [6] and independently by A. Cerezo and F. Rouvière [1]. From our result and that of Rais [8] or Rouvière [9], we conclude the global solvability of biinvariant operators on simply connected nilpotent Lie groups, i.e. that for any C^{∞} function f and nonzero biinvariant operator P on a simply connected nilpotent Lie group N, there exists a C^{∞} function u on N such that Pu=f. For simply connected abelian Lie groups, this reduces to the theorem of Malgrange and Ehrenpreis that constant coefficient differential operators on R^n are globally solvable, c.f. [11]. Thus our Theorem 2 can be regarded as a generalization of the Malgrange-Ehrenpreis theorem.

Henceforward N will denote a connected simply connected nilpotent Lie group, and \mathfrak{N} its Lie algebra. We write exp: $\mathfrak{N} \rightarrow N$ for the exponential map of \mathfrak{N}

^{*} Partially supported by NSF MCS 74-07607

onto N, which is known to be an analytic diffeomorphism and $\log: N \to \mathfrak{N}$ will denote the analytic diffeomorphism inverse to exp. We recall that the center of N is connected and simply connected. Since a connected and simply connected abelian Lie group has a natural translation invariant convex structure, we may define a subset S of N to be C-convex if its intersection with every coset of the center C(N) of N is convex or in other words if $x^{-1}(S \cap x C(N))$ is a convex subset of C(N) for every $x \in N$.

The support of a function will mean the set of points where it is non-zero (this is a departure from the usual usage). When we say a function has compact support, we mean that its support is contained in some compact set (this is the usual usage). Supp f will denote the support of f, a complex valued C^{∞} function. Z will denote a central one parameter subgroup of N, and z will denote a generator of the Lie algebra of Z. Thus z is a biinvariant vector field on N. We denote a Haar measure on Z by $d\mu(z)$. If f is a C^{∞} function of compact support on N then \tilde{f} will denote the function on N/Z defined by $\tilde{f}(xZ) = \int_{Z} f(xz) d\mu(z)$. We note that if $\tilde{f} \equiv 0$ then there is a C^{∞} function u of compact support on N

such that xu = f. We denote the natural projection of N onto N/Z by π and remark that the inverse image under π of a C-convex subset of N/Z is C-convex. P will denote a biinvariant differential operator on N. We shall identify the algebra of left invariant differential operators on N with the complexified universal envelopping algebra $U(\mathfrak{N})$ of \mathfrak{N} . Following Trèves [10], we say that a subset S of N is P-full if whenever Pu = f is a C^{∞} function of compact support whose support is contained in S, and u has compact support, then the support of u is contained in S. Since P is biinvariant, any (left or right) translate of a P-full set is P-full. A C-convex set is z-full for any biinvariant vector field z.

A C^{∞} function f on N will be called Z-invariant if f(xz)=f(x) for all $x \in N$ and all $z \in Z$. When P is biinvariant differential operator on N, then the action of P on Z-invariant functions defines a differential operator on N/Z, denoted \tilde{P} . By "differentiating under the integral", we have $\tilde{Pu}=\tilde{P}\tilde{u}$ for a C^{∞} function u of compact support on N.

We begin with some preparatory lemmas.

Lemma 1. Let Z be a central one parameter subgroup of N, and let x be a generator of the Lie algebra of Z. Let D be a left invariant differential operator on N which annihilates all Z-invariant functions. Then $D = D_1 \circ x$ where D_1 is some left invariant operator on N. If D is biinvariant, so is D_1 .

Proof. Let $\tilde{x}_1, \tilde{x}_2, ..., \tilde{x}_n$ be a basis of the Lie algebra of N/Z and let $x_1, x_2, ..., x_n, x$ be a basis of the Lie algebra \mathfrak{N} of N such that the projection of x_i onto the Lie algebra of N/Z is \tilde{x}_i . The Poincaré-Birkhoff-Witt theorem implies that monomials of the form $x_1^{a_1} x_2^{a_2} \dots x_n^{a_n} x^k$, with a_1, a_2, \dots, a_n, k nonnegative integers form a basis of the vector space of left invariant differential operators on N so that we may write

$$D = \sum_{(a_1 \dots a_n, k)} C_{(a_1, a_2 \dots a_n, k)} x_1^{a_1} \dots x_n^{a_n} x^k$$

where the sum runs over (n+1)-tuples of non-negative integers, and all but finitely many of the $C_{(a_1,\ldots,a_m,k)}$ are zero. The action of D on Z-invariant functions

defines an operator \tilde{D} on N/Z and we have

$$0 = \tilde{D} = \sum_{\substack{(a_1, \dots, a_n, k) \\ k = 0}} C_{(a_1, \dots, a_n, k)} \tilde{x}_1^{a_1} \tilde{x}_2^{a_2} \dots \tilde{x}_n^{a_n}.$$

The Poincare-Birkhoff-Witt theorem now implies that $C_{(a_1, a_2, ..., a_n, k)} = 0$ whenever k=0 so that we may write

$$D = \sum_{\substack{(a_1 \dots a_n, k) \\ k > 0}} C_{(a_1 \dots a_n, k)} x_1^{a_1} \dots x_n^{a_n} x^k$$
$$= \sum_{\substack{(a_1 \dots a_n, k) \\ k > 0}} C_{(a_1 \dots a_n, k)} x_1^{a_1} \dots x_n^{a_n} x^{k-1} \circ x = D_1 \circ x$$

where $D_1 = \sum_{\substack{(a_1 \dots a_n, k) \ k > 0}} C_{(a_1 \dots a_n, k)} x_1^{a_1} \dots x_n^{a_n} x^{k-1}.$

Now suppose D is biinvariant and let ρ_g denote right translation by $g \in N$. We then have

$$D_1 \circ x = D = \rho_g D = \rho_g (D_1 \circ x) = (\rho_g D_1) \circ (\rho_g x) = \rho_g D_1 \circ x$$

so that $(\rho_g D_1 - D_1) \circ z = 0$.

But the universal envelopping algebra has no divisors of zero and $x \neq 0$ so $\rho_{e}D_{1} - D_{1} = 0$ and $\rho_{g}D_{1} = D_{1}$. Therefore D_{1} is biinvariant.

Lemma 2. If u has compact support on N, then $\pi \operatorname{supp} u = \pi \operatorname{supp} u$.

Proof. Since supp $xu \subset$ supp u, clearly π supp $xu \subset \pi$ supp u. Now let $x \in$ supp u so that $\pi(x) \in \pi$ supp u. Define

 $\phi: Z \to \mathbb{C}$ by $\phi(z) = u(xz)$.

 ϕ is a non-zero function on Z of compact support so $x\phi$ is non-zero of compact support on Z. But $xu(xz)=x\phi(z)$ so xu is not identically zero on xZ so $\pi(x)\in \text{supp } xu$.

Proposition 1. If K is a P-full set in N/Z, then $L = \pi^{-1}(K)$ is a P-full set in N.

Proof. Let b be a smooth function of compact support on Z with $\int b(z) d\mu(z) = 1$.

Let $\sigma: N/Z \to N$ be a continuous map satisfying $\pi \circ \sigma = \mathrm{Id}_{N/Z}$. For any complex function f of compact support on N define $f^*: N \to \mathbb{C}$ by

$$f^{*}(x) = f(x) - \tilde{f}(\pi(x)) \cdot b(x \cdot (\sigma(\pi(x)))^{-1}).$$

Then

$$\int f^*(xz) \, d\mu(z) = \int f(xz) \, d\mu(z) - \int \tilde{f}(\pi(xz)) \cdot b(xz \cdot (\sigma(\pi(xz)))^{-1}) \, d\mu(z)$$

= $\tilde{f}(\pi(x)) - \int \tilde{f}(\pi(x)) \cdot b(xz(\sigma(\pi(x)))^{-1}) \, d\mu(z)$
= $\tilde{f}(\pi(x)) - \tilde{f}(\pi(x)) \int b(xz(\sigma(\pi(x)))^{-1}) \, d\mu(z)$
= 0.

Therefore, there is a function f^{\natural} of compact support on N satisfying $zf^{\natural} = f^*$. Let f be a function of compact support on N whose support is contained in L. Let Pu = f, where u is also a function of compact support. Define inductively $u_0 = u$ and $u_{n+1} = u_n^{\natural}$. We have $\pi \operatorname{supp} Pu_{n+1} = \pi \operatorname{supp} Pu_n^{\natural} = \pi \operatorname{supp} Pu_n^{\natural} = \pi \operatorname{supp} Pu_n^{\natural} = \pi \operatorname{supp} Pu_n^{\natural} \subset \pi \operatorname{supp} Pu_n \cup \operatorname{supp} \tilde{u}_n$. If $\pi \operatorname{supp} Pu_n \subset K$ then $\operatorname{supp} Pu_n \subset K$ since then $K \supset \operatorname{supp} \tilde{Pu}_n = \operatorname{supp} \tilde{Pu}_n$ and K is \tilde{P} -full. Therefore if $\pi \operatorname{supp} Pu_n \subset K$ then $\pi \operatorname{supp} Pu_{n+1} \subset K$ and also $\operatorname{supp} \tilde{u}_n \subset K$, for all n.

Furthermore $\pi \operatorname{supp} (u_n^* - u_n) \subset \operatorname{supp} \tilde{u}_n \subset K$ and $\pi \operatorname{supp} u_{n+1} = \pi \operatorname{supp} u_{n+1} = \pi \operatorname{supp} u_n^*$.

Suppose now that $x \notin L$. On the set xZ we have

 $u_n^*(xz) = u_n(xz)$ and $zu_{n+1}(xz) = u_n^*(xz)$

since xZ is disjoint from $L = \pi^{-1}(K)$. So on xZ we have $xu_{n+1} = u_n$ and $x^nu_n = u_0$ = u. Therefore, if $\phi_n(z) = u_n(xz)$, then ϕ_0 is a function of compact support on Z such that for arbitrary n there exists a function ϕ_n of compact support on Z such that $x^n\phi_n = \phi_0$. Applying the Fourier transform to ϕ_0 , we see that $\hat{\phi}_0$ is a real analytic function on the dual \hat{Z} of Z with a zero of arbitrary high order at $0 \in \hat{Z}$. Therefore $\hat{\phi}_0 \equiv 0$ and $\phi_0 \equiv 0$. Therefore u(xz) = 0 for all z and $x \notin \text{supp } u$. QED.

Theorem 1. Let P be a non-zero biinvariant differential operator on a simply connected nilpotent Lie group N. Then any compact set of N is contained in a compact C-convex P-full subset of N.

Proof. The proof is by double induction on the dimension of N and the degree of P, the assertion being trivial if the dimension of N or the degree of P is ≤ 1 . We, therefore, suppose the theorem true whenever the dimension of the nilpotent group is $\langle n = \dim N \rangle$ or the degree of the operator is $\langle p = \deg \operatorname{ree} P \rangle$.

If Z is a one parameter central subgroup of N, the action of P on Z-invariant functions gives rise to a differential operator \tilde{P} on N/Z satisfying $Pf(x) = \tilde{P}\tilde{f}(\pi(x))$ whenever $f(x) = \tilde{f}(\pi(x))$ where \tilde{f} is a function on N/Z and $\pi: N \rightarrow N/Z$ is the natural projection. If $\tilde{P} \equiv 0$ it follows from lemma 1 that $P = x \circ P_1$ where x is a generator of the Lie algebra of Z and P_1 is a biinvariant operator on N. Since degree $P_1 = p - 1$ any compact set of N is contained in a P_1 -full compact C-convex subset K of N which is also x-full since this is the case for any Cconvex subset of N. Now if Pf = u where f and u are compactly supported functions on N with $supp u \subset K$, then $Pf = x \circ P_1 f = u$ so $P_1 f$ is supported in K since K is x-full and f is supported in K since K is P_1 -full. Thus the induction is valid whenever P annihilates all Z-invariant functions. Thus we can assume that whenever Z is a one-parameter central subgroup of N, the differential operator \tilde{P} on N/Z induced by the action of P on Z-invariant functions is non-zero and, therefore, by inductive hypothesis that any compact subset of N/Z is contained in a \tilde{P} -full compact C-convex subset of N/Z.

The remainder of the proof is divided into two cases, viz.

- Case 1. The center of N has dimension 1.
- Case 2. The center of N has dimension ≥ 2 .

We deal with Case 1 first. Let Z be the center of N, and let z be a generator of the Lie algebra of Z. Since the center of N/Z is non-trivial, we can find a vector $y \in \mathfrak{N}$, the Lie algebra of N such that for all $x \in \mathfrak{N}$, we have $[y, x] = \phi(x) z$ where ϕ is a non-zero linear functional on \mathfrak{N} . Also $[y[x_1, x_2]] = [[y, x_1] x_2]$ $+[x_1, [y, x_2]] = [\phi(x_1) z, x_2] + [x_1, \phi(x_2) z] = 0$ so $\phi([x_1, x_2]) = 0$ and ϕ vanishes on the derived algebra of \mathfrak{N} . The kernel \mathfrak{M} of ϕ is, therefore, a codimension one ideal of \mathfrak{N} and we let $M = \exp \mathfrak{M}$ which is a simply connected nilpotent Lie subgroup of N with Lie algebra \mathfrak{M} . We pick $\omega \in \mathfrak{N}$ with $\phi(\omega) = 1$. Let *i*: $U(\mathfrak{M})$ $\rightarrow U(\mathfrak{N})$ be the inclusion of envelopping algebras induced by the inclusion of \mathfrak{M} in \mathfrak{N} .

By the Poincaré-Birkhoff-Witt theorem we can write P uniquely as $P = \omega^k \circ i(p_0) + \omega^{k-1} \circ i(p_1) + \dots + \omega \circ i(p_{k-1}) + i(p_k)$ where the p_i 's are elements of $U(\mathfrak{M})$ then

$$0 = [y, P] = [k\omega^{k-1} \circ i(p_0) + (k-1)\omega^{k-2} \circ i(p_1) + \dots + i(p_{k-1})] \circ x.$$

This implies, again by the Poincaré-Birkhoff-Witt theorem that $0=p_0=p_1$ =...= p_{k-1} and, therefore, that $P=i(p_k)$. It follows that any subset S of N such that $x^{-1}(S \cap xM)$ is a p_k -full subset of M for all x is a P-full subset of N. Furthermore, since the center of N is contained in M, if $x^{-1}(S \cap xM)$ is a C-convex subset of M for all $x \in N$, then S is a C-convex subset of N.

We pick a continuous M-equivariant projection $\psi: N \rightarrow M$ for instance

 $\psi(x) = x [\exp \phi(-\log x) \,\omega].$

Now let K be a compact subset of N. By inductive hypothesis $\psi(K)$ is contained in a compact C-convex p_k -full subset L of M. Also $\phi(\log K)$ is contained in a compact connected interval I of **R**. Now exp $\phi^{-1}(I) \cap \psi^{-1}(L)$ is a compact C-convex P-full subset of N. This completes the proof of case 1.

Case 2. The center of N has dimension greater than 1. Let x_1 and x_2 be vectors in the center of \mathfrak{N} which are orthonormal for a Euclidean metric ρ on \mathfrak{N} . Let $Z_1 = \exp \mathbb{R} x_1$ respectively $Z_2 = \exp \mathbb{R} x_2$, and let π_1 respectively π_2 be the projections of N on N/Z_1 , respectively N/Z_2 . Also let P_1 respectively P_2 be the differential operators on N/Z_1 respectively N/Z_2 induced by the action of P on Z_1 -invariant respectively Z_2 -invariant functions on N. We can assume that neither P_1 nor P_2 is the zero operator. Let K be a compact subset of N. Then $\pi_1(K)$ and $\pi_2(K)$ are compact subsets of N/Z_1 and N/Z_2 and by inductive hypothesis we can choose $F_1 \supset \pi_1(K)$ and $F_2 \supset \pi_2(K)$ such that F_i is a P_i -full compact C-convex subset of N/Z_i . Then $\pi_i^{-1}(F_i)$ is a C-convex P-full subset of N for i=1, 2 by Proposition 1 and, therefore, $Q = \pi_1^{-1}(F_1) \cap \pi_2^{-1}(F_2)$ is a C-convex closed P-full subset of N containing K.

We assert Q is compact, or equivalently that $\log Q$ is compact. Let ρ_1 and ρ_2 be the Euclidean metrics induced by ρ on $\mathfrak{N}_1 \cong x_1^{\perp}$ and $\mathfrak{N}_2 \cong x_2^{\perp}$, the Lie algebras of N/Z_1 and N/Z_2 . We can find a real number r such that the ρ_i distance of $\log F_i$ from the origin of \mathfrak{N}_i is $\leq r$ for i=1,2. Then if $v \in \log(\pi_1^{-1}(F_1) \cap \pi_2^{-1}(F_2))$ we have $\rho(v, \mathbb{R}x_1) \leq r$ and $\rho(v, \mathbb{R}x_2) \leq r$ so we can choose t_1 and t_2 such that $\rho(v, t_1 x_1) \leq r$ and $\rho(v, t_2 x_2) \leq r$. Then $\rho(t_1 x_1, t_2 x_2) \leq 2r$ so $\sqrt{t_1^2 + t_2^2} \leq 2r$ so

 $t_1^2 \leq 4r^2$ and $\rho(t_1 x_1, 0) = |t_1| \leq 2r$. It follows that $\rho(v, 0) \leq 3r$ for all $v \in \log(\pi_1^{-1}(F_1) \cap \pi_2^{-1}(F_2))$. Thus $\log(\pi_1^{-1}(F_1) \cap \pi_2^{-1}(F_2))$ is a closed bounded subset of \mathfrak{N} and, therefore, compact. Therefore, $\pi_1^{-1}(F_1) \cap \pi_2^{-1}(F_2)$ is a compact C-convex P-full subset of N containing K. This completes the inductive step in Case 2 and concludes the proof of the theorem.

Corollary. If K is any compact set in N, then there is a compact set L such that whenever Pu = f is a distribution supported in K and u is a distribution of compact support on N, then the support of u is contained in L.

Proof. This follows immediately from the theorem upon convoluting with a smooth approximate identity of N. Here L can be any compact P-full set containing a compact neighborhood of K.

Theorem 2. Any non-zero biinvariant differential operator on a connected simply connected nilpotent Lie group is globally solvable.

Proof. Semi-global solvability of such operators is contained in results of Rais [8] or Rouvière [9]. But by theorem 1.9 in the book of Trèves [11], global solvability follows from semi-global solvability and the *P*-convexity result proved above.

References

- 1. Cerezo, A., Rouvière, F.: Résolubilité locale d'un opérateur differentiel invariant du premier ordre. Annales Scientifiques de l'Ecole Normale Supérieure 4, 21-30 (1971)
- Cerezo, A., Rouvière, F.: Opérateurs différentiels invariants sur un groupe de Lie. Séminaire Goulaouic-Schwartz 1972-3, École Polytechnique, Paris
- 3. Duflo, M.: Opérateurs différentiels bi-invariants sur un groupe de Lie. To appear
- 4. Duflo, M., Rais, M.: Sur l'analyse harmonique sur les groupes de Lie résolubles. Annales Scientifiques de l'Ecole Normale Supérieure 9, 107–144 (1976)
- 5. Helgason, S.: Differential Geometry and Symmetric Spaces. New York: Academic Press 1962
- 6. Helgason, S.: The surjectivity of invariant differential operators on symmetric spaces. I. Annals of Mathematics 98, 451-479 (1973)
- 7. Hochschild, G.P.: The Structure of Lie Groups. San Francisco: Holden Day 1965
- 8. Rais, M.: Solutions élémentaires des operateurs différentiels bi-invariants sur un groupe de Lie nilpotent. Comptes Rendus de l'Académie des Sciences, Paris 273, 495–498 (1971)
- 9. Rouvière, F.: Sur la résolubilité locale des opérateurs biinvariants. Annali Scuola Normale Superiore-Pisa 3, 231-244 (1976)
- 10. Trèves, F.: Lectures on Linear Partial Differential Equations. Instituto de Matematica Pura e Aplicada, Rio de Janeiro, 1961
- 11. Trèves, F.: Linear Partial Differential Equations with Constant Coefficients. New York: Gordon and Breach 1966

Received March 5, 1977