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1. Introduction 

In this paper, we demonstrate the existence of the Friemtly Giant, a finite 
simple group of order 

2 4 6 3 2 0 5 9 7 6  112133 . 17 .19 .23 .29 .31 .41 .47 .59 .71  

= 808,017,424,794,512,875,886,459,904,961,710,757,005,754,368,000,000,000. 

Evidence for the existence of this group was produced independently in 
November, 1973, by Bernd Fischer in Bielefeld and by this author in Ann 
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Arbor. Serious work on this group - mainly a study of subgroups and con- 
jugacy classes - began the first weekend of that month in both locations. 
Additional details of this early work are discussed in Sect. 15. For now, we add 
only that such a simple group appeared likely to have a complex irreducible 
character of degree 196883; in 1974, this number was established as a lower 
bound for the degree of a nonprincipal irreducible character [13, 37]. While 
this evidence for the existence was very persuasive, it did not constitute a 
proof. Our existence proof was announced on January 14, 1980 and more 
formally in [-29]. 

Our method is to take a 196884-dimensional module B for a particular 
group C of shape (21+24)( �9 1), define on B the structure of a commutative 
nonassociative algebra with a symmetric nondegenerate associative bilinear 
form, then define an automorphism ~ of this algebra. The group G - ~ C ,  c~) is 
the simple group of the title (the usual symbol for this group is F1). The extra 
rigidity required by expecting our linear group to preserve an algebra structure 
enables us to make precise definitions of the relevant linear transformations 
and verify their required properties. The reason we thought of this approach is 
the following. Simon Norton had computed the values of a hypothetical 
character Z of degree 196883 and computed that (S2x, 1)=1, ($3)~, 1)=1, 
(S3Z, Z)= 1 and Z is rational-valued. It follows that if M is a module affording 
Z, M has the structure of a commutative (but not necessarily associative) 
algebra with a nondegenerate associative symmetric bilinear form. This finding 
of Norton was the inspiration for this paper. See Sect. 15 for additional 
comments on algebras associated to finite simple groups. 

We comment on some over-all aspects of the construction. In some sense, 
the algebra B is described using only basic linear algebra. The group theory 
used is descriptive in nature. Thus, one could say that the construction of G 
= ( C ,  or) is elementary. That  is, starting from scratch, one may construct M24, 
then �9 0 and finally G, with each stage depending on the previous one. See two 
paragraphs ahead and look at Table 1.1. However, the identification of G as a 
finite simple group with the right properties requires deep results from the 
classification of finite groups. It is possible that this dependence can be elim- 
inated, for instance, by counting configuration of vectors in B permuted by G. 
An enumeration of any such configurations may be long and difficult, however. 

Section 2 contains various preliminary results, mainly about group repre- 
sentations, the Leech lattice, Conway groups and the classification of finite 
simple groups. Sections 3 and 4 set up basic notation. In Sect. 5, we compute 
the C-invariant algebra structures on the module B, and in Sect. 6 we select 
the one we work with in the rest of  the paper (modulo a choice of F made in 
Sect 7). Sections 7, 8 and 9 discuss various technicalities needed both in the 
definition of a (Sect. 10) and in the proof of the "main result," Proposition 11.2, 
that cr is an algebra automorphism. Section 7 is concerned with a choice of 
complement F which will cause the function // to behave well, while Sects. 8 
and 9 develop techniques for analyzing the action of certain elements of C on 
basis elements, mainly for the purpose of being able to analyze/3. Nearly all of 
Sect. 11 is concerned with a proof of the main result, which in turn amounts to 
verifying a list of identities involving configurations of vectors in the Leech 
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lattice; this is where the correctness of the plus and minus signs in the 
definition of cr is so critical. 

In Sects. 12, 13, and 14, the mathematics departs from that of preceding 
sections in that we require results from the classification theory, and, in 
Sect. 14, we refer to work of others on the group Fa, only some of which has 
appeared. In Sect. 12, we identify G=(C,  c~) as a finite simple group of order 
2r176 It is not obvious that G 
is finite, and if G is finite, it is not obvious that the containment C< CG(z), 
( z )=Z(C) ,  is equality, a necessary step in the identification of G. This prob- 
lem is handled by a "reduction modulo p" procedure. In Sect. 13, we derive 
existence of a number of sporadic groups (besides G). These other groups had 
been constructed earlier; in some of these cases, existence proofs required com- 
puter work. All we need to do is name appropriate subquotients of G (although 
we use results from the classification theory to identify these subquotients), 
using little more than notation already established earlier in the paper. Also in 
Sect. 13, we derive existence of a number of nonsplit group extensions; hence 
we get nonvanishing of certain degree 2 cohomology groups. 

In Sect. 14, we determine that the simple groups LyS, J3, "]4, O'S and Ru 
are not involved in the Friendly Giant. The sporadic groups which are in- 
volved in the Friendly Giant constitute the Happy Family and those which are 
not are called the Pariahs. The membership of every sporadic group in one of 
those two categories is settled, except for J~. The twenty sporadics M~I, M~z , 
M22, M23, M24, J2, Held, HiS, McL, Suz, .1, .2, .3, F22, F23, F24, F~, F 2, Fa, 
Fs are involved in the Friendly Giant  in a "visible" manner. A glance at the 
group orders shows that LyS and J~ must be Pariahs, but it is certainly not 
obvious for J3, Ru and O'S. The group J1 has order "only"  175,560 and one 
might easily imagine a copy of J~ floating as a tiny speck within F~. We point 
which that J~ is a subgroup of O'S (the fixed points of an outer automor- 
phism), which is not involved in F 1. In any case, suitable information is 
available (using outside sources) to carry out the arguments of Sect. 14. 

In Sect. 15, we conclude with some comments  on background and the 
proof. A list of notations and definitions and a list of tables to assist the reader 
has been placed before the references. 

We make it clear that our construction of G (Sect. 2 through 11) is direct, 
explicit and is carried out entirely by hand. The identification of G, however, 
requires hard theorems from the classification of finite simple groups. A few of 
our arguments in Sect. 14 require computer  calculations, but this is the only 
place in the paper where we make explicit reference to computer  work. Some 
work in the theory of finite simple groups does involve computing machines 
and a few of the references we use do have some ultimate dependence on such 
work (e.g., in determining conjugacy classes and character tables). With these 
exceptions, the results of this paper are free of machine calculations. 

This work was carried out mainly at the Institute for Advanced Study during the academic 
year 197%80. We thank the Institute for Advanced Study for the privileges of membership during 
this time (and during Winter term, 1981), the National Sciences Foundation for partial financial 
support and the University of Michigan for partial financial support during that sabbatical year. 
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Special thanks go to my wife, Pamela Schwarzmann, for her support  and patience with me 
during the year at the Institute for Advanced Study and to Enrico Bombieri for many words of 
encouragement. We acknowledge helpful remarks from Allan Adler, George Glauberman, Melvin 
Hochster, Michael O'Nan,  Steven Smith and Ronald Solomon which led to clarifications and we 
acknowledge the computer work by Charles Sims and Steven Smith which settled a few points in 
Sect. 14. We thank the referee for investing an enormous amount  of work in reading this paper 
and providing thoughtful and detailed commentary. In particular the referee caught some mistakes 
in the preprint version. Most were slips or small errors, but others were not. These exceptions are 
noted in the text. 

Table 1.1. Construction of the happy family a 

Construct . . .  then derive existence of... 

M24 f * MlI,M12,M22 M23, M24 

�9 0 , �9 1, �9 2,- 3, HiS, McL, Suz, HJ 

F~ '~ , F2,F3, Fs,F22, F23, Fs Held. 

except possibly for Jl 

{}2. Preliminary Results 

We begin by reviewing properties of the Leech lattice and by establishing some 
notation which will be used throughout the paper. 

The Leech lattice, denoted A, is a free abelian group of rank 24 with a 
certain positive definite symmetric bilinear form ( , )  which makes A uni- 
modular, i.e. d e t A = l ,  and be even, i.e. satisfy ( 2 , / ~ ) ~ ,  ( 2 , 2 ) e 2 Z  for all 
2, IrmA. 

All even integral unimodular lattices of rank 24 have been classified by 
Niemeyer; see [11] and [55]. There are 24 such lattices. Among these, A is the 
only one which contains no vector with squared length 2. 

The lattice is of special interest to group theorists since Aut(A) 
={g~O(]R| the "group of units" of A, is a perfect group called .0 

z 
("dot zero") of order 222395472 11.13.23 whose central quotient is a simple 
group �9 1= .0/{+1} (dot one). These groups and several others closely as- 
sociated to them (.2 and .3) are called Conway groups because John 
Conway was the first to investigate the group theoretic properties of the Leech 
lattice [10, 49, 50]. We refer to Conway's more detailed discussion of A and -0 
found in [11]. In particular, we expect the reader to be familiar with [11], 
although we shall review some of the main definitions (in condensed form) and 
borrow some tables. 

We let f2=IFz3 u {oo}, as in [11] and let {x/liar2} be an orthonormal basis 
for Q~=Q24.  Let ~ = ~  (5, 8, 24) be a Steiner system based on f2. That is, Y 
consists of a family of eight-element subsets of O such that, given five distinct 
points of fL there is a unique member of the family containing the five points. 



The Friendly Giant 5 

Members of this family are called octads. The group preserving 5 f, i.e. 
{ g ~ o l C g e 5  ~ whenever C65~ is the Mathieu group M2~, a simple group of 

order 21~ 
The power set P(O) of f2 may be regarded as a vector space over lF 2 via 

the operation of symmetric difference: A,B~P((2), A + B = A w B - A c ~ B = ( A  
- B ) w ( B - A ) .  The subspace cg of P(f2) spanned by the 759 octads is, re- 
markably, only 12-dimensional. The subspace is called the ~-sets. In cg, there 
are 759 octads, 759 special 16-sets (=complements  of octads). 2576 special 
dodecads (certain 12-sets), 0 and f2; we have 759+759 +2 5 7 6 +  1 + 1 =4096. The 
stabilizer of a dodecad in M 2 4  is Mj2, and the stabilizer of a pair of com- 
plementary dodecads is M12.2. We shall also use the vector space @=~f/(f2), 
d i m ~ =  11. Occasionally we shall blur the distinction between members of 
and @. 

We recall a useful result from [11]. 

Lemma 2.1. Let {al, ..., as} be an octad. (i) The number of octads intersecting 
{a 1 . . . .  ,ai} in {al,... ,a~} exactly is the ( j+ l ) - th  entry in the ( i+l ) - th  line of 
Table 2.1.1. (ii) The number of dodecads intersecting {al, ..., ai} in {al, ..., aj} 
exactly is the (j+ 1)-th entry in the (i+ 1)-th line of Table 2.1.2. 

Table 2.1.1. How many octads? 

759 
506 253 

330 176 77 
210 120 56 21 

130 80 40 16 5 
78 52 28 12 4 l 

46 32 20 8 4 0 1 
30 16 16 4 4 0 0 1 

30 0 16 0 4 0 0 0 1 

Table 2.1.2. How many dodecads? 

2576 
1288 1288 

616 672 616 
280 336 336 280 

120 160 176 160 120 
48 72 88 88 72 48 

16 32 40 48 40 32 16 
0 16 16 24 24 16 16 0 

0 16 0 24 0 16 0 0 

On P((2), there is a natural bilinear form (A,B)~--,Mc~BI(mod2). On 
P(~2) . . . . .  the subspace of sets of even cardinality, we have a quadratic form A 
~-~�89 (mod2); see [18, 31] for a discussion of quadratic forms in characteristic 
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2. Its associated bilinear form is the one above. The %sets form a subspace 
which is totally singular with respect to the quadratic form. Note that ( O )  is 
the radical of the form on P(~2) . . . .  . Thus, we have an induced form on 
P(f2) . . . .  /(f~). When { i , j , . . . } c_ t2  and S___t? we write i , j , . . ,  in S(mod2) for 
]{i,j, ...} c~Sl(mod2). When {i,j, ...} and S are even sets, we may replace either 
or both by their complements when computing i,j,  ... in S(mod2). We shall 
enclose " i , j , . . .  in S" in brackets if clarity seems to require it. 

We describe the Leech lattice, A, as follows. Let ( , ) be the usual dot 
product on Q~, based on (xi, x)=bi~ and let ( , ) = ~ (  , ). The Leech lattice is 
defined as the span of all vectors of the shape 

(i) (8023) (i.e. +_8x~ for all ie~2) 
(ii) (28016) (i.e. the support is an octad, (9, each coordinate over (9 is _+2 

and the number of minus signs is even) 
(iii) (3123) (i.e. for each ief2, form - 3 x i +  v~ x j ,  then change signs at every 

C~_set) ' j . i  

A subgroup of .0 of special interest is a group called N24, a maximal 
subgroup of .0. It contains M24 as a group of coordinate permutations. 
Furthermore, N 2 4 = O z ( N 2 , ) . M 2 4 ,  where Oz(N24)_-_cg~212 and where the ele- 
ment e s of O2(N24 ), SeCg, sends x i to - x  i if i e S  and x i to x i if ir  The set of 
generators for A described above is invariant under N24 (since the intersection 
of any two Cg-sets has even cardinality). In [10], Conway describes an auto- 
morphism of A not in N24 , thereby proving that .0>N24 ,. 

For  each integer n > 0  we define A , = { 2 e A I ( 2 ,  2 )=2n} ,  the vectors o f  type 
n in A. Clearly, the A n partition A, and, as mentioned before, d I is empty. A 
triangle o f  type  a b c  shall mean a triple of lattice vectors with sum zero whose 
three members have types a, b and c, respectively. 

We shall be especially interested in A 2. From [11], we get A 2 
= A ~ w  AZ2w A32, where 

4 -  A 2 - a l l  vectors of shape (42022) (i.e. all +4 i  +4j, i - j  in f2); 
2 A z - a l l  vectors of shape (2s016); 

A~ =all  vectors of shape (3123). 

We have 1A421=(224).22=1104 , IA2]=759.2v=97152, [A31=24.212=98304 and 
IA21 = 196560= 1104+97152+98304. 

We let L = L / { + _ I } ,  for L a subset of A closed under 2~--,-2. For 2eL, let ,~ 
denote the image of 2 in L. Sometimes, we shall blur the distinction between 
elements of L and L. For instance, we may refer to the triangle of type 222 
spanned by ~.,/~e/] 2. 

Notat ion .  For ief2, 21:= - 3 x ~ +  ~ x j e A .  When S is a Cg-set, let 
) * i  

I 
--3Xi+ ~ Xj-- 2 Xj i f  ir 

,i*i j~-i 
�9 - -  e s - -  j r  j ~ S  

21's'-21 - 3x i+  ~ x ~ -  ~ x i if i cS .  
j*i j*i 
jr jeS 
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For i+j, 21j:=4xi+4x ~, 2 0 , : = 4 x i - 4 x  ~. For S a (g-set, 2 s : = ~ 2 x  ~. For 2eA, 
ieS 

let supp(2)={ief2lthe i th coordinate of 2 is nonzero}, Pos(2)={ie~2[the i th 
coordinate of 2 is positive}, Neg(2)={ief2[the i th coordinate of 2 is negative}. 
Let 6a=supp(2), for 2eA 2, i(2)=j if 2=2i, s. - 

Later, in Sect. 7, an isomorphism F(2)~c~: =g / ( f2 )  will be described, where 
F(2) is a certain 2-group of order 211. To xeF(2) we associate a pair {Sx, Sx 
+f2} of c6-sets. We set 2i, x:=)L~,sx. This is not well defined, but does give a 
well-defined equivalence class in /]2=A2/{• The inverse operation assigns 
to SeCg or ~ the element xseF(2 ). 

Lemma 2.2. (i) Let f2 be a finite set, P(f2) the Boolean algebra of subsets of f2, E 
_<_P(f2) . . . . .  the subspace of sets of even cardinality. The map P(f2)x P(f2)--,F2, 
(A,B)~-+IAc~Bt(mod2), is bilinear. The map E---~IF2, AF-~l[A[(mod2) is a qua- 
dratic.form on E with associated bilinear form (A, B)~-+IA c~ B] (rood2). The radi- 
cal of the fi>rm is contained in (f2) and is (f2) if]Q[ is even. 

(ii) Let E 1 be a subspace of s  . . . .  such that if ACE1, then 
[Al-0(mod4). I f  A, BeE l, Then I[A+B[=�89188188 Also, 
IIA -B1-�89 c~BI (rood 2)for A, B~E 1 . 

Proof (i) For A,B, CeP((2) one must check that [(A+B)c~C[=[Ac~C[ 
+lBc~Cl(mod2) and, when A,B, CeE, +B[+  ~ 1 �89 5lAl+~lBl- lAmBl(mod2) .  
The last statement essentially amounts to the observation that if AeE, A=I=O, (2 
and ieA, j6A, then I{i,j} c~AI- 1 (mod 2). 

(ii) The condition IAl-=0(mod4) for A c E  1 implies that I A ~ B i - 0 ( m o d 2 )  
for A, BeEt ;  see Lemma2.1. In particular, all the IA-BI  are in 2;g. Write 6 
=lAc~BI, IAl=c~+3, IBl=fl+6, IA+Bl=cc+fl. Our hypotheses imply that c~, 6 
and fi are all in either 4g  or 2+4Z.  

We have �88 1 -sIA-BI+�88 Also, �88188 
+�88 (mod 2). Rearranging, we get the first statement. 

The second statement needs only [A]-0(mod4) and JAcoB[ even, for all 
A, BeE 1. 

The next lemma will be used repeatedly. 

Lemma 2.3. Suppose that 2=2~,x +_2j, veA 2. Then either 
(i) i=j  and S~+Sy=(9 or (9+I2, where (9 is an octad, i~(9; or 
(ii) i+j  and S~+Sy=(9 or (9+(2, where (9 is an octad and i, je(9; also, 

~(2ij, 2 ) - l  +lz()~ij,,2)--ij in S~+ l = i j  in Sy+l (mod2)  and {ij}+S~ meets (9 
in Pos(2) or Neg(2). 

Proof (i) Suppose i=j. Then, arranging i6SxWS v, we must have 

2~,~=(-3 1...1 - 1 . . . - 1  1... 1 - 1 . . . - 1 )  

2 i , v= ( -3  1...1 - 1 . . . - 1  - 1 . . . - 1  1... 1) 

2 =( 0 0. . .0 0... ,0 2... 2 - 2 . . . - 2 )  
i Sxc~Sy  Sy  - S~ S x  -~S s, 

and the statement is obvious. 
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(ii) Suppose i4=j. We may arrange iq}S~,, and jq~S x. Since the coordinates of 
2 at i and j must be _+2, we are forced to have either i(~S~,, j(~S~ and the 
picture 

Sx- 

2~,x=(-3 1 1...1 1... 1 - 1 . . . - 1  - 1 . . . - 1 5  

2j, x = (  1 - 3  1 . . . 1  - 1 . . . - 1  - 1 . . . - 1  1 . . .  1) 

2 = ( - 2  - 2  2. . .2 0... 0 - 2 . . . - 2  0...  0) 

or i~S~,, jsS~ and the picture 
S~ 

2~,~=(--3 1... 1 - -1 . . . - -1  - 1  - -1 . . . - -1  1...1) 

2s, y=(--1 - 1 . . . - 1  - -1 . . . - -1  - 3  1... 1 1...1) 

2 = ( - 2  2...  2 0... 0 2 - 2 . . . - 2 0 . . . 0 ) .  
i j 

Sy 

In the former case, Sx+Sy=(9+f2 and in the latter case, Sx+Sy=(9. By in- 
spection, {ij}+S x meets (9 in Pos(2) or Neg(2) in either case. Also, S:,c~S~, 
=Sxc~(9 when ij in S x - 0 ( m o d 2  ) and Sx+(Sxc~Sy)-Sxc~(F~-S>,)=S~c~(9 when 
ij in Sx_=l(mod2) (in the latter case, Sx=S~c~f~=Sxc~(fa-S>,+Sy)=Sxc~(~2 
-S~,)+Sx~S>,, so that SxC~Sx=S~+(SxC~(9) ). Note also that 12(2u,,2 ) 
+ 1 =-�89 2 ) - i j  in S~+ 1 ~_ ij in Sy + 1 (rood 2) in either case. 

Definition. For an integer n, define A(n)={2eAI every coordinate of 2 is in 
nZ} = A ~ ~ nlZx~. 

i~O 

Lemma2.4. Let 2~A 2, S~Cg and ~= ~ 2xi(modA(4)). I f  Sc~(94:(9,0, then 
iESc~@.~ 

(-1)<~'~5=0. (Note that ~ lies in A if and only if Sc~(9=(9 or ft.) 
supp (0  = t~ 

Proof. Suppose ~= ~ 2xi+r/, where r/ is an integral vector, suppqc~(9~=fl. 
i~Sn~a 

Let ISc~(9~1=2a , 1_<a<3. Choose some index k6(9~-S and normalize our 
choices of (6~ with supp(=(9z to have positive coordinate at k. Given 
be{0, 1, ..., 2a}, the number of ( with positive k th coordinate and with exactly b 

positive coordinates over Sc~(9~ is (2t~a) 26-2a. For such a ~,(( ,~)=-~[4b 
- 4(2a - b)] = b - a. Therefore, \ o !  

as required. 

2" (7) 
2 ( - 1 )  E (-1) b-~ 26-2~ 

b=O 

Now for the general case: ~ = ~ 2x~+/~ + t/, where ~/ is an integral vector, 
iESc~(9;~ 

suppr/c~(9~=0, #~A(4). If/~ has exactly c coordinates in 4 + 8 Z  over (9~, then 
(-1)<;'~>=( - 1)c+<;'a-G The previous case may now he applied. 
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Lemma 2.5. Let R be a commutative ring, G a finite group, H a subgroup and M 
=RIG~HI the permutation for RG based on the right cosets of H. Then, 
regarding R as a trivial module, 

(i) Hn(G, M)~-H"(H, R)for all n>O; and 

(ii) f H o m ( H / H ' , R ) = O ,  H1(G,M)=O. 

Proof (i) Since M = R |  is an induced (=coinduced) module for the finite 
R M  

group G, (i) is a special case of Shapiro's lemma; see [39]. 

(ii) This follows from (i) since HI(H, R) '~Hom(H/H',  R); see [39]. 

Lemma2.6. Let G be a finite group and M a vector space affording a real 
orthogonal representation of G. Let {xi} be an orthonormal basis. Invariant 
positive definite inner products Jbr G on M | M, S2 M and A2 M are given by 

(i) (x~ | x~, xk | x0 = a~ b j,, 
(ii) (x i xa, x~ x,) = (~ik t~jl -}- tSil t~jk' 

(ii i)  (x, Ax a, xkAx 3 - -  2a{~.a}. /k . ,}(-  1)~ 

Proof (i) is easy to check. Write M | 1 7 4  Then SeM is spanned 
by all x i x j = x i | 1 7 4  i and A2M is spanned by all x i A x a = x i |  ~ 
- x j |  Thus the direct sum is orthogonal, and it is easy to deduce (ii) and 
(iii). Since the form on M |  is positive definite, the same is true for the 
forms on S2M and A 2 M. 

Lemma 2.7. Let G o be a finite group and A, B and C be self-dual @Go-modules, 
all with Go-invariant bilinear Jorms, written ( , ) .  There is an isomorphism 
HOm~Go(A @B, C)~Hom~Go(A, B |  C) such that if f and g are corresponding 
maps, then ( f (a|  c)=(g(a), b| Furthermore, if A, B and C are absolutely 
irreducible, the multiplicity of C in A | B equals that of A in B |  C. 

Proof This is a variant of the adjointness property of Horn and | Let 
f~Hom~c,o (A | B, C). Define feHomQc, o(A, B | C) by (f(a), (b | c)) 
=( f (a|  For g~Hom~c,o(A,B| ), define ~,eHom~ao(A| by 
(~(a| c)=(g(a), b| The rest is an exercise. 

Lemma 2.8. Let Z be a complex character of the group G afforded by the module 
M. Then S3 M aJ]brds the character 

g~--+~ {z(g) 3 + 3x(g 2) Z (g) + 2z(g3)} �9 

Proof We may assume that G = ( g ) .  If x~, . . . , x ,  is a basis of eigenvectors for 
the action of g on M, then all distinct x~xjx k form a basis for S3M. The result 
follows by studying the eigenvalues which occur. 

Lemma 2.9. Let R be a subring of C. I f  the RG-module M has an R-valued 
invariant symmetric bilinear form ( , ), then a G-invariant map SZ M-+M satisfies 
the associative law (ab, c)=(a, bc).for a, b, ceM, if and only !f there is a G- 
invariant map f :  S 3 M-+ R which satisfies f (a, b, c)= (ab, c). 

Proof Exercise. 
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Lemma 2.10. Let G~-Suz and let l~292~G " ,G--*I be nonsplit. In the no- 
tation of [-4], (16.5), an element of e ~ ~ has order 4 (e is an involution inducing a 
graph-field automorphism on a standard component of type L3(4 ) in CJ). 

Proof. Since lel = 2, there are two possible conjugacy classes of (~ which might 
contain e. If the Lemma is false, then Ca(e ) looks like 21_ +6. U4(2 ). In the 
notation of [4], (16.5), L~L3(4  ) and C L ( e ) ~ - P S U ( 3 , 2 ) = ~ . Q s .  The group 
CL(e ) cannot be embedded in Ca(e ) since the smallest faithful lF2-repre- 
sentation of CL(e ) has dimension 8, a contradiction. The Lemma follows. 

Lemma 2.11. (i) HI(  �9 1,1F2)=0 (ii) Hi(  �9 1, A/2A)=O; in fact any module exten- 
sion of A/2A by IF 2 is split. 

Proof. (i) is obvious since .1 is perfect. (ii) may be proved by using the 
vanishing theorem of Alperin and Gorenstein [1]. Their hypotheses require a 
collection of subgroups 52 of .1 which satisfies (a) H~ and 
Hi(L,  A/2A)=O for LeSP; (b) �9 1 is generated by the subgroups of 5 ~ (c) given 
L1,L2ESr~ , there is L ~ Y  with L<=Lln L  2. We let 5P={AlxA2 ,  C(A1), 
C(A2)}, where A1-~A2~713, H~ A/2A)=O for i=1,2,  and C(A 1 xA2)=3.3. 
U4(3 ) (see [11], p. 242 and 247). The groups C(Ai) are perfect central exten- 
sions, 3. Suz. We get (a) for ~ from [14] or [58], (c) is obvious, and (b) may 
be proved in the following way. Let Y be the group generated by the elements 
of ~ .  We claim that Y and �9 1 both have involutions with centralizers of the 
shape 2~++S.D4(2). Then [56] may be quoted to get Y=. I .  Let ze.1 be an 
involutiori with centralizer C of shape _+91+8.D4(2 ). Without loss, we may 
arrange A 1 x A 2 __< C and Cc(Ai)-~ 21_ +6. U4(2 ). An easy calculation in the group 
D~(2) shows that C = ( C c ( A 1 )  , Cc(A2)) ,  and we are done. 

Lemma 2.12. (i) IA: A(2)I =2,  

(ii) IA: A(4)1----213, 
(iii) IA: A(4)+2AI =212, 
(iv) [A: A(8)[ =236, 
(v) IA: A(8)+2AI =223. 

Proof. (i) is clear. If {vll ieO} is a basis for A, {2viLicf2 } is a basis for 2A. Let 
us take such a basis with {vili~O,i~ao~ } in A(2). Then A(4)c~2A 
=span{4v~,2v~li~f2}. It is clear that A(4) is spanned by all 4xi+4xj ,  i, je~2. 
Since 8xi=_8xj(mod2A ) for i * j  and 8xi62A, (v) is clear. The only linear 
dependence relations among the 4x~+4x~ modulo 2A+A(8) have the form 
~ 4 x i + 4 x j = O ( m o d 2 A + A ( 8 ) ) ,  where ~{ i , j }=SeC~ in P(f2). Therefore, 

{i, j} {i, j} 
d i m A ( 4 ) / 2 A + A ( 8 ) = 2 3 - 1 2 = l l ,  which, with (v), proves (ii) and (iii). For 
xeA(8), let I(x)={ief21the i th coordinate of x is in 8+162g}. Easily, M 
= { x e A (8) 11 (x) is even} = 2 A (4) and I A (8): M I = 2, proving (iv). 

Lemma 2.13. Let G~-M12, V the IF 2 G-permutation module on the right cosets of 
Go<G , Go_~MI1. Then H~(G,V)=O, H~(G,[V,G])~-2g2 and HI(G,V/Cv(G))  
_~ 7] 2 . 
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Proof By Lemma 2.5, Hi(G, V)~-HI(Go, 7]2)=0. Also, from 
0---~[V,,G]---*V--*~2---~0 and the long exact cohomology sequence, we get 
0--~72--->TZ2---~Zz---~H1 (G, [V,, G])---+0, whence Hi(G, [V, G ] ) ~  2. Likewise, from 
0-~ ~2  ~ V-.*. V / C v ( G  ) --~ O, w e  get an exact sequence 

0=Hi(G, V)--+HI(G, V/Cv(G)I~H2(G, ~2)~H2(G,  V). 

By [7], H2(G, 2 ~ 2 ) ~  2 and, by Lemma 2.5, H2(G, V)~-H2(Go, 7/2) , which is 0, 
by [7]. So Ha(G, V / C v ( G ) ) ~  2. 

Lemma 2.14 (Goldschmidt [26]). Let Hypothesis (*) consist of the following 
assumptions: 

(a) T~Syl2(G), G a finite group, 
(b) W is a weakly closed subgroup of T with respect to G, 
(c) A is an abelian normal subgroup of Nc,(W ) and A <= CT(W), 
(d) 5 : = { B < T } B < A , B ~ : A } ,  

G 

(e) r = max {m(B/CB(W)) I B ~5:}. 

Assume (*). Then the following hold: (i) If B < T a n d  B<A,  then CB(W ) 
G 

=Bc~A and there is g~G such that Bg<A and NT(B) g< Z 
(ii) Either ~21(A ) is a strongly closed abelian subgroup (whence the normal 

closure of t2 I(A) in G is a described in Theorem A of [26]) or (ii.1) there is 
B65:  with m(B)+r>=m(A); and (ii.2) if t is an involution of Twith  t~A, then 

G 
m([A, t ] )<2r ,  and if B/CB(W) is elementary abelian for all B~5: which satisfy 
(ii.1), then m([A, t])<r. 

Lemma 2.15 (N.J. Patterson [56]). Let T6Sy12N24 where/~24<. 1 and N24 is the 

image of N24 in .l.  Then (i) the 2-rank of T is 11; (ii) O2(N24 ) is the unique 
subgroup of T isomorphic to 77121 . 

Lemma 2.16 (Steve Smith [63]). I f  G o is a finite group containing an involution z 
such that 0 tC t z ~ 2 1 + 2 4  2~ to, ,,= + , CG(O2(Coo(Z)))=(z) and Coo(Z)/O2(CG(Z))~_.l , 
then either (i) there is an involution t602(CGo(t)) such that Coo(t)'~F 2 and IGol 
=246 320 59 7 6 1 1 2 1 3 3 1 7 . 1 9 . 2 3 . 2 9 . 3 1 . 4 1 . 4 7 . 5 9 . 7 1 ; o r ( i i ) G  o=0(Go) CGo(z ). 

Lemma2.17. Let V be any faithful IF2M23-module of dimension 11. Then 
Hi(M23, V)=0. 

Proof Imitate the proof of Lemma 9.1 from [33]. 

Lemma 2.18. Let H be a finite group with the Jbllowing properties 

(i) H/O 2 (H) ~ M23, 
(ii) Z (02 (H)) ~ ~ 2, 

(iii) the set of chief factors of H within 02(H ) consists of one trivial module, 
one factor isomorphic to c~ and one to c~,_~ P(Y2) . . . .  /c~. 

(iv) H=H'.  

Then H has trivial multiplier. 
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Proof Since M23 has trivial multiplier [7], the only prime to examine here is 2. 
Let /4 be a covering group of H. By Lemma 2.17 and H2(M23, 1~/7~)=0, the 
only trivial chief factors within 02(/4 ) occur within O2(/4)'. Since c~ and c~, are 
absolutely irreducible and not selfdual, 102(/4 )' chZ(O2(/J)) I < 2. This proves the 
Lemma. 

Lemma2.19. Suppose that F is a field and that G = N L  is a finite group, 
N<~G,L<G and Nc~L<Z(L) .  Suppose that M is a finite dimensional FG- 
module, faithful for G, such that the restriction to FL is absolutely irreducible. 
Suppose that n = dim F M, N ~  G and that L has no proper subgroup of index < n. 
Assume that L 1 =L/Z(L)  is simple, min{dimM 11MI is a finite dimensional E- 
vector space and L 1 is involved in AutE(M~)}>n for all algebraically closed 
fields E, and, whenever P is a p-subgroup of N with L 1 involved in Aut PM1)} >n 
for all algebraically closed fields E, and, whenever P is a p-subgroup of N with 
L 1 involved in AutP, P is abelian. 

Then N is scalar on M. 

Proof We may assume N is not scalar on M and that F is algebraically closed. 
Let pe~(N), S~Sylp(N), S~=Z(G). Then NG(S ) covers G/N. If S is nonabelian, 
CG(S ) is nonsolvable and involves L 1, One of our hypotheses on L~ forces 
Co(S ) to act irreducibly on M, whence S is scalar, a contradiction. If S is 
abelian but not scalar on M, the above argument shows that the action of 
Na(S) on S involves L 1. Then Clifford Theory applied to I#-S<~NG(S ) plus the 
fact that LI has no proper subgroup of index n or less gives us the required 
contradiction. 

Lemma 2.20. (i) A proper subgroup of D4(2 ) has index at least 28. 

(ii) Let G = . 0  and let H be a proper subgroup. Then ]G:g] >832. 
(iii) In the notation of Lemma 2.19. minEmindim {Mll. . .  } is 8 flbr D4(2 ) and 

24for �9 1. Also, (L1, n)#(D4(2), 8), (. 1, 24) whenever a P arises with P'=t = 1 and L I 
involved in Aut (P). 

Proof. (i) Since D4(2 ) is simple, any proper subgroup of D4(2 ) fails to contain 
some U4(2)-subgrou p. Since the minimal index of a proper subgroup of U4(2 ) is 
27 ([45], [17], p. 307), we get that if H<G=D4(2) ,  then [G:H[>27. If IG:HI is 
odd, H lies in a maximal parabolic, each of which has index 135. Thus ]G:Ht 
>28, as required. 

(ii) if L is any subgroup of G such that tL:Lc~H]>832, we are done. We 
may suppose that IG:H]<832. Without loss, Z(G)<H.  Let bars denote images 
modulo Z(G). 

Take L I < L < G ,  Lx=U3(4), L_~2G2(4 ). Suppose LI~=H. Since IL~] 
=26 . 3.52 . 13 and 1Llt/832=75, H n L  1 can not have odd order (an easy exer- 
cise). So, whether LI lies in H or not, H contains an elementary abelian 2-group 
F + I  o f L  1. Note that ff lies in a root group in L~G2(4), for a long root. 

We now set Ho:=({FglFg<=H, geL}) .  If 0 2 ( H ~ L ) + I  , Hc~L 1 lies in a 
maximal parabolic of L,  whence IL :LnHI>1365 ,  a contradiction. So, 

0 2 ( H n L ) = I .  Since (U Fg) * is a class of {4, odd} +-transpositions, of a theo- 
geL 
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rem of Timmesfeld [72] identifies I2Io<HmL, as SL(2,4), SL(3,4), Ua(4 ) or 
G2(4 ). Since ]G2(4)]/2 [ U3(4)] = 2016 > 832 and ]G2(4)I/2[SL(3, 4)l = 2080 > 832, it is 
easy to deduce L < H from this. 

This argument shows that H must contain every conjugate of L, whence H 
= G is not proper. This contradiction proves the result. 

(iii) Define m l (p)=min {dim M I l M  1 is a finite dimensional IF~,-vector space 
and L 1 is involved in Aut>,,(M1)}, and let M 1 be such a module with dim~pM 1 
=ml(p). Then M 1 is irreducible. 

Say Ll=D4(2),  m 1=m1(p)<7 for some p>0.  Then there is A<GL(m1,IF~) , 
and B < A  with A/B '~L  1. Let A be of least order. Then, by a Frattini argu- 
ment, B is a nilpotent p'-group. If B;~Z(A), (i) and the fact that IFp is 
algebraically closed imply that every characteristic abelian subgroup of B is 
cyclic, whence B is as described by P. Hall's theorem ([27], p. 198). The bound 
m1<7 implies that the only nonsolvable composition factors of Aut(B) are 
various PSL(2, r). Thus, CA(B ) involves L1, i.e., B<Z(A) ,  whence A=D4(2 ) or 
2D4(2 ). If p +2, a restriction of the representation to a 2.26 .A 8 subgroup gives 
a contradiction to m1<7. So, p=2,  and consideration of a (3 x U~(2))2 sub- 
group of D4(2 ) shows that U4(2)2 or 2U4(2)2 must act faithfully in dimension 
5, or U4(2 ) must act faithfully in dimension 3. These situations are eliminated 
by looking at the subgroups 3 1 + 2  . GL(2, 3) and a Frobenius group of order 20 
in z~ 6 < U4(2 ). 

Say L I = . I ,  ml=ml(p)<23 .  As above, we get A quasisimple with A/Z(A)  
~L1 in GL(mI,IFp). If p=t=2, we see that neither N24 or Nz4/Z(N24 ) may be 
embedded in GL(mI,IFp) since the noncentral abelian normal subgroup of 
either group does not have an Nz4-conjugacy class of fewer than m 1 hyper- 
planes. So, p=2,  and we get a similar contradiction by considering the sub- 
group (36.2M12) x ( - 1 )  in .0. 

Suppose that a nonabelian p-group P arises as in Lemma 2.15. By (i) and 
P. Hall's theorem ([27], p. 198), P=O~(P)  may be assumed extraspecial or of 
shape 2~ +2ko :E4. Since L is absolutely irreducible on M, p divides n = d i m  M 
and p + c h a r F  (M is our F-vector space). If (L~, n)=(D4(2), 8), then p=2.  The 
structure of AutP  [31] forces k>__4, whence pk=16 divides n, contradiction. If 
(Ll, n) = (. l, 24), p = 2  or 3. If p=3 ,  P ~ 3  ~+2 and AutP  is solvable, a con- 
tradiction. If p=2 ,  ~ l +2k 1+2k P=2~ or 2~ o ~ ,  then k<4,  a contradiction to an 
earlier part of (iii). 

Proposition 2.21. Let p be a prime, p> 5, and let ~: .0--*0(24, 2) be the homomor- 
phism associated with the natural action of .0 on A /2 A. 7hen X: 
= {X <0(24,  2)IX contains ( .0)~ and X has a projective representation on ~24 p 

which is nontrivial on (. O) t)} is just {(. 0) 0}. 

Proof. Let /4:=(-0)~ a l e x  and G a central extension of (~ with 
-24 Let H be the subgroup of G the relevant faithful representation on IFp.  

isomorphic to �9 0 and mapping o n t o / )  and let M be the relevant lFp G-module. 
Let z e H  be an involution with eigenvalues {-116,  l 8} and se t  Qo:=O2(Cu(2)) 
~-)1 +8 _+ x2;  ( z ) = Q 0 .  

Let us set C~:=C~(Q0 ). Let C~ be the group of linear transformations 
induced by C~ on the e eigenspace M~ for z, e,= + , - ;  we have d imM =16, 



14 R.L. Griess, Jr. 

dimM+ =8. Then C i- must induce scalars since Q0 is absolutely irreducible on 
M . By applying Clifford theory to C +, normalized by the image C,(z) + of 
Cn(z ) in GL(M+), we get that C~- is scalar on M+ (see Lemmas 2.19 and 2.20) 
or else C + c~C,(z) + >(CH(z)+) '. Thus, C 1 is abelian of rank 2 and induces 
scalars on M+ and M , or else C~- contains a linear group 2D4(2 ) on M+. 
We eliminate the second alternative by looking at the action of G on V, a 24- 
dimensional lF2-space on which H and G act as subgroups of the orthogonal 
group. Each term of the series V > [V, Q0] > IV, Qo, Q0] >0  has codimension 8 
in the previous one [36]. Since [Qo, C1] =1, the P x Q lemma ([27], p. 179) 
implies that O2(C1) are nontrivially on Cv(Q), which must be absolutely 
irreducible for O2(C1), by Lemma 2.20(iii). Similarly, 02(C1) is nontrivial on 
each factor of the above series since [Q0, C1] = 1. However, by absolute irreduc- 
ibility, the subgroup of Qo commutating trivially, one factor to the one k steps 
lower must have index at most 2 k in Q0. Consequently, a subgroup of index 23 
in Qo acts trivially on V, which is absurd. 

We conclude that C 1 is abelian of rank 2 and induces scalars on M+ and 
m _ .  

Let Q:=CQo(M +) , R:=Oz(QC1); QCI=O(QC1)xR. We set HI:=NG(R ). 
Possibly, Q<~H I<NG(Q) although Q<zH and R~-QoTZ~, among other things, 
might be the case. We want to prove that Q<~H 1. Suppose Q@H 1. Since R' 
= Q ' = ( z ) ,  H 1 acts on both M+ and M and so Q<=R+:=CR(M+)<H 1. The 
normal closure of Q in H 1 is Ro:=QR 1, RI:=Z(Ro) is cyclic, ]RI]=4 and 
Ro=Ol(R+)~(21++8)o294. Let A:=NG(Ro)/RoC~(Ro). Then A contains a na- 
tural copy of D4(2) (fixing Q) and A is embedded (by q), say) into Out(R0)' 
~-Sp(8, 2). Let Y/ be the set of 256 maximal subgroups of R 0 not containing 
R~. Every member of Yr is an extraspecial group of order 2 9. Let ~ be the set 
of elements of Y/ of ~ type (e= + or - ) .  The action of Out(Ro)'~-Sp(8,2 ) is 
transitive on each set YC+,Yr with point-stabilizers Gx, X e ~  , natural 
D4(2).2, 2D4(2).2 subgroups, respectively (this follows from the definition of 
Aut(Ro); see [31] for more details), and a calculation ([27], p. 491) shows that 
Io3'+1 = 1 3 6 ,  I~r = 1 2 0 .  

Furthermore, if X ~ / ,  the stabilizer of X has two orbits on ~ - { X }  
(reason: the orthogonal group G x stabilizing X is transitive on the set of 
nonidentity cosets of Z(X) which contain involutions and on the set of cosets 
which do not, and the mapping Y ~ - { X } ,  Y~-~Z(Xc~Y), sets up a G x- 
equivariant bijection between Yr {X} and (X/Z(X))~). 

So, GQ has orbits of length 1,135 on ~/+, whence Q@H L gives 
IA~I>(212.35.52.7)(23.17)>�89 and so A =Sp(8,2), as S p ( 8 , 2 ) i s  
simple. 

Now let H~ be the linear group induced by H~ on M~, e= +, - .  At once, 
H+/Z(H~-)~Sp(8, 2). Since the Schur multiplier of Sp(8, 2) is trivial [64], (H~+) ' 
~-Sp(8, 2). But then, the perfect group 2D4(2 ) cannot be embedded in (H+) ', a 
contradiction. So, Q-~ H I =N6(Q) , as desired. 

The next step in the argument is to show that H~ = CG(z ). Let H2:=  CG(Z), 
H3=Cu~(M+). Our results prove R c~H3sSyl2(H3). Since H3/Z(H3) has abe- 
lian Sylow 2-subgroups, the action of H~ on Q and the classification of such 
groups [75] imply that H 3 is solvable of 2-length 1. We are done if Q<~H 3, 
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so assume otherwise. Then [O(H3), Q] + 1. Since O(H3) N6(Q) acts absolutely irre- 
ducibly on the 16-dimensional space M , Clifford theory implies that Op(H3) 
= 1 and O(H3) is abelian. Then k e m m a  2.20(i) and the fact that  Q/Z(Q) is an 
irreducible module of order 28 for NG(Q) imply that O(H3) is scalar on M_,  a 
contradiction. 

We argue that C 1 = (C0 ,  z),  where C O consists of  scalar t ransformations on 
M. Choose T < H  1, T~-2g~ z such that NI:=Nu(T ) is the group N24 , i.e., N 1 
=TNo, No~M24. Then CI<C(T), an abelian group, since T operates on M 
with 24 distinct linear characters�9 Since H 1 ~ C~(z), CG(T)= CHI(T)=TC 1. The 
action of  N o on TC1, and the fact that C 1 has rank 2 implies that O(C~) is 
scalar and that Ol(O2(C1))c~Tis scalar on M. By [33], 9.3, 02(CO=TT 1 as a 
7ZNo-module, where T l is scalar. So, C o = O ( C  0 T 1 has the requisite property. 

It follows from the above that H~=Na(Q)=N~(R)=CG(z ) and H~/QC o 
~D4(2  ) or  D4(2).2. We shall prove that if H1/QCo'~D4(2)2, G has a normal  
subgroup of  index 2. We have that H '  1 ~ (2 + 21+8) D4(2 ). 

Suppose HI/QCo~D4(2).2. Let SeSyl2(H1)c_SylE(G) (because OI(Z(S)) 
=Z(Q0)  ) and set So:=Sc~H'IC o, a maximal subgroup of  S. Define 2 a 
= m i n  {[gl I g ~ S - S 0 } .  An easy variation of  the T h o m p s o n  transfer lemma ([70], 
5.38) says that if g e S - S o ,  lgl=2" and G=O2(G), then g fuses in G to an 
element of  S o . 

Let us suppose that G=O2(G) and produce a contradiction. Let t s S - S  o be 
an element which induces a transvection on Q/Z(Q) and, among  all such 
elements, has least possible order, say 2b>2.  Choose a conjugate ta of  t in 
NG(Q ) such that (t, t l)  induces a natural 0 - ( 2 , 2 ) ~ X  3 on Q/Z(Q). Let 
P~Syl3(( t ,  t l)) ,  IPI = 3. Then (Q, P )  = [Q, P]  P x Ce(P ) and [Q, P]  ~ Q8. Recall 
that  p:#3. Each eigenvalue for a generator  h of  P on M occurs with 
multiplicity 8 (since Ce(P  ) effects the linear group 21_ +6 on M ) ,  and h is 
conjugate to h -1 in H'a; so (0 and co -1 are these eigenvalues, where (O3=1 
=1 = co~lFp. Thus t has trace 0 on M . List the eigenvalues of t: {a~,a 2,.. .} with 
multiplicities m~,m 2 . . . .  , indexed so that a2~+~ = - a 2 ~ + 2  , i = 0 ,  1 . . . . .  We have 
m2i+l=m2i+2 for i = 0 ,  1, . . . .  On M+,H 1 induces a linear group 2D4(2 ) and, 
on it, t centralizes an Sp(6, 2)x7l 2 subgroup. So, on M+,  t has eigenvalues 
{c,c,c,c,c,c,c,c'}, c+c'. Let I ,J  be the set of  i for which m i is even, odd, 
respectively. 

We argue that (1) t has an eigenvalue with odd multiplicity, and (2) we may 
assume b = a = l  or t 2 generates O2(C0). If c or c' does not occur in {a l , a  2 . . . .  }, 
(1) holds, and if c or  c' does occur, as a~, say, and ieI, this is so. We may 

�9 , t ~  assume that c=aj, c'=aj,, {J, J i=J. Then mj=mj,  and ~ ' m ~ = 2 ( m o d 4 ) ,  whence 
i~I  

at least one partial sum m2i+l +m2i+2 is in 2+42g. Since m2i+l =m2i+2 , this is 
a contradict ion proving (1). As for (2), if we let O(CO<K<NG(Q) be a group 
of  odd order commut ing  modulo  C~ with (t, P )  and satisfying [Q, K]  ~ 2 1  +6, a 
Frattini argument  with K < ( R ,  K, t )  shows that we may arrange for t2~CR(K) 
= [ Q , P ]  C O and even t2e(z, Co). If t2eCo, (2) follows, so assume t2ezCo and 
b>a. Then take x6Ce((P,t)),  x2=z and replace t by tx -~. Note  that this 
adjustment does not  affect (1). 

Since (2) holds, we get that t is conjugate in G to ueS o because b=a holds 
or because the image of t in G/Z(G) is an involution in case (t2)=02(Co). 
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Write u=u  1 u2, u leH '  1 =Nn(Q) , bl2EC 0. The above discussion of eigenvalues 
for t shows that t has at least two eigenvalues with odd multiplicity. However, 
every 2-element of H'~ C 1 = H '  1 C o has every eigenvalue with even multiplicity: 
this is so for u~eH'~, by [12], and is also true for uGH] C o as C o consists of 
scalar matrices. This contradiction proves that G :t = O2(G)  if H~/QC o ~-D4(2 ) . 2. 

In view of the last two paragraphs and the fact that Out ( .1 )=  1, we may 
assume that G has no normal subgroup of index 2 and that HI/QCo~D4(2 ). 
Then [56] may be quoted to obtain G/Z(G)~.  1. This contradiction proves 
the Lemma. 

["]([2]) Lemma 2.22. The 2-rank of G L(n, 2) is precisely ~ n -  for n > 2. 

Proof. This is easily checked for n = 2  and 3. Set g(,0:= (,-- Suppose 
n > 2  and take A<__GL(n+2,2), A ~ ,  r maximal. By Sylow's theorem, we 
may assume A lies in a subgroup QL of GL(n+2,  2), Q~21§ L~-GL(n, 2). 
Then [A c~Q] < 2 "§ ~ and, by induction, IA/A n QI < g(n). So 

Since 

n {n 1) n 

we get r < g ( n + 2 ) .  The opposite inequality is needed to finish. To prove that 
g(n) is the 2-rank of GL(n, 2), we exhibit an appropriate subgroup. If V is 

the underlying vector space and W is a subspace of dimension ~ , the 

stability group of the chain 0 < W< V is elementary of order 2g('( 
These results are contained in the Cambridge thesis of P.E. Smith in which 

the p-ranks of all groups of Lie type in characteristic p are determined. 

Corollary 2.23. The 2-rank of M24 is precisely 6. 

Proof M24 and GL(5, 2) have isomorphic Sylow 2-subgroups [41]. 

Lemma 2.24. The 2-rank o['. 3 is at least 4 and at most 6. 

Proof We shall show that .3 contains a subgroup H of odd index where O2(H ) 
~TZ, 4 = 2, H is 2-constrained, H/OE(H)~-GL(4 , 2). 

Let us assume the above and deduce the Lemma. Let E < H ,  E~TZ~, r 
maximal. Then r_>_4. Since the 2-rank of GL(4, 2) is 4, (see Lemma 2.22), 
achieved by, say, all matrices of the shape 

t a, b, c, d~IF 2 , 

the fact that H / O 2 ( H  ) a c t s  faithfully o n  0 2 ( H  ) implies that r<6 ,  as required. 
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Now to exhibit the subgroup  H. 
Let 

~ = 4 X k - - 2 x i +  ~ 2X~ 
j e 6  ~ 
j + i  

be our vector  of type 3; here, (9 is an octad containing i and avoiding k. Let A 
be the subgroup of  Mz4_-<N24 stabilizing (9 and fixing k. Thus, A~-As and A*: 
={g~Alx~=x i}~-A  7. Clearly, Y:={g~N241~g=~} <=O2(N24)A and YI: 
= Yc~O2(Nz4)= {esLS~Cg, Sc~(9=0 and kq~S} ~2g~. So, Y~ A* < Y and Y/YI~- A7 
or A 8. We prove  that Y / Y I ~ A  8. For  g~A, we obtain  yg~Y as follows. If  i ~ 
-=j~(9, take any Cg-set S=S~ such that  Sc~((gvo{k})={i,j}; easily, such an S 
exists, and if T is another  candidate,  ~s+r is in Y1. We set yg:=Esg~Y. At once, 
Y/Y1~As .  

Since I11 is a nontr ivial  module  for A, the group  Y serves as our  H, and we 
are done. 

L e m m a  2.25. Let 3 =  { T 1 . . . . .  T~} be a sextet. 7he only off-sets disjoint from T 1 
+ T 2 + T  3 are the octads Ti + Tj, i, j~{4, 5, 6}, i ~j,  and O. 

Pro(~ Clearly, all such nonempty  ~-sets  are octads. There  are 30 octads 
disjoint from the octad T~ + T 2 and any two distinct such octads are disjoint or 
meet  in a 4-set; see Table  2.1.1. Let  C be an octad disjoint from T I + T z + T  3. 
Take  any index i~{4, 5, 6} such that  (gc~T/+0. Then (gc-~Ti=(9~(Ta+Ti) must  
be a nonempty  even set since T 3 + T  ~ is an octad. If  there is k~{4,5 ,6}  such 
that  Tk~(9=r  C = T / + T ~ ,  as required. If there is no such k, IT/~(;'I must  be 2 
for je{4,  5, 6}, by the basic proper ty  of sextets. This means  1(91=6, a con- 
tradiction. 

L e m m a  2.26. (i) Let V be a linear subspace of cg such that V contains no 
dodecad. Then d i m V < 6 .  I f  V does not contain a pair of disjoint octads, 
d i m V < 5 .  In any case, V lies in a subspace of one of the .following shapes: 
((5'1 [ C 1 is an octad, C 1 = C or C 1 n C = 0), for some octad (9 (dimension 6); ((9 [ (9 
is the sum of two tetrads in E),.fi)r some sextet 7_, (dimension 5). 

(ii) Let V and C be as above, dim V=6,  W the subspace of O2(N24 ) corre- 
sponding to V and 71 = A/2A. Then C3(W ) = (2i~ , 2ij,, 2~ I i, je(9) + 2A/2A has 
dimension 8. 

P r o ~  (i) Wi thout  loss, f2~V. If  (91 and (92 are distinct octads in V, (9~c~(92 is r 
or a 4-set. 

Suppose V contains no pair  of disjoint octads. Take  (9oeV, (9o an octad. Let  
X be the set of  octads in V distinct from (9o. For  (geX we have the 4-set T(o: 
=(9c~(9 o. Since no pairs of  disjoint octads are present, the m a p  (9~--,T e is one- 
to-one. Let T~:= T~,,, i =  1, 2 be two such distinct 4-sets. Suppose that  they have 
odd intersection. Then 1(9a+(921<15, whence (91+(92 is an oc tad  in V. But 
then the cardinali ty of  (C1+(92)~(9o=((91c~(9o)+((92c~(9o) is 2 (mod4) ,  hence 
can not be 0, 4 or  8, a contradict ion.  If T 1 c~ T 2 =0 ,  (91 + (92 =(90. The  remaining 

possibility is that Tlc~ r2 is a 2-set in Tl, of which there are (~)=6.  It follows 
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that the mapT2~--,TxmT 2 is at most two-to-one, since ]TomT~,[ is even for all 
octads (9, (9~X. So, I X L < l +  1 + 6 . 2 =  14, whence dim V=<5. 

We show that there exists an octad disjoint from every octad of V To (91 
and (92 there is associated a sextet ~ = { T  1 . . . .  , To} with T1=(91-(92, T2=(92 
-(91, T3 = (91c~(92. 

Suppose that every octad in V is a union of tetrads. Since V does not 
contain a pair of disjoint octads, at most 4 tetrads are involved, and we can 
produce our octad from 2 tetrads which remain. 

We may assume that some (9~V is not a union of these tetrads. Then (~ 
contains no tetrad and so meets each of T~, i=  1, 2, 3, in a proper subset of T~. 
Since (} meets each of (91, (92 and (91 "Jr (92 in a 4-set, [ ~ T i [ = 2  , i=  1, 2, 3. Two 
points of (9 are unaccounted for. Take ke{4, 5, 6} such that (}~Tk=0. Since the 
intersection of any two ~-sets is an even set, each [(~n(Tk+Tj) I is even, 
jE{1, ..., 6}. So, there is j e { 4 , 5 , 6 } - { k }  with I6c~TjI=2. Define (9*:=T~+Ti, , 
where {i, i',j} ={4, 5, 6}. Reindex so that j = 4 ,  i=5,  i '=6. 

We claim that if (ge V,, (9 an octad, (9#(9", then (9c~(9"=0. Suppose false for 
(9~V. Define I={ili<=4 and Tic~(9#0 }. Since (9c~(9" #0,  (9~((9" +~2) is a 4-set. 

If there is some T~, T t _c (9, then (9 = T~ + T 5 or T z + T 6 ; but then (9 ~ (~ is a 2- 
set, contradiction. If there is i~I such that ]T~c~(91 is odd, all [T~c~(g] are odd, 
hence equal 1, forcing (9~(Tl+T2) to be a 2-set, another contradiction. So, if 
i~I, (9~T i is a 2-set, whence 1tt=2. Take i,j<=3, i~I, jr Then T~+ TicV and 
[(9 n(T~ + T~)[ = 2, contradiction. So, (9* has the requisite properties. 

Now to analyze the other situation. Let (91, (92 be a pair of disjoint octads 
in V. Since f2~V, (93:=(91+(92+f2 is an octad in V. Say (94sX'.={ScVIS is an 
octad distinct from (91,(92,(93}. There is ie{1,2,3} such that (94%(9~+~2. 
Reindex so that i=1.  If every octad in X is disjoint from (91, d i m V < 6 ;  see 
Lemma 2.1. Let us suppose otherwise. Take (9eX, (9~(9~ =1=0. Set (95:=(9r 
+f2, Tk~:=(gk~(9~, k=2,  3, /=4,  5; the four Tkg partition (91 +f2, and are part of 
a sextet s Let us say that (9 contains none of the T~. For some j~{2, 3}, 
(9 c~ (9j =I= 0, whence Tj~c~(9#0, /=4,  5 (see Lemma 2.25). Thus, (9 meets (94 and 
(gs and so [(gm(gt[>4,/=4, 5, whence (9_~(94+(95, a contradiction to (9c~(9~ 4:0. 
Thus, (9 contains some Tk~, hence must be one of the 15 octads associated to 
~((9~, (92 and (93 are counted among these). We conclude that dim V<5. 

(ii) Let eseW ~. If 2~A-A(2) ,  then 2 ( 1 - r  s (modA(4)+2A),  whence 
c~,(w) < A(2). 

Suppose U e ~  and 2=2v(mod(A(4)+2A)). Then 2 ( 1 - C s ) - ~  4x~ 
i~Sc~U 

( m o d ~ S x ~ + 2 A ) .  So, ~, is fixed by Wonly  if Sc~Us~ for all Cs in W. Easily, 
U = (9 or (9 + ~. On the other hand, ~r is fixed by W. 

It remains to determine C ~ ( W ) .  If 2=  ~ +4x~, for some UzPr we 
izU 

get ), fixed by Wif  and only if IUc~SI is even, for all es in W. This is equivalent 
to saying to saying that there is an even set E~(9 such that ~ + U = ~ + E  
(reason: the set of such U correspond to the 6-dimensional annihilator in 
P(s . . . .  /qf of V/(s and the image of P((9) .. . .  in P~,(s is a 6-dimen- 
sional subspace of the annihilator). Thus, Cx(W ) is as described in (ii). 
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Definition 2.27. Let V be as in Lemma 2.26. If there exists a unique octad, (9, 
such that V<{C 1 ]0 a is an octad, C~c~(9=0 or (91 =(9>, call Va space ofoctad 
type, based on the octad (9. Suppose that there is more than one such octad, say 
(9 and (9'; if (9~(9'= 0. V<{f2, (9, (9') and if (9c~(9' is a 4-set, Lemmas 2.25 and 
2.26 apply. So, if V is not of octad type, there is (at least) one associated sextet, 
and so we call V a space of sextet type. The sextet is unique unless V 
= ((9, (9', f2), with (9, (9' disjoint octads. 

Lemma 2.28. Let (Y2)<V be as in Lemrna 2.26, and W the corresponding 
subgroup of O2(N24 ). Then 

(i) dim CA~4)+2A/2A(W)= 13 --dim V; 
(ii) the image of C A/2a(W ) in A/A(4)+ 2A lies in A(2)/2A_~C~ and corre- 

sponds to the image in c~ of the set of all C~-sets which meet or avoid every C~-set 
in V; 

(iii) let d = d i m  [CA/2a(W)+(A(4)+ 2A)/(A(4)+ 2A)]; we have 
d = 5  if dim V=2, 
d = 2 / f  dim V= 3, 
d = 1 /f dim V > 4, and V has octad type, 
d = 0 / f  dim V > 4, and V has sextet type. 

Proof Since V > ( O ) ,  no vector in A - A ( 2 )  with odd coordinates may be fixed 
modulo 2A (or even modulo A(4)+2A) by an element of W - { + I } .  So, 
Cm2A(W ) < A(2)/2A ~=c~. Since A(4) + 2A/{8x~,  2A)  ~- P(f2) . . . .  leg and the pair- 
ing of it with W/{+_I} into {8x~ ,2A) /2A is the natural one, 
dim CA(4) + 2A/2A(W)= 1 3 -  dim V. 

For 2EA(2), let S(,~)={i~(21i th coordinate of 2 is in 2+42g}, and let ~ be 2 
+(2A,  8x~) / (2A ,  8x~) .  For i t o  be fixed by e s in IV,, S(2)c~S must be a OK-set. 
So, for ~ to be fixed by every element of W, S(2) must lie in or avoid every cg_ 
set associated to W. Conversely, if U is such a Cs 2 = ~ 2x i is fixed modulo 

ieU 

2A by W. 
We get d by analyzing the "solution set'~ the Cg-sets which satisfy our 

condition with respect to V, then taking the dimension of the image of this 
solution set in c~. 

For d imV=2,  d = 5  by Table 2.1.2. Say d imV=3,  V =  ( ~ ,  (91, (92) , (91' (92 
octads. If (91c~(92=~b, the solution set is just V. If (91~(92 is a 4-set, let T 1 
=(91c~(92, T2=(9~-(92, T3=(92-(91 and 2={T1,  ..., To} the associated sextet. 
Let U4=O, O be in the solution set. If U c C ,  i=1  or 2, U=(9~; but 
(91c~(gzq~cg. So Un(9~=@, i = l ,  2. Now use 2.25. 

Let us say dim V_>4. Suppose V has octad type, based on the octad (90. 
Then V has octads (91, (92 in (90+(2 which meet in a 4-set. The only possible 
solutions, not ~b, f2, are (90, (9o+ O and we have d=  1. Suppose V has sextet 
type. Take an octad (93eV-{f2, (91, (92). Using the discussion of the last 
paragraph, if (93~((91w(92)=@, the only possible solutions, not @, O, are (93 or 
(93+0, and if (93c~((91w(92) is a 4-set, the only possible solutions, not ~b, O, are 
(94.'=O+((91u(92w(93) or (94+~. But since, by definition, V is not of octad 
type, some member of V meets (93, C4, in these respective cases, in a 4-set; so 
d=0.  
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Lemma 2.29. Let teN24 be an involution mapping to a non-2-central involution 
of Mz4~N24/Oz(N24), i.e., one of cycle-shape 2 t2. Then every involution in 
O2(N24 ) t is conjugate in .0 to t and every element of O2(Nz4)t with square - 1  
is in the class with a 2Gz(4)-component in its centralizer. In any case, an 
involution y eO 2 (N24) t/{ -~- 1 } c_. 1 satisfies dim (A /2A) (y -  1)= 12. 

Proof To prove the first statement, it suffices to prove that 02(N24 ) iS a free 
lFz(t)-module,  then refer to the class list for .0 [12]. Let h be an element of 
order 11 in M24 inverted modulo O2(N24 ) by t; see [74]. The eK-sets fixed by h 
consist of ~b, (2, @, @ + O, where 9 is a dodecad. Thus, t stabilizes {9, 9 + O}, 
and since 02(N24)=[Oz(Nz4),h]x Co2(N24)(h), it suffices to show that t in- 
terchanges 9 and 9 + fL This is clear, because the stabilizer of ~ in M24 is a 
copy of M12, and elements of order 11 in M12 are not conjugate to their 
inverse (because permutations in M12 are even on the usual 12 points). 

Now to prove the second statement. If YeO2(N24 ) has order 4 and y2= _ 1, 
this is obvious, since C(y) contains a copy of 2G2(4), of order divisible by 13, 
and so cannot act nontrivially on an IFz-module of dimension less than 12. 
Replace t by a conjugate ueO2(N24 ). Then u=e~, 9 a dodecad. Clearly, A(1 
- u )  consists of vectors with support in 9 .  Say ~eA and ~(1-u)eA(4)+271. 
Then ~eA(2) and S:={i l i  TM coordinate of ~ is in 2+4Z}eeK. We thus have a 
map C~A(2) /2A- , (A(4) ,8xoo,  2A)/2A~P(f2)  . . . .  /eK, based on ~ - -~ (1 -u ) ,  
whose kernel is {{S,S+fa}e@ISc_2, or S _ c 9 + Q } = { { 9 ,  N+O},  {qS, 0}}; the 
image therefore has dimension 10. So, A(1-u )~-L:=(~+_4x~IE<_9 ,  E 

i ~ E  

= 9 c ~ S  for some SeeK) and d i m L + 2 A / 2 A = l l .  Now take l e f 2 + ~ ,  v = - 3 x ~  
+ ~ x i. Then v ( 1 - u ) =  ~ 2 x i e A ( 1 - u ) - L  and it is clear, since ~ is the 

i e f 2  - {/} j ~  
support of v ( 1 - u )  and 9 contains no Cg-set except 4) and 9 ,  that v ( 1 - u ) ~ L  
+2A. Thus, dim [A/2A, u] = 12. 

Corollary 2,30. The group �9 1 has 3 classes of involutions: one 2-central class, 
with centralizer of shape 21+8 .D4(2); two nort 2-central classes, with centralizers 
of shape 211M12.2 and (2x2xG2(4))2 .  Also, if t is an involution in .1, 
dim [A/2A, t] is 8 if t is 2-central and is 12 otherwise. 

Proof Lemmas 2.28, 2.29 and the class list [12]. 

Lemma 2.31, Let E be a sextet of tetrads and let X be its stabilizer in M24. Set 
Xo=O2,3(X), the kernel of the permutation representation for X on ~,, X 1 
=02(X),  (h)eSyl3(X0).  Then (i) h acts fixed point freely on XI;  (ii) there are 2t 
h-invariant fours-groups in Xx, distributed into two orbits Y1, Y2 for X /Xo~-S  6 
of lengths 6 and 15; (iii) the involutions in YI have cycle shape 212 (non 2- 
central) and those in Y2 have cycle shape lS2S(2-central); (iv) if E c  Te~, IE[=2 
and X e = { g e X  ~ lEg=E}, then X~ has orbits of lengths 2, 2, 4, 4, 4, 4, 4 on f2. 

Proof By reference to the character table of M24 [74], I C(h)l = 1080< I Cx(h)[; 
so (i) follows. The first part of (ii) is immediate from (i). Since (i) implies that 
X t is an irreducible module for X, the orbits of X on the 21 fours-groups have 
lengths dr, d 2 . . . .  ,d,,  where each integer is at least 2. Since 7Z[X[, r>=2. If 
d~< 10 then d~=6 or 10 (an easily checked property of $6). Therefore, r = 2  and 
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{dl, d2}={6 , 15}, as claimed. Let I11, Y2 be the orbits of lengths 6, 15, re- 
spectively. Since 11121 is odd, Y2 # lies in the 2-central class, i.e., the involutions 
of cycle shape lS2 s. Let f be the number of fixed points for involutions in YI* 
and let rr be the permutation character on Q. By the orthogonality relations 
and the fact that X1 is transitive on each member of ~, = 6 .26=  ~ n(g)=24 

gEX1 
+ 45.8 + 18f, implying f = 0  and (iii). 

Now to prove (iv). Clearly, IX1 "X~t=2 and X E fixes no points of f2. Since 
h acts fixed point freely on XI, X2:=  (~ X~ has index precisely 4 in X~ (to 

ke(h) 
verify this, look in the dual module of X1). 

Let us say X E has a orbits of length 2 and b orbits of length 4 on ~. At 
once a ~ 2 ,  and we must show that a=2 .  Suppose a~3 .  Then a ~ 4  and X 2 
fixes at least 2 a ~ 8  points. Since [X2[=16, X 2 fixes 8 points, which form an 
octad, (9, and X2=OE(H), where H is the global stabilizer of (9. But then X 2 is 
regular on 0+(9,  hence cannot stabilize the four members of E disjoint from 
(9, a contradiction. So, a = 2 and (iv) holds. 

Lemma 2.32. Let t~: N2r • 1}-+M24 be the natural map. Say B ~ N24/{ • 1}, B 
an elementary abelian 2-group, such that B o : = B ~ k e r t k = ( % o { •  , (90 an 
octad. Assume that B # lies in the 2-central class of .1.  Let Ho'~24.As be the 
stabilizer of (90 in M24, BI:=O2(Ho)~ Define ml=m(Bl/Bo), m 2 

=re(BIB1), A=A/2A ,  c(B)=dimCa(B ) .for B<B.  Then m1<4 , m2<4 , m 1 
+m2=<6 and 

c(B1) < S12 m I = 1, 
1 2 - m  I m1>2, 

12 m 1 =0, 

11 

10 

10 rex=l ,  
c (B) < 

9 

6 

1 0 - m  1 m1>2, 

7 - m  1 

I f  c1(/~): =d im CA(4)+2A/za(B), then c l (B0 = 11 and 

8 

7 

4 

cl(B)< 6 

3 

5 

2 

m2=1 

m2=2, 3 

m2=4 

m 2 = l  

m2=2, 3 

m2=4 

m2=1,2,  3 

m2=4. 

Proof We have ml<m(O2(Ho))<4, m2<4 by Lemma 2.23 and m l + m 2 < 6  by 
Corollary 2.24. 

m I =0, m 2 = 1 
m2=2, 3 

m 2 =4  

rex=l ,  m2=l ,  2, 3 

m2=4 

m1>2, m2=l ,  2, 3 

m2=4. 
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While we have a precise formula for the action of B o on A, we know the 
action of elements of B - B  o only up to the action of some element of 02(N24 ). 
This ambiguity disappears, however, when we study the action of B on a 
section in /1 on which 02(N24 ) operates trivially. Indeed, our upper bounds on 
c(/7) are achieved by studying the action of/~/O on sections within /1 where /~ 
operates trivially, for an appropriate chain B_< B < B. 

We use bars to indicate images in A=A/2A and double bars to indicate 
images in 71= A/<2A, 8xo~ >. 

By Lemma 2.28, we have C~(Bo). The action of B i B  o on Cx(Bo)/C~(Bo) 
(isomorphic to the 5-dimensional subspace of (~ spanned by (9o and all octads 
disjoint from it; see Lemma 2.28) is faithful and stabilizes the chain 

Cx(Bo)/Cx~(Bo) > < C~(4)(Bo), 7.r > O, 

hence fixes precisely a subspace of dimension 5 - m ~ ;  this is so, for otherwise, 
irreducibility of Ho/O2(Ho) on the 1 and 4 dimensional constituents would 
force O2(Ho) to stabilize all these octads, hence all their intersections, con- 
tradicting the fact that O2(Ho) is regular on f2+(9 o. Take 2eA(4), 2 =  ~" _+4x i, 

icE 
E~P~ve,(s [El_-<4. Clearly, ~ is fixed by B 1 if E_(9  o. For  X to be fixed by B o, 
IEca(9ol must be even. 

Let L>=<8x~> be the subspace of A(4) corresponding to P~ven((90), given by 
all 2, in above notation, with E_~(9 o. Then dim L=7 .  We claim that H o acts 
faithfully on A(4)/L, a reducible module with socle M/L, corresponding to 
{E~P(Q) . . . .  liE n (9ol - 0(mod 2)}. Clearly, M is Ho-irreducible of codimension 1. 
Let ie(9, je~2+(9. Then, for t602(Ho), {i,j}+{i,j}t={j, jt}, a 2-element set in 
(9o+f2. Thus, 2ij is not fixed by t modulo M, whence the claim. In particular, 
O2(Ho) and M/L are isomorphic modules for Ho/O2(Ho)~-A8 . A similar 
argument shows that Oz(Ho) is nontrivial on M/<8xo~>: take {i,j}___Q+(9, 
i4=j such that i and j are in different orbits for some teO2(Ho); then 2u~M 
a n d  ,~tij~l=,~ij. Since H o operates on L/<8x~> as it acts on P((9o) . . . .  /<(9o> (the 
kernel of the action is 02(Ho) ) we see that there is a morphism of Ho/Oz(Ho)- 
modules 02(Ho)| which may be identified with the natural 
map M/L| see [30], p. 274. This latter depiction has the 
advantage that we can see the following: given x, yeM/L, x, y indepen- 
dent, the annihilator of x, i.e., {ueM/LIx| goes to 0 in A2(M/L)}, is 
1-dimensional (namely, <x>), and the annihilator of <x, y> is 0. 

The preceding paragraphs imply the upper bounds on c(B1). 
To prove the bounds on c(B), we must investigate how elements of B act 

on Cx(B1). We need to establish two points. Let M1, M 2 be irreducible 4, 6- 
dimensional modules, respectively, for IF2A s. If t is a 2-central involution of 
As, it operates as a transvection on Ma and satisfies dim CM2(t)=4. If t is an 
involution of A s, not 2-central, dim CMI(t)=2 and dim CM2(t)=4. In addition, 
we claim that if E, denotes a subgroup of A s, E."~ " =292, then 

(1) dim CM2(E,)<3 for n=2 ,  3 or E, contains non 2-central involutions; 
(2) dim CM~(E4) =2 and dim CM2(E4)= 1. 
Suppose n = 2  and that dim CMz(E2)>4. Let P be the 8-dimensional IF2A s- 

permutation module and Po the submodule of codimension l;  P has M E a s  a 



The Friendly Giant 23 

composition factor. If E 2 has two orbits, P is a free IF2E2-modu le  , and 
dim CM2(E2)<3. So, E 2 has at least 3 orbits. Since E 2 does not act semireg- 
ularly on the 8 points, E 2 has non-2-central involutions, proving (1). Since E4 
is uniquely determined up to conjugacy in As, it is easy to check dim CM,(E]) 
=2 directly. We may write E 4 = T  1 x T 2 where T 1 is regular on {1, 2, 3, 4} and 
trivial on {5, 6, 7, 8} and T 2 is trivial on { 1, 2, 3, 4} and regular on {5, 6, 7, 8}. 
Let e 1 . . . .  , e  8 be the standard basis for P and let I_~{1, ..., 8} such that el." 

= ~ e  i is a fixed point modulo IF 2 e i , but I + 0 ,  {1,2, . . . ,8}.  Set 11 
iEl  i 

= { 1 , 2 , 3 , 4 } ~ I ,  I2=1-I1 ,  e(j)= ~ ej, j = l ,  2. Say Ij+O for j~{1, 2}. Using the 
i ~ l j  

action of T i on e(j), we see that I/j[ =4, proving (2). 
We now complete the proof of the Lemma, using the preceeding discussion, 

by analyzing cases. The bounds on c(B) are discussed and those for el(B ) are 
obtained from a similar discussion which is omitted. 

Suppose m~=0. If all involutions in the image of B-~Ho/O2(Ho) are 2- 

central, we have c ( B ) ~  12 m2= 1, If some non-2-central involutions occur, 
( 11 m 2=2, 3. 

we have c(B)< 10, for all m 2 > 1. In particular, c(B)< 10 when m 2 = 4. 
Suppose m l = l .  If all involutions in the image of B~Ho/O2(Ho) are 2- 

central, we have c ( B ) < ~ ' l  0 m 2 = l '  If some non-2-central involutions occur ,  
( 9  m:=2 ,  3. 

9 for m 2 > l  
we have c(B)< 6 if m2=4. 

Suppose ml>2 .  If all involutions in the image of B~Ho/O2(Ho) are 2- 

<)10_ml,c  m 2 = l  ' If some non-2-central involutions central, we have c ( B ) = [  9 _ m l  ' m2=2 ,3. 
are present, we have 

c(B)<{lO7-ml mx>2, m2>l ,  
- m  1 m 1>2, m2=4. 

Some remarks of Allan Adler and Melvin Hochster led to a shortening of 
the original proof of Proposition t2.6 via the following elementary lemma 
(formulated by Melvin Hochster). 

Lemma 2.33. Let R be a unique factorization domain and S a subset of the free 
R-module M ~ R  m, m>O. Let /~ be an infinite set of primes in R. Suppose that 
there is an integer n so that the image of S in M/pM has cardinality n, for all 
p~/~. Then ISl=n. 

Proof Obviously, ISl>n. Suppose that Yl . . . .  ,y,+~ are distinct elements of S. 
Consider the set Z of z~i'.=y~-y ~, i=t=j. Only finitely many primes divide any 
member of Z, whence /~*:= {P~PlP divides no element of Z} is infinite, hence 
nonempty. If qe/~*, the images of all the z~j in M/qM are nonzero, whence the 
image of S in M/qM has cardinality at least n+  1, a contradiction. 

Lemma 2.34. In 2F4(2)' , 2F4(2), F,,(2) and ZE(,(2), a Sylow 5-groups is elementary 
abelian of order 25 and all of its nonidentity elements are conjugate in the 
normalizer. 
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Proof Consider G = 2F4(2 ). By [32], page 419, PeSyl  5 (G) is elementary abelian 
of order 25 and N(P)/C(P) contains a group of order 25. Elementary Sylow 
theory and (B, N)-type arguments for G show that C(P)=P and that 3 divides 
]N(P)/C(P)I. Therefore, N(P)/P~-SL(2, 3). 4, a Hall Y-subgroup of Aut(P) 
=GL(2,5).  The statement about conjugacy in G is now evident and the 
corresponding statements about the other groups in the hypothesis follow from 
the natural embedding of each group in the next. 

Corollary 2.35. On a 27-dimensional nontrivial module for IF413.2E6(2)] , an 
element of order 5 has trace 2. 

Proof By Lemma 2.34, if P is a Sylow 5-group, the action of N(P) on P forces 
Mle to be the direct sum of its regular representation and a 2-dimensional 
trivial module. 

The referee found a gap in the original version of Lemma 2.36 and suggest- 
ed the substitute argument which appears here. 

Lemma 2.36. Sz(8) is not contained in 2E6(2 ). 

Proof Suppose otherwise, and let M be a 27-dimensional lF4-module for 
3.2E6(2). Then G=Sz(8)  acts on M. By a theorem of Steinberg [66], if V 
denotes the standard 4-dimensional module for Sz(8) and V/ are the Galois 
conjugates, i = 1, 2, 3, then every irreducible for IF 2 Sz(8) has shape V h |  | V~r 
where {il, ..., it} _c {1, 2, 3}. A primitive 13-th root of unity in IF 2 has degree 12 
over IF 2 and degree 6 over IF 4. Let M i be the IF 2 G-irreducibles which occur in 
IF2| When M i occurs, all Galois conjugates of Mi associated to elements of 
Gal(IF2/IF4) must occur too. So dim M = 27 implies that dim M~ = 1 or 4 are the 
only possibilities. Thus {Mi} consists of 3 or 6 4-dimensional modules, and the 
rest 1-dimensional. An element of order 5 in Sz(8) has trace - 1  on the 
standard 4-dimensional module [68], hence has trace 3 ( - 1 ) +  15= 12 or 6 ( - 1 )  
+ 3 = - 3  on M. This contradicts Corollary 2.35. 

Lemma 2.37 (Paul Fong [23]). The principal 2-block.for J1 contains exactly 5 
modular irreducibles, of degrees 1, 20, 56, 56, 76. 

Lemma 2.38. Suppose that A is an algebra with an associative bilinear form ( , )  
and that B is a subspace of A. Let ~: A--+B be an "orthogonal projection", i.e. 
(ker~ ,B)=0.  Define a product on B by x .  y=rr(xy), x ,y~B.  Then the fi)rm on B 
is associative for this product. 

Proof We have (x .y, z)=(rc(xy), z)=(xy,  z) for x, y, zcB since ~ is an ortho- 
gonal projection. Similarly, (x, y. z)=(x,  yz). Now the result is obvious. 

George Glauberman pointed out to us that the structure of a commutative 
nonassociative algebra may be given to S2V, V a vector space with a sym- 
metric bilinear form, by a simple formula (see (ii) in the lemma below). We 
were able to generalize this idea to the following result. Since the argument is 
elementary, it would not be surprising to find that this result has appeared 
elsewhere. 

Lemma 2.39. Let M be a module .[or FG, F a field, G a group and M* 
= H o m p ( M , F )  the dual module. Set A = M |  and let ( , )  be the natural 
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pairing of M x M *  into F. In case M ~ M * ,  we identify M with M* and, if 
charF+2, we let A s be the span ()fall x | 1 7 4  for x, y~M, e= + , -  
(i) The following maps of A |  to A give G-invariant algebra structures on A: 

(i.1) (x|174174 y )x |  
(i.2) (x|174174 y ' )x 'Qy.  
The map (i.1) gives an associative algebra, making A ~ E n d ( M ) ,  via the action 

(x | y )x '=  (x', y)x and 0.2) gives an associative algebra making A ~ End (M*), via 
the action (x |  y) y '=(x,  y') y. 

Also, the form ( , )  on A given by (x |  x 'Qy ' )=(x ,y ' ) (x ' , y )  is nonde- 
generate and symmetric. 

(ii) The product on A s given by 

( x Q y + e . y Q x ) ( x ' |  

= {(x', y ) x |  + e(y, y ' ) x |  x ' )y |  +(x, y') y |  

+c(x', y ) y ' |  +(y,  y ' ) x ' |  x ' ) y ' |  y') x ' |  

makes A ~ a Jordan or a Lie algebra as r.= +, - ,  respectively. The form ( , )  on A 
remains nondegenerate when restricted to each A ~. Also, the form is associative 
for A and each A ~. 

(iii) In A*,  let d= ~. (xi |174 where xl ,  . . . , x ,  is a basis for M and 
i - - I  

Yl, ..., Y, is the dual basis and let 

Ao=__d• ]aii=aji for all i,j and aii=O . 
i, i 

Let ~z: A+--*Ao be the orthogonal projection. For a, b~A o define aob:=-~(a, b), 
where a. b denotes the product of (ii). Then A o becomes an algebra with A g =0 if 
n=2 ,  A2=Ao if n>3  and G acts as algebra automorphisms. Also, the form 
restricted to A o is nondegenerate and associative. 

Proof (i). The  first assertion is obvious. Let x, x', x"eM,  y, y', y"eM*.  Assume 
that the product  on A is given by (i.1). Then  

((x| y)(x' | y'))(x" | y")=(x', y)((x| y')(x" | y"))=(x', y)(x", y') x |  y" 

and 

(x | y)((x' | y')(x" |  = (x", y')(x | y)(x' | y") = (x", y')(x', y) x | y", 

whence associativity. The identification of A with End (M) is given by (x | y )x ' :  
= (x', y) x. This is an action because 

((x | y)(x' | y')) x" = ((x', y) x | y') x" = (x', y) (x", y') x 

equals 

(x | y) ((x' | y') x") = (x", y') ((x | y) x') = (x", y') (x', y) x. 

So we have a map c~: A - + E n d ( M )  of associative algebras. If x~, . . . ,  x,  is a basis 
for M and yl ,  . . . , y ,  the dual basis, the elements { x i |  . . . .  ,n} act on 
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M like elementary matrix units of End(M). Thus, c~ is onto and, by dimension 
considerations, is an isomorphism. 

Using the map (i.2), we compute 

((x|174174 y')(x'x~yit Y l=~ , Y/t , y " ) x " |  

and 

(x@ y)((x' | y'}(x" | y")) =(x' ,  y")(x@ y)(x" | y')=(x', y") (x, y') x" @ y, 

whence associativity. An argument as in the preceeding paragraph gives A 
- End (M*) via the action (x | y) y' = (x, y') y. 

Concerning the inner product on A, if x 1, ..., x, is a basis and Yl,-.- ,  Y, is 
the dual basis, the Gram matrix relative to {xi| is the identity, whence the 
form is nondegenerate. 

(ii) A direct calculation will prove the first assertion. We give a more 
conceptual proof. Let t:A--+A be given by x|174 Thinking of A as 
End(M), we may view A + as the set of symmetric matrices and A -  is the set 
of skew symmetric matrices, for if we identify xi|  i with the elementary 
matrix units, t becomes the transpose operation. If a, fleA and juxtaposition 
indicates the natural product in End (M), the product we have defined on A ~ is 
merely c~| cr fleA. This suffices to prove (ii), the only special 
comment  to make being that the usual Jordan product on A + is a|189 
+ricO, and if one map A + |  + makes A + a Jordan algebra, any scalar 
multiple of that map does (and gives an isomorphic algebra if both maps are 
nonzero). 

Since A +, A -  is the 1 , - 1  eigenspace, respectively, for t on A, the form 
restricted to each W is nondegenerate. 

To check associativity of the form on A, we need ((x| (x"Qy')) 
X" | "~ ~X r =(x',y)(x| y I=t ,y)(x,y")(x",y') to equal (x|174174 

=(x",y')(x,y")(x',y), which it does equal. Say a,b, ceA +. Write o for the 
product on A +. Then (aob, c)=(ab+ba, c)=(ab, c)+(ba, c)=(a, bc)+(b, ac) 
=(a, bc)+(ac, b)=(a,  bc)+(a, cb)=(a, bc+cb)=(a, boc), as required. A similar 
argument proves associativity for A- .  Alternatively, Lemma 2.38 may be used 
since each A s is a nonsingular subspace of A. 

(iii) Note that d is left fixed by G since it corresponds to the invariant 
bilinear form on M((_d, x| y)) and the G-invariant form on A is non- 
singular. Thus, A o and ~t are G-invariant. Without loss, n > 1. Without loss, the 
field is algebraically closed and the basis {x~} of M is orthonormal.  The 
elements r i j = x i |  i and s~j=x~|174 i=t=j, spanA o. We have 
rij" rij=2r~=sij" S i j = 2 s ~ = 2 [ x i | 1 7 4  rijsij = - - x i | 1 7 4  D sijrij 
=xi |174  ~ and r~j.s~j=ros~j+sorij=O so that A 2 = 0  if n=2.  Let i,j, k be 
distinct. Then S2--S2k=S,k=~(S~k), r~Ssik=X~| ~ and r~j.S~k=X~|174 ~ 
=ro=a(rij ) sO that A =Ao if n>3 .  Associativity of the form on A o follows 
from Lemma 2.38. 

Lemma 2.40 (Bernd Fischer [21]). Let G be a finite simple group generated by a 
class D of {3, 4} - transpositions such that !f d~D, Ca(d)~2.2E6(2  ). 2. Then 



The Friendly Giant 27 

(a) [Gl=241313567z11.13.17.19.23.31.47.  
(b) G has exactly four classes of involutions with centralizers of the forms 

2.2E6(2).2, (21 +22)(. 2), 

(2 x 2 x F4(2))2, (2 x 2s) 21~'. D4(2). 2, 

(c) I f  K is the last centralizer in (b), N~(Z(Oz(K)))~28. 2.216. Sp(8.2). 
(d) G has exactly two classes of elements of order 3; they have centralizers of 

shapes 3 x F 2 2 . 2  and 31+8 . 21_ +6 . U4(2 ). 

(e) G has exactly 2 classes of elements of order 5; they have centralizers of 
the form 5 x H i S .  2 and 51 ~4.21_+4. A5" 

(l') G has exactly one class of elements of order 7; they have centralizer of 
shape 7 x 2. L3(4 ) . 2. 

(g) The centralizers ( f  the Sylow 11- and 13-groups have shape 11 x X 5 and 
13 xX 4. 

Lemma 2.41. Let G ~-. 1, G_-< GL(24, 2), V the natural 24-dimensional lF2-module. 
Then V is absolutely irreducible and G preserves at most one nonzero quadratic 

form on V. 

Proof Le t  ~ E n d s ( V ) .  We show that c~ is scalar. Take PM<G,  P~36,  M 
~2M12;  see [11]. By Clifford theory and the structure of PM, V=IF2~ V[p is 

a direct sum of 24 distinct irreducible linear representations Vi, i = 1 . . . . .  24 and 
M is transitive on these. Thus PM is absolutely irreducible, whence ~ is scalar, 
as required for showing absolute irreducibility. Now let Q: V---+]F 2 be an 
invariant quadratic form and let (~ be its extension to V. 

Choose a basis vector x~ for V~, and let V2~_1, V21 be dual PM-modules. 
Then, by applying elements of P, we see that Q(xl)=O for all i, V2~_ 1+ V21 is 
orthogonal to Vzj_I + Vzj for i+j. Thus Q is determined by the 6 scalars c i 
=(x2i-1,  Xzi), where ( , )  is the associated symmetric bilinear form. Let {gl} be 
any choice of elements of PM which carry VI+V 2 to VZ~_l+VEi. Require 
x2~ ~ =xg~ ~, Xz~=X~2 '. We argue that the scalar c i then does not depend on the 
choice of the gr Suppose {g'i} is another choice. Since ci=(x2i_ 1, x2i)=(Xl, x2) 
=(x] ~, x g'~ we have independence. In fact, this proves that the c~ are all equal. 
Thus, (~ depends solely on the scalar c 1, whence the Lemma. 

3. Faithful Modules for Extraspecial Groups 

If p is a prime and P an extraspecial p-group of order p2n+ 1 (see [27]), n a 
natural number, then P has precisely p2, linear characters and ( p - 1 )  faithful 
irreducible characters of degree p", one for each primitive pth root of unity. The 
faithful ones may be obtained as follows. Suppose we are given a nontrivial 
linear character ~ of Z(P). Take any maximal abelian subgroup A of P, so that 
IA] =p"+ 1, and take any extension ~ of ~ to A. Then the induced character ~P 
is irreducible and c~Plzw)=p"~. See [27] Sect. 5.5 for details. Note that if p = 2  
and A is elementary abelian, then ~, c~ and eP are all rational representations 
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and that a nonzero invariant bilinear form is definite, hence may be chosen to 
be positive definite. 

We use the notation pl+Zn to denote an extraspecial p-group of order 
pl+Zn. In case p=2 ,  we may add a subscript e=  + , -  to indicate the Witt 
index of the quadratic form xZ(P)~--ox2eZ(P) on P/Z(P) (e.= + if and only if 
the Witt index is maximal). 

Now take p = 2  and the faithful, irreducible module T for the group Q 
~2~+ +24. Let E<Q, E~-TZ~ 3 (since Q has plus type, there exist maximal abelian 
subgroups which are elementary abelian). Take any complement F to E in Q. 
Then F~292 ~2. Let (Pl . . . .  , ~o 2 .  be all the distinct linear characters of E not 
having ( z )  in their kernels. Then TIE affords qo1+q~2+...+~p2,2. Since con- 
jugation by F on E transitively permutes the 212 hyperplanes of E which 
complement (z) ,  the given action of F on T transitively permutes the 212 
eigenspaces for E affording the q0~. By arbitrarily choosing one eigenspace to 
be associated to the element l e F  and by choosing in it an eigenvector e(1) of 
unit length (adjusting the form if necessary), the definition e(x):=e(1) x, xeF, 
picks out an orthonormal basis of eigenvectors for E which form a regular 
orbit under the action of F. Let ~o~ denote the character of E afforded by 
II~e(x). Writing g=yu, yeF, ueE for a typical element g of Q, we have e(x) g 
=e(x)YU=e(xy)"=~Oxy(U)e(xy). For completeness, we remark that if qo is a 
character of F occurring in Tlr, then q~ has multiplicity 1 and is afforded by an 
eigenvector ~ q)(x)e(x). Furthermore, every irreducible character of F does 

XEF 

occur this way. 
We now consider tensor products. As usual, a group acts on the tensor 

product of its modules by letting elements act on both variables of the tensors. 
We claim that T |  affords all the linear characters, each with multiplicity 1. 
First, some notation. If q~ is such a character, then IE: ker(~ole)l= 1 or 2 and 
there is a unique xeF such that C~(x)=ker(~olE); call it xo. Now set A o 

1 1 
=27 ~ qo(x) e(x)| the factor ~ is simply to make A,  have unit length. 

xEF 

We argue that A~=qS(g)Ae~, for geEuF. For geF,  this is clear since e(x) g 
=e(xg). Now, say geE, x, ycF. We have q~(g)=~b~(g)=q~l(g ~) and q~(g) q~y(g) 
=c~l(~gY)=~51((ggYX)x)=(al([g, yx]")=~at([g, yx]), since [g, yx] is central in 
Q. Also, qS(g)=q~l([g,xr , by definition of x ,  and the fact that qS[<~> is the 
nontrivial linear character. Since q51([g ,xco])=~bl([g ,xxe,x])=d~X(g )~b~,(g), 

1 
from above, we get A~ = ~  y' qS(x) qS(g) (axx,(g) e(x)| ) = qSa([g , xe]) A+ 

xEF 

=qS(g)A,, as required. Easily, A~=~b(g)A4, for g~EwF implies the same for 
geQ=EF since ~b is a linear character. Consequently, q5 occurs with multi- 
plicity at least 1 in T|  Since dimT| each 4~ occurs with 
multiplicity exactly 1, as we require. 

4. The Groups C', C~ and C and the Vector Space B 

If the group F 1 exists, it has an involution z such that C:=CFI(Z ) satisfies 
(i) (2=--02\tc~21+24':= + , (ii) C is 2-constrained, i.e. Cc(Q)<Q, which means that 
Cc(Q) = (z):  = Z(Q); (iii) C/Q ~ �9 1 operates faithfully on Q/Q'~ 224. 
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It is proven in [36] that the above group-theoretic conditions on C restrict 
C to exactly two isomorphism types and that only one of these may live as the 
centralizer of an involution in a finite simple group; see [37]. In either case, 
there is an isomorphism of .  1-modules Q/Q' ~- A/2A. 

For later use, we shall need a set map q: A--*Q which is constant on cosets 
of 2A, satisfies q (0)=l ,  and induces an isomorphism A/2A'~Q/Q' of .1- 
modules. 

The main purpose of this paper is to build a simple group with C as the 
centralizer of an involution. So, our first step is to construct C very carefully. 
We do not make use of the first two paragraphs of this section. 

We analyze some subgroups of GL(2", ~). Let (1) [Q] be the rational group 
91§ n_>2. There is a unique, indecomposable 2-sided ideal, I algebra of Q ~ _ §  , _ 

~EndQ(T), where T is the module discussed in Sect. 3. Let A = A u t ( Q )  act in 
the natural way on Q [Q]. Since every indecomposable 2-sided ideal of (1)[QJ 
has dimension 1 except for I, I is stable under A and A acts as a group of 
algebra automorphisms of I. By the Skolem-Noether theorem ([42], p. 24) 
there is a function m:A--*I so that re(A) consists of invertible matrices and 
re(a) -1 um(a)=u" for all uEI, a~A. 

Since the field II~ is not algebraically closed, we are not quite able to assert 
that there is a covering group ft, of A and a homomorphism r h : / ] ~ I  • (the 
group of units of End~(r))  so that m(a)-lum(a)=rh(d) iutfi(~) for all ueI 
whenever 8F--~a under A--,A. We may substitute the following argument. Let 
AI=(m(A))~I  • Possibly A 1 is infinite, but at least we know that [A~: Z(A1) I 
= ]AI<  oo. Therefore, A' 1 is finite, by an old result of Schur. Since the action of 
Q on T is absolutely irreducible, Z(A'I) consists of scalar matrices, hence has 
order 1 or 2, as the field is Q and A' 1 is finite. Since (m(Inn(Q)))'=t= 1 is scalar, 
Z(A'x)={_+I }. In particular, 02(A'O~ Q because there is an exact sequence 
I~Z(A'I)~O2(A'I)~Q/Q'~I , the middle term is nonabelian (since 
(rn(Inn(Q))) '4:l) ,  and Q/Q' is the natural 2n-dimensional module for Out(Q)'. 
It follows that A' 1 is an extension of Out(Q)' by Q and A' 1 induces Aut(Q)' on 
O2(A'~)~-Q. 

Let A o be the subgroup A' 1 =<GL(2",~) constructed above. We identify Q 
with 02(Ao) , and we consider the case 2n=24.  Since d e t A = l  the quadratic 
form on A/2A given by 2 +  2A~-~(-1) ~ '  ;~) is nondegenerate. Since �9 0 contains 
an element of order 3 which acts fixed point freely on A, the quadratic form on 
A/2A has maximal Witt index since n-=0 (rood2). Therefore, we get a 
map-0~Y2+(24,2)  whose image is isomorphic to .1. Since any subgroup of 
GL(24, 2) isomorphic to �9 1 preserves at most one nonzero quadratic form 
(Lemma 2.41), all embeddings o f .  1 in O ~ (24, 2) are conjugate via elements of 
f2+(24, 2). Take any subgroup C~<A o with the property that C~,/Q~. 1. We 
have an exact sequence " ~1+24 l - -*z;  - - , C ~ .  1--,1. The group C which we seek 
to construct is the middle term of such a short exact sequence, but C ~ Coo. 

Let d be the covering group for C~,, Z=Z((~) .  We claim that 121<4. 
Define U'.=Oz(C), Zl :=ker [ (~ - -~Coo  ]. Then U/ZI~ Q. We argue that 
Z(U)/Z 1 maps onto Z(Q), for if Z~ <Z~<U and Z*/Z a corresponds to Z(Q), 
we have [Z*, (~, ( ~ ] < [ Z l ,  C ' ] = I  so that Z~<Z(d) by the three subgroups 
lemma and the fact that (~ is perfect. So, Z*<Z(U) and we have Z(U)=Z*. 
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Let L=LtO L 2 be the Lie ring of U([27], 5.6) and let L=LI| L2, where bars 
indicate taking i rna_ges modulo Z(U)/U', an ideal of L which lies in L 1. Then, 
as modules for C, L 1 "~Q/Q'. Since/~t is elementary abelian and generates L as 
a Lie ring, L 2 ~ L  2 is elementary abelian. As modules for 12, L 2 is a quotient of 
the exterior square of L~, whose maximal trivial quotient is one-dimen- 
sional because Q/Q' supports exactly one nontrivial .1-invariant bilinear 
form (see Lemma 2.41). Thus, d i m L 2 = l  and so [U'[=2. By Lem- 
ma 2.11, Extl2( 1)(A/2A, IF2)~E 1 �9 xtw2 v 1)(IF 2, A/2A)~-H1( �9 1, A/2A)=O, whence 
O2(12)/02(C)'~A/2A@R, where R is a trivial module. Since H2( �9 1, Q/7I )~Z 2 
[33], we get [RI<2 since C is perfect. Thus, IZ[<4 as claimed. Next, we claim 
that Z~7Z2xTI 2. Let K be the kernel of the epimorphism 12~Coo. Then 

^ ! 
K~02(C ) = 1, whence ]KI = 1 or 2. We show that K=t= 1, which suffices, since Z 
=O2(12)' x K. Letting C* be the pullback of the diagram 

C g ) C o o  

1 I 

I 
4- 

-0 ~' ~-1 

(q), ~, onto) 

i.e. C*-~{(g, h)6.0 x Coo Ig<~176 we find that C* is a perfect central extension, 
and so is a homomorphic image of C. Therefore, K q= 1 since C* maps onto �9 0 
but Coo does not. We also have C ~ C*. 

We summarize as follows. The quotients of 12 by the three subgroups of 
order 2 in Z are Coo-21+24.(.1), C~2t+24. ( .1)  and 224.(.0)~225.(.1). We 
shall see shortly that C;g Coo. From the last paragraph, we see that 02(12)= ~ 
x <zoo>, where [zoo[ =2, <zoo) =K,  (~< 12, ( ~ Q .  Let <~) =Z((~). 

I f p  is the representation of 12 on Tv i a  12--+ Coo, it is easy to see that p| 
runs over all the irreducible representations for C which are faithful on (~, as 
p' runs over all the irreducibles of 12/ (~-0 .  We have 

ker(p| if p' is not faithful, 
(<,zzoo2 if p' is faithful. 

In particular, C;g Coo, since C does not have a faithful character of degree 212 
We identify Q with the image of (~ in C. 
We are ready to define the C-module B =  U |17 4  As (~-modules, W 

=T| and U~-S2(Q@zA ). The module V is an induced module, described as 

follows. Let C2/Q be the subgroup of C/Q ~.  1 corresponding to the image of a 
natural �9 2 subgroup o f .  0 in �9 1. We claim that the lattice of normal subgroups 
of C 2 is the following: 

C !  , 
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Here, ueQ corresponds to a vector of type 2 under Q/Q'~-A/2A. The validity 
of the picture follows from the structure of the extraspecial group Q together 
with the observations (a) C 2 must centralize the four group (z, u>; (b) C2/Q 
~ . 2  is simple; (c) CQ(u)/(u, z> is a 22-dimensional IF  2 irreducible module for 
�9 2 (irreducibility is easy to prove, since a natural M23 subgroup of M z 4 < N 2 4  

fixing -3xi+ ~ xj, has constituents of dimensions 1, 1, 11, 11 on A/2A, and a 
j~-i 

subgroup 31+~ of .2 has constituents of dimensions 1, 1, 1, 1, 1, 1, 18, as may 
be deduced from the character table [12]). Given the above picture, we take 
the unique nontrivial linear character q) of C2, let V(~o) be a module affording 
it, then let V:=V(cp) c be the induced module. Note that (pIQ=q~, where 2~A 2 
corresponds to u under our isomorphism A/2A~Q/Q'. Thus, VIo~ affords the 
character ~ ~0x where 2 runs over representatives of the classes in A 2. 

We may give another description of the module V. The above discussion 
indicates that V is characterized by the properties: (a) V is absolutely irreduc- 
ible; (b) Cc(V)=(z>; (c) dim V=98280. From the discussion in Sect. 3, we see 
that the C-module T| restricted to Q contains each linear character with 
multiplicity 1. Note that Z acts trivially on T|  so that T| may be 
regarded as a C-module. Since �9 1 operates transitively o n  "/]2 and 1r 
the subspace T(2) of T |  corresponding to the character q)x, 2~A2, is a C- 
submodule of dimension 98280, hence is isomorphic to V. 

In the notation of Sect. 3, the character (p is afforded by the unit eigenvec- 
1 

tot A o = ~  ~ q~(x)e(x)| In case 2EA and q0 correspond as above, 
xEF 

write A x for A~o. Then T(2) has basis {Ax} where 2 runs over the classes of r 
We write v(2): =Ax, 2E . / ]  2. 

Table 4.1. The module structure of B 

Action of ... on module U V W 

z I 1 - 1  

Q 1 linear characters ( ~ T  
l 

C .1 monomial  group T| 
z 

Dimensions: 300 98280 98304 
Decomposition into irreducibles: 1 + 299 98280 98304 

Irreducibility of W follows from our earlier discussion and irreducibility of 
V follows from Clifford theory. Finally, taking {x~lieO} as an orthonormal 
basis for II)| the subspace II~(~x 2) and its orthogonal complement in 

Z ir 

S2(Q~A) are invariant under the action o f .  l. The 299-dimensional comple- 

ment must remain irreducible for -1, since the only irreducible degrees for -1 
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less than 300 are 299 and 276 [12], and the principal character may occur only 
once in U since II~ | A is absolutely irreducible. 

z 
We close this section with some notation. We fix group epimorphisms 

711: C ----~ C 

rc~: C--* C~ 

g o :  C - + C 0 : = 2 2 + . ( " 0 )  

~: C ~ . 0  

~: C ~ . I  

- : ' 0 ~ . 1 .  

We also choose a function r~: C ~ - 0  which is not a group homomorphism, but 
whose composite with the quotient map �9 0--,. 1 does give the group homomor- 
phism ~: C ~ .  1 onto �9 1. For  geC, we require g~e(g~r')~ and we write ~ for g~. 
We abuse notation and write ~, for g~= ~,. When S is a subgroup of C, we write 

or S ~ for the group (S~;') ~ and S for S ~ and S. We do not use special 
notation for the quotient map C ~ C/(z).  

This notation is depicted as follows: 

C + ~ - -  , c + / z ( c + )  
\"\,, 

+ C O ~ - 0  . . . . . . . . . .  ~ . 1  

- - ~  C/<z> ~ /  C ~ > 

El+ 
c +/z(c+) 

12 In Sect. 3, we considered a factorization Q = E F  where E ~  13 and F = ~  2 , 

but no other requirements were imposed. From now on, we require q(A(4)) 
= E  o, where E0: = CE(e(1)). (See Sect. 2 for the definition of A(n) and Sect. 3 for 
the definition of e(1)). Thus, E=E o x (z>. 

The facts that N2+ (see Sect. 2) operates monomially with respect to 
{xi[i~f2 } and is maximal in �9 0 imply that N24 is the stabilizer in -0 of A(4). By 
Lemma 2.12, IE]=213. Without loss, we may alter q so that Eo:=q(A(4)) is a 
subgroup of E (therefore of index 2). Finally, one more piece of notation: for 
xEQ, we let 2x~A satisfy q()c~,)~x<z> with (2x, 2x> as small as possible. 

We write uis=u(x ix)~U , d= ~ x 2 Uo=d , the orthogonal complement in 
leg? 

U, u o" U-~U o the orthogonal projection; we also write Uo(X ) for Uo(U(X)), 

x~S2(Q~A) .  Note that U has a basis {u, l i~2}~{uq  ij~ (~)} ,  where ( ~ ) i s  

the set of unordered pairs of distinct elements from (L 
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5. Tensor Products of Irreducibles of C 

This published version of Sect. 5 differs significantly from the preprint version 
in a number of ways, due mainly to the use of Lemma 2.38. The referee found 
a number of problems with the original version, but these are circumvented by 
this new approach. 

For two modules A 1 and A 2 of a finite group Go, we let (A1,A2} or 
(A 1, A2}6o be dim HomGo(A1, A2). We assume that the field has characteristic 
0. When A i is absolutely irreducible, this is just the multiplicity of A i in A j, for 
{i, j} = {1, 2}. 

Whenever we have such self-dual modules A1, A2, A3, we have an adjoint- 
ness relation HOmGo(AI| A3) '~Hom~o(A1,A2|  (see Lemma 2.7) 
which implies that (A~ |  A 3 ) =  (A~, A 2 | A3). 

We regard the faithful module T for Q as a C-module (see Sect. 4). In this 
section all C-modules shall be regarded as r modules, and for course C- 
modules on which ( 2 z ~ )  acts trivially may be regarded as C-modules. 

For the modules U and W, C-invariant symmetric bilinear forms may be 
obtained from ones on T and A, by Lemma 2.6. The orthogonal projections 
U--*Qd and U ~ U o = d  • give forms on Q d  and U o. Finally, we get an 
invariant symmetric bilinear form on V by viewing V as an induced module V 
=- V(r c (see Sect. 4), taking a basis element v for V(r and making (v, v g) = 0 
whenever v g 4: + v, and (v g, v g) = 1 for g e C. Given g, h e C, either v g and v h are 
linearly independent or v g = _+ v h. Later, we shall adjust these forms by scalars. 

Note that all of I1~, T ,Q |  U o, V and W are self-dual and absolutely 
irreducible. 

Definition 5.1. For 2e/]2, let qSa be the character of Q given by q(/2)~--~ 
( - 1 )  <x'"> (it follows that zq(p)v-*(-1) <~'"> since zeQ'). Write xx for the ele- 
ment x4~ ~ of F and A)~ for Aq~. 

Lemma 5.2. Let V | V--* V be a nonzero C-map. Then, up to a scalar multiple, 
the map is v(2) | v(p) v--. 

{ ~Oa+U(xOv(~.+lO=~gu(x~.)v(.~+]O if )4, i ~, ~-t-l.t �9 A2, 
!fi ,~, [2 do not span a triangle type of 222. 

Furthermore, this is a C-map and the .fi)rm is associative with respect to the 
associated algebra, which is commutative. 

Proof We first show that ( V |  Let f ,g :  V |  be (~-maps. If 
) . , p~A 2 and 2,/5 do not span a triangle on type 222, f(v(2)| since 
v(Z)Qv(/0 affords the character ~ba+, of Q. 

Suppose that, for some triple 2 , # , 2 + # ~ A  2, f (v(2)Qv(p)=O. Transitivity 
of .0 on the set of triangles of type 222 implies that f is 0 on all such 
v(Z)Qv(p), whence f = 0 .  Consequently, f and g are linearly dependent, for if 
a, b are scalars with f (v(2) |  g(v(2)|  for 2,/2, 2 
+ ,uEA2 ,  then (bf-ag)(v(2) |  At once, ( V |  We need the 
opposite inequality. 
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Recall from Sect. 4 that V may be regarded as the subspace of T |  
spanned by all Ax, 2 e A  2. From Lemma 2.39, there is a product on T |  
making the relevant form associative. Since the form on T |  T is positive 
definite, Lemma 2.38 applies to the subspace V. It remains to show that the 
product on V inherited from T |  T is nonzero and commutative. We compute, 
in the notation of Sect. 4 and Lemma 2.39, 

1 
A O.AO=~f  ~ ~ O(x)O(y)e(x)| ) .e(y) |  

x,y~F 

1 
212 2 dP(x)O(xx4~)e(x)| 

x~F 

1 
-212 0(xe) ~ dp(x)O(x)e(x)|  o) 

x~F 

1 1 
-212 0(x~) ~ (ch~')(x)e(x)|  

x~F 

1 
For 2,# E A and ~b=~bz, 0=~b,, this reads A x . A , = ~ d  qS,(xz)Ax§ Note that if 

2 has type congruent to 6(rood 2), 3 = 0  or 1, then qS~(xz)=(-1) ~ (namely, q(,t) 
=xz.ua,  u z e E  and [x~,uz]=l  if and only if q(k)2=l). So, if we restrict 2 to 
vectors of type2, q~,(xz)=q~z+,(xx). The first statement of the Lemma follows. 
As for commutativity, if 2, p, 2 +/~ ~ A2, 1 = ~bz+,(xx+,) = qS~+,(xa)~bx+,(x,) im- 
plies the result. 

Lemma 5.3. Let  U x V ~ U be a nontrivial �9 1-invariant symmetric product with 
image lying in U o and d. U =0. Then, up to a scalar, the product is 

(1) u2i= -253Uu+ 11 ~ ujj; 
j , i  

(2) UiiUjj= ll(uii+Ujj )-  ~ Ukk; 
k*i , j  

(3) uiiuij= - 132uij; 

(4) UnUjk = 12Ujk; 

(5) u2=--66(Uu+Ujj)+6 ~ Ukk ; 
k=i,j 

(6) UijUjk---- -- 72Ulk; 

(7) UijUkz = 0; 

here, distinct symbols i,j, k, l mean that the indices are really distinct. Also, a �9 1- 
invariant inner product is the following: (Uu, Ujj)=46ij, (Uu, Ujk)=O for j ~ k ,  
(uij, Ukl) = 2 ~r j~,~k, t~ for i # j ,  k :t: 1. 

Proof. First we investigate products invariant under N:4. Since the action of 
N24 on the basis elements is so easy to understand, one can write down the 
N24-invariant products: 
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(8) u2=Tu.+6 y" ujj; 
j=~i 

u.u~j=c~(uii+uj~)+fl y~ Uaa , for i# j ;  
k~- i , j  

Ui iUij '~-O~lUij ,  f o r  i#j; 

U, Ujk=C%Ujk, for distinct i,j,k; 

u{j=((uii+uj~)+t 1 ~, Ukk , for i#j;  
k :~ i , j  

!AijlAjk =,~Uij , for distinct i,j,k; 

UijUk~=O, for distinct i,j,k,l; 

for scalars 7, 6, c~, fl, cq, c%, (, tl, 2. 
We have d =  ~ uueU and we want to have d -U=O.  So, u , . d = O  gives 

(9) 7 + 23 c~ = 0 and 

(10) 6+cr  

Also, u~j. d = 0 for i # j  gives 

(11) cq +11~2=0.  

Since we require U 2 = U 0 ,  by looking at uuu#, we get 

(12) 7 + 2 3 6 = 0  and 

(13) ~ + l l f l = 0 .  

We conclude that 

(14) ~ = 6 = - l l f l  and 7=253fl. 

Also u 2 ~ U o for i+j  gives 

(15) ~+11,7=0. 
We use the fact that �9 0 is transitive on vectors of types 2 and 4. Write x ~ y  

if x, y lie in a module for -0 and there is g r  such that x ~ = y. 
,4- 

Now, 2 x 1 ~ x l + x 2 + x 3 + x 4 ,  whence 4u11~ ~ u , + 2  ~ uij. Therefore 
i = 1  1 < i < j ~ 4  

(4u,1) 2=16{~u1~+6 ~ u , } = 1 6 { 8 . d + ( 7 - g ) u , ~ }  

= ( 7 + 3 6 + 6 c ~ + 6 f l + 4 ( 3 ( + 3 q ) )  ~ Uu+(46+12fl+4(6t/))  ~ Ukk 
i= 1 k #  l ,  2, 3, 4 

} 
1< i < 4  u i j  

= (160fl+12(~+t/)) y, u .+( -32 f l+24q)  2 Ukk 
i= 1 k4  = 1, 2, 3, 4 

+(162+8(~1 +c@) ~ uij}. 
l < i < j < 4  
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It follows that  

(16) 1 6 6 = - 3 2 / ~ + 2 4 r / ,  or 1 7 = - 6 f l ;  

and so 

(17) ~ =  - 1 l t / =  66/~. 

We also deduce f rom the above  ~ relat ion that  

(18) 4 ( 7 - 6 ) =  8 2 + 4 ( c q  + ~2) , or 2 6 4 f l = 2 2 +  cq +c%. 

Wha t  we seek is a further condi t ion on 2, cq, c~ 2. 
We observe that  / ~ 0 ;  if 3 = 0 ,  then the only structure constants  which 

might  be nonzero  are /l, cq and c%, which implies that U2<span{uisli+j in 
f2} < Uo, a contradict ion.  Therefore  we m a y  assume that  3 = - 1, whence 

(19) c~=6=11,  /~= - 1 ,  7 =  - 2 5 3 ,  q = 6 ,  ~ = - 6 6 ;  

and 

(20) ~ 1 + 1 1 ~ 2 = 0 ,  2 2 + ~ 1 + c ~ 2 = - 2 6 4 .  

Let x = x  l+x  2 so that  4 x e A  2. Then  u(x2)=u11+u22+2u12. Also, 

u ( x 2 ) 2 = ( - 2 5 3 +  11 + 2 ( l l ) + 4 ( - 6 6 ) ) ( u l t + u 2 2 )  

+ [ 1 1 + 1 1 - 2 + 4 . 6 ]  ~ Ukk+80~lUl2 
k t l , 2  

= - 4 8 4 ( u l l + u 2 2 ) +  44 ~ Uk~+8~lU12 
k~ 1, 2 

= { - 528(u~ 1 + ul2) + 8c~1ul 2} +44d .  

Since -2, the centralizer in �9 0 of  Q x, has const i tuents  of d imensions  1, 23, 275 
on U o it follows that  u(x2)ZeQ(u(x2)-~d). Therefore,  u ( x 2 ) 2 = - 5 2 8 ( u ( x  2) 

t-2dD, and this forces 8cq = - 1 0 5 6 ,  or a t = - 1 3 2 .  Consequent ly,  

(21) c q =  - 1 3 2 ,  c~2 = 12, /1= - 7 2 ,  

and the L e m m a  is proven. 

L e m m a  5.4. Suppose that A~, A 2 and A 3 are among the if)C-modules 
{I~,Uo, V,W } and that (AI@A2, A3)=[=O. The either two of {A1,A2,A3} are 
equal and the third is ~, or else one of the following cases occurs: 

(i) (Uo| V |  

(ii) ( U o |  W,, W )  = ( U o ,  W| W ) = ( U o , S 2 W )  = 1; 

(iii) (V |  and (S3V, , I I~)=I ;  

(iv) ( v |  w,, w )  =(v,  w |  w )  = ( v , s  ~ w )  =2; 
(v) ( U  0 | Uo, Uo) = (S  2 U o, Uo) = 1 and (S  3 Uo, Q )  = 1. 

Proof By considering these modules  restricted to Q, it is clear that the only 
candidates  for (A 1 |  2, A3):1=0 are the ones listed. 
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(i) Let us consider (V@ V, Uo)=(V,  V|  Uo). Using the discussion of Sect. 
4, recall that V has a basis v()~), ~e/]2,  where v(,~) affords a linear character of 
Q. In V@V, the v(;~)@v(~t) afford all the linear characters of Q. Since Uo is a 
trivial Q-module, the only basis elements in V@ V which are relevant are those 
with ,~=~. Let V 1 be the q-span of all v(2)@v(2). Then dearly V~ is just the 
permutation module for C on the cosets of C2, and may be regarded as the 
permutation module for .1 on the cosets of .2, or rather of its image under 
.0--* 1. Thus, (V@V, U o ) = ( V  1 U o ) -  1 c �9 , - (  c2, U o ) = ( l q ,  Uo[q), by Frobenius 
reciprocity. We argue that Uol q is a direct sum of irreducibles of dimensions 1, 
23 and 275, from which the desired result follows. See [12] for the degrees of 
the irreducibles for .2. This becomes clear by taking a vector 2 of type 2 and 
considering S2(Q@A)=S2(~,r177177177177 Fi -  

na l ly ,  we get (S 2 V, Uo) = 1 since V@ V-+ V 1 factors through S 2 V. 

(ii) We have W ~ T @ A  and so W @ W ~ ( T @ T ) ~ ( A ~ A ) .  We are in- 

terested only in the ~'-constituents of W|  W which are trivial for Q. This 
amounts picking out the single occurrence of the principal character for Q in 
T@ T. Thus, 

(U  o , w Q W ) = ( U o ,  Q |  U o |  
Z Z 

We exhibit a nonzero invariant map WQW-+ Uo, viz., 

(e(x) (~Xi) @(r @X j)k--+tSxy UO(Uij ). 

Since the map is clearly symmetric, we get (U  o, S 2 W)  = 1. 

(iii) See Lemma 5.2. 

(iv) We have ( W |  V). We may decompose 
T@ T =  T(0) | T(2) �9 T(3) | T(4) as C-modules, where T(i) represents all the 

linear characters corresponding to an orbit of C on Q/Q', represented by q(2), 
where 2eA i. We have dim T(0)=I ,  dim T(2)=98,280, dim T(3)=8,386,560, 
dim T(4) = 8,292,375. By checking dim S 2 T=  8,390,656 and dim/~ 2 T=  8,386,560 
and noting that the linear characters of Q occuring in SZT and/k 2T must form 
orbits, we see that T(0), T(2) and T(4) occur in S2T and T(3)=A ZT. Since 
VIQ ~ T(2), 

(W|  V) = (T(2) @A @A, V)  = ( V |  | V)  = ( ~  @A | V Q V ) .  

Since A is a trivial Q-module, the only constituents in V QV which count are 
the ones affording the principal Q-character�9 Using the notation in (i), Vt 
means the submodule of V |  spanned by all v(2)| So, 

(Q | @A, V@V)  = ( Q  @A | V,) = ( A  @A, lC2) = ( A  | c2, lq)c2 =2, 

as in (i). But now it is clear that (S 2 W, V ) =  2 once we exhibit the maps 

(t 1 | | 2 @22) --+c I (2t ,  22) p(tl @t2)+c 2 po(Uo(21 22), p(tl @t2)), 

where c I and c 2 are scalars, p is the projection T| and Po is 
the pairing U o @V--+ V described in (i). 
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(v) This may be deduced directly from a calculation with the character 
table of-1  [12], using Lemma 2.8. An alternate proof goes as follows. Lemma 
2.39 (iii) shows that (U o | Uo, Uo) > (S 2 Uo, Uo) > 1 and (S 3 Uo,Q)  > 1. We 
get {S2Uo, Uo)<I  from Lemma 5.2, whence (S2Uo, Uo)=(S3Uo,q) . )=I ,  as 
required. 

Definition 5.5. For 2~/12, write v(2) or v(;T.) for the element Ax, regarding V as 
a direct summand of T |  T (V= T(2) in the notation of Lemma 5.4(iv)). 

The bilinear map p: U x Q |  ~(1~ |  is defined by 

P(Ui i ,  Xi )  = - -  69xi, 

p(ujj ,xl)=3x i i#.j, 

p(IAij ,  Xi)  = - 3 6 x j  i# j ,  

p(Ujk, Xi) =O i # j # k 4= i. 

By examining the proof of Lemma 5.4 we can get the maps explicitly. 

Corollary 5.6. In the notation of Lemma 5.4 the relevant spaces of  bilinear maps 
are spanned, by respectively: 

(i) uoQv(2)~(Uo,U(22))v(;o); 
v(,~) | v(~) ~ 6~, ~ u o (22); 

(ii) Uo|174 v--,e(x)| 
(e(x) | xi) | (e(y) | x )  ~-,6 xyUo(Ui); 

{~'(2,#) v(2+/O 2, t~,2+tLeA2, 
(iii) v(2) | v(/~) v-~ otherwise; 

(iv) (e(x) | xi) | (e(y) | xi) ~ _ ~  [c air + c'(Uo(Ui), b/(22))] ~b 1.(x ) V(2), 
AEA2 

c, c' scalars; xx= xy 

v(2) | (e(x) | xi) F--, ~, [caij + c'(u o (ui) , u(22))] ~bx(x) e(xxx) | x~. 
j s ~  

Remark: Here, B is assumed to have a C-invariant positive definite form ( , ) 
(any choice will do here, see Definitions 5.1 and 5.5 for additional notation); 
also uoeUo, 2~A2, xEF, iE~2. The sign /3'(2,/0= _+1 may be arranged to equal 
~ba+,(xa); see Lemma 5.1. 

Proof Whenever possible, we shall use the notation in the proof of Lemma 5.2. 

(i) Since C2, the stabilizer in C of ,~, has one 1-dimensional submodule in 
V, namely II~v(2), and just one in Uo, namely ~Uo(22), the first formula in (i) 
may be assumed to hold for one particular 2. To see that it holds for arbitrary 
2ffA2, apply elements of C to both sides of the equation. Thus, the first 
formula of (i) follows. As for the second, the image of v(2)| in Uo, if 
nonzero, affords the character ~baq5 u of Q. Since any nontrivial image must 
afford the trivial character, the second formula may be assumed to hold for 
particular 2. The validity for all elements of/]2 follows by applying elements of 
C to both sides of the equation for 2. 
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(ii) The second formula clearly exhibits a nontrivial C-map when inter- 
preted as ( T | 1 7 4 1 7 4 1 7 4 1 7 4 1 7 4 1 7 4  o. The first argu- 
ment may be taken from the second by use of the adjointness relation. The 
first argument may be taken from U (not just Uo) as long as we require p(d, - )  
to be the zero map. We use a �9 to denote the first pairing. We have 
(ui~.e(x)| k, e(y)| Uo(Ukl)), for some scalar a + 0  and all i,j, k ~ ,  
xeF.  Without loss, a =  1. Thus, uij. e(x)| xk=e(x)| , for some bilinear 
function h + 0  which commutes with the action of (~. 

We now use the group N24<.1 to get the values of h. Since 
h(uii, x i )eQ @zA affords the character of O2(N24 ) which Q x i affords, we must 

have h(uii, xi)=cqxi, for some ~I~Q since this character occurs with multi- 
plicity one. Note that ~1 is independent of i, by the action of N24. Since all the 
% and x k are eigenvectors for 02(N24), similar arguments give ~2, % ~  so 
that h(ujj ,x i)-~-~22x i and h(uij, xi)=~3xj for i+j. Note that h(ui2, Xk)=O for 
distinct i,j, k. 

Since h(d, xi) is zero, we get cq+23~2=0.  The vectors 2 = 8 x  1 and /~=4(x l 
+Xz+X3+X4) have type 4, and there is g e C  with 2g=/~. We have h(u(22),2) 
=h(64ul l ,SxO= 512ctlxl =64cq 2. Also 

4 

i l < i < j < d ,  z 

=64(c~ l+3~2+6e3) (x  1 + x 2 + x  3+ x  J =  16(~ 1 +3c~ 2+6c%)/t. 

Since 2g=/~, cq+3~2+6c%=4cq ,  or - c q + e a + 2 C % = 0 .  So, cq=-23c~  2 and c~ 3 
-12c~2, and taking c~2= 3 gives h=p, as desired. 

(iii) This follows from Lemma 5.1. 

(iv) To get the first formula, we need to project e(x)| into the space 
T(2), in the notation of Lemma 5.3. Since the Ax, ,~e/12, form an orthonormal 
basis for T(2), one has 

1 
e(x) | e(y) F--, ~ (e(x) | e(y), A~) A a = ~ ~ O~.(x) Ax. 

~ 2  2 ~GZ[2 
XA -- X y 

Tensoring this map with the inner product (Q |174174  gives one 
map. Using the map (~ | A) |  (Q | Uo and the pairing from (i), we get a 
second map, clearly independent of the first. 

Adjointness and the first formula imply the second. 

Corollary 5.7. Any algebra structure on B with an associative fi~rm, satisfying 
B 2< U o + V+ W, dB = 0 and having C as a group of automorphisms is described 
by choices for six independent parameters. 

Proof Lemma 5.3 and the adjointness requirement. 

6. The Algebra Product 

From Corollary 5.7, we see that an arbitrary C-invariant commutative algebra 
product B |  satisfying B2<=Uo+V+W, d B = 0  and the associative law 
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for a nondegenerate symmetric bilinear form involves a choice of six parame- 
ters. We make the choices as indicated in Table 6.1, where we also choose a C- 
invariant bilinear form. The (~,q) entry gives the product ~tl. The commutative 
law permits us to drop certain entries in the table. 

As mentioned in Sect. 4, the choice of structure constants is motivated by 
group-theoretic considerations, translated into linear algebra. We shall say 
more about this in Sect. 10. 

From Corollary 5.5, we get explicitly described maps involving the relevant 
(~-modules. The symmetric map fi(2,#) takes the values 0 or _+36. When 2,~t 
do not span a triangle of type 222, fl(2,~)=0 and when they do, fl(2,~t)= 
-36qS~+u(xz)=-36q~u(x;). Note that x a = l  for 2~A 4, whence f l ( 2 , / 0 = - 3 6  
whenever 2 or/~ is in A~. Also, note that f l(2,~t)=fl(#,2),  for all 2 , / ~ A .  

Table 6.1. The algebra product  

u~U v()~), ~ f f l  2 e(x)| xeF ,  i~(2 

uEU (*) --9(U, Uo(22))v() 0 e(x)| xl) (**) 

v(,~) - -~uo(~ 2) ~ [-36~j+ ~(Uo(U,?,u(~))] ~oAx).e(xx~,)| ' 

e(y) |  i - - - t8,~ u0(u,j ) 

+ ~ [ -  36,j + ~(Uo(U,?, u(;~))] . ~o~(x)~(;~) 
).~A2 

xX ffi xv 

(*) The product on U: 
u 2 = - 2 5 3 u , , + l l  ~ u~. I u,,uij=-132ulj 

j * i  

ullu#=ll(u,+u~j) ~ URk U,~Ujk=I2Ujk 
k * z , j  

Uijl-ljk=-- 72U,k u 2 =  -66 (u ,+u#)+6  ~ Ukk 

uijuk~ = 0  for i,j, k, l distinct k*~,j 

(**) p(uii, xi) = - 69x, p(u#. x~) = - 36xj i #:j 

p(ujj, x~)=3x~, i4=j P(Uli, Xk)=O i4=j4k+i 

***) fl(2, # ) =  -36~ba+u(xx) or 0 according to whether ,~, ~t do or 
do not  span a triangle of type 222; in the former case, if 2 or # 
is in A 4, fl(2, p ) =  - 3 6 .  

The inner product: (u,i , u j j) = 4,5,j, (u,,, Ujk ) = 0 for j + k. 

(Uil, Ukl)=2g~l,.~.lk,~l for i+j, k#:l. 0 = ( U ,  V)=(V, W ) = ( U ,  W). 

(v(2), v(p)) =~5~,~.(e(x) | e(y) | j)= 6~y 6,j. 

7. The Groups F and J 

In this section we describe a particular complement F to E in Q (up to now, 
the complement has been arbitrary). 
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Write E = ( z )  xE  o, Eo=C~(e(1)); see Sects. 3 and 4. We define E(2) 
={q(4xi-4xs) l i , j~O ). By Lemma 2.13, IE0:E(2)1=2 and E0~TZ~2. The sub- 
group X =(Nc(Eo)C~Nc(E(2)))' satisfies X =X', 02(X)=E(2 ) and X/E(2)~M24. 
Then Eo=E(2  ) x (Zl)  as X-modules, where z l=q(8x~ ). (We may see that the 
extension l ~ 2 ~ t ~ X ~ M 2 4 - - , 1  is nonsplit because X may be embedded in 
F~  as the stabilizer of a maximal commuting set of 3-transpositions [in the 
notation of Sects. 7 and 13, we may take x3. = 0, an element described below]; 
however, we do not need to know the extension type of X). 

Since Eo=q(A(4)), if F is any complement to E in Q, we may define F(2) 
=Fc~(q(A(2))). Since IA:A(2)I=2 and IA(8)+2A:2AI=2 (see Lemma 2.12), 
(q(A(2)))=2x2!~ +22 and IF:F(2)I=2. From the definition of A in [11] one 
sees that if 2eA(2), then S~:={i~f21the i th coordinate of ), is in 2+47/} is a cg_ 
set. This is an invariant of the coset 2+A(4) but not of 2+2A.  Consider /z~2 
+2A, with S,+Sx. Then g - 2 = 2 v ,  v~A-A(2) .  Since every coordinate of v is 
odd, 2v- (2 ,2 , . . . , 2 ) (mod4) .  Thus, Sx+S,=O and we see that the element 
{Sx,S~+O}e@ is an invariant of 2+2A.  So, we get an isomorphism F(2)~c~ 
(referred to in Sect. 2). We write this x~--~S~ (where S~ means a C~-set or its 
image in @) and S ~-,x s (where S means an element of ~ or c~). 

Choose h e C, Ihl = 11 so that E= h ~ is arranged to satisfy 

(1) }~=(0) (1,2, 4, 8, 16, 9, 18, 13, 3, 6, 12)(~)(15, 7, 14, 5, 10, 20, 17, 11, 22, 21, 19) 

~ M2,,=<N24. 

Recall that 

(2) 2={0,1,2,4,8,16,9,18,13,3,6,12},  the squares in IF23, is a dodecad in 
and that 

Y = 2 + Q ,  2 •  ~ / ' •  

We have E(2)h=E(2) and 

~7/10 .  (3) El :=[E(2 ) ,h ]=(q (4x i -4x ) l i , j~2~)  = 2 , 

E 1 has a basis {q (4x l -4x ) l j a .~  • -{1}}. 

We claim that 

(4) Nx(E~)~= ( - 1 A ) •  Mr2.2, where the second direct factor is a subgroup of 
M24 stabilizing the complementary pair of dodecads, {2,JV}; furthermore 
Np(EI)~z = ( (  -- 1A) X (g~)  • M12 ) 2, where P:=Nc(Eo). 

Namely, E(2)=P(f2) . . . .  /oK as Nx(E1)-modules, and the stabilizer of E t in X 
corresponds to the stabilizer of a certain nonzero vector A + ( f 2 )  in the dual 
module c~. Since A + ( f 2 )  is stable under h, order 11, A must be a dodecad. 
Since dim Ce,(h)= 1, A = 2  or JV as required. The second assertion follows from 
the first. 

From [12], we get that the centralizer of an element of order 11 in �9 0 looks 
like 7 /2xT/~ lxZa ,  and the elements of order 3 in the centralizer act fixed 
point freely on A. Without loss, /~N2~.  Let OECc(h), I01=3 and let s~Cc(h) 
satisfy 0"=0 -1 and ~eN24. Then s2~Ce(O)=(z). We define J by (z)<_J<_C 
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and J/(z)=Cc/<=>((O,s)). From [4] and [12], we get that J/(zF_~AutM12. 
Then Lemma 2.10 and [36], give J'=J"~2Mla=M12 . Since seO2(N24 ) and 
.~" has eigenvalues { -  112, 1'2}, J~<=Nz4 [12]. From [36], we get that Is[=2. 

0 - 1  We intend to let F be E ~ or E o . One of the nice properties we will have is 
that E o and F are J-invariant. First, however, we must develop further proper- 
ties of J, 0 and s. 

Next, we claim that 

(5) Ns(E,)/(z)~-PGL(2, 11); moreover, Ns(EOU=L x ( -  1A) , where L<=M24 , 
L ~ L 2 ( I 1  ) is the stabilizer of ~ and {0, oo}; also Nj(E1)'~-L. 

A look at the basis {q(4xo-4xOIke~ • for E(2) makes it clear that E(2) is 
the IF2L-permutation module on the cosets of an As-subgrou p of L (we may 
regard E o as a module for N24 ). By Lemma 2.5, HI(L, Ei)=HI(L,E(2))=O. 
Note that E(2) is a self-dual L-module. Now let L* be the subgroup of J which 
maps isomorphically onto LO2(N24)/Oz(N24 ) under N24~N24/Or ). (Any 
intransitive L2( l l  ) subgroup of M12 splits over the center of M12=2M12 .) 
Since HI(L,E(2))=HI(L, Z2)=O, L and ((L*)~) ' are conjugate. Complete re- 
ducibility of L on E 0 implies that the unique conjugate L** of L in N24 
stabilizes [E0,h** ] and Ceo(h** ) where h** is an element of order 11 in L**. 
This and the way E 1 was defined imply that L=((L*)~) '. Clearly, Nj(L*) is in 
Ns(Et), and since Ns(L* ) is maximal in J, (5) follows. 

-~21+4 QI := [Q ,  hi=21+2~ K:=Cc(Qo/Qo) We define Qo:=CQ(h)__+ , 
<Nc(Q1 ). Since K centralizes Zl(Z)/(z), Ke<=N24, whence K normalizes 
Qlc~E=(z, El) and so K'e<Np(E1) 'e, which is given by (4). Since K fixes 
q(2~) and q(2o) modulo (z ) ,  K e < M 2 2 •  and from the preceeding 
sentence, we get K u < L  • ( -  la )  where L is the group discussed above. Since 
Qo=(q({2o~,2o,2~,o,8X,~})), we easily get K ~ = L x ( - 1 A ) .  Since L<=J ~, 
[K, 0] < K  c~Q and so C~;(O)/(z)~-L and Ns(CK(O))/(z ) ~-PGL(2, 11), the group 
of (5). 

We describe the involutions of Qo. There are nine non-trivial cosets of (z )  
in Qo consisting of involutions. They are represented by 

(6) q(8xoo), q(2 ~ xl-2Xo-4X~o), 
i~..~ • 

q(2 ~ x~-2xo+4xoo), all in q(a4); 
ieoa•  

q(4xo o - 4Xo), q(4x~ o + 4Xo), 

q(2oo), q(2o), 

q(2oo.~), q(2~o,~+4x~+4Xo)=q(2o,~), all in q(A2). 

Let us examine the action of 0 more carefully. We may alter q so that 
q(A)c~E~176 for j = 0 , 1 , 2  (the only special requirement on the set function 
q: A ~ Q  made before this one was q(A(4))=Eo; see Sect. 4). By replacing 0 
with 0- ~ if necessary, we may assume that 0 satisfies 

(7) q(8x~.) ~-,q(y ~) r-~ q(y2) 
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where 
y t : = 2  ~ xi--2Xo--4xo~ and y2".=y~+8xov. 

iE~ • 

Since 0 preserves commutativity, (6) and (7) give 

(8) {q(4xoo - 4Xo) , q(4x~ + 4Xo) } ~,  {q(2~), q(2o,.~)} 

{q(~o), q(~, ~)}. 

Since, for any involution xeQ,  (x  <~ ~2~ 2 • 7].2, we get 

(9) q(4x ~ - 4Xo) ~ q(2~) ~-~ q(2o), 

and 
q(4Xoo + 4Xo) ~ q(.,to,~) ~ q(2~,.~). 

We note that E / ( z )  is a uniserial J-module with composition factors of 
dimensions 1, 10 and 1 in that order; the radical is ( E L , z t , z ) / ( z )  and the 
socle is ( z l ,  z ) / ( z ) .  Finally, note that 2~j, ~ + 4x~ + 4x 0 =)-o.x (mod 2A). 

We define ~-~o":-~'~176176 - ~ o ,  where so=sO=OsO -1. We have N<j,o,,>(Eo) 
= (J,  s) and N<j,o,~>(F ) = (J, OsO- 1). 

We conclude this section with a few lemmas. 

Lemma 7.1. (i) In Eo, there are 2(224)=552 members of q(A2). (ii) Under ( J , s )  
the orbits are Fk={q(4xi+-4xj)]i j in ~-=k(mod2)} for k= l ,2 .  We have fl l  
=24.12=288,  [F21=24.1l=264, and the stabilizers are J~ and J 2 where 
J j ( z )  ~- PGL(2, 11) and J2/ (z )  ~- 712 x X6, respectively. 

(iii) Under J, the orbits are the same, and J ~ J I / ( z ) ~ P S L ( 2 , 1 1 ) ,  

Proof (i) is clear. If ij in -~=l(mod2),  then (4x l -4x f lS - (4x i+4xa) (mod2A) .  
Thus, it is clear that F, is an orbit for (J , s ) .  Since ( J , s ) = J x ( s ) ,  ]J1/(z)[ 
=[PGL(2, 11)1, and the discussion of (5) shows that J J ( z ) ~ P G L ( 2 ,  11). Now 
say ij in ~ . -0(mod2) .  Then s fixes both 4 x~-4 x j  and 4x~+4x~(mod2A). It is 
not clear that F 2 is an orbit (it is possibly 2 orbits). We have [J2]=4.6! or 8.6! 
To settle this point and to determine J2, we look at F2~ Let a =  _+ 1 and 
say J2 is the stabilizer of q(u), where u = 4 x i + a 4 x  j. Then J~ 2 is the stabilizer of 
x=q(u~ Since xeq(A2), (9=supp(2~) is all octad. Since J~J2  fixes {i,j}, 
1(9c~.1=2 or 6 and so JcsJ  2 fixes both ~ and ~ Let ~le{~., A;} satisfy 
1 (9c~1=6 .  Then J~J2  acts on ( 9 c ~ ,  and so we have a homomorphism 
J &J2 -+ ~6" Since J c~J2/(z) ~ Aut (A6), we get J ~ J z / ( Z )  ~ ' 6 ,  proving (ii). 

Since s fixes 4 x i - 4 x  ~ when ij in .~---0(mod2), clearly J is transitive on F 2 
and J ~ J z / ( Z ) ~ f f % .  Let us consider F 1. If we arrange for Jr3J 1 to fix "~ooo', it 
also fixes 2oo=(2ooo,) ~ hence fixes both o~ and 0. Therefore, J ~ J 1 / ( z )  has 
index 2 in J~/(z),  as required to complete the proof of (iii). 

Lemma 7.2. In the notation of Lemma 7.1, J2 operates with orbits of length 2 and 
6 on (9, where J2 stabilizes q(4x i + a 4x j), ij -=-0 (rood 2), a = __ 1, (9 = supp q((4x~ 
+a4x~) ~ and where J2 acts via the action of N24 on ~. Furthermore, the two 
orbits are (9 c~ .~ and (9 c~ ~'. 
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Proof In the natural  action of M 12" 2 on ~2, J2 permutes {(9 ca 9, (9 ca ~/'}. Since 
the cardinalities of these sets are {2,6} (see the proof  of Lemma 7.1) J2 fixes 
both and so fixes 9. and ~ Easily, J2 acts as Z" 6 on the one of size 6. Since the 
kernel of the action of J2 on the one of size 2 must be embeddable  in M,o ,  J2 
acts nontrivially there. 

L emma  7.3. Let A(2,2), A(2,3) be the set of triangles in A 2 of type 222 whose 
vertices all lie in A 2 for A(2,2) and two of whose vertices lie in A 3 and one of 
whose vertices lie in AZ2 for A(2,3). Let H~o<N24 satisfy Hoo>=O2(N24), 
Hoo/Oz(N24 ) ~ M23 , the subgroup fixing o0 ~ (2. Then the orbits of H oo on A (2, 2) 
and A (2, 3) are as follows: 

to whether o0 lies in the support of one of the A(2,2): two orbits, according 
vectors or not. 

A (2, 3): six orbits according to 

i=j  

i=j  

i=j  

i+j  

whether 

oor 

o0 ~ (9, 

o0 E (9, 

0o(:_(9 

o 0 = i , }  

o0~i ,  i@O. 

ieej m e ( 9 - { i , j } ,  }i , je(9.  

i=t=j o0 ~ {i,j} 

Remark. We extend the nota t ion A(2,3), A(2,2) to triples of elements in /12 in 
the obvious way. We may refer to a triple of elements of Q as a triangle in 
A(2,2) or A(2,3) if, modulo  <z>, it is the image of a triangle in A(2,2) or 
A (2, 3) under q. 

Proof Consider A (2, 2). Let  2,/4 2 + # be a triangle in A (2, 2), (91 = supp 2, (92 
= s u p p # ,  (91 + ( 9 2 = ( 9 3 = s u p p 2 + #  �9 The  action of O2(Hm) enables us to assume 
2 has all positive coordinates and # has all negative coordinates. If suffices to 
consider two cases. 

If o0 e (91 w (92 w (93, we may assume at the outset that o0 e (91 n (92. Given (91 
and the four-element subset (91 ca(92 of (91, there are exactly four octads meet- 
ing (91 in this subset. These octads give a sextet of tetrads, and it is pretty easy 
to see that the subgroup of the sextet stabilizer in M23 stabilizing (91 (-'1(92 and 
(91 is transitive on the above four octads. 

If o0 r (91 u(92 u (93 a similar argument  works. All one needs is that a sextet 
stabilizer induces 2; 6 on the set of six tetrads and the kernel of the action 
induces A 4 on each tetrad. 

Consider  A(2,3). We may  assume 2=2i . s ,  #=2i,  r. Clearly, there are two 
cases: oo e {i,j} and oo q~ {i,j}. By using the action of 02(H), we may assume S 
=0.  Then, we may arrange that either i=j  and T is an octad avoiding i or i=i=j 
and T is a 16-set avoiding i and j (see Lemma  2.3). Assume i=j. Then 2 + #  
looks like (28016 ) (all coordinates positive) and we have the required transitivity 
in all cases i=oo ,  i+o0 ,  and o0eT,  o0r Assume i+j. If o 0 e ( 9 = ~ + T ,  the 
stabilizer of (9 in M23, is 24. Av, doubly transitive on (9-{00}.  If m e T ,  the 
stabilizer of (9 in M23 is A8, doubly transitive on (9. The lemma follows. 
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Lemma 7.4. Iq(A(2,3))c~F[=27.32.11=24.12.22.2 and Iq(A(2,2))c~FI 
=2(lz2)2.10.2.~-=24.5.11. 

Proof Since E~ we need to compute only [q(A(2,3)~ and 
Iq(A(2,2)~ 

The number of ways to complete 4 x ~ - 4 x  o to a triangle with sides in 
A2~A(4 ) is 22.2=44.  Since F~ is an orbit under (J , s ) ,  we get IA(2,3)nEI 
=�89 24.12.2.44 = 2731. 11. A similar calculation verifies the second statement. 

Lemma 7.5. Let {@I,~2}={,~,JV'}, iC~l ,  SEc~ so that q(/1i,s)~V. Let J(i,S) 
= Cs ()'i, s). Then, there exists a unique j:  = 7(i, S) ~ ~ z such that { k ~ f2 I J (i, S) fixes 
k} = {i,j}. Also, given i, 7(i,S) ranges over the 12 values of ~ 2. 

Proof Let u=q(2i,s)~ for t/~A24. Then J(i,s) leaves invariant supp(r/) 
= {k, l}, say. Without loss, 2i.s = ' ~ ,  ~ = 2~, o'. Then J(i, S) ~ = L x { +_ 1}, which 
fixes precisely {~,0} in f2. The first statement follows. Since an Mla-subgrou p 
of J containing L and fixing ~ has {2~,slS~Cg, q(2oo,s)cF } as an orbit of 
length 12 (see Lemma 7.1(iii)), the second statement follows since this Mla- 
subgroup is transitive on ~2 [11]. 

Lemma 7.6. Every member, x, of q(A2)c~F lies in a triple of elements of F 
forming a triangle in A(2,3). In fact, it lies in 24 such triples. Also, 
C(x)~N<s,~,o>(F ) acts with two orbits on this set of triples. There are two J- 
orbits on q(A(2, 3))~F. 

Proof. Using 0, the first statement is equivalent to the following: given distinct 
i ,j~f2 and a=__+l with ij in ~=0(mod2) ,  there is k~f2 with ik in 
~ 1 (mod2) (for then {4xi+a4xs,  - 4 x i + 4 x k ,  T-4xk--a4xs} is a triangle with 
two generators and one nongenerator for the J-module A(4)+2A/2A). The 
latter statement is clearly true. The second statement is easily deduced from 
this discussion: for each ordered triple (i,j, a), there are 12 choices of k and two 
choices of coefficient 4-1. Lemma7.1 and its proof imply that C<s,~>~(4x ~ 
+a4xs) has two orbits on this set of triangles, corresponding to its two orbits 
on .At. The third and fourth statements follow. 

Lemma 7.7. (i) The triples in q(Az)C~F represent every Ho~ orbit in A(2, 3) and 
A (2, 2) except for those orbits in A (2, 3) with i= j  (in the notation of Lemma 7.3). 

(ii) I f  2=2i,s, q(2)~F, then the triangles in A(2, 3)c~F p-' which contain 2 
are spanned by 2 and #, where i~@1 E{~, J f } ,  #= ++_2s, r, j:#i and one of the 
following cases holds ((9 =supp(2+#) ,  2 + # ~ A  2, ~z  ~ {~, JV'} - {~1}): 

(ii.a) j 6 ~ ,  { i , j }=(gca~ ,  7( i ,S)~(9c~2;  
(ii.b) j = 7 ( i , S ) ~ z ,  1(9c~@1[=2; 

(iii. c) j = 7 ( i , S ) ~ 2 ,  [ ( 9 ~ 1 1 = 6 ,  
(iv. d) j e ~ a - { 7 ( i ,  S)}, ( 9 c ~ 2 = { j ,  7(i, S)}. 

Furthermore, each case arises and characterizes an orbit of J(i, S) on the set of 
triangles in A (2, 3) which contain 2. 

(iii) In (ii), the pointwise stabilizer in J of {/l, #,/1+#} is, modulo (z}, 
isomorphic to As, and it fixes three points and has an orbit of length 5 on the 
octad (9. 
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Proof. (i) We consider A(2,2). There are such triangles in q(A2)~F , for in- 
stance, {4Xo-4Xl, 4 x 0 - 4 x 2 ,  4xl -4x2}  O. If (9, (9', (9"=(9+(9' are the octads 
which support the three vectors, its easy to arrange o�9 or o�9 
for appropriate g 6 J .  The statement about H~-orbits on A(2,2) now follows 
easily from Lemma 7.3. 

We now consider A(2,3). There are triangles in A(2,3)c~F q-I (see Lem- 
ma 7.4). We prove that, if {2,#,2+#} is such a triangle, 2,#cA 3, then 
i(2)=t=i(#). Given "~,o' ,  the set of )-rs, ;~rs' which, with 2o~,o., span a triangle of 
type 222 is the union of eight sets E(r, ~, ~) where r=0,  0% @ = &  sV, e= +, - 
and E(r,~,+)={2r,s[se@ • and E(r,~,-)={,~,.s, l s ~ •  Also, each of 
these eight sets is an L-orbit of length 11, where L=Cj~(~o.o,)~-La(ll).This 
action leaves invariant an equivalence relation ~ ,  where E(oe,~,e,)~E(O, f2 
+ 9 ,  e), for all ~, e (we explain the relation as follows: given a triangle of type 
222 as above, the two legs distinct from 2~, o, correspond to elements of the 
two sets in a ~-class). Similarly, on F, E(2)..={O~fl~lq(q)~F and 2, t/ span a 
triangle of type 222} is a union of four L-orbits. Since I{O~E(2)li(q)=i(2)} I is 
at most 11 (see Lemma 7.1(ii)), E*(2)'.={OeE(2)li(rI)#i(2)} consists of three or 
four of these orbits, whence IE*(2)I/IE(2)I =�88 or 1. By Lemma 7.1(ii), this ratio 
is independent of 2~A32~F q-1. For t/eA] with q(q)~F, we let A, be the set of 
triangles in A(2,3)c~F q-1 which contain ~/. By Lemma 7.6, Iz],1=24 and i(0 
=i(p) for 0, 12 or 24 of the {0,~,~}ez],. Write i(A,)=0, 1 or 1 for these three 
cases, respectively. By Lemma 7.1 (ii), i(A,) is independent of rl6A2nF q-~. So, 
Ii(A,)I =IE*(2)I/IE()OI >�88 implies that i(A~)= 1 and g*(2)= E(2), as required. 

To prove that one of the four cases in (ii) applies, we may assume that 2 
=2oo (because of Lemma 7.1(iii) and the fact that J preserves {~ ,~}) .  Since 
E(2) decomposes into four orbits, we must show that each orbit corresponds to 
exactly one case in (ii). Since ,~-~,~~ the four orbits are the images of E .  
under 0, where E .  ranges over a set of representatives for the four ~ classes 
described above, and where we always choose E.  to contain 'trs or f-~s, with rs 
in ~ - 1 (mod 2). 

Say # =  +2k,seE ~ We may assume that S is an octad. Then o% keS (see 
Lemma 2.3). Let Lu= CL(#). By transforming {2, #, 2+#} with 0 -1, we see that 
L, fixes three points of f2, whence LugA s (one obtains nonconjugate L,,  
according to whether the fixed point distinct from oe and 0 lies in ~ or in sV'). 
The action of Lu on ~ and on ~ decomposes, in some order, into orbits 1 + 1 
+ 10 and 1 +5 +6. Note that k and S are stable under L,.  In particular, the 
three fixed points are { 0% 0, k}. 

We list possibilities. If k=0,  there are two possibilities for S. Each possi- 
bility corresponds to orbits 1+1 and 1+5, and the two possibilities are 
distinguished by whether ISc~.~I--2 or 6. Suppose k+0.  If k ~ , ,  the evenness 
of IS~l  forces S ~ = { 0 ,  k} and IS~sV[--6; in particular, S ~ s V  decomposes 
as 1 +5 into orbits because oe6S~ ~ If ke ~,, clearly Sc~ A~= {o%k}. Howev- 
er, there are two possibilities for the 6-set S ~ ,  corresponding to 1 +5 and 6. 
We claim that S c ~  can not correspond to 6. Suppose this happens. In all 
other cases, when 1Sc~@11=6 for ~e{_~,~r S c ~  breaks up as 1+5 into 
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Lu-orbits. We observe that the action of s(s ~=ea) fuses the four L-orbits in 
pairs, each pair containing one E(r, ~ ,  ~) for e= - .  A corresponding phenome- 
non occurs for the action of an involution in Z(N~j,o,~>(F))-(z ) say s~ =s  ~ on 

~s - - ' ~  0 the four E~ Even though s does not fix ,~  0' the fact that 2~ ,o , -  
implies that ( s )  permutes the set of four E.',s. Therefore, as [(s, Sl ) ' ,  L] = 1, s 1 
permutes the four L-orbits on E(2), (the E~. s) hence permutes the four sets of 
octads associated to the orbits. It follows that L,  has orbits 1 + 1 + 1+5  on 
each of the two octads from this set of 44 fixed by L,, since they come from 
different L-orbits (which are fused by the action of (sl)).  Therefore, S c ~  
corresponds to 1 + 5, as claimed, and we have accounted for all the E~ The 
occurrence of the four cases listed in (ii) may be deduced from the above 
discussion. The discussion easily implies (iii). 

Example. In Lemma 7.7(ii), take ).=),~. The relevant values for # are +2j, e, 
where one of  the following cases holds: 

(ii. a) {o%j} = C c ~ Y ,  
(ii.b) 1(gc~JV]=2, j=7(oo,  ~ b ) = 0 ~ ;  

(ii.c) l (gc~X[=6, j=7(oo,  qS)=0e~;  
(ii.d) 1(9 c~ ~ 1 - -  6, j ~ &  j , y ( o o ,  4))=0. 

The associated 2 + # e A  2 look like + ( - 2 x ~ - 2 x i +  2xz) in every case. 
l:l:m,j 

Definition. When 2 =  -I-21, s, define i(2):=i, S(2): =S(mod(f2)) .  

For a triangle {2, #, v} ~A(2, 3) containing 2i, s and 2j, r:4=2~,s, define 6(2, #): 
= ( _ _  1)ooi in S +  ooj in T 

Lemma 7.8. Let {2, #, v} e A (2, 2) and let {2, 2', 2"}, {#, #', #"}, {v, v', v"} be in 
A(2, 3). Write 2'=2i~,s,, 2"=2j , , r l ,  #'=2i2,s2, #"=2j2,T 2, v'=213,s 3, v"=2j3,r ~. 
Assume i k 4= jk for k = 1, 2, 3. Then 

(i) 6(2', 2")=( - 1)~<ai,,J~ '2)+[~176 in(9,z] ; 

(ii) 6(2', 2") 6(#', #")6(v', v " ) = ( -  1) 1 ~<zi,,j;,x>+~<ai~,js,,>+~ <xi3,jg,~>. 

Proof. We have 

6(.~', )J') = ( - -  1) [~ilinsd+[~176 = ( -  1) [c~ 

= ( - -  1)[~i'inC%l+[iaj'inT'l=(-- l)ccitin(Oa+~(Xi,,jl, 2) 

see Lemma 2.3(ii). This proves (i). We have 

[oo i x in (ga] + [oo i 2 in (9,] + [oo i 3 in (9~] 

- [oo in ((9 a + (9, + (9~)] + [i I in (9~.] + [ i  2 in (9,] + [ i3  in (9~] 

-=[oo in q~]+ 1 + 1 +  1-=1 (rood2). 

This, with (i), implies (ii). 
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8. The Action of Elements of P on the v0,) and the e(x)| x~ 

For later use, we require a careful discussion of plus and minus signs. We shall 
use the notation of Sect. 7 (and earlier sections) as well as the following 
notation and definitions. 

Set Zl :=q(8x~) ,  as in Sect. 7. Set P'.=Nc(Eo). Thus P c ~ Q = E  and 
P l E a 2  ~1 .M24.  As P-modules, E = E  o x ( z ) .  

We claim tha t /6= /6 ' x  (e),  where s  ~, and that 16,= Co(e(1)). To see this, 
look at the following diagram 

N~ -* N~, 

derived from the one in Sect. 4. Clearly, P'(ker~lp)=/6 since N24 is perfect. We 
have /~.'=ker~lp-~Z~ 3. Also, [E ,P]>[E ,X]=E(2)~ -Z121  (see Sect. 7), and 
[E, O 2 ( P ) ] = ( z ! ) ,  so that [ E , P ] = ( E ( 2 ) , z l ) = ^ E  o. From Sect. 4, we have the 
isomorphism Q ~ Q  of C-groups. Since E<=Q=ker~lo2(e), we get an isomor- 
phism /~--,E, whence I[/~,P]I=212. At once, 1P:/6'1<2. Since 2 acts as - 1  on 
Qe(1) , /6=(P ' , s  Since s P = / 6 ' x  (2) ,  proving the claim. 

On the notation of Sect. 4, the element ~z~ acts as - 1  on Q e(1) and 
generates kergp So, we also have /6=/6'x (s It follows that P-~/6'~_P' is 
perfect. 

Elements of Nc(E ) permute the characters of E and hence the elements of 
F. For g~Nc(E ) and x e F  we write x o g = y c F  if ~b~=qSy on E, where qS~(u) 
=qSx(ug-' ) for ueE.  We have x o g - x g ( m o d E )  when x ~ F  and geP. Thus e(x) ~ 
= +e(xog) for such x, g. Also x o g = x  for x~F(2), g~O2(P ). The unique 
nontrivial linear character of P is afforded by I1)e(1). In case g normalizes F 
(i.e., go J), then x o g = x  g. 

The reader is advised to understand the preceding paragraphs thoroughly 
before going on. 

For ief2, g~N24 , define i g by ( Q x y = Q x ~ , .  Extend this notation to g in 
N;%' and N;4~ '~. 

Let N23: = {geN241 ~ g =  oQ} and define H: =(N~3 ~ '  c~ P)'. Then 
O2(H)~-) 1+22 and H/O2(H)~-M23. - - +  

We set v=q(2~)eF.  
There are functions a : F x f 2 x P - - * { + _ l } ,  a r : F x / 6 ~ { _ + l  } and a A : O X / 6 ~  

{ _+ 1 } which satisfy e(x) g = ar(X , g) e(x o g), x~ = aA(i, g) X~ for x e F ,  ie(2, ge/6 and 
( e ( x ) |174  for x e F ,  ieO, geP.  We have a(x,i ,g) 
=ar(X,~,)aA(i,~,), for any ~eg "c~, geP.  There is a function b: A2 x C~{+_I} 
which satisfies v(2) g = b(2, g) v(2g), 2~A2, ge C (we identify b(2, g) with b(~., g)). 

Let us calculate some values of the functions introduced in the last para- 
graph. Say x, yeF ,  g~P. Then y ~ = ( y o g ) u = u ( y o g ) ,  where ueE.  We have 

e(x) ~ yg = ar(x  , ~,) e(x o g)(y o g) u = ar(x  , ~) e(x o g) u(y o g) 

= a 7"(x, ~,) q)xog (u) e ((x o ~)(y o ~)) = a r (x, ~) q~xo g (u) e ((x y) o ~,). 
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Also, (e(x)y)e = e(x y)g = ar(x y, ~,) e((x y) o ~,). So ar(x y, ~,)= ar(X, ~,) ~O ~og(U). Taking 
x = l ,  we note that II~e(1) affords the nontrivial linear character of P and 
obtain 

, ^, [ q01(u ) i f ~ e P ' ,  
(8.1) aT(Y'g)=]--qO~(U) if ~q~P', 

for yeF, p, efi, u=yg(yog); in particular 

aT(y,~,)=[ ~0~([y,g]) if ~e/~', 
-- q~l([y, g]) if ~6fi', 

for yeF(2), geO2(P ). 
Next, we consider a(x,i,g)=aT(x,~,)aA(i,~,). For gEOz(P ) we write g=gs if 

g~"~= e  s or e~2+s (gs is not well-defined, though the coset Eg s is). From (8.2) 

we get the possibilities for aT(X,~,) and we have aa(i,~,)=~_lC 
ieS 

1 i6S' where 
k 

=e s. To use (8.2), we arrange for ~eP '  by the following device. We take 
geO2(H ). Then there is a unique choice ~e(H~")  ' since H has trivial Schur 
multiplier (see Lemma2.18). For this choice, ~,~=e s, where ~ r  Therefore 
aa(i,g,)= ( -  1) ~ i inS  and s o  

(8.2) a(x,i,g)=~pl([x,g])(-1) ~iins for xeF(2), g=gseO2(P).  

Note that (8.2) does not require ~ r  i.e. (8.2) holds for S+  ~ in place of S. 
For g~O2(P), write Sg for S or S+~?, whenever e s or es+ ~ equals ~ .  For 

2eA 2 let Sx be the support of 2 and for 2eA~, let Sx=0. 
Now, we turn to calculate the b(2, g)'s. We use the notation and discussion 

of Sect. 5. Our C-map W |  is based on 

(e(x)|174174 ~ [-  36ij+~5(Uo(Ui),u(22))] ~ba(x) v(2). 
x.~- xy 

Fix 2~A 2. We get, for g~P and for any pair x, y~F with xy=x~,  

(a.3) b(2, g) = a(x, i, g) a(y,j ,  g) [ - 3 6ij + 9(Uo(Ui),  u ()12))] 

�9 [ -  3a,.j .  +~(Uo(Ui.j .) ,  u((~")2))]-' ~ ( x )  q ~ ( x  o g) 

= a(x, i, g) a(y,j ,  g) aa(i, ~.) aa(j, ~.) (a~(X) qSag(X o g) 

= a~(x, ~.) a~(y, ~.) 4)~(x) 4 ~ ( x  o g) 

= aT(1 , ~.) ar(Xz, ~.) (taking x = 1), 

whenever the bracketed coefficients are nonzero. 
We remark that there was an error in the above calculation noted by the 

referee. Consequently, it was necessary to make some changes in the calcu- 
lations of this section. 

(8.4) The bracketed coefficients in (8.3) vanish precisely when i=jesupp(2),  an 
octad, or else i=t=j, {i,j} ~ supp(2); otherwise, the formulas of (8.3) hold. 
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Let us check the statement. Say i=j.  We have 

9 2 9 1 _~G~,16(Uak + ~(U o (Uii), U(Akl)) = ~ .  2~(23 uu utz)) 
rq:i 

= 9 " 2 ~ "  16"4" 8 ir = 6 
i6{k,l} 
ir  

whence the bracketed coefficients is nonzero. If supp 2-- (9 is an octad, 

9(Uo(U,,) ' u(22)) = 9 .  z~(23 u . -  ~. u . .  4~uu)  
k * i le() 

8 ir 

giving precisely the exception noted in (8.5). If 2eA~, 2 = 2k, s, say. Then 

9 ( U o ( U u )  , u ( . ~ 2 ) ) = 9 . 2 ~ ( 2 3 U i i - -  ~ utz , 9Ukk + ~ u~ )  
l:l:i r#k  

4 ~ ' 23 -9 -23=23 .8 ,  i = k , : ~  ~-, 
=2@6" " [ 2 3 - 9 - 2 2 = - 8 ,  i+k,  [ - 3 ,  

i = k ,  

i =g k, 

giving (8.4) in this case. When i+j,  (8.4) is pretty obvious. 

(8.5) The formula b(2,g)=ar(1,~,)aT(xx,~, ) holds for all ,~A2, g6P;  in particu- 
lar, b(2,g)=ar(xx,~, ) if ~efi'. 

To verify this, given 2, we need to find a pair of indices i, j for which the 
bracketed coefficients of (8.3) are nonzero. This is easy if we examine the cases 
2~A~, k=2,3,4.  

(8.6) For 2eA~wA42 and g6Oz(P), b(2, g)=~ol([xx, g]) (take i@j in supp2 and 
use (8.2) and (8.4)). 

(8.7) I f 2 + # + v = 0 ,  2, #, vsAZwA~,  g~Oz(P), then x~=xax u and 

b(2, g) b(#, g) b(v, g) = q~l ([x~, g] [x,, g] [x~, g]) 

=q~a([X~xu, g][xa, g, xu][x~,g])=~ol([xz, g, xu])=(-1)lsa~s"~s"l; 

consequently, fl(2 g, #g) = fl(2, #)( - 1) Is~s.~s.I . 
Using (8.5) we get 

(8.8) P permutes the v(2), 2cA 4. 

9. The Betas 

We have a function fl(2,#) which takes the value -364~x+,(xx) when )~,/~, 

~ - ~ E A  2 and which satisfies v(2) v(#)=fl(2, #) v(2+#). For our work in Sect. 11, 
we need some precise results on the signs of certain fl(2, #). 



The Friendly Giant 51 

The function fl has been rather troublesome. In the first version of this 
paper, the formulas of Lemmas 2.39 and 5.1 were not known to us. We had to 
deal with a function which took on the values 0, _+ 36, but was not given by an 
explicit formula. The exact signs are very important  and it took a considerable 
amount of work to evaluate them on particular triangles of type 222 and to 
measure the change in sign as the triangles change. At this point, it is 
comforting to have an explicit formula, but the work referred to has not 
diminished substantially. Perhaps we should not expect a great deal because of 
the following remarks. Our notations for A and Q = E F  are "independent", in 
some sense. This independence holds throughout the formulas of Table 6.1, 
except in the expressions qSu(x~), where both the element x~ of F as well as the 
character ~b, depend on lattice elements. To appreciate the significance of 
this, one must become involved with the calculations of Sect. 11. Roughly 
speaking, in verifying certain equations, expressions like ~bx(x) can be handled 
formally, but an expression like q~u(x~) resists because one needs to know "how 
much" 2 differs from the elements of F q 1 which map to xa under q. A direct 
measurement of these differences might be one way to solve our problems. 
Since A 2 and the set of triangles of type 222 are finite sets, a very large but 
finite number of measurements would have to be taken and coded in a sensible 
way to cope with the situation of Sect. 11. We did not see how to make this 
idea work. Instead, we chose less direct but shorter and more selective at- 
tempts to obtain values of beta. 

Now to compute selected values of beta. We consider cases, according to 
how 2, #, 2 + #  are distributed among A 2, A2 3 and A24: 

(A) 2, #, , ]+#6A~;  

(B) one of 2, #, 2 + #  in A~, the others in A2; 

(C) one of 2, #, 2 + # in A 4 the others in A~' 2 '  

(D) all of 2, #, 2 + g  in A~; 

(E) one of 2, #, 2 + #  in A 2, the others in A23. 

Associativity of the form ( , ) implies that these cases are exhaustive. 
First, some notation. For xeQ,  geG,  write xg=u(x ,g)v(x ,g) ,  where 

u(x ,g ) sE  and v(x ,g)eF.  Observe that u(x,g) and v(x,g) commute when x is an 
involution. 

Lemma9.1.  Suppose that 2eA 2 and that q(2)=x~.u ,  xa~F , u~E. Then q~a(xa) 
-~1. 

Proof Since q(2) is an involution and x a and u have order 1 or 2, they generate 
an abelian group. Therefore, q~(xz)= 1. 

Lemma 9.2. Suppose that g 6 C  and e(1) ~= ~ axe(x), for scalars a x. Let  ),~A 2. 
xeF 

(i) b(2, g) = ~ av(x.g ) av{ . . . .  g)x.. ~~ xa, g)) qox(x). 
x6F 

(ii) I f  xgEE, e(x) r ~ayqOy(Xg)e(y) and the coefficient of  e(1)|  in 
yEF 

(e(x) |  g is a 1 a~ . . . .  g)xz. ~p~z.(u(x xz, g)). 

(iii) I f  xg6E and xgxeE, the coefficient of  e(1)|  in (e(x) |  g is 
a 1 ax, * qbx~((xxa) g) = a x ax, ~ dp.~,((xxz) g) = a 1 ax~ qo~(x xa) = a 1 ax, . O;~(x). 
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1 1 
(iv) I f  F g : E o  and g2= l ,  e(1)g= +2~ ~ e ( x ) s o  that ax=~g for all x or a~ 

1 x~F 
-- 26 for all x. 

(v) Finally, if Fg=Eo, and g2 = 1, the coefficient of e(l) | ) in Aga is 

1 1 1 
2~ ~ a a a~,~ gx(xxx) qoa(x) = a 1 axxg. ~g ~, (pz(xa) = a I a~ . 26 =2g. 

x E F  ~" x ~ F  

In this case, b(2, g ) = l  and fl(2g,#g)=fl(2,#), for all i ~ such that 2, # span a 
triangle of type 222. 

(vi) I f  gEP', then e(1)~=e(1) and b(,(,g)=(o~:(u(xz, g))=(oa~(u(xa, g)) 
=qo~:(xg). In particular, if geff' and xgaeF, then b(2, g)= 1. 

Proof We have 

e(x) ~ = e(1) ~ = (e(1)g) ~" = ( ~ ay e(y)) *~ = ~ ay ~py(U(X, g)) e(y v(x, g)). 
y ~ F  y e F  

Therefore 

(e(x) | g 

= ~ aylay2(Oyl(U(x,g))(oy2(u(xxx, g))e(y a v(x,g)) | 
yl,Y2~F 

The coefficient of e(1) | in this expression is 

av~x,g) a~( . . . .  g)x~ g ~~ ~(x,g) (U(X, g)) q~ . . . .  g)x: (u(x x ~, g)), 

which equals av(x,g)a~( . . . .  g)x~gq~x~(u(xx~,g)), because, for any x~F and any 
g~C, u(x,g) and v(x,g) are commuting elements of order 1 or 2, whence 
9v(~.~)(u(x, g)) = 1. 

1 
Since Aa=vg ~ q~(x)e(x)| the coefficient of e(1)| in A,~ is 

2 x~F 

1 

x 6 F  

Since the coefficient in Aa~ of e(1)| ) is 26, (i) follows (see Sect. 5 for 
the relationship between A z and v(2)). 

z~ 

The remaining statements are more-or-less obvious from the above dis- 
cussion. To get (iv), we refer to Sect. 4. To get q~(xz)=l for 2~A 2, use 
Lemma 9.1. We get (vi) from (i) by studying the definitions. Namely, the only 
nonzero summands occur when (among other things) v(x, g)= 1, or xr Since 
geP, this means x = l .  Consequently, v(xxx, g)=v(xa, g)=xx~. Thus, b(2,g) 
= ~0x~,(u(xa, g)), and the rest of (vi) is easy. 

Lemma 9.3./3(2,/~) = - 36 in cases (A), (B) and (C). 

Proof Let 2eA~. Then x x = l  so that, from Table 6.1, fl(2,/~)=-36qSx+u(xa)= 
-36.  
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Lemma 9.4. Let {2, #, 2 + # }  be any triangle of type 222 and suppose q(2)EF. 
Then fi(2, #) = - 36. 

Proof Since q(2)6F, q(2S~ whence /~(2s~176 by L e m m a 9 . 3 .  By 
L e m m a  9.2(v), - 36 =/~(2 S~ #so) = 3(2, #). 

L e m m a  9.5. Let {2,#, v}~ (2,2) and suppose that g=gs~O2(H) satisfies q(2g)6F. 
Then/~(2, #) = ( -  1) 1 + IS~S~S,136. 

Proof L e m m a  9.4 and (8.7). 

Remark. For  the hypothesis  to be satisfied, we need [Czc~3 l=2  or 6; see 
Lemmas  7.6 and 7.7. 

10. The Definit ion of  a 

We shall define a linear t rans format ion  cr of order  2 which commutes  with a 
group H (defined below), fixes Zl, and interchanges z and zz 1 under  con- 

Table 10.1. The groups N and C 

FI =( C,N)=( C,a) 

(21+2'*).( . 1 ) = C ~  

,292,375 ~ 

/ No 

21+22 x2=QaNo / 
\\ 
\ 
\ 

213= E 

=22.211.211 x 211 . 2 3 x M24 

=22 . 21t.2 I1 x 211.Z2 •  

=22.211.211 x 211.M24 

2 2 211 

22= 

\ 
1 

=22 
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jugation. One should keep in mind that the definition of a is motivated by the 
principle that if H I and H 2 are subgroups of GL(B) and H~ =H2,  then the set 
of irreducible constituents for H 1 are transformed by a to the set of irreducible 
constituents for H 2. 

We should comment  that the algebra structure constants and the definition 
of a were determined by a common strategy. Imagine that F 1 exists, is in G(B) 
and contains C as the centralizer of an involution. In F1, the four-group <z,z~> 
has normalizer N of the shape 22 . 211. (211 • 2 l 1). (M24 • X3). If we let N O = N", 
then N = N  o ( r , a )  (semi-direct product), where z=q(2~)  as before and a is an 
involution which satisfies ( r , a ) - - - S  3. Some of the interaction of N and C is 
diagrammed in Table 10.1. The point is that most of N lies in C (]C:Nc~C] 
=3) and ( a )  must permute the subgroups of the group N O . That is, N O is 
described already in our notation since N O = C, and N O is big enough to yield 
information about B and C. 

We concentrated mainly on the cases H 1 = H 2 =  ( z ,  z l )  , 02(No)' ,  02(No) and 
where H~ and H z are normal subgroups of N o or order 224. Eventually, this 
line of analysis shows that there are particular bases el, e 2 . . . .  and e'l, e~, ... of 
B so that a must behave like e 7= _+el, for all i. Squaring gives exact relations. 
All this implies enough linear relations among the six independent parameters 
of Corollary 5.8 to make all six linearly dependent on one of them. Thus, B is 
forced to be essentially unique. As far as we can tell, an exact description of a 
is not forced. Unfortunately, the signs required to describe a took some 
guesswork to find. The results are summarized in Table 10.2. 

We need a refinement of B = U �9 V | Define 

Ba4=span  of ui~, ieO, dimension 24; 

B276 =span  of uij, i, jcf2, i=t=j, dimension 276; 

B~ '+ =span  ofvij+vii, , i,j~(2, i+j, dimension 276; 

B24'- = s p a n  of vij-vij, , i,j~O, i+j, dimension 276; 

B 2 =span  of v(2), 2eA~, dimension 26 . 759; 

B32 = s p a n  of v(2), 2eA23, dimension 211.24; 

B . . . .  = s p a n  ofe(x) |  xsF(2),  i~O, dimension 211.24; 

Bodd=span ofe(zx) |  xeF(2),  i~O, dimension 211.24; 

where vii= v(2i~) and vii, = v()~ij, ). 
There is no problem giving our explicit description of a on basis vectors in 

B24 , B276 and B~ '+ and B~ ' -  See the beginning of Table 10.2. Defining a on 
the remaining summands requires some discussion. We will start by consider- 
ing the summands B~, B . . . .  and Boa d. 

Let Ro=(q(A(2)) ). Then No:=(Ro, P ) = R o P  satisfies 02(No)=RoR, where 
R:=O2(P), and, as a module for No/O2(No)~-m24, O2(No)/~(Oz(No) ) is com- 
pletely reducible and is isomorphic to a direct sum @O c~. Therefore, there is a 
unique subgroup R 1 of index 211 in 02(No) , normal in N o and distinct from R 0 
and R. 
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We want 6 to satisfy R~=R,  R~o=R1, z ' = z z l  and [Zl, a ] = l  , and for CR(a) 
to be a g roup  of  index 2 in R, meeting (z, z~) in ( z l ) .  We have the eigen- 
values 

B~ Beven Bod d 

z: 1 - 1  - 1  
Zl: - 1  1 - 1  

zz  1 " - 1  - 1  1, 

and this implies that a must  switch B~ with Bod d and leave B . . . .  invariant. 
The eigenspaces for R o on B23 are the Qv(2i.x), i~2,  x~F(2),  and the 

characters afforded are all distinct. Also CRo(B~)= ( z )  and z I is - 1  on B23. 
O n  B . . . . .  z 1 is 1 and zz  a is - 1 .  Note  that R~=RI.  The eigenspaces for R 

on B . . . .  are the e(x) |  x~F(2), i~f2 (this is because [Eo, R ] < ( z l ) ;  see 
Sect. 8). We define a on B . . . .  by 

(e(x) | ~ = ( - 1) <x~'a',x) e(x) |  i. 

O n  Boaa, the kernel of  the act ion of R is (ZZl )  and R/(ZZl)"~91+22 So, R 
does not have eigenspaces here. The eigenspaces for R I = R  e on Boa a are the 
e(rx) | the transforms of  the e(x) |  i under  z. Since we want a to switch 
R 0 and R1, we make ~ switch Q e ( z x ) |  i and r Thus, we must 
describe a function d(2i, x)e{_+l} which gives v (2 i ,Y=d(2 i , x ) e ( zx ) |  i and 
(e(z x) | = d(2i,x) v(2i,x). 

Al though we will not  get [ X , a ] =  1 ( [ X , a ] = O z ( X ) ,  actually), the actions of  

a and X on ~ Q v ( 2 i )  and ~ Q e ( z )  |  i will turn out  to commute.  Here, X acts 

a s  M24_~X/O2(X ). If  a is defined here and the actions do commute,  then d(2) 
will be constant  for ief2. Replacing a by az  I if necessary, we may then arrange 
for d(2 / )= l ,  all ief2. Therefore, we define d(2 i )= l ,  for all i. Thus, a is now 
defined on these two spaces. 

For  a ~-set  S, we let d(2 i , s )=(-  1) ~iins (see Sect. 2). This is really a function 
on O x c~. For  S = 0 or f2, it agrees with the above definition of d(2). 

Let H ~  < X ,  H ~  > O 2 ( X  ), H~/O2(X  ) be the M23 subgroup fixing reef2, and 
set H:  = (RH~)'  g 2~ + 22. M23 (see Sect. 8 and Lemma 2.18). 

We now verify that the actions of a and H commute  on B32| Let g 
=gs~Oz(H) (recall that  gs is really a choice of element in a coset of  Eo). Then 

V(,~i) g = b(21, g) v(2i,s) and (e(z) | = a(z, i, g) e(ZXs) |  i. 
We have 

b(,~i, g) v(2i) g~ = v(,Qs)" = d(2i,s) e(z Xs) |  i 
and 

b(2i, g) v( 2i) ~g = b()Li, g) d( )ti)( e(z ) @Xl) g = b(2i, g). 1. a(z, i, g) e(z Xs) @X i. 

These are equal since a(r, i,g)b(2i, g )=  ( -  1)~ by (8.1), (8.2) and (8.5). 
Thus, the actions of  a and 02(H ) commute.  N o w  let g ~ H  so that ~ lies in the 
s tandard M23 in N24 fixing ~ ,  i.e. g e l i d .  Then each aa(i ,g)=l  SO that  
a(rx, i ,g)=ar(zx ,  g ). Write x = x  s for S~Cg. Then 
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v(2i, s) "g = d(ki,s)( e(r x) |  g = d(2i,s) ar ( ,  x, g) e(T(x o g)) | 

and, by (8.4), 

U(,~i ,S)  g"  = ar(z  X, g) v(2i<s,) ~ = ar(z x, g) d(2ig,sg ) e(z(x o g)) |  

Since g fixes 0% d(21,s)=d(2i<s,) as required. Thus, the actions H and a do 
commute on B~ (~Bod d- 

Commutativity of the actions on B . . . .  is verified as above - just check 
definitions and use the fact that H fixes oo. 

The definition of a on B22 requires the notion of an F-triple. Given 2cA 2, 
we call {2, ~, v}~d(2, 3) an F-triple if there is g~H with q({2,/~, v} g) c F and if p 
and v have the shape #=2i ,  s and v=2j,  r, with oer By Lemma 7.7(ii), i#:j. 
By Lemma 7.7(i), every 2eA2 z is part of an F-triple, even of one whose image 
under q lies in F when q(2)eF. 

To define v(2) ~, we enlarge 2 to an F-triple {2,#,v}, p=2i,s ,  v=2j, r, then 
set 

v(,~F: =/~(~, v) -~ v(~) ~ v(v) ~ 
= f l (~/ ,  y ) -  1 (  - -  1)~iinS+ ~jinr(e(x.) |  | 

= f l ( # ' v ) - l ( - - 1 ) m i i n S + ~ 1 7 6  E 9 Ig ~ (  ,j, u((e)) r v(O 
X~= .X3. 

=/~(1 . / ,  1 0 - 1 ( _ _  ooiinS+oojinT 9 1) (g) ~ ( -  l) ~<z''''~> ~b4(ZXs) v(O. 
X~=Xg. 

We must show that this is well defined. Note that there are 64 summands. 
Suppose that {2,#,v} and {2,#~,v,} are two F-triples containing 2. Write # 

=2/s ,  v=2j,  r, #1=2~,s~, vl,=2a~,r~. By Lemmas 7.3, 7.7 and the definition of 
F-triple, there is geH,  g e P  so that ,~g=2, fig=/5,, ~g=~.  Let A, A, be the 
formula given for v(2) ~ using the first and second F-triples respectively. We 
want to show that A = A 1. We have 

(10.1) A=fl(~t,v)-l(--1)~176 1)=*<a,J ',r ,2, ~ ( -  r 
X ~  XA 

A, = ~(~,, v0 -  * ( -  l) ~'''"~*+ o~j,~,r~(_~) ~ ( _  1)~<*,,J;.~>r v(0. 
Xr = xA 

Write g=Pgv,  where p~eM24, UeCg. We have i l=ig=iP,  j l = f i = j P ,  S 1 - S  g 
+ U, 7"1 _= Tg+ U (modulo (~)) .  Therefore, as geH, 

(10.2) [ooi g in S~]+[oej~ in T~] 

-= [o~ ig in S q] + [c~ i 1 in U] + [OOjg in T g] + [o~jl in U] 

- J o e l  in S] =[ooj  in T ] + [ i , j ~  in U] (mod2). 

Also, we have 

00.3) 

(10.4) 

fl(#~, v ~) = fl(p, v) b(#, g) b(v, g) b(2, g); 

(2~,y, - 2 g 

+5<.t,.,,r if i , j  1 in U-O(mod2) ,  

- [ ( "  2i,h,{ g) if i l j  , in U - 1  (mod2), 
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whence 

00.5) 

(lO.6) 

( - 1) =~<~''~''~> = a a (i, ~,) aa(j, ~)( -- 1)~<xi~,Ji'~>; 

aA(i, ~,) aa(j, ~,) =(  -- 1)i~J~inV; 

V(0 g = b(~, g) v((g) = b(2, g) v(~g). 

Since every v(0  in (10.1) satisfies x~=x~, we get b(~,g)=b(2, g) for all such 
~, from (8.5). Since A is a linear combinat ion of such v(0, 

(10.6) Ag=b(2, g)A, or A=b(2 ,  g)A g. 

Using (10.1), (10.2), (10.3) and (10.4) and making ~g the variable of summation,  
we have 

(10.7) A ~ = fl(#, v)- ~ b(la, g) b(v, g) b(2, g ) ( -  1) ~ + ~.j~inr,. 

(9) ~ (_l)~<xi~,j',,c~)O~,(xu,)v(~g) 
X ~  - -  X A  

= fl(#, v)- i b(tt, g) b(v, g) b(2, g)( - 1) ~176 + ~jin T+ilj, inC 

aa(i ' ~) aa(j ' ~)(9) ~ ( _  1)~<z,~,,~) qS~(x~,~) v((g). 
xg-- x.~. 

To compute  b(2, g)A g, one replaces v(() by v((g) in the first line of (10.1); see 
(10.6). So upon cancelling (making use of (10.5)), we see that equality of A and 
A 1 amounts  to equality of ~b~(x,) with 4)~(x,,)b(bt, g)b(v,g)b(2, g). From (8.3) 
and (8.5), using ~eP' .  

(10.8) 

(10.9) 

b(.~, g) = a~(x., ~,) aAx,,, ~.) 4,~(x.) 4 ~ ( x .  o g) 

= ar(x, ,  ~,) aT(X~, ~.) Oa(xu)" Ok(x.);  

b(#, g) = ar(X., ~); 

(10.10) b(v, g)=  ar(x ~, ~). 

Thus, we must verify the equality 

(10.11) Oa~(x,)=Oa+~(x, , ) ,  for all ( with x~=x~. 

Note that 2 + ( ,  2+(geA(4) ,  so that x ~ - x u l ( m o d u l o E  ) and Oa+~(x,) 
.=qS(a+o~(x{) =q~x+~(xul), as required. Our proof  of the well definedness of v(2)" 
is now complete. 

We use nota t ion 6(#, v): = ( - 1 )  ~ilns+ ~ i n r  whenever {2,/~, v}eA(2, 3) and the 
two vectors in A~ have shape 2i, s and 2j, r. When {2,#,v} is an F-triple, we 
have i4=j and oo~{i,j}. 

We now show that a commutes  with H on B 2 using the commutat iv i ty  on 2, 
B320 B . . . .  @ B o d  d .  Let v(2)=fl(la, v)-lv(l~)v(v), where {2,#,v} is an F-triple. 
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T a b l e  10.2,  T h e  d e f i n i t i o n  o f  o 
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B24 a _ l.lii - -  Uii 

B2-zr  , u ~ j =  - -  Vij 4- Uij, 

B 4, + a _ ( v i j  Jr- vi j ,  ) - -  1)ij 4-  Vlj, 

B ~ '  - ( - v~j + v~j,) ~ = u ~  

B 2 v(2)o=b(p,v) f l (g ,v) - ' (9)  ~. (-1)+:<a'"O(Pr 

B 3 v ( 2 i . J a  = ( - 1)~176 |  i 

B .... (e(x) |  =(-  1) <~'~'''> e(x) | 
Boa a ( e ( r x )  ~ ) X y  = ( - -  1)~~ 

as required. 

On B 2, {2,#, v} is required, by definition, to be an F-triple, although, once 
Proposition 11.2 is proved, we need require only that {2, #, v} eA (2, 3); i = i(#), j 
=i(v). 

Then v(2f is, by definition fl(#, v)- lv(p)~ Thus, for geH, 

v(,~) ~ = ~(# ,  v ) -  ' (v(#) ~ v(v)~) ~ 

~(# ,  v ) -  ~ v(#)"~ v(v) ~ = fl(#, v ) -  ~ v(#) ~ v(v) ~ 

fl (#, v)- 1 b(#, g) b( v, g) v(#g)" v( vg) ~ 

fl(#, v) - ' b(#, g) b( v, g) fl(pg, v g) v(29 ~ 

fl(#, v) - ~ b(#, g) b(v, g) fl(pg, v g) b(2, g) v(2W = v(2W, 

Since b(2ij , g)= b(2u, , g)= 1 for i, j eO,  geP  (see (8.7)), the actions of a and H 
clearly commute on the first four summands of B listed in Table 10.2. 

We conclude that [H, a] = 1. 
Two more basic results are needed. 

Proposition 10.1. a preserves the inner product on B. 

Proof It is obvious that (e%f~)=(e, f )  for basis vectors e and f, except possibly 
when e, f e B <  Say e = f = v ( 2 ) ,  2~A 2. Then 

(v(2)<~(2"))=I( Y. ,&(x2~(~), ~ (&(x.)~(0), 
x g ~  x x  x ~ =  x x 

where {2, #, v} is an F-triple. Since there are 64 summands, we get (v(2F, v(2) ~ 
=1, as required. Now say e = v ( 2 ) * f = v ( # ) ,  2, # e A  2. Let {2, Z, 2"} and 
{#, #', #"} be F-triples. Then 

(v(2)<(,)o)= +1( ~ ~o~(x~,)v(O, ~ ~.(~.,)v(~)) 
x ~  XA Xrt= X,u 

which is clearly zero if x x + x  ". So, let us assume xa=x , .  Then the inner 
product is + I  ~ (&(x~,xu'). Let g=gseOz(H)  satisfy ,~g=/i Without loss, 

i t s ,  (2)~=~' ~=~ and (2")g=~ ''. Then ~p~(x~,,x,,)=(-1) <r for all ( with xr 
where 

supp{___(,oa and { = ( 2 2 . . . 2 0 0 . . . 0 )  (modA(4)), 
S c ~ 6 a  

Since 2#~ ,  Sc~(9~4:0 or (~z. Therefore ~, ( -1)<~ '~  see Lemma 2.6. The 
proof is complete. ~= ~ 



The Friendly Giant 59 

Corollary 10.2. 0 . 2  = 1. 

Proof It suffices to show that e ~ = e  for each basis element e. This is clear 
except possibly for e=v(2), 2~A 2. The inner product (v(2)~,v(Q~)=(v(2)~,v(O) 
is nonzero if and only if ~ A  2 and x~=xx. It suffices to show that this equals 
(v(2),v(0~), for all ff with x~=xx since {v(fi)~l/3~fi2} is an orthonormal basis of 
V. Take g=gs6Oz(H)  such that ,~g= ~. Then 

(v(~), v(O~) ~ = (v (~)~, v(O ~ = (v(~)~, v(O ~) 

= b(2, g) b(~, g)(v(O, v(2) ") = (v(0, v(2) ~) 

because b(2',g)=b(2",g) whenever xx,=xx,, (see (8.5)). So, we are done. 

w A Proof that 0. is an Algebra Automorphism 

The proof that 0. preserves the algebra structure is, in some sense, the main 
result of the paper. It allows us to define a subgroup G : = ( C , a }  of G(B) which 
contains C properly. We show in Sect. 12 that G is a finite simple group of 
order 2 ̀*6 3 2 0 5 9 7 6 1 1 2 1 3 3 1 7 . 1 9 . 2 3 . 2 9 . 3 1 . 4 1 . 4 7 . 5 9 . 7 1 .  The sign problem for 
0., referred to in Sect. 10, is so important because we want 0.~G(B), not just 
ae{geGL(B)lg preserves ( , )}. 

First, we prove a technical result. The phrase "/~/12" is meant to be 
understood when " G = x f f  appears under a summation sign. Similar omissions 
appear throughout this section. We hope that no confusion results. 

Lemma 11.1. Let (9 be an octad, 2=2c,  x~F(2) and i,j, k, l distinct indices in (9. 
Then 

(i) ~ % + x ( z x ) = 8 ( - 1 )  ~lsxne~l. 
xt~= XA 

(ii) ~ cpu+x(rx)(-1)~<z-"u>=8(-1)4t(sx~e)+{i'J}l. 
Xtt ~ XA 

(iii) ~ ~G~(zx)(--1)+<z"+z~'"u>=8(--1)H~sx~~ 
X~t= x A  

More generally, if U is a subset of (9 of even cardinality, and v = ~ 4xl, we 
have ie v 

~, % + ~ ( r x ) ( -  1) ~<~'">§ = 8 ( -  1)~l~Sx-O)+ul. 
x ~ =  x A  

Proof (i) Note that ~pu+~(z) is (--1) ~lsuppO'+")l, SO the statement is clear for 

18xr Let m(2, x)= ~ ~oz+u(zx ). 
X~z= XA 

Suppose ISxC~(91=2. We make a table, the (~,fl) entry of which denotes the 
number of cosets 2+/~+2A,  as fi varies, containing a vector of shape 

2~  

( ~ , 0 , . . . , 0 )  whose support meets S~ in a set of cardinality fl(mod2). 

Write S(2,/~) for the support of this vector. It is a well defined element of P((9) 
modulo ((9). 
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/3=0 ~=1 

~ = 0  1 0 
1 1+15 12 
2 15 20 

So, m(2, x ) =  - ( 0 +  1 + 15+20)+(1  + 12+ 15)= - 8 ,  as required. 
Suppose I S~ c~ (91= 4. We make a similar table 

f l=O fl--1 

c~=O 1 0 
1 (42)+(~)=12 4 . 4 = 1 6  
2 1 +3(~)=  19 16 

So, m(2, x) =(1 + 16+ 1 9 ) - ( 0 +  12+ 16)=8, as required. 
Finally, if s=lSxn(91>4, we note that the associated table must be the 

same as that for the case ]Sx c~ (91= 8 -  s, and quote a previous case to finish. 
Now, let U, v be as in the Lemma. Let S be a Cg-set which meets (9 in 

(S~c~(9)+U. By (i), 8(-1)~l~Sx~)+Vl= ~ ~o,+~(rXs). It suffices to show that 
Xta= XR 

(pu+z(XXs)-=( - 1) �89189 and, indeed, we have that 

qo u + x (x x s) = ( -  1)[s(a,u)~(sx +s)[ = ( -  1)ls(x,u)n~lsx + s).~)l 

= ( _ 1)ls(x,u)~t(sx ~o)+ ts ~ r = ( _ 1)ls(z,u)~ vl 

= (  - l)+<~,a+u> = ( _  1)~<v,u> +~-Wl, 

since 2 = 2 o and I U [ is even. So, the last part of the Lemma holds. 
- -1  2 We deduce (ii) by noting that for U = {i,j}, �89 #)  + 1 = ~ (  ~j,, #)  (mod 2) 

and we deduce (iii) by noting that for U = { i , j , k , l } ,  �89189 
+ 2 k r , # )  + 1 +1 (mod2). 

We recommend that the reader become thoroughly familiar with Tables 6.1 
and 10.2 before attempting Proposition 11.2. 

Proposition 11.2. a preserves the algebra product on B. 

P r o o f  We study a on products of basis vectors. Since we are using the 
d e c o m p o s i t i o n B = B 2 4 0 B 2 7 6 @ B ~ ' + @ B ~  ' �9 2 3 - B 2 @ B a @ B  . . . .  @Bona, evidently 
there are 36 cases. Some of the cases are equivalent by associativity of the form 
or by the action of a. Thus, not every case needs to be treated in detail. 

Here is how we make use of the property [ H , a ]  = 1 (see Sect. 10). Suppose 
e and f are basis vectors and we wish to prove that ( e f ) * = e " F .  We take h E H  
so that e l = e e  h and f l = 6 f h  where e=  _+1, 6 =  +1 and el, f~ is a pair of basis 
vectors with more pleasant properties than e, f It suffices to prove that ( e ~ f y  
- e l f  ~ because 

(el f Y = e6(eh fh )  ~ = e6(e  f )  h~ = ~6(e.f)  *h 

and 
a f a  ~ h a ~ h a _ _ 8 ( ~ e a h f a h  e l i  i = e o e  j - =e6(e~ f~ )  h. 
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Case 1. (B24, B2~). Since cr acts trivially, there is nothing much to check. 

Case 2. 
and 
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(B24, B276). We have, for i4=j, u ,  u i j = - 1 3 2 u i i l  * . - 1 3 2 ( - v ~ i + v i ~ , )  

ui~ <5 = u . ( -  vii  + vii,) = - ~("o(Uii) ,  u ( ~ ) ) ( -  ~ + <~,) 
= 9.2A4(23uii--2Ukk, 16(Uii+U~))(--Vi~+Vi~,) 

k * i  

= _ 3  22.4(  - vi~+ vii, ) = - 132( - vij+ vi~, ), 

as required. 
Let i, j, k be distinct indices. We have Ui iUjk  = 1 2 U j k t  ~ , 1 2 ( -  Ujk-1-IAjk, ) and 

u, ~, ujk = u, , (  - v~k + ~jk,) = - ~(~o (",,), u (.~0)( - ~'~ + vjk,) 
9 1 1 6 ( U j j + U k k ) ) ( _ _ V j k + V j k ,  ) = - a '  5~( 23 u i i -  ~ Ukk, 

k=i  

= - 3 . ( - 2 ) . 4 ( - - V j k + V j k , ) =  12(--Vjk+Vik,), 

as required. 

B 2 ). Since a acts trivially here, there is nothing much to check. Case 3. (Bz,,  4,+ 

Case 4. (B24 , B~'-) .  See Case 2. 

Case 5. (B24 , B2). We have 

u .  v(;~) = - ~(Uo(U.) ,  u ( ; d ) )  v(;O ~ ~ , @ - ( U o ( U . ) ,  u(;o2)) 

�9 0(/~, v) fl(/~, v)- 1 ~ ( _ 1)r q~c( z Xs ) v((), 
xg= x~. 

where {)~,/~,v} is an F-triple, #=2~,s, V=2k, r- Also 

U* V'~  "* 9 , w  n t ~ =~ptl~,v)-I  6(#,v)u , (  ~ ( -  1) ~(~ .... ~> q~(rXs)V(~)) 
xg = xA 

= - - ~ f l ( l A ,  V ) -  1 (~(U, ~")(Uo(Uii),  U(t~'2)) " Z ( - -  1)�89 (]){("CXs)' 
xg = )cA 

as required (we have used the fact that u(2 2) and u(~ 2) have the same pro- 
jection into B2~ if x~=-x~). 

Case 6. (B24, B32). We have 

IAii 12 (l~j x) = - -  9 2 , , a(Uo(Uii), u(2j,~))v(Aj,~), " -9(Uo(Uu) , u(22,~))(- l)~ | 

= ( -  1)~Ji-sx(~-l(A)(23 ~ . -  y~ u~,  9u~j+ y, ~k~t e ( ~ x ) |  
k * i  k * j  

-- ,  1,~jinSxr {44123.8 i f i = j  
- - ~ - - i  tS~-~' ( - 8 )  e ( z x ) |  if i+ j  

{ 9 3  i f i = j  = ( _ l ) ~ J i . s  ~ - 6  e ( z x ) |  if i+j" 
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Also, 
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Also, 

ui~ v(A)* = ( -- vii + vlj,)(9) a(t~, v) fl(kt, v)-  I ~ ( _ 1)~<.~,,,g> ~og(xu ) v(~). 
x~= X~ 

For  a given ~, just  one of 2~j+(, 21j ,+( is in /12;  call it {'. The map ~ - ~ '  is 
permuta t ion  of order  2 of  {~e/ le lsuppr /=(f i} .  After comput ing the product  
(-Via+Vii , )  v((), let -36~i j ({)  be the coefficient of v(('). We must show that 

( _ 1)&<a,j,,z> + &<a~,,,~'> q~, (xu) = ( - 1) ~<a"'''~> q;~ (xu) Yij({), 

Ui~ V(,,~j,x) a = Uii [(  - -  1) ~176 e('c X) |  

= ( - 1 )  ~ j i n s x ~ - 6 9  e ( z x ) |  if i = j  

l 3 if i 4=j' 

which agrees with the above. 

Case 7. (B24, B . . . .  ). We have 

ull. e(x) |  = e(x) |  , xj) l ~ , ( - 1) <*~'x,,x> e(x) | , x i ) 

because p(ull, x i ) ~ Q xj. Also, 

Uiai(e(x) ( ~ X j ) a = l e l i i [ (  - 1) <a~'z''~> e(x) |  = ( - 1 )  <a~'a,,x> e(x) @P(Uii, x j). 

Case 8. ( B 2 4  , Boad). See Case 6. 

Case9.  (B276, B276). By using associativity of the form, it suffices to treat the 
case UoUkl, where { i , j } + { k , l } .  It is easy to do the case { i , j }c~{k , I }=O (all 
relevant products  are zero). We calculate 

UijUjk=_ __ 72Uik  L ~r ~ __ 72 (__  Vik q_ Vik, ) 
and 

ui~ U']k = ( -- vii + VIa,J( -- V~k + V;k, ) = -- 72( -- Vik + rig, ) = -- 72 Ui~ , 

as required. 

Case I0. (B 276, B~' +). We have Uij(Vkt + Vat ) = 0 if {i,j} 4= {k, I} and 

blij(Vij + 1.)ij, ) = 144( - -  1.)ij -}- uij,)l a ~, 144ulj 
because 

-9 (u i j ,  u(22)) = - 144 and - 9 ( u l j  ,u(22,))= 144. 

Also Ui~(Vkt +Vkr) '=(--Vij+Vij ,)(Vkl +Vkt,)=O if {i,j} 4 = {k, 1} and if {i,j} = {k, l} it 
equals - 9( _ Uo (22) + Uo (22,)) = 144 uij, as required. 

Case 11. (Bz76,B4'-). This is equivalent to Case 10 by associativity of the form. 

Case 12. (B276,B2). Here, supp2=(9  is an octad. Let  {2,#,v} be an F-triple, /, 
=2k,S, V=2~, r. We have 

!.gijV(~)~. 9 U a __8~(Uij ,  R(I~2)) -~ (  ij, u(~2)) v(,~), 

�9 6(# ,  v) fl(/~, v ) -  1 ~ ( _ 1)~<z~,,,;> q~;(x.) v(().  
Xg= X.a. 
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for all {. It is easy to check that ( ~ - { ' , l x ) - i j  in S+i j  in Pos ({ )+ l (mod2) .  
1 2 Using Lemma 2.3(ii), ij in S - i j  in Pos (2 )+ i j  in {k,l} (mod2). Since ~(  kl',~ 

--~')-- i j  in {kl}(mod2), �89 j in Pos(2) we are reduced to proving 
that  ~/ij(~)=(--1) ijinp~ But this follows from the definition of 71j(~) and 
Corollary 9.3. 

Case 13. (B276, B32). W e  have 

ui~v(,~k ~ ) =  9 2 , -z(u~j, u(,~k,~))v(;.~,~) 
r 9 2 I , -a(uij  , U(2k,~))(- 1)~176 | k. 

Also, 

Ui~ V(,~k,x) a = ( --  Vlj q- Vij,)( -- 1) ~kins~ e(z x) @x k 

1) ~176 [ 6 x) 
l s f 2  

+ 9(Uo (Uk,), q)a,, (z X) U (22j) -- q)a.,, (Z X) U (22j,))] e (z x) |  

For k eel in the latter sum, we claim that the bracketed coefficient is zero. This 
is quite clear for {i,j} + {k,l} and for {i,j} = {k, l} it is almost as clear (we use 
q)a,,(zx)= -qoa,,,(rx)). Now take k=l. The bracketed term is 

- 6 q)a,, (z x) + 9 ( u  o (Ukk) , q~x., (Z X) U(22) -- qOa,,, (Z X) U(22j,)) 

= [ -- 6 + 9 . 1 ( 2 3  Ukk -- ~, U,, 32(U,~ + Ujfl)] q)a.j(r x) 
r 4 - k  

3 j~" 22 if ke{i,j}] ~~ 27q~a,,(zx ) if ke{i,j} 
- 6 + g v - 2  if k ( ~ { i , j } J - 9 q ) a , , ( r x  ) if kr 

Up to a factor of -(-1)~176 this agrees with 

(__ 1)~kinS~( 9 2 
-a)(u,j,  u(;~,x)) 

=-(-- l)~176 { -124 ifif kr 

because q)x , , (zx)=(-1)  l+iji"sx. So, cr preserves the product in this case. 

Case 14. (B2v6, B . . . .  ). We have u l j . e ( x  ) |  ) @P(Uij ,  Xk) , which is zero 
unless ke{i,j} in which case it equals -36e(x) |  where {k,I} ={i,j}.  When 
nonzero, its image under cr is - 3 6 ( -  1) <a~'x'''> e(x) |  r In either case, 

ui~(e(x) | ~ = ( -  vii + vii,)(- 1) < ~ '  ~,x> e(x) |  

= - ( -  1) <*~'~'x> ~ [~(Uo(U~r), u ( ,~ ) -  u(4~,))] q,~,(x} e(x) |  
r E ~  

When the product is zero (k~{i,j}), we observe that u~(e(x)|162 as 
required. Now assume ke{i,j}. For r=k, (Uo(Ukk),U(22)--U(2~,))=O, as required. 
For r:# k and {r, k} =t= {i,j}, the bracketed coefficient is zero. If {r, k} = {i,j}, then 
"---I and 

9(Uki , U(22) -- U(22,)3 = 9(Uij, 64 U,j) = 36. 
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This gives the desired equality because 

1+(2oo,2k,~)+i j in S ~ - l  + l[S~l+ook in Sx+i j in S x 

= - l + � 8 8  (mod2). 

Case 15. (B276,Boaa). See Case 13. 

Case 16. t(B4'+2 , B~'+). We have (vij-~-vij,)(Vkl +Vkr)=0  when {i , j}~{k,  l} =0,  

(~,j + v~j,) 2 = 9(Uo(2~) + Uo(2~,)) 
and 

(vii + Vlj,)(V~R + V~k,) = -- 72(rig + Vik,)- 

Clearly, everything is fixed by a, so there is no problem. 

Case 17. (B 4' + B 4' 2 , 2 -)- This is equivalent to Case 10. 

Case 18. ttB 4'+2 , B2~2j- We have (vij+vlj,)v(2)=O if {i,j} ~ ; (9=supp2  and when i, 
jeC, (vij+vij ,)v(2)=- 36v(2') where 2 '=2+2ij_ or 2+2ij, , _  whichever lies in A 2"2, 
see Case 12 and Corol lary 9.3. If {i,j}~(9, it is clear that (vij+vij)*v(2)*=O. So, 
we assume i, je(9 from now on. 

We have -36v(2')~=-1626(#',v')fl(#' ,v')  -1 ~ (-1)~a~"zsq)~(x.,)v((), 
X ~ =  XA 

where {2', #', v'} is an F-triple with k = i(#'), l =  i(v'). Also, 

(v~ + v J  v(2) ,~ = (v,j + v,;)(~) ,~(#, v) fl(#, v ) - '  y ,  ( - 1) ~<~'''~> ~o~(x.) v(~) 
X ~ -  x A  

= ( - 162) 6 (p, v) fl(p, v)- 1 ~ ( _ 1)~<~,,,,r (p~. (xu) v((), 
x~ ~ x.Z 

where {2,#,v} is an F-triple with k=i(#), /=i(v). (This is easy to arrange; for 
instance, let g~O2(N24 ) satisfy 2 'g=2,  then take #=# 'g ,  v=v'g.) Thus, we must 
prove, for all (, that  

6(#', v')fl(~', v ' )q~dx. , ) ( -  1) ~ ' ' , ~  

= 6(~, v) fl(#, v) qk' (x.)(  - 1) ~ ' ' , c ~ .  

We now verify two claims. The first is 

b(#, v) fl(#, v) -1 (pr ( -  1) ~<x~'''~> 6(#', v') fl(#', v') -~ qor 1) ~<z .... r 

Take  geO2(H ) so that 2g=2' .  Then 

v(2 T = b(Z, g) v(2) ~ = b(2', g) v(2) ~ 

= b(2', g) 6(#, v) fl(p, v)-i  (9) ~ ( _  1)~(~k,,,;) ~0;(x.) v(() ~ 
X~=XA 

= 3(#, v) fl(#, v)-'  (9) 2 ( -  1) ~<zk' ''r ~0r v((') 
X~=XA 
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because b(~, g) depends only on x~ (see (8.5)). Compar ing this with the formula 
for v(2') ~, we get the claim. The second claim is that ( 2 + 2 ' ,  p + p ' ) - 0  (rood2). 
Since 2 + 2' - ( +  (' (mod 2 A + A (8)), this claim implies that 

1 = ( -  1) ~+~'' '+"'~ = (p~+~,(p + p') = ~0~+~,(x,x,,) 

= ~o~(x.) ~o~, (x,,.) ~o~(x.,) q)~. (x,,), 

which, together with the first claim, proves the required equality stated at the 
end of the last paragraph.  So, let us prove the second claim. We have p =  fig, s, 
v=)~l,r, p'=flk,S,, v'=fil,,r,. Since ({k , /}+S)c~(9-Pos ( f l ) (mod(~2) )  and ({k, l} 
+ S') c~ (9 - Pos (2) (mod (Q) )  (see Lemma 2.3 (ii)), we have (S + S') c~ (9 -- Pos (2) 
+ P o s ( f l ' ) - { i j }  (mod(~2)).  Therefore, the coordinates of p - # '  over (9 consist 
of + 2  at i and j and 0 elsewhere, whence (fl+fi ' ,  p + p ' ) = ~ ( + _ 8  
_-!-8)-= 0 (rood 2). The second claim follows, and we are done. 

Case19. ~tB 4'+2 ,B32). We have (vij§ unless ke{i , j}  and if {k,l} 
= {i,j} we have (vii+ viy ) V(fik,x) = -- 36 V(fl l ,x)~ (-- 1) ~li"sx+ I 36e(rx)  | r in 
either case, 

(Uij ~- Uij,)t~ U(flk,x)a=( - ] )~kinS~(vij § Vij,)e('~ X) (~X k 

The coefficient is zero unless {k, t}={i,j} in which case (uij, u(2/2j)-u(22j,)) 
=(uij, 64ui)=128. Thus, when {k,l}={i,j},  we must prove that ~ l  in S~ 
+ 1 - m k in S x + (2 . . . .  2~j) (mod 2). Since (2 . . . . .  "~ij) "~- (A-x, 2 i j )  § (2Sx,  2 i j )  ~ 1 
+ ij in S x (mod 2), the congruence is valid. 

Case 20. (B42" +, B . . . .  ). We have 

(% + %0 e(x) | 

= Z [ - 6 (~kt § U(')~i 2) § U(22j'))] (P2w(X) e(x) |  t 
le~ 

= - 6 + ~ .  ~ (23  u ~ -  ~ u ,  32(.,, + . z ) )  ~o~,~tx) ~(~) | 
v~-!r 

22 ke{i,.j}] 1)iJi~s~ " 
= - 6 + ~ - 2  kc~{i,j}J ( -  e(x)| 

=( - -1 ) i j i " s~ ' { - -2 ;  k6{i,j}ks{i"J}e(x)| 

. {  279 ke{i 'J} 

Also, (vij + vij,) ~(e(x) | ~ = (vii + vii,)(-- 1)<~' ~'  ~ > e(x) | which is easily 
seen to equal the image of the product  under a by comparing the previous 
sentence. 

Case 21. (B~' +, Boad). See Case 19. 

Case 22. (B{'-,  B~"-). See Case 9. 
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Case 23. (B~ ' - ,  B2). See Case 12. 

Case 24. ,,, - 3 (B 2 , B2). See Case 15. 
B 4 -  Case 25. ( 2' , B  . . . .  ). See Case 14. 

Case 26. (B 4' -,  Boaa). See Case 13. 
B 2 Case 27. ( 2, B2) �9 We first consider v(2) v(#) where {2, p, v} forms a triangle of 

type 222. By quoting Cases 18 and 23, we need to treat only the case where 
{2, #, v} ~ A (2, 2). Later,  we shall consider v(2)v(#) where 2 + p ,  2 - p e A  z, i.e. 
the case v(2)v(/ t )=0.  

Since [H, a ] =  1, we may  assume q({2,/t, 2 + / ~ } ) c F  without loss; see Lem- 
ma 7.3. Expand 2, p, v to F-triples {2, 2', 2"}, {kt,/z', kt"} and {v, v', v"} all of 
whose vectors map  to elements of F under  q. Write 2 '=2~,,s , ,  2"=2~, , r , ,  p' 

=212,$2, ]-~'"=flLj2, T2, V'=2i3,83, vtt=2j3, T3 . 
We have 

v(2) v(ff) = - 36 v(v) 

-36f l (v ' ,  v " ) - '  6(v'. v")(9) ~ ( -1)~<2 ' ~,,~ q)o(x~,)v(p). 

Also, 

Z { Z (--1)�89189 l')~(~' ~/~)} /) (~0). 
Xo=Xv X~=XA,X~=X~ 

We have - 36fl(v', v") -~ = 1 and ~f l (2 ' ,  2 " ) - '  fl(p', i f ' ) -  1 =6~4. Also, 

,q(~, r/) = ( -  1) Ic%~.~s.I fl(2, # ) =  - 3 6 ( -  1) I~e.~s~l ,  

where g = g ~ , , e O 2 ( H  ) satisfies 2g=~, /~g=0 and i~g =/5. Note  that the image of g 
in - 1 under  ff is not  uniquely determined since the annihi lator  of (94U (9 in 
with respect to the natural  bilinear form on P(~?) is a four-group consisting of 
the images of ~ and three octads disjoint from (94 ~ (9 u (expand 04 c~ (9 to a 
sextet of tetrads to see this). So, we must prove that 

cS(v', v " ) ( -  l)~<~i, J', '~ q~o(x<)= 

1 , if,) l)~<~i2,A,o + ~<4~3A, .> -~6( ,~ ,  ,V') 6(p', y~ ( -  

�9 q0~(x4, ) ( p , (x , ) ( -  l)lS~,, ~z~e ' l .  

Since there are eight summands,  each _+ 1, certainly one of the requirements is 
that  the summands  be constant.  Writing this out, we find that we must prove 
that  

(*) f ( p .  (. r / ) = ( -  1) Ir g =gr 
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where 

f(p, ~, ~)== %(x~,) qodxa,) %%,,) a0", ,,") a(2', 2") a(~', ~") 
�9 ( _ l ) � 8 9  �89 (3,i2J2,~)+�89 1 

=~%(x~,)~o~(x;)%(x.,)(- 1)�89 "r189 �89 'tl "> 

using Lemma7.8(i i)  to simplify. Strictly speaking, gt,, is not a well defined 
element of 02(H). It suffices to check (*) for any choice of gr since 
(gxc~(9,c~S~:,,(mod <(9xc~(9,>) is all that matters here. 

Define 
or ={05, ~, 0)r 2)lxo=x,,, xr z, xn=x. ,  p=ff+r t} ,  

J = { 0 5 ,  g, 0)zoO*l(.) holds for (p, ~, r/)}. 

Using q({2, It, v } ) cF  we get f(v, 2 , / 0=1 .  Since we may take g = l ,  we see that 
(~, L ~ ) e J #  0. 

In what follows, we shall assume that 2 + p = v  and ~ + t / = p  in A, not just 
modulo 2A. Also, we shall drop the tilde notation for triples in J .  

Suppose (p, ~, r/)E J .  Keeping p fixed, we make the change ~--,~', ~7~-+r/' by 
changing the signs of the coordinates for ~ and ~I at indicates r and s. Let 
gl ~O2(H) effect this change. We show that (p, ~', q')~ J .  We have r, s6(gac~(9 .. 
Note that the right side of (*) is not changed by the priming operation since 
r,s~(9ac~C .. We have ( ~ - ( . ' , 2 ' > - l + r s  in Pos(~)+rs  in S l ( m o d 2  ) and 
( r l - t f , # ' )  =-1 +rs in Pos(q)+rs  in S2(mod2 ). Therefore, ( { - { ' , 2 ' ) + ( t t - t l ' , # )  
=-rs in (S l + S 2 ) ( m o d 2  ) and so 

f (p, ~', i f ) f  (p, ~, t/)=(--1)rsinSl+Sz+�89189 ' t l - t l '> 

= ( - -  l )rsin Sl + Sa + rs in {iaJz} + {i3, j3} 

= ( - -  l )  rs inP~176 = ( - -  l) rsin0= 1, 

(see Lemma 2.3 (ii)). Since Sg, c~ (9 4 n (9, -= {r, s} (rood (ga c~ (9), the right sides of 
(*) for (p, ~, r/) and (p, ~', t/') differ by a factor of (-1)l~s163 
Thus, (p, ~', r/')z J .  

Next, suppose that (p, ~, t/)z ~r and that we change p to p' at indices r, s in 
~,'~. We change if, t/ to ~', r/' by coordinate sign changes exactly at r, s in case 
{r, s} _c (gx- (9, or (9 , -  (ga, and otherwise we introduce a third index t s (9~ c~ (9, 
and change the signs of the coordinates of ~ and r/exactly at {r, s, t}. We show 
that (p', ~', r/')e J .  Let g ' zO2(H ) satisfy t g' =/5' and let gl eO2(H ) satisfy p~=p', 
~g = ~', r/g = r/. 

Let us treat the case {r,s}c_(9~-(!,. We claim that le'~c~(9.nS~,l_-- 
l(~zc~(9,c~Sgl(mod2). Namely, write g l = g T ,  T e ~ .  Then T is a %se t  which 
meets (9~ in {r,s} exactly. Since any two ~-sets intersect in a zet of even 
cardinality, I T n  ((ga - (9,)1 = 0 (rood 2) implies that [T~ (9 4 c~ (9,1 = 0 (rood 2). The 
claim follows by using the natural bilinear form on P(~2). Since r/ is unaffected 
by sign changes, we concentrate on the effect of ~--,~' and p~--,p'. Given the 
claim, the analysis proceeds as in the case p fixed but ~ and r/ changed. 
Another way to finish off the argument is to observe that the left side of (.) is 
symmetric in the pairs (p, v), (~, 2) and (t/, #) so that we can invoke symmetry 
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and 

Also, 

and quote  the earlier case where p was fixed, using 
[O~(9,~Sg]-](gac~(guC~Sg,] (mod2).  Either way, we obtain f(p', ~,', rl) 
= f(p,  ~,, rl), whence (p', (', r/) s ~ .  

Let us now treat the case r~(9~-(~) ,  s ~ )  -(9~, tsg)xc~(9~. We argue as in 
the above paragraph to get I Sx ~ S, c~ Sg,] - 1 + ]Sz c~ S, c~ Sg] (rood 2). So, we must 
show that the left side of (.) changes sign as we move  from (p, (~, r/) to (p', ~', rf). 

We have 

( ~ - ~ ' ,  2 ' } - l + r t  in P o s ( 0 + r t  in S~ (mod 2), 

(r l -r f ,  #'}=-1 +st  in P o s ( q ) + s t  in $2 (mod2) 

( p - p ' ,  v ' } -  1 +rs in Pos(p)+rs in S~ (mod2).  

and 

1 2 5(  i~Sl, ( - ( ' } - r t  in {il j l} (mod2),  

! ) 2( ~i,_,A, r l - r f ) - s t  in {i2J2} (mod2)  

~( i ~ , A , p - p ' } - r s  in {i3j3}(mod2).  

The sum of  these six terms is 

3 +rt  in ({i1./1} +S1)+st  in ({i2J2} +S2)+rs in ({i3J3} +83) 
+ r  in ( P o s ( 0 +  Pos (p ) )+s  in (Pos0 / )+  Pos (p ) )+ t  in ( P o s ( 0 +  Pos(r/)) 

= 3 + r t  in P o s ( 2 ) + s t  in Pos( /~)+rs  in P o s ( v ) + 0 + 0 + 0  

- 1 + r in Pos (2) + Pos (v) + t in Pos (2) + Pos (/*) + s in Pos (Ft) + Pos (v) 

-=-1 + 0 + 0 + 0  = 1 (mod2),  

which is exactly what  we need to show that  the left side of (*) changes sign. 
Since every member  of J *  may be obta ined from (v, 2,/t) by a sequence of 

sign changes, two coordinates at a time, it follows that J = J * .  Thus 
preserves the product  in this case. 

Now we turn to the situation v(2)v(#)=0,  2, p ~ A  2. We must  prove that 
v (2yv( /0~=0 .  If v(2yv(tO'#O, we must have v(Ov(*l)+O for some {, 17GA 2 

with xr and x , = x  u. Thus, (9a=(9  or 6 'a+6 ' ,  is an octad. In either case, we 
have 

vff.) ~ v(~y 

x g ~  X). x ~ / = x  u 

for some constant  c and F-triples {2, 2', 2"} and {#,/,',/~"} with i = i(2'), j = i(2"). 
k = i(#'), l= i(g"). 

Subcase 1. (~a=(gu. Then  each fi((, q ) = - 3 6  since peA~;  see Lemma 9.3. Fix /: 
=2,~ or )~,~,. When xr  and there is a n  r / ~ A  2 with x , = x v = x  ~ such that ( 
+ q = p, set 

f ( 0  =. f , (0  = ( -  1) ~<~''''r ~<z~'''"> ~or 
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for r]ffA 2 with x ,=x , ,  {+q=p.  We must show that ~ f ( { ) = 0 ,  where there are 

32 summands, corresponding to those ~ whose coefficients over {r, s} look like 
1 

+sO. Since xp=~l, x a = x , .  By taking g=gseO2(H) with ,~g=/~, we see that we 
may assume {2, 2', 2"} ~ = {/~,/Y,/7'}. Thus, x~., =x, ,x  s and 

f (~)  = (  - 1)~ <~'.'.~+"> qh(x).) ~0,(x,.) 

= ( - 1 ) ~ < ~"." p > % (x , . )  ~9: (x  s) = c i ~o; (Xs). 

cl a constant.  So, we must show that ~o r  Let us fix one of these ~'s; 

call it ~o. The other  ~ which occur are obtained by changing coordinates  at 
AeP*((~:') -P~E~- , ",~,'cn/\'/(('\'/, A = { A  1, Al+f2} ,  Aar~{r,s}=O. The relevant A 
which arise range over a subspace, Y, of P* ( ( ) ;  with respect to the natural  
bilinear form on P*(6), Y is the annihilator  of { r , s } + < 6 ) .  Thus, S~o:(xs) 

=q);o(Xs) ~ O(A), where r is the character  of Y obtained by pairing with 
A E Y  

Sc~EJ under the natural bilinear form. Since 1S[=4, S~{r,s} or {r,s}+(5 and 
~ 4  1 so that y, (J (A)=0 by the orthogonal i ty  relations, and we are done. 

A e Y  

Subcase2. ( ' , , :=E;  + (  (', is an octad. Fix p. Let 

f( ; ' )  = ( -  1) -~ ~ '~ ' '~  + ~ " ' " " ~  q~4x~.)%(x,..)l~(~. ~7). 

for each ~ such that x;=xa and there is q~A 2 with x , = x ,  and ~+q=p. We 
must show that ~ f ( ~ ) = 0 .  Note  that there are eight summands.  Let Z(p) 

denote the set of ~which  occur�9 
Using the action of H, we may assume that one of the triangles of type 222 

which occurs in the expression for v(2)"v(/0 ~ is in F q '. Let us call it 
{~o, r/o, Po}, and let {~o, ~o, ~o}, {~/o, 11'0, ~/'~'~} and {Po, P'o, Po} be F-triples, with 
all vectors in F q '. Let r~=i(~'o), s l=i(~o),  r2=iOlo), Sz=i(q'~;), m=i(po), n 
=i(po). Without  loss, we may arrange i=r~, j=s~, ]r l = s  2 and ~o+qo 
~Po.  

We have //(~, ~l)=/J(~o, q 0 ) ( -  1) Ir - 3 6 ( -  1) le~~(%~s"t where g 
=g~,,eOz(H ) satisfies ~ = ~  and f/~ =0.  Then 

�9 q0p(X, ) ( -  1) Ir C 1 , 

where c~ is constant  as a function of p. Using the identity (*), there are 
constants c 2 and ('3 so that 

. f (~)  = q~;(x~., x~;) % ( x , .  x , ; )  c 2 = q~(xx ,  x , .  x;o x ,  ) c3.  

We claim that f(~) is not constant.  It suffices to show that Jl({) is not 
constant, where there exists some element ~ of A(4) such that f~ ({)=f(~)q~({).  
We take .1; (~) = q~;(2' + U') ~0:(~' + q'o). Since ~o+~lo=Po,  Pos(~o) 
+Pos(qo)~_(!)zc~6 ". Since 2+/x and 2 - k t  are not in /12, POS(~) 
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+Pos(/~)c~6xc~(~,:4=0 or d',c~(/,.  Therefore, ~ = 2 ' + ~ ' o + i / + q o  looks like 
( ~ : . _ 2 ~ )  (rood4) over g~c~6, ,  where 0 < k < 4 .  It follows that if 

a, beg.'~c~(Cu and the coordinate  of ~ at a, b is in 2+4 ;g ,  47/, respectively, then 
by changing the signs of the coordinates of ~ at {a, b}, we change the value of 
.fl ({). This proves our claim that f is not constant.  

Take ~ ~Z(p) with .fi(c~)=c 3. Then ~ . f ( ~ ) = c 3  ~q~_~,(y),  y=x;,x~cxq, x,; ,. 
The latter sum is y~ ~,(A), where { and A correspond if and only if A 

A ~ P ((~ c~(eta)ev~n 

is the support  of { - ~  (replacing ~ by - {  if necessary). Then ~ is a character  
of  P(g'ac~ (!',) . . . .  . Since f is not constant,  ~=t= 1. By orthogonali ty,  the sum is 
zero. 

This completes the arguments for Case 27. 

B 2 Case 28. ( 2, B~2) �9 When a nonzero product  v(2)t'(t0 occurs here, it has the 
form fi(2,/~)v(2+/t), {2, t~ ,2+/~}eA(2,3)  and 2 + / t e a  3. This si tuation is 
equivalent to one in Case 31, and we deal with it there. 

When we have a zero product  v()dv(i t)=0,  2 e a  2, t t e A  3,. we must show 
that  v(2y v( /~y=0.  It is clear from the definition of ~ that 

~(~.yr(~)~ y~ ~e(x~+.) | 
j e ~  

so, it suffices to prove that (v(2)" v(/~) ", e ( x , ~ , ) |  for j e l l  Let /~=2~. s. 
Take  j e Q. We compute  

(v(~)" v(/~y, e(xa+.) |  j) =(t,(.i)', v(/,)" e(x~+.) |  i) 
= ( - 1 )~' ~" s (v (.b ~, (e (x,)  | x~) (e i x ,  + , )  |  j)) 

=(--1)~iinSfl() .  ', ) j ' ) - '  c5().', )j,)(9) Z (--1) }<'~''''':> 
X , ~ = X A  

�9 qor [ - 3 c~ u + 9 (u ~ (uu) ' u(r ~o~(x,) 

=c* Z z(A), 
A eP*(( ~ ) 

where c* is a constant,  {2, 2', 2"} is an F-triple, 5 = C ~ ,  P * ( C ) : = P ( 6 )  . . . . .  / ~ ( )  

and /, is the irreducible character  of the abelian group P*(6.) defined as 
follows: set 

~(~): = ( -- 1) ~<~k' "~> qo~(xa, ) qo~(xu) if i = j  
and 

&(~): = ( -  1) ~<xk'''*''''~> (pr if i=t=j; 

we shall find a {o~A 2 with support  (9 satisfying ~9(~o)=1; we then set z(A): 
=~9(~)=r162 where r is obtained from ~o by coordinate  sign 
changes at A (more precisely, at a 1 eP((9) . . . . .  where A = { A ~ , A ~  +(9}). With- 
out  loss, q ( { 2 , 2 ' , 2 " } ) c F .  We let 2* ~ ~ :=~2kl,~-A-}-2x, * if i = j  and 2*:=�89 
+ 2 U , ) + 2 ' + 2 ~ ,  if i:4=./. Then ~ ( ~ ) = ( - 1 )  <a*'~>. Let ~a be obtained from ~o by 
coordinate  sign changes at A, A ~ P*((9). Then, for any A, B e P*((9), 

z(A + B ) =  r n ) = ( -  1) <a*'~ +"> = ( -  1) <x*'~- . . . .  -~o> 
=(__ 1)(-t*,r162162 
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where {* is a vector  with nonzero coordinates  _+8. Since s has coordinates  in 
22g, (-1)<~*'~*>=1 and so z (A+B)=z(A)z (B) ,  i.e. Z is a character  of P*(6,). 
Finally, we shall show 7. + 1. The or thogonal i ty  relations for irreducible charac- 
ters of  finite groups then imply ~ z (A)=0 ,  as required. 

A~P*(C) 

To summarize,  we must  (i) exhibit ~o with 4,(~0)=1 and (ii) prove Xq=l 
(equivalently, find ~1 with ~/J(~t)=-1) .  So, what  we really have to do is to 
show that  ~ is not constant  as a function of { ~ J e l X : = X x } .  Wi thout  loss, the 
bracketed term is not identically zero, whence, by (8.4) either (a) i= j  r C or (b) 
i:#j, i , j~C. 

We shall assume ~k(;') is constant,  then seek a contradiction.  Since @(0 has 
the form ( - 1 )  <;'*'c>, we may  replace 2* by anything in the coset 2* +A(4)  since, 
for ~eA(4) ,  ( - 1 )  <~'~-> is constant  in ~. In particular,  we may  replace )o:,,, by /~. 

Recall that, if ~E/I 2, ~+26/12 if and only if ( ( ,  2 ) = - 2 .  Since i+_ll(~A 2, 
this means  (2 '  • 2)  =#0. 

Suppose i=j. Since 2 •  are not in A 2, the part  of the vector  Iz over  (' 
looks like (_4-1, _+1, ..., •  but does not have the shape 

! ( 1  . . . .  ,1, 1 . . . . .  - 1). 
Po~(2) NegO.) 

By L e m m a  2.3(ii), the part  of 2' over  ~ is 

- I - ( -3 ,  1, 1 . . . . .  1, - 1  . . . . .  - 1 )  or •  1...1 - 1  - 1 . . . - 1 ) .  
k I ~ k ~ I Pos (2) Pos (A) 

Thus the part  of  2 '+t~ over  (' may  be assumed to have shape 
(-I-2,2, a I . . . .  ,a~,), with a~e{0, +2} all i, and not all the af are zero. So, 
2" = (0, 0, a~ . . . .  , a6) (mod 4) over ~, and it is easy to see that ~ is not constant.  

Suppose i+-j. Then  i, j e d ' .  Proceeding as in the last paragraph,  the par t  of 
/~ over  C!' does not have shape 

+ ( - 3 ,  1, 1 . . . . .  1, - 1  . . . . .  - 1 )  o r  _ + ( - 3 .  1 . . . . .  1. - 1 ,  - 1  . . . . .  - 1 )  
i j ~ i ~ .j Po 'q2)  Pos (.~,) 

whereas the part  of  2' over  C has shape 

! ( - 3  1 1...1 - 1 . . . - 1 )  or +_( -3  1...1 - 1  - 1 . . . - I ) .  
k I Pos (21 k Pos (3.) 1 

We consider the subcases. Since 2 ' + ) , " - 2 ( m o d 2 A )  and ()o, ff)e27Z for (~A 2 
with suppor t  C, we may  switch k and l without  loss in the following arguments .  

Subcase 1. i e {k, I}, j e {k l}. Then we may replace 2* with 2' +/~. Wi thout  loss, i 
= k, the k-entry of  2' + tl is 0, all the other coordinates  over  C are 0 or • 2 and 
they are not  all zeroes. It is trivial to see that  ~b is not constant  here. 

Subcase2. {i,j}c~{k, l}={i} ={k}.  We may  cancel out the - 3 ' s .  Wi thout  loss, 
)~* may  be replaced by 2 '+�93189 Since ~b is assumed constant,  the par t  of 
),* over  C looks like (0 . . .0) ( rood 4). So, over 6:', 

,~+/~=- •  2 0 . . . 0  2 0. . .0)  (rood 4). 
.J l 
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A s s u m e  j l  in Pos  (2) = 1 ( m o d  2). W e  der ive  a c o n t r a d i c t i o n .  S u p p o s e  2' has  the 
first  of  the  two  poss ib l e  shapes .  T h e n  j l in Pos (2)-= 1 ( m o d  2) forces j to  be  in 
the  i n t e rva l  m a r k e d  Pos(2) .  W e  o b t a i n / ~  f rom ~,' by  c h a n g i n g  c o o r d i n a t e  signs 
a t  a q - se t ,  say  U. S ince  

2 ' + / ~ - ( 0 . . . 0  2 0 . . . 0  2 0 . . . 0 )  ( m o d 4 )  
j I 

over  (9, we m a y  a s s u m e  Uca(9= {j, 1}. T h e n  2 ' - ( 2 ' )  ~" ove r  6' l o o k s  l ike 

_+(0 2 0 . . . 0  2 0 . . . . . .  0) 
j l 

a c o n t r a d i c t i o n ,  as ( 2 ' + / * , 2 ) = t = 0 .  If 2' has  the s e c o n d  of  the  two  poss ib l e  
shapes ,  the  d i s cus s ion  is s imi lar .  W e  c o n c l u d e  t h a t  ( 2 " ,  {} is no t  c o n s t a n t  
( m o d  2), as requ i red .  A s s u m e  j l  in Pos  (2) = 0 ( m o d  2). W h i c h e v e r  s h a p e  2' has,  a 
s i m i l a r  ana lys i s  shows  t ha t  e i the r  poss ib i l i ty ,  {j, l }_cPos(2)  or {j, l}_cNeg(2) ,  
forces  ( 2 - t z ,  2} = 0  or  ( 2 + / Z  2} = 0 ,  a c o n t r a d i c t i o n .  

Subcase 3. i ~, { k, 1}, j r { k, l}. As in S u b c a s e  2, we have  no p r o b l e m  unless  

2 ' + / L - ( 0 . . . 0  2 0 . . . 0  2 0 . . . 0  2 0 . . . 0  2 0 . . . 0 )  ( rood4) .  
i j k l 

W e  e x a m i n e  the poss ib i l i t i e s  to  get  a c o n t r a d i c t i o n .  
S u p p o s e  2' has  shape  ___(-3 1 1 . . .  1 - 1  . . . - 1 )  over  (5. If ij in P o s ( 2 ) = l ,  

k I Pos(2) 

t hen  we m a y  a r r a n g e  

2 ' = ( - 3  
k 

/~--( 1 

to  have  one  o f  the fo l lowing  p i c tu re s :  

Pos (;~) 

1 1 ... 1 l ... l) over  C 
I i J 

1 - 3  - 1  .. .  - 1  - 1  1 ... 1) ove r  C, 

2 ' + t t = ( - 2  

; ' = ( - 3  
k 

t,=( 1 

2 - 2  0 .., 0 - 2  0 ... O) over  6'; 

PosO.) 
r 

1 1 - 1  ... 1 - 1  ... - 1 )  ove r  (9, 
l j i 

1 1 - 1  ... - 1  3 1 ... 1) ove r  (9, 

o r  

2 '+~=( -2  

In  b o t h  cases,  ( 2 ' + # ,  

2 ' = ( - 3  
k 

~=( 1 

2 2 0 ... 0 2 0 ... 0) ove r  (9. 

2 )  = 0 ,  a c o n t r a d i c t i o n .  If  i.j in P o s ( 2 ) = 0 ,  we have  one  of 

Pos(2) 

1 1 1 - 1  ... 1 - 1  . . .  - -1)  ove r  (9, 
l i j 

1 - - 3  1 - -1  ... - -1  1 ... 1) ove r  (9, 
! 

) / + / ~ = ( - 2  

2 ' = ( - 3  
k 

~=( 1 

2 - 2  2 0 ... 0 0 ... 0) ove r  (9; or  

Pos(2)  

l 1 1 . . .  1 - -1  - 1  ... - -1 )  ove r  C, 
t i j 

1 - 1  - 1  .. .  - 1  3 - 1  1 ... 1) ove r  (9, 

2 ' + / t = ( - 2  2 0 ... 0 2 - 2  0 ... 0) ove r  C. 
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Again,  ( 2 '+ /~ ,  2 5 = 0  in b o t h  cases, a con t r ad i c t i on .  
Pos ()t) 

Suppose  2' has the shape  ( - 3  "1 ... 1 -1"  - 1  ... - 1 ) .  If ij in  
k 

POS(2)--I  (mod2) ,  t hen  we m a y  a r r ange  for one  of  the fo l lowing pic tures  to 
hold : 

Posit) 

2 ' = ( - 3  1 1 ... 1 - 1  - 1  - 1  ... - 1 )  over C, 
k i 1 j 

/ l = (  1 - 3  - 1  ... - 1  - 1  - 1  +1  ... + 1 )  over  (9, 

2 ' + # = ( - 2  - 2  0 ... 0 - 2  - 2  0 ... 0) over  (9; 

post~.) 

2 ' = ( - 3  1 1 ... 1 - 1  - 1  - 1  ... - 1 )  over  (9, 
k j 1 i 

/~=(  I 1 - 1  ... - 1  - 1  3 - 1  ... - 1 )  over (9, 

o r  

2 ' + # = ( - 2  2 0 ... 0 - 2  2 0 ... 0) over (9. 

In b o t h  cases, ( 2 ' + / t ,  25 = 0 ,  a con t r ad i c t i on .  
Suppose  that  ij in P o s ( 2 ) = 0 ( m o d 2 ) .  T h e n  one  of the  fo l lowing pic tures  

mus t  ho ld :  

Pos(2) 

2 ' = ( - 3  1 1 ... 1 - f  - 1  ... - 1 )  over (9, 
k i j l 

/~=(  i - 3  1 - 1  ... - 1  - 1  1 ... 1) over ~i 

2 ' + ~ = ( - 2  - 2  2 0 ... 0 - 2  0 ... 0) over 6:'; 

pos~.~ 

2 ' - - ( - 3  1 1 ... 1 - 1  - 1  - 1  ... - 1 )  
k i J l 

~ - - (  1 - 1  - 1  . . .  - 1  - 1  3 - 1  1 . . .  1) 

o r  

2 ' + / t = ( - 2  0 0 ... 0 - 2  2 - 2  0 ... 0), 

and  in bo th  cases, ( 2 ' + ~ ,  2 ) = 0 ,  con t r ad i c t i on .  

Subcase4. ir .je{k,l}. Say . j*~{k,/}-{j}.  Then,  there  is n o  p r o b l e m  

unless poss ib ly  2 ' +  p has shape  

(0 ... 0 2 0 ... 0 2 0 ... 0) ( rood4)  over  (9. 
i j* 

In this event ,  we refer to Subcase  2. 
W e  have  comple t ed  the  d i scuss ion  of the  zero p roduc t  s i tua t ion .  

Case 29. (B 2, B . . . .  ). W e  have  

v(2)(e(x) | ~ [ - 3 (}ij-]-9~(tAo(IAij), H(A2))] q)2(X) e(XXa) |  

~ q ~  a l : =  2 [ - - 3  (~ij@9~(flO(Hij), H(22)) ]  (~0) , (X)(-  1) <;'~'a . . . .  4> e(xxa) |  
j e ~  
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Also, 

a2: = v ( 2 ) ~ ( e ( x ) |  ~ =-fi(/2, v) -1 (~(/2, 1')(~ ( -  1) (~'~,Z',a) . 

2 ( - l)�89 (/)r ['(~) (e(x) (~Xi) =/~(/2, V)-I (~(/2, V) (9) _ 1)(~.m, ).,, v). 
Xg=X~ 

2 ~ (-- l)�89 ~0g(Xu X) [--3aij4-92(Uo(Uij) ,  U(g2))] e(XXk)(~Xj, 
jes xg=x;. 

where {2,/2, v} is an F-triple with /2=2k,S, V=2~., r for indices k and I in C=(~,  
and S, Teed, k r  l~ T. 

Let a~,j, a2, 2 be the coefficient of e ( x x a ) |  a in a~, a 2, respectively. 
Without  loss, we may assume that q({2,/2, v } ) c F .  
For  j = i we have 

9(Uo(U~,), u(~2))= 9 .  2J4 (23 u u -  ~ u . ,  4 ~ u . )  
r ~ i rE(O 

3 J" 16 if i~6 ~' J" 3 if i~6 
= ~  [ - 8  if iq}6 = ' [ - 3 / 2  if iq}C" 

Thus, 
0 if i e C  

a t ' i =  -92q)a(x ) ( -  1) <a~'~ ....... > if iq}C ~' 
and 

[ 0 if ie(9 

( ' /2 ' i=] ' - -81  /~(/2' V)-! (~(/2' "~')(-- 1)('gm'2"x) 2 (-- l)�89 X) 
Xg=xA 

Without  loss, iq}(9. Thus a l . i = a 2 , i  if and only if 

if iq} 6:. 

( - 1 )  <~,~',~-~ . . . . .  >a(~,v)~o,(x)=-~/s(#,v)  ' y~ C- l~ �89 x). 
x~=xz 

Since q({2,/2, v } ) c F ,  (px(x.)= l, fi(#, v)= - 3 6 ,  and the condit ion reads 

(,) 

We have 2 -  2 o -  ( 4, ..., 4, 0 . . . .  ,0) (mod 2A), whence 

{k,l}4.(Sn(!) 

~ox+ ~ ( x ) = ( -  1) Isx""k'~l+~s~ e~f = ( -  1) k~i"sx+lsx~s"~l 

(see Lemma 2.3). Also, 

q~x + ~,0(x,,) = q)ze(x.) = ( _ 1)< x~, z~, s> = ( _ 1)<x~, x~> + <z~, As> = ( _ 1)1 + ~-Is n <, 

using keC. Therefore,  the right side of (*) equals 

{ __1 Z ( - -  1)�89 ( - -  l)klinSx+ ISxnSn(9[ +1 +�89 I 
X~=XA 

_=(_ 1)1 + �89 [((S + Sx)n~)+ {k, lll + kl in sx + lSx~,S~,r + l+�89 
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We have 

= ( 2 ~ , 2  . . . .  ) + ( 2 ~ , 2  ....... ) + ~ i  in Sx+,~i in (S~+6) 

= ( 2  .... 2 . . . .  )+(2~ , ,  2 . . . . .  ) + ~ i  in (('=�88188 in (c 

-} IS~-6 ' ]+2r  in ((2=-�89 in (~)(mod2); 

see Lemma 2.2. So, the left side of (*) is ( -1 )  ~1, where E~-�89 S ~ C ] + , : ~ i  in 6' 
+2r in S+<,l  in T(mod2). Since i~6, kq~S and l~T, Lemma 2.3(ii) implies 
that mi in ((~+mk in S + m l  in T - m  in g + S + T - l + k l  in S (rood2). There- 
fore, E~-�89 in S + I  (mod 2). 

Let ( - 1 )  ~ be the right side of(*). Then, 

E2=-�89 in S~+[S~c~S~6 ~1 ~1 

=-�89 + S~)c~r �89 I}]+](S + Sx)c~{k , 1}l+kl in S~+lS~c~Sc~(g]+ �89 

-�89189 c~(q+]ScaS~C]+l +kl in S+kl  in S~ 

+kl in Sx+lS~cvSc~(r189 
-}lS~c~Kq+kl in S + l - E ~ ( m o d 2 ) .  

We conclude that (*) holds, proving al,i=a2, i. 
Next, l e t j , i .  Then a~ , j=a2 . j=0  unless i,,j~( ~, in which case 

"95( l l i j  , U(~2))  = 9( - l )  �89 () ' ' J ' '{) ,  O l , j =  9 ( - -  1)~ (2 ' J "2 )  + (2~')~J'~x-~) (/3 a.(X ) 

and 

a2 . j= f i ( , , v ) - l~ ( , . v )O( - l )  <~~'~''~> 52 ( -  1)~<~k"~>+~<~'"r162 
X~=X~ 

We assume i,j~J. Since q({L/L, v})cF, q~.(x)= 1 and fi(~, v)= -36.  Writing a~,j 
= ( - 1 )  ~r, r =  1, 2, the condition we must verify is E~ ~Ez(mod2), or 

(**), ~(),~j,, 2) + (2~,, 2j . . . .  ) -~ 1 + o~k in S + oc,1 in T+ (2~,)q.~) + E3(mod 2), 

where 
( -1)~3=~ ~, ( -1 )  ~<~k'''~>+}<~',''r x) 

XT=X). 

Now, q)z+~e(x,x)=(-1)~", where E4=-}ISm(]+ 1 +]S~(~(k,l}+Sc~6')l(mod2); 
see the lines following (*). It follows that ( -  1) ~:~ = ( -  1) E"+~, where 

X~= X.~ 

using ,pa(x~,x)=O. So, (**) is equivalent to 

( * * * )  0=-x(2~j , ,2 )+( .~ ,2 j  . . . .  ) + l + o ~ k  in S + ~ l  in T 

+ ( ) ~ ,  2~, ~) + E,~ + E 5 (rood 2). 

We prove (***) by analyzing subcases. 

Subcase 1. {i,j}={k, l}. Without loss, k=i and l=j. Then (***) becomes 
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0-------�89 . . . . .  )+OO1 in (S~+6))+l+ook in S+ool  in T 

+ ( 2 ~ , 2 ~ , ~ ) + o o k  in S x + E ~ + E  s 

=-kl in S+�88 in S~+ool in C+ook in S+751 in T 

+ 1 + E 4 + E s ( m o d  2), 

after applying Lemma2.3(ii) to the first summand. We have �88 
+�88189 by Lemma2.2, and we have ocl in (o+ook in S+ocl  
in T - l + k l  in S + l + O + O = k l  in S (rood2), by Lemma 2.3(ii). So, the right 
side of (***) becomes �89 in S~+ 1 +E~+Es(mod  2). Since i=k  and j 
= l, Lemma 11.1 (i) applies to give 

E 5 -�89 + SJ  c~ CI--�89 ~ (_91 +�89 ~ CI + IS c~ Sx ~ C[(mod 2). 

Continuing, and substituting for E~ and Es, we see that the right side of (***) 
equals 

E6: =kl  in S~+lSxc~({kl} + (S c~ (9))[ + l S m S x ~  CI 

=_kl in S~+[S~c~({kl} + (S c~ 6')+ (S c~ ~)) l -k l  in S ~  {k/}[- 0(mod 2), 

as required. 

Subcase 2. ]{i,j}c~{k,l}l-- l. Suppose 
+�89 ~) --=�89 ~) (mod 2), and 
(***) becomes 

first that j = k  and i + l .  Then 1 " 

E 5 = �89 + S j  c~ (9) + {i, l} I(mod 2). Then 

0 - 1  =~(,)~k,, ,1,) + (2~,  2 . . . .  , ) +  ook in (S:,+ (9)+ 1 + ook in S+ool  in T 

+ ( 2 ~ ,  2c~,~) + ooi in S~+�89 (~[ + 1 +IS c~({k, l}+Sc~6')[ 

+ l l((S + Sx)c~(~) + {i, l}l=-ik in (S + {k, l} ) + �88 + (gl + ik in S:~ + oc, k in (9 

+ l + o o k  in S +  ~ l i n  T+�88189 +kl  in S x 

+lSxC~Sm(~l+ll(S+Sx)C~(Pl+l+il in (S+Sx)=-ool in S 

+ook in ( ~ + ~ l  i n T  

+ 4 + �89 c~ (gl + �89 c~ r + lSx n S n (~l + �89 lS n r 

+ �89 + lS c~Sxc~(_gl =-' kl in (9 + ]S:,c~S m(gl + lS,~mS c~6] =-O(mod 2). 

Since (***) is verified, we are done. 
Suppose i = k and j 4: l. Then 
1 ~(,tu, , 2) + (2~,  2 t . . . .  ) + 1 + ooi in S + ool in T+ (2~, 21,~) 

+ �89 c~ (~1 + 1 +lSxn({i l}  +Sc~(~l +�89 + SJ  c~ 69 + {j, l}1 

- i j  in (S+ {i,/})+ ooj in ( ( 9 + S J + ( 2 ~ ,  2 . . . . . .  ) 

+ 1 +  ooi in S+ool  in T+ooi  in Sx+<X~,R~.x>+�89 I 

+ 1 +il  in S,,+lSxmSC~(91 +�89 + s ~ ) n  (~1 + 1 +jl  in (S+Sx) 

- 1 + ooj in ( ~ + ~ l  in S+ool in r + 0  in sx+�88188 
+ �89 c~ (91+ lS~, c~ S c~ (~l + �89 c~ (9 + S x c~ (~l + l 

- o o j  in (9+~1 in (9+�88189189189 
+�89 in (9-=0(mod 2). 
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Since the roles of k and l are symmetric here, as k and l were introduced 
via the F-triple containing 2, the above two paragraphs suffice to verify (***) 
in Subcase 2. 

Subcase 3. { i , j }~{k , / }=0 .  Using Lemma ll.l(iii), we get Es-�89 
+ {ijkl} ](rood2). So, (***) becomes 

0 - �89  ,2>+(2~o ,2  . . . . . .  >+ :3c j in (S  x + 6 ' ) + l + ~ k i n S + ~ l i n  T 

+ (2~., Z~.x)+ ~ i  in Sx+�89 [ +1 + IS:,~({k, 1} +(S~C))[ 

+�89 in (S+{k,I})+�88 o~j in (S:,+ C') 

+ l + m k  in S + ~ l  in T+�88 S~ + m,i in S~+�89 
+1 + kl in Sx + lS=,caS c~Cl + l l(S + Sx)C~g'l + 2 + l(S + Sx)c~ {ijkl}l 

- i j m k  in S+~c,l in T+ ~ j  in 6 + i j k l  in Sx+�89189 

+ijk l  in S + i j k l  in S:,=_~l in (S+rl)+~cj in 6 + l j  in C =O(mod2). 

Thus (***) is valid here too, completing the arguments for this subcase and 
Case 29. 

B z Case 30. ( 2, Boda). This is equivalent to Case 28. 

9. (~2 , when i=j, x or Case 31. tl"B32, B3~2I. We have v(2i,~)v().j,),)=O or - ~ " 0  Ai.x) =Y, 
fi(2i, ~, 2~,~,) V(2) for some 2~A 2. 

, a ~ o- When the product is 0, one can get t(2~,~) l(2j, y) =0  as follows. Say x=y .  
a ~ a , ~r Then i+j, and if v(Z~,~) v(zj,~) 4:0, then t,(Zi,x) v(Zj, x)~eB~'+| ' -  and we 

may use associativity of the form to quote Cases 21 and 26: Say x#-y. 
Assuming that v(2i,~) ~ v(2j, y + 0 ,  we get 2cA 2 with xx=x~,. Choosing a =  _+1 
so that ~=2~,~+a2j,~, satisfies (r ~ . )=4+4+2a(2 i ,~ ,  2j,~,) <8, the facts that x~ 
=x  x and the type of ~ is 2, 3 or 4 imply that ~ has type 2. This contradicts 
t~'(21,x) V(2j, y)=0 since {2~,~, Zj,y, ~} is a triangle of type 222. 

When i=j  and x = y, we may use Cases 6 and 13. 
Now we turn to the third alternative. 
We have 2eA~ and 2i,x, 2~,yeA~ such that 2=;t~,~-Zj, y. Set C=(9~. We have 

ij in C - 0  (rood2); see Lemma2.3. By using the action of H, we may assume 
that q(2)eF. The fl(2~.x, 2j, y)= -36 ,  by Lemma 9.4. Let {2, #, v}eA(2, 3) satisfy/~ 
=2k, s, V=Zt, r and q({2, #, v} )cF ;  see Lemma 7.6. Then k+l  and 

Also, 

v(2i,=,) v(Xj, y) = - 36v(Z)~-,6(,u, v)(9) ~ ( _  l)~<.~,,,r v(~). 
x ~ = x ) ,  

a a _ _  I ~ . : i i n S  +~v,_~jinSy e T x  ( ~ ) x )  v(L,x) v(,~j,,,) - ( -  ) x ( (  ) , (e(~y)|  

= ( -  1)~'ii"sx+'~'ji"sy ~ [ -  36ij+ 9:i(Uo(Uij), u(~2))] q~(~x)v(~). 
x~ = x.a. 

Thus, we must show that 

~ , i i n S x +  ~ j i n S y  X 6(/~, v)(-- 1)1 <ak'"g> ~og(xu)=(- 1) q~:,(z. ). 7, 
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where 

= 29 [ -  3 ~,~ + ~(Uo(%), u(~))] 

{ ~ [ - 3 + 9 . Z ( 2 3 u , - ~ u ~ , r Z U ~ r ) ] = 2  E-3  3 ] = _ 1  
= r4 : i  r~@ 

2-rg~tu (g))l  = ( -  1) ~<x'~''~ , 9 L 3 2 '  i j ' / ' /  2 

if i=jr 

if i~j , i ,  j 66  / 

Subcase 1. i=jr Then S:,+Sy=(9 or (9+f2. We must show that 

0=ook in S+ool in T+�89 ()  

+ (# ,  ~) + ooi in Sx+oOi in S~+(~, 2~+Z~) + 1 

---ook in S+  ool in T-k�89 , (> 

+<#, ~>+ ~ i  in C + < ( , 2 o ~ >  + ( ( ,  2 ~ > +  1 , 

which, we argue, is congruent to f ( 0 : = � 8 9  
+(( ,2x)(mod2) .  To see this, look at the proof of Lemma2.3(ii). With those 
conventions in effect, we have either 

o r  

S + T=(9, k~S, leT, kl in Pos(Z):- l(mod2), 

so that ook in S+  ool in T+�89 2) 
+ooi in (9+ 1~o�9 in ( S + T + C ) + k  in S+l  in T 

+ i  in (9+�89 , 2 ) +  1--=0+ 1 + 1 + 0 + 1 +  1 
-- 0(rood 2); 

S+  T=(9+O, kr leT, kl in Pos(2)-0(mod 2), 
so that ook in S+ool in T+�89 2 ) +  ooi in (9+1 
- o o  in (S+ T+(9)+k in S + / i n  T + i i n  1 (9 +5<2kr, 2) + 1 
- 1 + 0 + 0 + 0 + 0 + l - 0 ( m o d 2 ) ,  

as required. Therefore, it sufficies to prove that f ( 0 - 0 ( m o d 2 ) .  Since 
q(2)eF, f (2) -  0(mod 2). So, 5" = {r ~ = (9 and f ( 0  --- 0(mod 2)} is nonempty. 
Suppose that (eSg and that (' is obtained from ~ by changing the signs of the 
coordinates at the two indices r, se(9. Then r162  or 2~s,(mod 2). Suppose 

~(2kr , ~-- ~') --= rs in {kl} (mod 2), <14 ( -  ~') - 1 + rs in S - ~' = 2,,s(mod 2). Then 1 
(mod 2), <2~, ( -  r  l(mod 2) and (2x, r  ~'>-=rs in Sx(mod 2). So, f ( 0  
- f (r  - rs in ({k, l} + S + Sx) =- rs in 0 - 0(mod 2); see Lemma 2.3. Finally, sup- 

1 2 pose r - (' = 2rs,(mod 2). Then ~( kt', r r -- rs in {k, l} (mod 2), (#, ~ -  ~') = rs 
in S(mod2), < 2 ~ o , ( - ( ' > - 0 ( m o d 2  ) and ( 2 x , ~ - ( ' > - r s  in Sx(mod2), and we 
get f(( ')-=0(mod2), as above. Since every (eA 2 with (9~=(9 may be obtained 
from 2 by a sequence of coordinate changes, two at a time, we get 5/ 
= {r thus completing the analysis of this subcase. 

Subcase 2. i# j ,  i, je(9. We must show that 0 - o o k  in S+ool in T+�89 
+ (/4 ~) + oo i in Sx + aoj in Sr + (2~o + 2x, ~) + �89 (2u,, ~) (mod 2). Since i 4=j, Lem- 
ma 7.7 tells us that we may assume that q({2, 2~,~, 2j, y})cF. Thus, we may as 
well take #--2~,~, v=2j, y so that i=k,  j=l ,  S~=S and Sv=T. Thus, the right 
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side of our congruence becomes f (0 . -=(~t ,  ~ )+(2o0+2x,  ~)(mod2). Clearly, 
f ( 2 ) - 0 ( m o d 2 )  since q(2)sf .  Note that f ( ~ ) - ( 2 1 , ~ + 2 ~ + 2 ~ ,  ~)(mod 2). So, if ~' 
is obtained from ( by changing the signs of coordinates at r, s~(9, r + s ,  we get 
f ( ( ) - f ( ~ ' ) = ( 2 i + 2 ~ ,  ~ - ( ' ) + ( 2 S + 2 x ,  ~ - ( ' ) - 0 + r s  in (S+Sx)~0(mod2) ,  as 
required. 

The verification of this case is now complete. 

Case 32. (B 3,B . . . .  ). The associativity of  the form makes this a consequence of 
Case 33, which we verify next. 

Case 33. (B32, Bodd). We have 

v(2i,x) e(z y) |  j 

= Y [ -  3 ajk + 9(Uo%0, u(2~x))] ~0~,,~(~ y) e(:,y) | 
keg? 

~L'a~: = 2 [ -  36jk + 9(Uo(Ujk)' U(22~))] qOX,,~(zy)(-- 1) <*='x . . . .  > e(xy)|  
kef2  

Also, 

a2 : = v(2i,~)" (e(z y) |  j) ~ = ( - 1)~176 x) | ( - 1)~176 y) 

= ( _ 1)oo,,s~ + o0jinS,. ~ [ __ 3a~k + 9(Uo(U~k) ' U(22, y))] q)a,, ,(rX) e(xy) |  k. 
kef2 

Using H-action, we may arrange for x =  1. We shall make this specializa- 
tion within each of the subcases which arise. 

For ref2, let a,,, be the coefficient of e(xy) |  in a~, s=  1, 2. For r#:i,j, 

_ _ 9 / . /  al,~ --52( j~, u(A2x)) Ox,,~('cY) (-- 1) <x~'a .. . .  > 
- - 9  /1 . , a 2 , r  - -  32(  Jr, U(22,  v)) (/02, y(77X) ( - -  1) ~ 1 7 6 1 7 6 1 7 6  

For these to be equal, we need 

j r  in S~ + (2~,  2~,~y) + (2i,~, 2~)  + (hi, x, 2y) 

=-ir i n  Sy+(2j.y,2o0)-J-(2j,) , ,2x)+Ooi in Sx+OO j in Sy(mod 2), 
o r  

c~ijr in Sxy + (400, 2~,~,) + ( 2 . ,  2~.~) + (2~., 2j,~,) + (2~,~, 2y) + (2j, y, 2,~) 

-= 0(mod 2), 
o r  

ij in Sxy + (2~,  2 . . . .  y) + (2~,  2~, ~) + (2o0, 2j, y) + (2~,~, 2y) + (2j, y, 2~) --- 0(rood 2). 

Using H-action, we may assume that  x = 1 .  The condition then reads 

O - i j  in Sy+(2eo,2eo,y)+(2c~,,J,j,y)+(2i,2y) 
=-ij in Sy+(2oo,2~,y)  +(2oo,2o,, ,y)+ooj in Sy +(2oo,2y)+ooi  in Sy 

= (2~,  2e<,,y ) + (2oo , 2o0,y) + (2o0, 2y)(mod 2), 

which is true. 
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Suppose r = i. Then 

a , , i =  [ - 3 ~ j ,  +~(Uo%,), u(2~x))] r 1) ~ ' ~  .... > 
oc~iin Sx + c~,j in Sy a2,, = [ -  3 + ~(Uo(U.), .(2J, y))] ~p~,.(~) ( -  1) 

First, let us treat the special case i=j. Then 

[ - 3 + 92(Uo(U,i ), u(2 2 ~))] = - 3 + 92 - 2~(23 u~-  Z Ukk, U(2# ~)) 
k#-i 

= - 3  + ~ .  214(23.8.4)=?. 

So al.i=a2.i if and only if 

o -  <2,,x, L~> + <2~,~, 2,> + <2~, 2~,~,,> + <2,,,,, 2~> 

+(2i,y , 2x) + ~ i  in Sx+ ooi in Sy(mod 2). 

Using H-action, we may assume that x = 1. The condition then reads 

= 0 + ( 2 ~ ,  2y) + aoi in S~.+ ooi in Sy(mod 2), 

which is valid. Now let us treat the special case i+j. Then 

9 U U(22x)) 9 U 1 , i j i nS~  , __L~(__l)ijinS~ ~ (  ij, ~'~-32( ij ,(--6)(-- ~ Uij)--= 
and 

- 3 + h(Uo(U.), ~(2~.,,)) = - 3 + ~ .  1 (23  ~ . -  Z u~, 9 ujj + y~ ~ )  
k#i k~ j  

= - 3 + 9 . 2 ~ . 4 . ( 2 3 - 9 - 2 2 ) = - 3 - 8 3  2v - -  8 �9 

So, ali=azi if and only if 

0 = / j  in S x + <2i,~, 2~,) + (21,~, 2,)  + <2~, 2i,~y> + (2j,~,, 2~,> + (2~,y, 2~) 
+ ~ i  in Sx+oO j in Sy(mod 2). 

Using H-action, we may assume that x = 1. The condition then reads 

0 ~ <21, 2~> + (,ii, 2~,) + <2~,, 2~,~,> + (2j,~,, 2~ )  + (21,y, 0> + c~j in Sy 

~ 0 + ( 2 ~ ,  2 , ) +  c~i in Sy+(2oo, 2~,y)+ ooi in Sy 

+(2~,y,  2~) + c~j in S y + 0 +  c~j in Sy(mod2), 

which is valid. 
Suppose that r = j  4= i. Then 

al, j = [ -  3 + 9(Uo(Ujj), u(22~)] qoa,,~(zy)(- 1) <~'~ .... > 

a z j =  9(ulj ,  u(2~,,)) (p)~,,(vx) ( -  1) ~ii"sx+ ~ii.s,. 

By calculating as above, we get [ -3+9(Uo(Ui i ) ,u (22~)]=-2~  and 9(uij ,  
u(2y, y))-- - ~ - ( - l )  iJi"s,. Thus amj--az, j if and only if 

0 -  (2~,~, 2~)  + (2~,~, 2,.) + (200, 21,xy ) + ij in S~,+ ( 2 j ,  y, 2oo ) 

+ (2j,,,, 2~)+ c~i in S~+ ooj in Sy(mod 2). 



The Friendly Giant 81 

Once we note that (2~,2j ,  xy ) + i j i n S y = ( 2 ~ , 2 i , ~ , ) + i j  in Sxy+ij in 
Sy=-()~, 2~, ~y)+ij in S~(mod 2), the congruence becomes the one we verified 
in the last paragraph. 

The verification of this case is now complete. 

Case 34. (B ... . .  B . . . .  ). This is equivalent to earlier cases, by associativity of the 
form. 

Case 35. (B ...... Boaa). This is equivalent to earlier cases. 

Case 36. (Boa a, Bodd). This is equivalent to earlier cases. 

The proof  of Proposition 11.2 is now finished. 

w 12. The Identification of G =(C, a) 

From Proposition 11.2, we know that G(B)c~ {g~GO(B)ldg=d} is strictly larger 
than C. In fact, it contains C as a nonnormal subgroup, since cr can not 
normalize C(z~=zZleQ-(z ) ;  see Chap. 10). We define G:=(C,o) ,  a sub- 
group of G(B). In this section, we show that G is a finite simple group of order 
24632~ 133" 17 .19 .23 .29 .31 .41 .47 .59 .71 .  

Since it is not clear that G is finite, we temporarily transfer our attention to 
finite homomorphic  images of G by reduction modulo p >  5 (explained below). 
Techniques from the classification theory of finite simple groups are used to 
identify the centralizer of an involution in the image of G modulo p. Other 
results from the classification theory are then quoted to identify the images of 
G modulo the various primes, and they all turn out to be simple groups of the 
same order. This implies the required statements about G. 

It is possible that finiteness and simplicity of G and a calculation of the 
order of G may be demonstrated without appealing to the classification theory. 
For instance, if a G-stable Z-lattice in B is exhibited, positive definiteness of 
the form implies that G must be finite. Then, possibly, some analysis of the 
action of G on sets of vectors could be made to get simplicity and the order. 
Such an argument, however, may well be difficult. The description of G does 
not really require classification theorems (although we made reference to a few 
papers from the classification effort to verify a few points more quickly), and it 
would be desirable to maintain this independence throughout our analysis of 
G. 

Now we proceed to a description of the "reduction modulo p" process and 
the determination of the centralizer of an involution in our quotient groups. 

The definitions of C and cr with respect to our basis of B show that, in 
matrix form, the linear transformations in G=(C, a) may be written over the 
ring Z[�89 see Table l0.2. Furthermore, Table6.1 shows that all structure 
constants for B lie in the ring 77[2]. Thus, we get an algebra B~[~,] over the 
ring 77[~] having our Q-basis of B as a free 77[~]-basis. Furthermore, G acts on 
BZ[l ]. By reduction modulo p>5 ,  p prime, we get algebras B(p):=B~[~,]/pB~[~? 
over lFp and natural homomorphisms G--, G(B(p))< G O(B(p)) (the bilinear form 
on B gives us some bilinear form on B(p); it is nonzero since (e(x), e(y))=6xy 
m d  (v()0), v(#))=6,L~, for instance; we do not assert anything about nonde- 
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generacy and so GO(B(p)) means the subgroup of GL(B(p)) preserving a possi- 
bly degenerate form). We shall use the suffix (p) to indicate images in B(p) or in 
G(B(p)). Generalizing slightly, we define S(p) for S~_B by (Sc~Bz[~6])(p), and 
thereby define g(p), V(p), W(p). Note that 7/[�89 A and @7/[1]Xl are the same 

subset of @ Q x  i. Since d=( (~ ,N0 ,g0 )= ( (~ , /~ ,g0 )  (see Sect. 4, 7 and 10 and 

use the fact that N24 is maximal in .0 [11]), it follows that Tz[~] : =@7/ [ �89  e(x) 
ie~ 

is stable under (~' this is easy to check for elements of (~/s (see Sect. 8), and for 
go see Lemma9.2  ( iv ) ( take  g=s0  and use e(x)~~ . . . .  e(1)soxS~ 

yeF 
+�89 e(y))xS~ So, we may define A(p):=A/pA, T(p): = TzE~]/pTz[~l and we 
may identify W(p) with A(p)@r(p). 

Fp 

Fix a prime p >  5. Set C 1 = CG(p)(z(p)), N 1 =NG(p)(Q(p)). 

L e m m a  12.1. C(p)= N 1. 

Proof In this proof, we use bars to indicate the application of IFp@- to a finite 
dimensional lFp- module for some group. F~ 

Let N1 be a covering group of N1, Q1: = 02 (Nt). Use ^ to indicate preimages 
under N1 - '  N1. 24 

As a module for Q~-Q(p), W ( p ) - @  T(p). Define A:=End~(]~V(p)). Think 
1 

of N~ as a subgroup of the group of units of A. Let A ~ be the subalgebra of A 
spanned over IFp by Q(p) and let A 2 be the commuting algebra of A 1 in A. We 
have A1, A 2 isomorphic to full matrix algebras of degrees U 2, 24, respec- 
tively, over IFp, and A, A~ and A 2 have a common unit element. The double 
centralizer theorem ([42], p. 25) asserts that A~ is the commuting algebra of A 2 
in A. 

Since Q(p)<N 1, A 1 and A 2 are stable under conjugation by N 1. Therefore, 
we have a-projective representations N~---,PGL(di,IFp), d~ =212, d~=24, and a 
correspond!ng^homomorphism p~:AT~ -* G L(24, lFp), i = 1, 2 (see [39], p. 216). Let 
M~ be the IFpN~-module associated to p~, i =  1, 2. 

Define N2:=C~(M2)~N 1, N~':=Z(/V I modN2) and N3:=Cs,(Q(p) ). Then 
N2, N*, N 3 and Q1 are normal subgroups of N 1. We apply Lemmas 2.19 and 
2.20 several times. For  the action of N3Q1<.gl on M e, we get N3Q 1 <N*. For 

the action of N * ~ N  1 on Q(p)/Q(p)', we get N*<N3Q(J"p)<=N3Q~, whence N* 

=~3 Q~ =N3 Q(p). 
Since (N3Q~) ~ is scalar, the image of N3Q 1 in A lies in A 1. Therefore, 

elements of N 3 operate as scalars on W(p). Let geN 3 act as the scalar c on W(p). 
Since g preserves the form and (e(x)| e(x)| 1, c2=1,  whence c =  +_1 

and g is trivial on U(p)+V(p) because W(p)2=Uo(p)+V(p) and G fixes the 

vector d. It follows that g acts as 1 or z(p) does on B(p). Thus, N2* = Q(p)N~, 
where N~ is the kernel of the action on B(p). Since N~ acts faithfully on B(p), 
N 4 <2 Z(/~l). So, N 3 ~-- Z(Q('Ap)) N4. 

A consequence of this paragraph is that Q(p)=O2(N 0 and N 1 is 2-con- 
strained. 
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It remains to identify N1/Q(p), which has a 24-dimensional projective repre- 
sentation over [Fp and is embedded in Out(Q(p))~O+(24,2). This identifi- 
cation follows at once from Lemma 2.21, and we are done. 

Lemma 12.2. Q is the unique subgroup in SeSyl2(C ) which contains (z)  as its 
center and is isomorphic to Q. Consequently, Q(p) is weakly closed in S(p) with 
respect to C 1 and S(p) ~Syl2(C 1)-~ Syl2(G(P)). 

Proof The second statement follows from the first and Lemma 12.1. So, let us 
verify the first statement. Note that S~S(p) since p is odd. 

Suppose that ( z )  =Q'I ,  Q1 ~<~S, QI ~Q, Qt =#Q. 
For teS, m(Ce/<z>(t))< 16 (see Lemma 2.30). Define 2"=IQ~Q1/(z)I and 2 b 

=IQ1/QI~QI. We have a < 1 6  and l_<b-<l l ,  since m(S/Q)=ll; see Lem- 
ma 2.15. Also a + b = 2 4 ,  so that b > 8  and a>13 .  Since a>�89 there is an 
extraspecial group Q*<Qc~Q1, IQ*I=22c+1, c > l .  We have 2c<a. Choose Q* 
to maximize c. Set R*=(Q, Q1)=QQ I. Then IR*]=249 ~=2 ~ Also, 
Q*<~R because Qc~Q~/(z) is central in R*/(z) as R*=Q(21 and 
Q/(z)-~Q1/(z ) are abelian. Since Q~Q1/(z )  is central in R*/(z), R* 
=CR,(Q*)Q*. Also, ICR,(Q,)I=2,+2b 2c+1 and ICo(Q*)l=21+24-zc 
= 2  l+o+b-zC so that ICn,(Q*)/Ce(Q*)l=2~ s. Since Q* is extraspecial, there 
is a vector ~eA 3 with q(~)eQ*. The shape of CR,(Q*) indicates that the 
stabilizer in -1 of (~, - 4 )  contains an elementary abelian group of order 2 b, 
b>8 .  However, the 2-rank of .3 is at most 6, by Lemma 2.22, a contradiction. 
This completes the proof. 

Lemma 12.3. Q(p) is strongly closed in S(p) with respect to C 1. 

Proof We let bars denote images in C1 = C1/(z(P)). Lemma 12.2 shows that 
Q(p) is weakly closed in S(p). It suffices to prove that Q(p) is strongly closed in 

S(p), and to do so, we assume otherwise and use Lemma 2.14 to get a 
contradiction. In that notation, we take C1 for G, S(p) for T, Q(p) for A = W 
and we have r <  11 (see Lemma 2.15). 

We establish some notation relevant to the use of Lemma 2.14. Let ~o: 
C(p)---~. 1 and ~: N24/{ + 1} ~ (Nzr ~ i })/0 2(N24/{ + 1 }) ~ M24 be the natural 
maps. We may replace S with a conjugate to assume that S(p)~'<N2~/{+_I}. 
Let 5P={B<S(p)IB is conjugate in C~ to a subgroup of Q(p), B~Q(p)}, r 
=max {m(B~~ 5~,• Y*={B65PIm(B)+r> 24}. Then 
'~  Jm~x and 5 P* are nonempty, although we do not know whether 5Pm,~n.9 ~ 
is empty or not. 

For B<S(p), let c(B):=dimCa-(B(B)=dimCA/zA(B ). Then m(B)<c(B) 
+ m(B~~ Also, 

(*) 24<r+c(B)+m(B ~) for B~5 P*. 

We claim that 

(**) if Bc5~, (Be) * consists of 2-central 

involutions of C~ and 8-<r-< 10. 
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The first part and r > 8  follow from r <  11, Corollary 2.30 and Lemma 2.14(ii.2). 
Suppose that r =  11. Take B~Yma x. By Lemma 2.15, B~~ +1}), which 
contains non-2-central involutions, a contradiction. 

Let V be the subspace of cg corresponding to the subgroup Bo: 
=B~c~O2(N24/{ +_1}) of 02(N24/{ _+1]), m(V)=m(Bo)+ 1. In an obvious way, an 
element of B o corresponds to a pair {S, S + (2} of ~-sets in V. Lemma 2.25 and 
(**) imply that such an S must be 0, ~2, an octad or a 16-set and m(Bo)<5. 

We argue that we may assume Bo+ 1. Any involution z~(B~) ~ is 2-central 
in CT---.1 and B y<-_ Cc~,(z)~-2~+ +s .D4(2), which has a subgroup -+')1+8" 2 6 " As , of 
odd index, conjugate to a subgroup of N24/{_+1 }. Sylow's theorem gives the 
result. So, we do assume B o 4= 1. 

Now take B6~ma x. We shall argue that m(B)=r=8. 
Suppose that B o is of octad type (in the sense of Definition 2.27), based on 

the octad (9 o. Let H o be the stabilizer of (90 in (N24/{ _ 1 } ) 0 ~ M 2 4 ,  H o ~ 2 4 . A s ,  
and let HI<H o be the centralizer of B o. We have m2(HO>=r-m(Bo) since 
B~~ whence, by Corollary 2.24, 6~m2(H1)>=8-m(Bo) and m(Bo)=>2. 
Thus, B o has an element associated to an octad (9 disjoint from Co, and so H 1 
lies in the stabilizer H 2 of each member  of the trio {C,(9o,(9+(9o+~'2}, 
H2~23.23.L3(2) .  Note that H 1 =1  if m(Bo)=5 , so that 2<m(Bo)<4 .  If m(Bo) 
=2,  Corollary 2.24 gives m(B~~ and r=m(B)< 8, as desired. So, we may 
assume m(Bo)>=3. Therefore, B o contains elements associated to octads Ct, (92 
disjoint from Co, so that (91c~02=t=~. Thus, H a lies in the stabilizer of the 
associated sextet and fixes the tetrads (91-(92, (92-Ca, (91~C2 and (90 
+(C1~CJ+(2 i.e. H a lies in a subgroup H 3 ~ 2 6 . 3 . 2  (see Lemma 2.31). If 
m(B~/Bo)>=5, B~~ a contradiction to (**) and Lemmas 2.29 and 
2.31 (iii). Thus, m(B~~ Since m(B~~ m(Bo)>4, so that m(Bo)=4 
and r = 8. 

Next suppose that our BeSPm~x has B o of sextet type, (thus not of octad 
type). If m(Bo)<2 , r = 8  by Corollary 2.24. So, m(Bo)->3, without loss. Let ~ be 
the relevant sextet, with tetrads T1, ..., T 6 (~ is unique since m(Bo)>=3 ). Let ~ 
be the set of octads associated to elements of B o and ~ the set of tetrads 
involved in members of sO. We have I~31 _>4 and since B o is not of octad type, 
1~)1>5 and every member  of ~ is expressible as an intersection of two mem- 
bers of ~r Therefore, the stabilizer in (N24/{ _+1}) 0 of B 0 is simply the setwise 
stabilizer of all of the members of B o and it has shape 26.3 since INI=>5 (see 
Lemma 2.31). So, m(Bo)=4 and m(BO/Bo)<4 by Lemma 2.29 and 2.31 (iii) and 
(**). Therefore, r =  8 in this case as well. 

We have r=8 .  We now take B6Sg* and analyze CAnA(B ) carefully. Unfor- 
tunately, we don't know that Be,~,a,,  so that the preceeding paragraphs may 
not apply to B. We do have c(B)+m(Bq')>_m(B)>=16. Without loss, B o + l  , as 
before. We complete the search for a contradiction by analyzing cases. Define 
B, = {b6B l be~ EO2(N24)/{ + 1}}, m 1 =m(Sl/So) , m 2 =m(S/S j.  

Case I. m(BO)>3. Take Q(p)<B<B such that /~~ o has order 2 and /~ 
covers B/B o (this can be done since B is elementary abelian). Then / ~ e ~  By 
Lemmas 2.28 and 2.32, c(B)< 12, so that m(BO)>4. Note that m(Bo)=5 implies 
B~~ c(B)=8 so that m(B)< 13 and (,) fails for B. Therefore, m(Bo)<4. 
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Suppose m(Bo)>2. We claim that m 1 <3. Suppose m 1 =4. Since B 1 operates 
regularly on f2+(9 o (via ~), the only %"-sets fixed modulo (f2) by B 1 are (9 o 
and f2+(9 o. Therefore, [C~(B1)I <2, contradicting m(B0)>2. 

Suppose m(Bo)> 3. By Lemma 2.28, c(B)< 10, implying m(B~~ 6 so that ml 
+mz>6-m(Bo)>6-4=2. From Lemma 2.32, we get the contribution of A(4) 
+2A/2A to c(/~) and since c(B)>8 and d < l  in the notation of 2.28, we get 
c(B)=8, m I =0, m2=2 , d = l  and c(/~)=8. Therefore, m(BO)>8, a contradiction 
to ml + m 2 = 2  and m(B0)<4. 

We have m(Bo) < 2. Suppose m(Bo) = 2. Then m~ + m 2 > 3 -  2 = 1, whence 
c(/~)< 12 by Lemma 2.32 and so m~ +m2>2 .  Again, 2.32 gives c(/~)< 11 and m 1 
+m2>3.  So, c(/~)_-<10 or rex=0 and m2=3 and c(/3)=11. Note that m 2 > l  in 
any case because c(/J)<10 implies that m(Br whence m t + m 2 > 4  and 
m 2 > 1 because m 1 <3 when m(Bo)>2. Since m 2 >1 and m 1 +m 2 ~ 3, the contri- 
bution c1(/~ ) of A(4)+2A/2A to c(/~) is at most 7, whence d = 3  (in the notation 
of 2.28)gives c(B)<10. Then m~+m2>4  and c1(/3)<6, so that c(B)<6+d=9 
and ml q-m2>5. Again, e1(/~)<5 , so that c(B)<5+d=8 and c(B)=8, m(BO)=8 
and m l + m 2 = 6 .  If m2=4, this gives c1(/3)<2 and c(B)<2+d=5, a con- 
tradiction. So, l < m  2 < 3, m l > 3 and we get c(/~)< 10-m~ < 7, a contradiction. 

We have m(B0)=l  and /3=B. Since ml+m2_>2, c (B)< l l ,  implying 
m(Be)>5, m l + m 2 > 4  and c(B)<9 or c(B)=10, m l = 0  , m2=4 (see 2.28 and 
2.32). If c(B)<9, another round with (*) and Lemma 2.32 gives m l + m 2 > 6  and 
c(B)<8 and m(BO)>8, a contradiction to m(B0)=l  and Corollary 2.24. So, 
c(B)= 10, m 1 =0, m2=4. Then (,) fails. 

Case 2. m(BO)=2. By (*), we must have c(B)>14. If Bo=B ~~ Lemma 2.28 
implies that c(B)= 13, a contradiction. So, IBo[=2. Then Lemma 2.32 applies 
to give a contradiction. 

Case 3. m(BO)=l. Then B~ c(B)=16 and, from (*), m(B)=16 or 17. So, B 

=~R, t), where R=Bc~Q(p) and t is an involution. We have JR1=2 ~s or 216. 

Set KI=No~(B), K=K~B. Then IQ(p):KII<2 and ]KI :RI=2s ;  see (**) and 

Corollary 2.30. By 2.14(i), there is g~C1 such that Bg<Q(p) and Kg<S(p). Set 

2a=lK~:K]c~Q(p)l, L=K~c~Q(p). Since [[K~,t]]=27 or 2 s and ]KI:Lg-I[ 

=]K]  :LI=2  ~, ][L g-', t]]>27-~ Since (L  g-', t)g<Q(p), we get 2v-~< 1 or a>7 .  

In particular, K~$Q(p). So K]E~9" and since m(K])+r>23+8>24, K]e,9 ~* 
Therefore, one of the previous cases applies to K~ (as m((K])~)=a>7) and we 
get our contradiction. 

Lemma 12.4. In G(p), C(p) is the centralizer of z(p),for all primes p> 5. 

Proof By Lemma 12.3 and [26] and the irreducible action of N~ on the 
commutator  quotient group of Q(p)~-Q, Q(p) is a Sylow 2-group of its normal 
closure N v in C~, and Np is solvable of 2-length one. If Q(p)<Np, we are done 
by Lemma 12.1; so, let us assume that Q(p)~oN. Then O2(Nv)=(z (p ) ) .  For 
some odd prime r+p, [OfiNv), Q(p)] =t = 1. Let R be a subgroup of O,(Nv) which 
is minimal with respect to being normalized by, but not centralized by, C(p). 
Then R is a special r-group (modify the argument of [27], p. 181). If 
Ca(Q(p))+ 1, we contradict Lemma 12.1. So, CR(Q(p))= 1 and R=[R, Q(p)] is 
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elementary abelian. Thus, on R, Q(p) acts by a collection of linear characters, 
which must form at least one nontrivial orbit under the action of C(p). The 
orbits for C(p) on the nonprincipal linear characters of Q(p) have lengths 
98,280, 8,292,375 and 8,386,560 (see the proof of Lemma 5.1(iv)), whence 
re(R)>98,280. The smallest degree of a representation for R. C(p) over lFp 

nontrivial on R is at least 2.98,280 > 98,304 = dim W(p), a contradiction. 
The proof is complete. 

Lemma 12.5. For all primes p>=5, G(p) is a simple group of order 
24632o 597611213317.19.23.29.31.41.47.59.71. 

Proof Lemmas 12.4, 2.16 and the fact that a causes z and z I to fuse (this shows 
that conclusion (ii) of Lemma 2.16 does not hold in our case). 

Proposition 12.6. The group G=(  C, a) is simple of order 
24632o597611213317.19.23.29.31.41.47.59.71. 

Proof Lemmas 12.5 and 2.33. 

13. Consequences 

From our construction of G, we may deduce existence of other sporadic simple 
groups and the existence of certain nonsplit group extensions. 

In this section our dependency on the classification of finite simple groups 
increases. We also require work on F 1 and its subgroups done by other authors 
(some of this material is not yet published). 

Notation 13.1. Let G:=(C,a),  as in Sect. 12. We pick out certain elements 
aeC of odd order. It suffices to give the class of the element a~s.0 in the 
notation of [12]. We do so with a subscript: a3A, asA , etc. 

91+8A9" Lemma 13.2. (i) Cc(a3c)'~7/3 • -+ 
(ii) Cc(a3o ) ~-(7/3 x 21+ + 12) 3 U4(3 ) 2. 

(i i i) C c (a s c) g 7l s x (2 ~++ 8) (A s%7/2). 
(iv) Cc(aTB)~7/7 x (21+ +6) GL(3, 2). 

1 + 2 2  (v) Cc(q(2))~(7l 2 x 2+ )(. 2), for 2~A 2. 

Proof For the first four assertions, see [-11, 12]. The last statement follows 
from [,11], p. 240, or [-36]. 

Remark. It would take additional work to determine the precise isomorphism 
types of the groups in 13.2. From [,12], these groups are 2-constrained. 

Lemma 13.3. The groups CG(a)/(a ) of Lemma 13.2 are all simple (for a=a3c, 
etc.). Their orders are as follows: 

(i) 21531o537213.19.31 (Thompson's group F3) , 
(ii) 2213165273 11 .13 .17 .23 .29  (Fischer's group F;4), 

(iii) 2f436567.11.19 (the Harada-Norton group Fs), 
(iv) 2103352. 73 . 17 (Held's group, Held), 
(v) 241313567211.13.17.19.23.31.47 (Fischer's {3, 4}-transposition group, 

F2). 



The Friendly Giant 87 

Proof Since we have not determined the precise isomorphism types of the 
groups in 13.2, we get the conclusions most quickly by referring to the solution 
of the so-called " 0  2 extraspecial problem" from the classification theory. For a 
discussion of this problem, we refer to survey articles [62], p. 111, and [73] 
and the references contained therein. 

In all these cases we must eliminate the trivial possibility CG(a ) 
=O(CG(a)) Cc(a ). This can be done if we can take a conjugate of a in C which 
lies in the group H of Sect. 10 (because H<Cc(a ) and z~=zzl). This is clear 
for (ii), (iii), (iv) and (v). For  (i) it can not be done. Instead, we replace a by 
~r'~O2(X)a such that 1Cx(~')13=33 (such or' exist because a Sylow 3-group of X 
has order 33 and must centralize an element of the coset 02(X)a ). Taking a 
=a3ceCx(a' ), we get a'eCa(a)+O(CG(a)) Cc(a), as required. 

Finally, we must show that C(aT~)/(aTB ) is not isomorphic to M24 or 
GL(5, 2) (these groups have some involutions whose centralizers are isomorphic 
to one in Held [41]). Take b~C, b conjugate to a3o, such that ab=a 2, a=aTB, 
[Cc(a)', b] = 1. If C(a)/(a)_~M24 or GL(5, 2), the structure of Aut(C(a)/(a)) 
implies that C(a)/(a) is embedded in CG(b)~-3.F'24, a perfect group. Since 
31e~(GL(5, 2))-~z(3 .F;4), C(a)/(a)~GL(5, 2). Suppose CG(a)/(a)~--M24. Since 
a is a rational element of C [12] and since Ou t (M2~)= l  [4], there is an 
involution t~Ca(L(CG(a)))c~Ca(b ) such that at=a -1. It follows that CG(t)/(t ) 
contains a subgroup isomorphic to 2g 3 x M24 , a contradiction to [12, 22] and 
Lemma 2.41. 

Remark. It seems reasonable that, with our representation of G on B and 
knowledge of IGI, a reasonably direct calculation of these orders would be 
possible. 

By studying local subgroups of G, one can find sporadic simple groups 
other than the ones listed above. However, we cannot claim new existence 
proofs of them since they are involved in �9 1 or F;4 in natural ways, and their 
description involves only the groups �9 1 or F;4 rather than F 1. See Table 14.1 
for a description of involvement of sporadic groups in one another. 

The embedding of Held into F;4 was first proved by Simon Norton in 1975 
[53] by studying linear groups of dimension 783 over ~(e2~i/3). Such an 
embedding was suspected to exist by Fischer about 1970. The existence of F a 
implies this embedding, because we may choose a3D to  normalize (aT~) and to 
satisfy Cc((aTB, a3o))=Cc(aTB)' [12], [41]. The structure of Aut(Held) [38] 
implies that Ca(avB)' < C~(a3o ). 

We can also obtain embeddings of F 3 and F s . 2 ~ A u t F  5 [40] into 2F 2 
=f2~-CG(q(2)), 2~A2, by choosing appropriate involutions in C which invert 
a3c and asc, respectively. To carry out these arguments, we require the 
discussion of fusion of involutions of C in G found in [36], mainly the fact 
that G has two classes of involutions; or see [22]. 

Say u is a 2-element in C inverting a3c. Since Out(F3)= 1 [69], we may 
assume that [ L ( C ( a 3 c ) )  , u] = 1. So  [f31 divides [C(u)l. Since 191[F31 but 19XI CI, 
the involution of (u )  lies in 2A. If lu[>4, 2g 3 x F  3 is embedded in F2, against 
Lemma 2.41. So ]hi =2, and we have our embedding. 
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A similar argument does the job for asc, taking u~C so that (a5c)U=(a5c) 2 
and using Out (Fs) ~ 7/2. 

A bit more care in selecting u yields an embedding of 2;'10 into F4(2 ) 
[40, 53]. 

Remark. The next result shows that some interesting examples of nonsplit 
group extensions may be found among the subgroups of F 1. Of particular 
significance is 13.4(i) because, among all the known finite simple groups, only 
F 2 has not had its multiplier settled. In [36], an upper bound of 7/2 was 
obtained for the multiplier. It was well known that, if F 1 exists, the multiplier 
of F 2 must be 7/2. However, an independent construction of a nonsplit exten- 
sion 1 ~7/2~/O2--*F2~l has not been done, and seems to be very difficult. See 
[35] for a recent commentary on the multiplier situation. 

Fischer was the first to notice the nonsplit sequences of 13.4(ii). Kusefoglu 
[46, 47] has shown that H2(0(7, 3),IF37)=H2(f2(7, 3), IF]) ~IF3 and, moreover, 
has settled all H2(O~(n, 3), IF~) and H2(f2~(n, 3), IF~) except for (n, e)=(8, - ) .  The 
only solid information we have about the degree 2 cohomology group for (n, e,) 
=(8, - )  is that it is nonzero (and 13.4(ii) is the only proof we know of). 

The multiplier of F;4 was settled originally by Griess [33] and Norton 
[54], and that of 2E6(2 ) by Griess [32]. 

Proposition 13.4. (i) The Schur multiplier of F 2 has order 2, and CG(q(2)) , 2cA2, 
is a covering group of F 2. 

(ii) There is a subgroup E~-7/83 of G such that E= Ca(E ), Na(E)/E~-O-(8, 3) 
and I~E~NG(E)--*O-(8,3)--*I is nonsplit. Also, there is EI <E , [Ea]=3 so 
that 1 ~E /E  1 --*NG(E)C~NG(E1) --* 0(7, 3) --* 1 is nonsplit. 

(iii) The Schur multiplier of F24 has order 3. 
(iv) The Schur multiplier of 2E6(2 ) is 7/2 X 7l 2 X 7/3" 

Proof (i) In [36], it is shown that the Schur multiplier has order at most 2. 
Also, in [36] it is shown that the action of .2 on A/2A is uniserial with 
Loewey factors of dimensions 1, 22, 1, in that order. Consequently, 
1 --* (q(2)) -* Ca(q()O)--*F 2 ~ 1 is a nonsplit extension, and (i) follows. 

(ii) Take A<=C such that ]A]=3, CQ(A)=(z) and Nc(A)~-2.3.Suz.2 
[22, 36]. From [36], Nc(A)'=Cc(A)=6.Suz is perfect. By [19, 60], NG(A) 
=O(NG(A))-Na(A(z)) and O(NG(A))/A must be abelian and is inverted by z. 

If O(N~(A))>A, Nc(A)/A acts faithfully on O(Na(A)). We argue that this is 
the case. Since we know ]G13=32~ we shall get 03(Na(A))>A by Sylow's 
theorem. Let R<=Nc(A), R'~7/6 so that NN~(A)(R)/Cc(R)~-M11. Since R has a 
4-dimensional lF3A6-constituent in common with the usual 6-dimensional per- 
mutation module for l F 3 A  6 [11], where we take A 6 ~ M l o ~ M 1 1  , identified 
with NN~a)(R)/Cc(R), we get that R is the J-subgroup ([27], p. 271) of 
P~Syl3(NN~(a)(R)). Thus, R is characteristic in P, and so INa(R)I3>IPI=38. 
Since (z)eSyl2(Ca(R)) , a Frattini argument shows that C covers Na(R)/Ca(R), 
giving ING(R)/Ca(R)I3=32 and ICa(R)13>36. The structure of Na(A ) given 
above shows that O 3(Na(A)) > A, as required. 

If p~Tr(O(Na(A))), the p-rank of O(Na(A))/A must be at least 8 since a 
subgroup T~21_ +6 of Nc(A) acts faithfully on O(Na(A))/A. Since [GI 
=24632~ where m is squarefree, we have p = 3  or 5. If p=5,  we 
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observe that the faithful action of a 35Mll  subgroup of Nc(A)/A on 
03,(O(No(A))) forces the 5-rank to be at least 11, a contradiction. So O(N~(A)) 
=03(No(A)). Since teZ(T) ~* fuses in Nc(A ) to an element r e ( T ,  z ) - Z ( ( T ,  z)) 
(see Lemma 2.10 and [25]), a comparison of the traces of t and t' shows that 
m(O3(N~(A))/A)>12. Since 1G13=32~ and ]Suz]3=3 v, we get 103(No(A))t=313 
We claim that 03(No(A)) is extraspecial. Suppose false. Then the action of z 
implies that 03(No(A))~-7/133 and that No(A ) leaves Co~(N~;IA))(z ) and 
[03(Nc;(A)) , z] invariant; in particular, a Sylow 3-group of No(A ) has noncyclic 
center. By looking in F24, we find that a Sylow 3-normalizer looks like 
31 +10 U5(2). 2 [20] and that in C(a3D)~-3F24 the corresponding subgroup is K 
=(3 x31+1~ U5(2).2 [33]. If P~SyI3(K ), Z(P)~7]  2. Our remarks about No(A ) 
then imply that Z(P) is in the center of a Sylow 3-group of G, a contradiction 
to [C(a3o)13=317< ]GI3. So 03(No(A)) is extraspecial. 

Take B<Nc(A ) so that Cc((A,B)) is the perfect group 2 . 3 . 3 .  U4(3 ) and 
such that A and B are conjugate in C. Set R=O3(N~(A) ). Since No(A ) is 3- 
constrained, Cc((A, B)) acts nontrivially on CR(B ) ([27], p. 179). Therefore, if 
3k=ICR(B)/AI, k>6 because 7XtGL(5, 3)[. So, CR(B)~--7] 7 and [R,B]=CR(B ). 
Set E=(CR(B),B)~-7ls 3. In each of NN~(x)(E), X=A or B, the group of 
automorphisms effected on E is 36 .SO- (6 ,3 ) . 2 .2  (to see this, look at the 
normal 3-subgroups of 03(Co(X)) Cc((A, B)), X =A, B). Thus Y: 
=No(E)/Co(E ) satisfies O3(Y)=l  and F*(Y) quasisimple. To identify Y,, the 
quickest method is to quote the standard form problem for 
L(Cy(zCa(E)))~-SO (6, 3)22.U~(3) to get Y~-0~(8,3), e=  + or - [3]. If the 
extension 1 -,E-,No(E)-,  Y-, 1 were split, 

1 - ,  ( A ,  B> - ,  C a ( ( A ,  B>) - ,  2 U,~(3) - ,  1 

would be split, which is not the case. Therefore, e,= - ( i f  e were +,  Z(Y)--~7] 2 
by [2], p. 196, and the extension would be split) and we get the first part of (ii). 
The second part follows by considering the preceding statements and realizing 
that we may take a3o~(A, B) -(AuB). 

(iii) In [33], it is shown that the Schur multiplier of F24 has order at most 
3. We get that 1-,(a3D)~Co(a3o)~F24-,1 is nonsplit from the fact that 
a3D~Cc(a3D)'; see above remarks. 

(iv) It is relatively easy to see that 7] 2 X 7]2 X 7]3 is an upper bound for 
HZ(ZE6(2), (1)/7]) [32]. The hard part of settling this Schur multiplier is to show 
that 7/2 x 7~ 2 is the 2-part of the multiplier. We do this as follows. Let i,j, k be 
distinct indices in O, and let V= (q(21j,, 2jk,))<Q. Then V~ 7l 2 x 7/2 and V # is 
in the class 2A; see Lemma 13.3(v). Set M=Cc(V). Then M/Mc~Q~U6(2 ) 
[11] and Mc~Q~2~+ +2~ x 2 x 2 .  We claim that V<[Mc~Q, MerCI.  Let Y>Q, 
Y< C map onto the natural M21 subgroup of N24/{ +1} fixing i,j and k. Note 
that a natural Mz~ subgroup of M24 fixes a 2-dimensional submodule of 
P(f2) . . . .  /off but that this module has no trivial quotient module since a natural 
M21 fixes no (d-set other than f2 and 4). Thus, (z, V)<(z,  [E, Y]) (this "E"  is 
q(A(4)), as in earlier sections), implying the claim. Thus, CG(V)'= Co(V ). 

We obtain Co(V)/V~-2E6(2) from the solution of the "O 2 extraspecial" 
problem ([67], specifically), using z~=zzl, aeCo(V ) as before to eliminate the 
trivial case Co(V ) = O(Cc,(V)) Cc(V). 

The proof of Proposition 13.4 is complete. 
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Remark. From the existence of the perfect group 2.2.2E6(2 ) one may derive 
the existence of the perfect groups 2.F4(2), 2.22A5(2), 2.F22, 2.2.A2(4 ) and 
from the existence of the perfect group 3. F;4, one may derive the existence of 
the perfect groups 3.B3(3), 3.Gz(3 ) as sections, which also occur within the 
group 38.0-(8 ,3)  of Proposition 13.4(ii). The existence of .0 implies the 
existence of a number of nonsplit extensions, as noted in [11]. 

More than ten years ago, Jack McLaughlin observed that the sporadic 
groups are connected with many examples of nonvanishing low degree coho- 
mology. In f 3 w e  find Dempwolffs nonsplit extension 25 . GL(5, 2) [16] and in 
LyS we find the nonsplit extension 53. SL(3, 5), which had been shown to exist 
abstractly by McLaughlin. For an example of nonvanishing degree 1 coho- 
mology, look at a particular section of .0 isomorphic to 35 . Ml l .  Not only can 
we observe subgroups of sporadic groups which exhibit nonvanishing coho- 
mology of degrees 1 and 2, but such examples in the groups of Lie type seem 
to be connected to sporadic phenomena which lead to sporadic groups. A 
"nonstandard" complement in 34.A6=< U4(3 ) is contained in L3(4)-subgrou p of 
U4(3), and these two maximal subgroups of U4(3 ) are "tied together" by 
McLaughlin's group. We once observed that the "sporadic" nonvanishing of 
degree 1 cohomology for a group of Lie type seems to be connected to a 
"sporadic" maximal subgroups. For example, A 7 < A 8 "explains" 
H1(O+(6, 2), 26)-~292; see [57]. The most obvious examples of extensions in 
groups of Lie type are the parabolic subgroups. They split over the maximal 
normal unipotent subgroup by virtue of the Levi complement. In contrast, the 
candidates for "parabolic subgroups" in sporadic groups often involve nonsplit 
extensions. See [59]. However, it is not always true that Hi(L, F ) = 0  in a 
group G of Lie type, for L the commutator subgroup of a Levi complement 
and F an L-chief factor within the normal unipotent subgroup of a parabolic 
subgroup of G. There are a number of counterexamples, including infinite 
families of counterexamples, such as L=Sp(2n, q), F=IF 2", G=Sp(2n+ 2, q), q 
=2  m, n=>2 or L=Sp(6, q), F=IF 6, G= F4(q) , q = 2  m. 

It is tempting to think that the sporadic groups and the exceptional low 
degree cohomology groups are linked in some deep way. Because of the great 
importance of centralizers of involutions in the classification of finite simple 
groups, the occurrence of nonsplit central extensions of simple groups (clas- 
sified by H2( - ,  11~/2g)) within sporadic groups strongly suggests that there is 
some connection. If there is a theory explaining such connections, the role in it 
of cohomology with coefficients in nontrivial modules is less clear. 

For Sect. 14, we need a result. 

Lemma 13.5. Let QteC/Q be an involution. 

(i) I f  Qt is 2-central, Qt contains involutions; 
(ii) I f  Qt is not 2-central, Qt does not contain involutions if Cc/e(Qt ) has 

shape (2x2xGz(4))2  and Qt does contain involutions if Cc/e(Qt ) has shape 
211 .M12.2. 

Proof Certainly, C - Q  contains involutions since R~o=R1 and Rlc~Q=E, in 
the notation of Chap. 10. In fact, RxQ/Q corresponds to O2(Na4/{ +1}) under 
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the natural map ~b : C - , .  l. Thus, Q t contains involutions if 
Cc/o(Qt)~-21+8 .D4(2 ) or 211 M12.2. 

Consider the remaining case. We refer to [11, 12] for the information we 
require about .0. Suppose t o is in the remaining class. Then C(t6)=(V x L)(u) ,  
| / ,~z2 ,  L -G2(4 ) ,  tul=2, and there is V I ~ L  , _  V 1 conjugate to V in C/Q. There 
is an element h of order 3 in �9 1 centralizing L and fixed point free on A/2A. In 
G, the structure of CG(0 ) for 0eC,  101=3 with 04)=h, is as described in the 
proof of 13.4(ii), i.e., 31+12.2.Suz. The structure of 2 .Suz implies that V 1 
corresponds to a quaternion group of order 8 in C(0)/03(C(0)). Thus, Qt 
contains an element with square z. Since A/2A is a free F2( t4)-module  (Corol- 
lary 2.30), Qt contains no involution, as required. 

14. The Happy Family and the Pariahs 

It is clear from Sect. 13 and a study of subgroups of F2, F24 and �9 1 that we 
have 20 sporadic groups involved in the Friendly Giant. We call the set of 
sporadic groups which are involved in the Friendly Giant  and Happy Family. 
There are 20 or 21 sporadics involved in the Happy Family - whether J1 
belongs or not is unsettled as of this writing. The sporadics outside the Happy 
Family are called the Pariahs. Since ~(LyS)-)z(F1)={37, 67} and ~(J4)-~r(F1) 
={37, 43}, Lagrange's theorem implies that LyS and J4 are Pariahs. It is not 
obvious how to show that J3, O'S and Ru are Pariahs. We do so in this 
section. 

We conclude this section with a table of involvements of sporadic groups in 
one another and with a table giving fusion information for possible embedd- 
ings of J1 in F 1. 

Lemma 14.1. Ru is a Pariah. 

Proof. Suppose that X is a quasi-simple subgroup of F1, X/Z(X)~-Ru. Then 
J z ( x ) l  = 1 or  2. 

Suppose Z ( X ) = ( u )  has order 2. If u is 2-central, we get an embedding 
R u ~ . l ,  which is impossible since 29e~(Ru)-7~(.  1). If u is not 2-central, we 
get an embedding Ru--~F2, which is impossible since 29e~(Ru)-7~(F2). 

We have Z ( X ) = I .  Take a four-group V < X  so that Cx(V)~-7Z~xSz(8 ). 
Suppose that veV ~ is 2-central in F l. We may suppose that v=z, Cx(V)<C.  
Since 1311Sz(8)[, Cx(V) fixes no element of Q/(z). Thus, Cx(V)/(z ) is embed- 
ded in �9 1 and Sz(8) is involved in the centralizer of an involution, t, of �9 1. A 
look at [12] shows that 13]lC.l(t)[ implies C. 1(t)~(;g 2 x G2(4)).2. But 7 does 
not divide the order of a 2-local in G2(4), a contradiction. So V * lies in the 
class of u, where Cr,(u)~-2F 2. The centralizers of involutions in F 2 have shape 
(2x2xF4(2) )2 ,  (21+22)(.2), 2-2E6(2).2 and 29.216.04(2) .2;  see Lemma 2.41. 
Since 13[[Sz(8)1, we get an embedding of Sz(8) into F4(2 ) or 2E6(2), a con- 
tradiction to Lemma 2.36. 

Now take B < A < F  1 with A/B~-Ru and IAI minimal. By the Frattini 
argument, B is nilpotent. Since the Schur multiplier of Ru is 292, minimality of 
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A implies that O(B)<[B, A]. Let n=n(B), n l = n - { 2  }. The action of H<A/B, 
H~-26.G2(2), on BIB' shows that mp(B/B')>63 for pen  1, whence n 1 =q5 and n 
={2}. Since the order of 2 modulo 29 is 28, mz(B/B')>=28. Since 29 does not 
divide [.11 o r  tFz], an element of order 29 is fixed point free on B. Since LFI[ z 
=246< 256, B ~ Z ~  8. Take h~A, Ihl =13. Then BI:=C~(h ) has order 24 o r  216. 

Let xEB~. If x is 2-central in F~, we may assume that x=zeZ(C).  Then 
(B 1, h ) <  C and h fixed point free on Q/Q' imply that the centralizer of an 
element of order 13 in �9 1 contains a copy of 2~ 3 a contradiction [12]. So x is in 
the class 2A, implying that F 2 contains a copy of 773 whose centralizer has 
order divisible by 13. Since the centralizers of involutions in F 2 look like 
2.2E6(2).2, (21+22)(-2), (2 x 2 xF4(2))2 and 2.28.216.O4(2) .2 and 13 does not 
divide the order of D4(2 ) or of a parabolic subgroup of 2E6(2),  w e  have a 
contradiction. The proof is complete. 

Definition 14.2. Let X, Y be a pair of finite groups. An (X, Y)-fusion pattern is a 
class function f :  X ~ Y such that x and f(x) have the same order, for all x~X. 
The fusion pattern test for the.fusion pattern f is the test that x~--~z(f(x)) be a 
character of X, for all irreducible characters Z of Y. 

Note that these tests are lengthy but mechanical in nature. They can be 
verified in a straightforward way with a computer since one simply checks 
whether the inner product of x~-~x(.f(x)) with every irreducible character of X 
is a nonnegative integer. 

Lemma 14.3. Exactly 18 fusion pattern tests fi)r (J~, F1) are satisfied. I f  J1 is 
involved in F1, it is contained in 1:1. 

Proof The fact that fusion pattern tests for (J2, F1) are passed by exactly 18 
fusion patterns has been established by Charles C. Sims and Steven D. Smith, 
independently, with computer programs. These fusion patterns are listed in 
Table 14.2. 

To prove the second statement, we assume that J2 is involved in but not 
contained in/71, then derive a contradiction. 

Take B<~ A < G ~ F 1, A/B ~ J1, I AI minimal. Then, by the Frattini argument, 
B is nilpotent. By the fact that J~ has trivial Schur multiplier [35], [43], B 
=[B ,  A]. Let n=n(B), n 1=n-{2}.  if  p~nl, the action of a 23. 7.3 subgroup of 
A/B on Op(B)/~b(Op(B)) shows that mp(B/B')>7, whence p = 3  or 5 by Lemma 
12.6. The order of 3, 5 modulo 19 is 18, 9, respectively. Considering the action 
of an element of order 19, we get mp(B/B')>IS, 9 for p = 3 ,  5 respectively. If p 
=5, we contradict Lemma 12.6. So p=3 ,  and we find that m3(B/B')>18. So 
]O3(B)1=318 o r  329 as IF~13=32~ and IJ113=3. The action of a 23 .7 .3  sub- 
group on 03(BIB' ) shows that an element x of order 7 centralizes a subgroup 
B 1 of O3(B ) with the property m3(BI/B 1 c~B')> 6 or 03(B ) is elementary abelian 
of order 329 (use the fact that 3 has order 6 modulo 7). In the former case, we 
quote the work of [22] to get C(x)---77 7 x Held or 71+62A7; in either case a 
Sylow 3-group of C(x) has order dividing 3 3, a contradiction. So O3(B)~77~ 9. 
Thus, a Sylow 3-group of F 2 has an elementary abelian maximal subgroup. 
This is certainly false, since the section C/02(C)_~.1 contains a subgroup 
31 +4. Sp(4, 3). Therefore, n 1 =0, and B is a 2-group. 
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Let .~r be the set of IF2Jl-irreducible modules which occur as A-chief 
factors within B. If no module in d lies in the principal 2-block for J1, the 
extension I ~ B ~ A ~ J I ~ I  splits, and we contradict Lemma 14.3. Thus, s~r o 
= {Xe,~c}X is in the principal 2-block} is nonempty. Since J1 has trivial Schur 
multiplier, ~41 = {XesC'olX is not the trivial module} is nonempty. By Lemma 
2 ,~r d i m X = 2 0  for X e ~ '  1. Let xeA,  Ixl=19, From [22] and since the order 
of 2 modulo 19 is 18, dimCx(x)=2,  and B~TI  2~ Set V=C~(x), B I=[B ,x] .  
Then CG(V)~2.2.2E6(2) and B l ( x  ) maps to a 2-local of C6(V)/V~-2E6(2). 
This is a contradiction since 19 does not divide the order of any parabolic 
subgroup of 2E6(2 ). 

Lemma 14.4. J3 is a Pariah. 

Proof. Suppose that X is a quasisimple subgroup of G~-F 1 with X/Z(X)~-J3; 
then ]Z (X) I= I  or 3 [52], [35]. If IZ(X)[=3,  19ert(J3)nrt(CG(Z(X)) ) implies 
that C a(Z (x)) _~ �9 3 x F 3 [ 12], a contradiction since Z(X) < X'. So, Z(X) = 1. 

The following statement was kindly supplied by Steven D. Smith, who used 
the character table of J3 from Janko's  paper [44] and the class list and certain 
characters ("head characters") of F 1 found in Conway and Norton 's  paper 
[13]: 

We used simple F O R T R A N  programs at the IBM 370 installation at the 
California Institute of Technology to study (J3, F1) fusion patterns. 

For convenience, the calculation was done in three stages. First, for each 
fusion pattern, the power map in F 1 was applied and the result checked for 
agreement with the power map of J3; just 156 patterns survived this test. Then 
for these patterns a "crude"  character-theoretic test was applied - computing 
the sums only modulo Id31 for the inner products (ZJ3, rl) with Z the 196,883- 
character of F~, and r/ each irreducible character of J3 (in effect, requiring Z J3 
to be a generalized character). Just 84 patterns survived this test. Finally for 
these patterns the multiplicities (X J3, 1I) were computed in full, and required to 
be nonnegative integers; and just 12 patterns remained. (These 12 patterns 
were then tested with the next-larger Fl-irreducible, and all survived.) As a 
precaution, several of the computed multiplicities were re-verified by hand. 

From this work of Smith, we know that the involutions of X must be 
conjugate in G to z, that all elements of order 5 in X are 5-central in G and 
that all the elements of order 3 are 3-central in G. These facts will suffice to 
obtain a contradiction. 

We may assume that zeX.  Take heCx(z ), th]=3. Then Cx(h)~TZ 3 x A 6. We 
have Ca(h ) ~ 31 + ~ 2.2.  Suz. Take S < Ca(h), S = 6. Suz. Then L." 
=S~03(Co(h)) Cx(h)'~-TZ 3 x A 6 or 3.A 6. Since elements of order S in X lie in 
the class 5B of G (the 5-central class), the same is true of elements of order 5 
in L. Thus, if S < . 0  is the natural embedding, and yeL, lyl=5,  y is either 5- 
central in .0 or fixed point free on the Leech lattice. A look at the class list 
[12] reveals that yeS implies y acts fixed point freely on A. Let M be a natural 
12 dimensional module for 117S. Since the traces lie in I~(e2=i/3), the remarks 
about y imply that the irreducible CL-constituents or M have degrees divisible 
by 4. A look at the character tables of A 6 and 3.A 6 shows that all these 
conditions may not be met. Therefore, G contains no subgroup isomorphic to 

J3. 



94 R.L. Griess, Jr. 

Suppose that B<~A<=F1, A/B_~J 3 and LA] minimal. Then, by the Frattini 
argument, B is nilpotent. Since the multiplier of J3 is )73 [52], [35], 
03 , (B)<[B,A ]. Also, 1r(B/[B,A])~_{3} by minimality of A. Let ~z=~z(B), rro 
= {psTt ] p > 2 and lOp(B), A] .t = 1}. Considering the action of a 24(3 x A 5) sub- 
group of A/B on Op(B/B'), we find that mp(B/B')>= 15 for p~z o. Thus, ~o--{3}. 
Suppose 1to={3 }. Then IJ313=3 5 implies that O3(B)~77~5. Since the order of 3 
modulo 19 is 18, we have a contradiction. Suppose 2sir. Then, considering the 
action of a 32 .3 .32-8  subgroup of A/B on 02(B), we get m2(B/B')>24. Since 
an element of order 19, 17 in F 1 has centralizer of shape 7Z19xA ~ and ~lV 
x L2(7), respectively (see [22]) we get m2(B/B')> 36, 40, then m2(B/B')> 54, and 

a contradiction. The proof is complete. 

Lemma 14.5. O'S is a Pariah. 

Table 14.1. Involvement of Sporadic Groups in One Another 

(* = yes, �9 = no, 9. = unsettled) 

M l l  , , . , . . . .  , , , , , , , , , , 9. 

m 1 2  * , . . . . . .  , �9 �9 , �9 �9 

M22 * �9 , . . . .  , , �9 �9 �9 , , �9 , ? 

M23 * , . . . . . . .  , , �9 , �9 

M24 . . . .  , . . . . . . .  , . . . .  , 

Jl . . . . .  * . . . . . . . . . . . .  ' " * 

J 2  = H J  . . . . . .  * . . . .  * * '~ 9. 

J 3  

Held 
HiS 
McL 
Suz 
.1 
.2 
.3 
v22 
v23 
Vi4 
LyS 
Ru 
O'S 
F: 
FI 
F3 
1:5 
J4 

? ,  
? ?  

? ,  

. . . . . . . . .  , * * *  . . . . . .  * *  * 

. . . . . . . . . .  , * * *  * * *  

Most of the involvements are "obvious" and many noninvolvements are easy to verify by looking 
at local information or standard representations The referee has helped fill in the table and cites 
work of Enright which shows that M12 is embedded in 2F22 as the intersection of copies of 2F22 
and E~: in F23 The referee has furnished "character restriction" arguments as proof of the 
noninvolvements (M 12, 2) ,  (M2r F23), (J 2, F22), (32, Ru), (32, F23), (McL, Fs), (Suz, F;4), (Suz, F2) 
Thanks go also to Ronald Solomon for spotting an error in an early version of this table 
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Proof. Suppose that  X <=G~-F1, X quasisimple and X/Z(X)~_O'S. Let Z <X, 
Z-~TZ 4 such that Cx(Z)/Z(X ) is the perfect group 4 .L3(4  ). Set ( t ) = O l ( Z ) .  If 
C6(t)~-2F2, then Z maps to a group of order 2 with centralizer (2 x 2 x F4(2)) 2 
in F2, a contradic t ion since Z< Cx(Z)'. So, CG(t)~-C and  we may as well take 
t=z. The structures of the centralizers of elements of order 2 in �9 1 [12] show 
that  Z<Q, so that  Z = ( q ( ~ ) ) ,  for some vector ~ of type 3. Thus, we have an 
embedding  of Cx(Z)Q/Q~-Cx(Z)/Z~_L3(4) or 3 .L3(4 ) into .3. By [12], 
Cx(Z)/Z~_L3(4), i.e., Z ( X ) = I .  Let K:=Cx(Z)~<.O. Then  K'~-L3(4 ) since the 
Schur mult ipl ier  o f .  3 is trivial [33, 35]. 

According to the character table of L3(4), there are two irreducible charac- 
ters of degrees less than 24; they have degrees 1 and 20. So, L ' .=  CA(K' ) has 
rank  4 and  is a Z-direct s u m m a n d  of A. By looking at P(Q), a module  
extension of c~ by P((2)/~, one sees that the modular  irreducible const i tuents  of 
the degree 20 irreducible taken modu lo  2 have dimensions 1, 1, 9 and 9, and, in 
particular,  if heK, Ih[=7, then dim CA/2A(h)=6. Set R:=(q(CA(h)))~-21+ +6. 
Since R l : =  (q(L), z )<R and ]RI[ =25, R 1 is nonabel ian .  Set R2: = (R  1, z ) < R .  
Since Out  (R2) is solvable or has every nonsolvable  composi t ion  factor isomor- 

phic to L3(2 ) or As, [R2, Cx(Z)] <[Rz, R z ] < ( z ) ,  whence [R 2, Cx(Z)]=l by 
the three subgroups lemma and Cx(Z ) = Cx(Z)'. 

We now obta in  a contradict ion.  Since L3(4 ) is not  involved in M l l  and 
- 3 3 3 ~ 3 S - M l l ,  R 2 does not conta in  a qua te rn ion  group. Since R1 is non-  

Table 14.2. Fusion Maps for (J1, F1) (see Lemma 14.3) 

Rational class for 
J1 (designated by 
order of element): 1 2 3 5 6 7 10 11 15 19 

Fusion pattern 
(class in F1): 1A 2B 3A 5A 6C 7A 10B IIA 15A 19A 

3A 5A 6C 7B 10B 15A 
3B 5A 6B 7A 10B 15B 
3B 5A 6B 7B 10B 15B 
3B 5A 6E 7A 10B 15B 
3B 5A 6E 7B 10B 15B 
3B 5B 6B 7A 10D 15C 
3B 5B 6B 7A 10E 15C 
3B 5B 6B 7B 10D 15C 
3B 5B 6B 7B 10E 15C 
3B 5B 6E 7A 10D 15C 
3B 5B 6E 7A 10E 15C 
3B 5B 6E 7B 10D 15C 
3B 5B 6E 7B 10E 15C 
3C 5B 6F 7A 10D 15D 
3C 5B 6F 7A 10E 15D 
3C 5B 6F 7B 10D 15D 
3C 5B 6F 7B 10E 15D 

(Columns 1, 2, 11 and 19 are constant). 

The referee has furnished a character restriction argument which eliminates the cases with 3A (one 
examines the 19-local structure of 2; 3 x F3) 
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abelian, R 1 =R2~_D 8 x 7Z 2 x 2 ~  2 and any element of order 4 in R 1 is conjugate 
in R 1 to its inverse. Take xeR 1 so that x inverts z < = e  1 under conjugation. 
Then, [Cx(Z), x] < [Cx(Z), R~] = 1 gives a contradiction. 

We are now left with the case that O'S or its 3-fold cover are involved in 
F 1 but not by containment. We take A__<F 1 of minimal order with B < A  so 
that A/B~_O'S. Then B is nilpotent and [B, A]_<_O3,(B ). Since J1 is contained 
in O'S, we get a contradiction to this situation as follows. We repeat the 
arguments of Lemmas 14.3 to get [B,A] <=O2(B ). Then O2(B)+I  and 2-con- 
straint of A imply that an element x of order 19 in A acts nontrivially on B. 
Since [C(x)[=22.3.5.19 [22], [Fl12=246, [(9'S[2=29 and 4 6 - 9 < 2 - 1 9 ,  we get 
IBI2=2 t8, 219 or  22~ But now, the nontrivial action of an extraspecial group 
of order 73 in A/B on B shows that 1BI2_>_237=221, a contradiction. 

15. Concluding Remarks 

As stated in the introduction, work on the putative simple group F 1 began in 
November,  1973. Bernd Fischer suggested the possibility of a finite simple 
group having a 3-local subgroup of shape 31+12.2. Suz.2. A number of other 
group theorists got involved at this point, mainly Conway, Harada, Norton 
and Thompson.  Many properties of this hypothetical simple group were de- 
rived, including shapes of various local subgroups and a correct guess of its 
order, using the result of Frobenius which says that the cardinality of {geG I g" 
= 1} is divisible by n, for any finite group G and integer dividing [GI (a proof 
that its order is the number  of Sect. 1 was written down by Griess [36]), The 
existence of several additional simple groups was derived (see Sect. 13). Coin- 
cidentally, Harada  had been working on a standard form problem for a 
component  of shape 2. HiS, exactly the situation which comes up in the group 
F 5. Norton 's  thesis was concerned with properties of F 5 and an existence and 
uniqueness proof  (based on a complex representation of degree 133). The 
group of Thompson,  F3, was constructed by Thompson and Peter Smith, who 
did some computer work, as a linear group of degree 248. The group F2, while 
noticed as a subquotient of FI, had been proposed by Fischer during the 
summer of 1973 as a group generated by a class of {3,4}-transpositions. 
Indeed, F 2 appeared to have a perfect central extension 2F 2 and the possibility 
of a simple group having 2F 2 and C___(21+24).(.1) as centralizers of in- 
volutions is what led this author to his investigations [37], independently of 
the work of the aforementioned individuals. 

The group F 2 was constructed a few years later by Jeffrey Leon and 
Charles Sims with the aid of a computing machine [51]. 

Nor ton  and others at Cambridge did some preliminary work on characters 
and conjugacy classes for F1, notably the facts discussed in Sect. l. Ultimately, 
combined work of Fischer, Livingstone and Thorne led to a complete de- 
termination of the character table1. It must be pointed out that all this work 

1 It should be pointed out that the notations for conjugacy classes in [13] and [22] differ; we 
use that of [13] in this paper 
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was made under the assumption that F 1 has an irreducible complex character 
of degree 196,883. That 196,883 is a lower bound for the degree of a nontrivial 
complex character was pointed out by Griess [37] and was also noticed by 
Conway and Norton [13]. 

Norton has recently announced a uniqueness proof of F 1. He studied a 
graph on the class of involutions 2A in which two distinct involutions are 
joined by an edge if and only if their product lies in 2A and found a matrix in 
the commuting algebra of the group action on the permutation module within 
an eigenvalue of multiplicity 196,883. It follows that any finite simple group 
with an involution whose centralizer is isomorphic to C must have an irreduc- 
ible character of degree 196,883. Thus, the "hard" assumption of Thompson's 
uniqueness proof [71] is valid; formal proofs of the remaining assumptions 
should not be difficult to write out. Granting this, we summarize: A finite 
simple group which contains C as the centralizer of an involution must be 
isomorphic to the Friendly Giant. 

The algebra B which figures so importantly in our construction of G is a 
somewhat mysterious object. We can state no homogeneous linear identity, 
linearly independent of x y = y x ,  which is satisfied by elements of B. The 
classical theories of linear algebras use such identities as starting points. In our 
case, we use an automorphism group as the starting point (and never stray too 
far from it). The presence of the algebra was a guide in defining G. Once we 
had G < G ( B ) ,  the algebra was used only to make a few points in Sect. 12. 

After Norton's finding (see Sect. 1), some attention was directed to com- 
mutative nonassociative algebras with certain finite groups as automorphisms. 
Such algebras were irreducible as modules, or were the direct sum of a module 
and its dual, and were often connected to some rank 3 permutation repre- 
sentation of the group [54, 61]. The term "Nor ton  algebra" has been applied 
to some of these examples. As with B, no axioms for these algebras were given 
and no characterizations were made. These investigations were interesting and 
encouraging but had no direct bearing on the discussion of B in this paper. 

It is natural to ask whether any of the Pariahs (see Sect. 14) can be 
constructed explicitly as automorphisms of some kind of linear algebra. In- 
deed, Frohardt has completed such a construction of J3; the algebra is com- 
mutative and nonassociative and is the direct sum of an 85-dimensional com- 
plex irreducible module with its dual. Similar constructions for the other 
Pariahs will surely be available in due course. One result will be more con- 
trolled settings in which to study the sporadic groups. Another will be that the 
theory of these groups will be relatively free of dependence on computers. 

We conclude by expressing our hope that the ideas in this paper will lead 
to further methods for studying the finite simple groups. 

List of  Notations and Definitions 

We give at least the first occurrences of notations used in this paper which are not in general use. 
Among the more standard definitions are xV=y -1 xy, [x, y] =x  l y-1  x y  for group elements x, y; 

< 
Co,, ~,  ~ for membership, containment and equality, up to G-conjugacy; [XI for the cardinality of 

X; Sol (G) for the largest solvable normal subgroup of G; Out (G)= Aut (G)/Inn (G). 
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