(C) Springer-Verlag 1984

Unitary structure in representations of infinite-dimensional groups and a convexity theorem*

V.G. Kac ${ }^{1}$ and D.H. Peterson ${ }^{2}$
${ }^{1}$ Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA02139, USA
${ }^{2}$ Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA

In this paper, we show that a Kac-Moody algebra $\mathfrak{g}(A)$ associated to a symmetrizable generalized Cartan matrix A carries a contravariant Hermitian form which is positive-definite on all root spaces. We deduce that every integrable highest weight $\mathfrak{g}(A)$-module $L(\Lambda)$ carries a contravariant positivedefinite Hermitian form. This allows us to define the moment map and prove a generalization of the Schur-Horn-Kostant-Heckman-Atiyah-Pressley convexity theorem. The proofs are based on an identity which also gives estimates for the action of $\mathfrak{g}(A)$ on $\mathfrak{g}(A)$ and $L(A)$.

We hope that the main idea behind the paper is apparent: it is to use the interplay between the coadjoint and the highest weight representations.

We are grateful to V . Guillemin for an introduction to the moment map.

§ 1. Basic definitions (see $[6,8,9]$ for details)

1.1. Let $A=\left(a_{i}\right)_{i, j=1}^{n}$ be a symmetrizable generalized Cartan matrix, i.e., $a_{i i}=2, a_{i j}$ are non-positive integers for $i \neq j(i, j=1, \ldots, n)$, and there exists an invertible diagonal matrix $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ such that $D^{-1} A$ is symmetric. Then we can (and will) choose the d_{i} to be positive rational. Choose a triple ($\mathfrak{b}_{\mathbb{R}}, \Pi, \Pi^{\vee}$), unique up to isomorphism, where $\mathfrak{b}_{\mathbb{R}}$ is a vector space over \mathbb{R} of dimension $2 n-\operatorname{rank} A$, and $\Pi=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \subset \mathfrak{b}_{\mathbb{R}}^{*}, \Pi^{\vee}=\left\{h_{1}, \ldots, h_{n}\right\} \subset \mathfrak{h}_{\mathbb{R}}$ are linearly independent sets satisfying $\alpha_{j}\left(h_{i}\right)=a_{i j}$. We put $\mathfrak{h}=\mathbb{C} \otimes_{\mathbb{R}} \mathfrak{h}_{\mathbb{R}}$.

The Kac-Moody algebra $\mathfrak{g}=\mathfrak{g}(A)$ is the Lie algebra over \mathbb{C} generated by the vector space \mathfrak{h} and symbols e_{i} and $f_{i}(i=1, \ldots, n)$, with defining relations: $[\mathfrak{h}, \mathfrak{h}]=(0) ;\left[e_{i}, f_{i}\right]=\delta_{i j} h_{i} ;\left[h, e_{i}\right]=\alpha_{i}(h) e_{i},\left[h, f_{i}\right]=-\alpha_{i}(h) f_{i}(h \in \mathfrak{h}) ;\left(\operatorname{ad} e_{i}\right)^{1-a_{i j}}\left(e_{j}\right)$ $=0=\left(\operatorname{ad} f_{i}\right)^{1-a_{i j}}\left(f_{j}\right)(i \neq j)$.

We have the canonical embedding $\mathfrak{h} \subset \mathfrak{g}$. Let \boldsymbol{n}_{+}(resp. \boldsymbol{n}_{-}) be the subalgebra of g generated by the e_{i} (resp. f_{i}), $i=1, \ldots, n$. We have the triangular decomposition: $\mathfrak{g}=\mathbf{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$. Every ideal of \mathfrak{g} which intersects \mathfrak{h} trivially is zero [3].

[^0]We have the root space decomposition $\mathfrak{g}=\bigoplus_{\alpha \in h^{*}} \mathfrak{g}_{\alpha}$, where $\mathfrak{g}_{\alpha}=\{x \in \mathfrak{g} \mid[h, x]$ $=\alpha(h) x$ for all $h \in \mathfrak{h}\}$, so that $\mathfrak{g}_{\alpha_{i}}=\mathbb{C} e_{i}, \mathfrak{g}_{-\alpha_{i}}=\mathbb{C} f_{i}, \mathfrak{g}_{0}=\mathfrak{h}$. A root is an element of $\Delta:=\left\{\alpha \in \mathfrak{h}^{*} \mid \alpha \neq 0, \mathfrak{g}_{\alpha} \neq(0)\right\}$. Put $Q=\sum_{i} \mathbb{Z} \alpha_{i}$ and $Q_{+}=\sum_{i} \mathbb{Z}_{+} \alpha_{i}$, where \mathbb{Z}_{+} $=\{0,1, \ldots\}$, and put $h t(\alpha)=\sum_{i} k_{i}$ for $\alpha=\sum_{i} k_{i} \alpha_{i} \in Q$. Introduce an ordering on $\mathfrak{b} *$ by: $\lambda \geqq \mu$ if $\lambda-\mu \in Q_{+}$. Put $\Delta_{+}=\Delta \cap Q_{+}$. We have: $\mathrm{n}_{ \pm}=\bigoplus_{\alpha \in \Delta_{+}} \mathfrak{g}_{ \pm \alpha}$.

The root space decomposition of g gives us a Q-gradation of the universal enveloping algebra: $U(\mathfrak{g})=\oplus_{\beta} U(\mathfrak{g})_{\beta}$.

We choose a nondegenerate symmetric \mathbb{C}-bilinear form (.|.) on \mathfrak{h} such that $\left(h_{i} \mid h\right)=d_{i} \alpha_{i}(h)$ for $i=1, \ldots, n$ and $h \in \mathfrak{h}$. This form extends uniquely to a nondegenerate \mathfrak{g}-invariant symmetric \mathbb{C}-bilinear form (.1.) on \mathfrak{g} (see [6], Proposition 7 and Lemma 2). We have:

$$
\begin{equation*}
\left(e_{i} \mid f_{i}\right)=d_{i} \tag{1.1}
\end{equation*}
$$

The form (.|.) induces an isomorphism $v: \mathfrak{h} \rightarrow \mathfrak{h}^{*}$ and a form (.|.) on \mathfrak{h}^{*}. Then $v\left(h_{i}\right)=d_{i} \alpha_{i}$. Furthermore, $\left(\mathfrak{g}_{\alpha} \mid \mathfrak{g}_{\beta}\right)=(0)$ if $\alpha \neq-\beta$, and \mathfrak{g}_{α} and $g_{-\alpha}$ are nondegenerately paired; we have:

$$
\begin{equation*}
[x, y]=(x \mid y) v^{-1}(\alpha) \quad \text { if } x \in \mathfrak{g}_{\alpha} \text { and } y \in \mathfrak{g}_{-\alpha} . \tag{1.2}
\end{equation*}
$$

Define a conjugate-linear involution ω_{0} of \mathfrak{g} by requiring $\omega_{0}\left(e_{i}\right)=-f_{i}$, $\omega_{0}\left(f_{i}\right)=-e_{i}(i=1, \ldots, n), \omega_{0}(h)=-h$ for $h \in \mathfrak{G}_{\mathbb{R}}$, and define the following nondegenerate Hermitian form on \mathfrak{g} :

$$
(x \mid y)_{0}=-\left(x \mid \omega_{0}(y)\right) .
$$

Then the root space decomposition is orthogonal with respect to $(. \mid \cdot)_{0}$.
Choose $\rho \in h_{\mathbb{R}}^{*}$ satisfying $\left(\rho \mid \alpha_{i}\right)=\frac{1}{2}\left(\alpha_{i} \mid \alpha_{i}\right)$ (or, equivalently, $\rho\left(h_{i}\right)=1$) for i $=1, \ldots, n$. For $\Lambda, \alpha \in \mathfrak{h})^{*}$, put

$$
T_{A}(\alpha)=(\Lambda+\rho \mid \alpha)-\frac{1}{2}(\alpha \mid \alpha) .
$$

In the sequel we will need

$$
\begin{equation*}
T_{0}(\alpha)>0 \quad \text { if } \alpha \in \Delta_{+} \backslash \Pi . \tag{1.3}
\end{equation*}
$$

Indeed, (1.3) is clear when $(\alpha \mid \alpha) \leqq 0$; otherwise, using [6, Lemma 14 and formula (23)], $2 v^{-1}(\alpha) /(\alpha \mid \alpha) \in \sum_{i} \mathbb{Z}_{+} h_{i} \backslash \Pi^{\vee}$, proving (1.3) in this case also.
1.2. Given $\Lambda \in \mathfrak{b}^{*}$, a \mathfrak{g}-module V is called a module with highest weight Λ if there exists a non-zero cyclic vector $v_{A} \in V$ such that $\mathfrak{n}_{+}\left(v_{A}\right)=(0)$ and $h\left(v_{A}\right)$ $=\Lambda(h) v_{A}$ for all $h \in \mathfrak{h}$. Such a module is \mathfrak{h}-diagonalizable.

Given an \mathfrak{b}-diagonalizable module V, we have the weight space decomposition $V=\oplus_{\lambda \in \mathfrak{h}^{*}} V_{\lambda}$, where $V_{\lambda}=\{v \in V \mid h(v)=\lambda(h) v$ for all $h \in \mathfrak{h}\}$. Elements of $P(V)$ $:=\left\{\lambda \in \mathfrak{h}^{*} \mid V_{\lambda} \neq(0)\right\}$ are called weights of V. For a g-module V with highest weight Λ, we have: $V_{A}=\mathbb{C} v_{A}$ and $P(V) \subset \Lambda-Q_{+}$.

Let V be a \mathfrak{g}-module such that for every $v \in V$, the set $\left\{\alpha \in \Delta_{+} \mid \mathfrak{g}_{\alpha}(v) \neq(0)\right\}$ is finite. Such a module is called restricted. Note that every highest weight module is a restricted module. Following [7], we define the partial Casimir operator Ω_{0} on a restricted module V as follows. For each $\alpha \in \Delta$, choose bases $\left\{x_{\alpha}^{(k)}\right\}$ of \mathfrak{g}_{α} and $\left\{y_{\alpha}^{(k)}\right\}$ of $\mathfrak{g}_{-\alpha}$ such that $\left(x_{\alpha}^{(k)} \mid y_{\alpha}^{(l)}\right)=\delta_{k l}$, and put

$$
\Omega_{0}(v)=\sum_{\alpha \in \Delta_{+}} \sum_{k} y_{\alpha}^{(k)}\left(x_{\alpha}^{(k)}(v)\right) .
$$

Lemma 1.1. a) If $\alpha, \beta \in \Lambda$ and $z \in \mathfrak{g}_{\alpha-\beta}$, then, in $\mathfrak{g} \otimes \mathfrak{g}$, we have:

$$
\sum_{k} x_{\alpha}^{(k)} \otimes\left[z, y_{\alpha}^{(k)}\right]=\sum_{k}\left[x_{\beta}^{(k)}, z\right] \otimes y_{\beta}^{(k)}
$$

b) If V is a restricted \mathfrak{g}-module and $u \in U(\mathfrak{g})_{\beta}$, then we have on V :

$$
\begin{equation*}
\Omega_{0} u-u \Omega_{0}=u\left(T_{0}(-\beta) I_{V}-v^{-1}(\beta)\right) \tag{1.4}
\end{equation*}
$$

Proof. a) is checked by pairing with an element $e \otimes f$, where $e \in \mathfrak{g}_{-\alpha}, f \in \mathfrak{g}_{\beta}$:

$$
\begin{aligned}
\sum_{k}\left(x_{\alpha}^{(k)} \mid e\right)\left(\left[z, y_{\alpha}^{(k)}\right] \mid f\right) & =\sum_{k}\left(x_{\alpha}^{(k)} \mid e\right)\left(y_{\alpha}^{(k)} \mid[f, z]\right)=(e \mid[f, z])=([z, e] \mid f) \\
& =\sum_{k}\left(x_{\beta}^{(k)} \mid[z, e]\right)\left(y_{\beta}^{(k)} \mid f\right)=\sum_{k}\left(\left[x_{\beta}^{(k)}, z\right] \mid e\right)\left(y_{\beta}^{(k)} \mid f\right) .
\end{aligned}
$$

Since \mathfrak{g}_{γ} and $\mathfrak{g}_{-\gamma}$ are nondegenerately paired under (.|.), this verifies a).
If b) holds for $u \in U(\mathfrak{g})_{\beta}$ and $u^{\prime} \in U(\mathfrak{g})_{\beta^{\prime}}$, then it holds for $u u^{\prime} \in U(\mathfrak{g})_{\beta+\beta^{\prime}}$. Hence, it suffices to check b) for $u=x_{\alpha_{1}}$ or $y_{\alpha_{1}}$ (for $\left.u \in U(\mathfrak{h}), \mathrm{b}\right)$ is obvious). Using a) and

$$
\left(\gamma+\mathbb{Z} \alpha_{i}\right) \cap \Delta \subset \Delta_{+} \quad \text { for } \gamma \in \Delta_{+} \backslash\left\{\alpha_{i}\right\}
$$

we have, on V :

$$
\begin{aligned}
{\left[\Omega_{0}, x_{\alpha_{2}}\right] } & =\left[y_{\alpha_{i}} x_{\alpha_{i}}, x_{\alpha_{t}}\right]=-v^{-1}\left(\alpha_{i}\right) x_{\alpha_{i}} \\
& =-\left(\alpha_{i} \mid \alpha_{i}\right) x_{\alpha_{2}}-x_{\alpha_{i}} v^{-1}\left(\alpha_{i}\right)=x_{\alpha_{i}}\left(T_{0}\left(-\alpha_{i}\right) I_{V}-v^{-1}\left(\alpha_{i}\right)\right) ; \\
{\left[\Omega_{0}, y_{\alpha_{2}}\right] } & =\left[y_{\alpha_{i}} x_{\alpha_{2}}, y_{\alpha_{2}}\right]=y_{\alpha_{2}} v^{-1}\left(\alpha_{i}\right) \\
& =y_{\alpha_{i}}\left(T_{0}\left(\alpha_{i}\right) I_{V}-v^{-1}\left(-\alpha_{i}\right)\right), \text { proving b). }
\end{aligned}
$$

Among g-modules with highest weight Λ, there is a module $M(\Lambda)$ which is free of rank 1 as a $U\left(n_{-}\right)$-module, and an irreducible module $L(\Lambda) . M(\Lambda)$ and $L(A)$ are unique up to isomorphism.

A Hermitian form $F(.,$.$) on a \mathfrak{g}$-module V is called contravariant if $F(g(u), v)=-F\left(u, \omega_{0}(g) v\right)$ for all $u, v \in V$ and $g \in \mathfrak{g}$. For example, the form $(. \mid \cdot)_{0}$ on \mathfrak{g} is contravariant. It is standard that for $\Lambda \in \mathfrak{b}_{\mathbb{R}}^{*}, L(\Lambda)$ carries a unique contravariant Hermitian form, denoted by $H(.,$.$) , such that H\left(v_{A}, v_{A}\right)=1$; this form is nondegenerate and the weight space decomposition is orthogonal with respect to it.

Fix fundamental weights $\Lambda_{i} \in \mathfrak{b}_{\mathbb{R}}^{*}, 1 \leqq i \leqq n$, satisfying $\Lambda_{i}\left(h_{j}\right)=\delta_{i j}, 1 \leqq j \leqq n$, and put $P_{+}=\sum_{i} \mathbb{Z}_{+} \Lambda_{i}$. A \mathfrak{g}-module $L(\Lambda), \Lambda \in P_{+}$, is called an integrable highest weight module. We have [9, Proposition 2.4 d]:

$$
\begin{equation*}
T_{\Lambda}(\beta)>0 \quad \text { if } \Lambda \in P_{+} \quad \text { and } \quad \Lambda-\beta \in P(L(\Lambda)) \backslash\{\Lambda\} . \tag{1.5}
\end{equation*}
$$

§ 2. The crucial lemma

By analogy with the partial Casimir operator, we define an operator Ω_{1} on n_{-} by:

$$
\Omega_{1}(z)=\sum_{\alpha \in \boldsymbol{A}_{+}} \sum_{k}\left[y_{\alpha}^{(k)},\left[x_{\alpha}^{(k)}, z\right]_{-}\right],
$$

where the subscript "minus" denotes projection on n_{-}with respect to the triangular decomposition.

Lemma 2.1. If $\alpha \in \Lambda_{+}$and $z \in \mathfrak{g}_{-\alpha}$, then

$$
\Omega_{1}(z)=2 T_{0}(\alpha) z .
$$

Proof. Put $R=\Delta_{+} \cap\left(\alpha-\Delta_{+}\right)$and calculate in $M(0)$:

$$
\begin{aligned}
2 T_{0}(\alpha) z\left(v_{0}\right)= & 2 \Omega_{0}\left(z\left(v_{0}\right)\right)=2 \sum_{\beta \in A_{+}} \sum_{k} y_{\beta}^{(k)} x_{\beta}^{(k)} z\left(v_{0}\right)=2 \sum_{\beta \in A_{+}} \sum_{k} y_{\beta}^{(k)}\left[x_{\beta}^{(k)}, z\right]\left(v_{0}\right) \\
= & 2 \sum_{\beta \in R} \sum_{k} y_{\beta}^{(k)}\left[x_{\beta}^{(k)}, z\right]\left(v_{0}\right)=\sum_{\beta \in R} \sum_{k}\left[y_{\beta}^{(k)},\left[x_{\beta}^{(k)}, z\right]\right]\left(v_{0}\right) \\
& +\sum_{\beta \in R} \sum_{k}\left(y_{\beta}^{(k)}\left[x_{\beta}^{(k)}, z\right]+\left[x_{\beta}^{(k)}, z\right] y_{\beta}^{(k)}\right)\left(v_{0}\right)=\left(\Omega_{1}(z)\right)\left(v_{0}\right) .
\end{aligned}
$$

The first equality follows from (1.4) and the last one from Lemma 1.1a.
As $M(0)$ is a free $U\left(n_{-}\right)$-module, the lemma follows.
Remark. Lemmas 1.1 and 2.1 hold (by the same proof) for the Lie algebra $\mathfrak{g}(A)$ associated to an arbitrary symmetrizable matrix A over a field.

§ 3. Unitary structure on $L(\Lambda)$ and \mathfrak{g}

3.1. Theorem 1. Let $\mathfrak{g}(A)$ be the Kac-Moody algebra associated to a symmetrizable generalized Cartan matrix A. Then:
a) The Hermitian form (.|. $)_{0}$ is positive-definite on $\mathfrak{n}_{-} \oplus \mathfrak{n}_{+}$.
b) Every integrable highest weight $\mathfrak{g}(A)$-module $L(\Lambda)$ carries a positivedefinite contravariant Hermitian form.
Proof. We first prove a). Using ω_{0}, it suffices to show that (.|. $)_{0}$ is positivedefinite on $\mathfrak{g}_{-\alpha}$ for all $\alpha \in \Delta_{+}$. We do this by induction on $h t(\alpha)$. The case $h t(\alpha)$ $=1$ is clear by (1.1). Otherwise, put $R=\Delta_{+} \cap\left(\alpha-\Delta_{+}\right)$and use the inductive assumption to choose, for every $\beta \in R$, an orthonormal basis $\left\{y_{\beta}^{(k)}\right\}$ of $\mathfrak{g}_{-\beta}$ with respect to (.|. $)_{0}$. Then, setting $x_{\beta}^{(k)}=-\omega_{0}\left(y_{\beta}^{(k)}\right)$, we have $\left(x_{\beta}^{(k)} \mid y_{\beta}^{(l)}\right)=\delta_{k l}$. Now we apply Lemma 2.1 with this choice of $x_{\beta}^{(k)}$ and $y_{\beta}^{(k)}$ (the choice for the $\beta \in \Lambda_{+} \backslash R$ is unimportant) and $z \in \mathfrak{g}_{-\alpha}$:

$$
\begin{aligned}
2 T_{0}(\alpha)(z \mid z)_{0} & =\left(\Omega_{1}(z) \mid z\right)_{0}=\sum_{\beta \in R} \sum_{k}\left(\left[y_{\beta}^{(k)},\left[x_{\beta}^{(k)}, z\right]\right] \mid z\right)_{0} \\
& =\sum_{\beta \in R} \sum_{k}\left(\left[x_{\beta}^{(k)}, z\right] \mid\left[x_{\beta}^{(k)}, z\right]\right)_{0} .
\end{aligned}
$$

By the inductive assumption, the last sum is non-negative; using (1.3), we get $(z \mid z)_{0} \geqq 0$. Since $(. \mid \cdot)_{0}$ is nondegenerate on $\mathfrak{g}_{-\alpha}$, we deduce that it is positivedefinite, proving a).

By remarks in Sect. 1.2, the contravariant Hermitian form $H(.,$.$) on L(A)$ satisfies: $H\left(v_{A}, v_{A}\right)=1$, and the weight spaces are pairwise orthogonal. We prove by induction on $h t(\Lambda-\lambda)$ that the restriction of $H(.,$.$) to L(\Lambda)_{\lambda}$ is positive-definite. Let $\lambda \in P(L(\Lambda))$ and $v \in L(\Lambda)_{\lambda}$. Thanks to a), we can choose bases $\left\{x_{\alpha}^{(k)}\right\}$ of $\mathfrak{g}_{\alpha}, \alpha \in \Delta_{+}$, such that $\left(x_{\alpha}^{(k)} \mid x_{\alpha}^{(l)}\right)_{0}=\delta_{k l}$. Note that $v=u\left(v_{A}\right)$ for some $u \in U_{\lambda-A}$. Hence, by (1.4), we have:

$$
\begin{equation*}
\Omega_{0}(v)=T_{A}(\Lambda-\lambda) v . \tag{3.1}
\end{equation*}
$$

Therefore, we have: $T_{\Lambda}(\Lambda-\lambda) H(v, v)=H\left(\Omega_{0}(v), v\right)=\sum_{\alpha \in A_{+}} \sum_{k} H\left(x_{\alpha}^{(k)}(v), x_{\alpha}^{(k)}(v)\right)$. In the same way as in the proof of a), we conclude, using (1.5), that $H(.,$.$) is$ positive-definite on $L(\Lambda)_{\lambda}$. This proves b).

Remark. Positivity of $H(.,$.$) in the affine case is due to Garland [4]; our$ argument in the proof of b) is similar to his.
3.2. We now derive estimates for the action of \mathfrak{g} on \mathfrak{g} and on $L(\Lambda)$. For this we need:

Lemma 3.1. Let $\left\{x_{k}\right\}$ be a basis of n_{+}such that $\left(x_{k} \mid x_{i}\right)_{0}=\delta_{k l}$. Let $y \in \mathbf{n}_{-}$, and let $v \in L(\Lambda), \Lambda \in P_{+}$. Then:
a) $H\left(\Omega_{0}(v), v\right)=\sum_{k} H\left(x_{k}(v), x_{k}(v)\right)$.
b) $\left(\Omega_{1}(y) \mid y\right)_{0}=\sum_{k}\left(\left[x_{k}, y\right]_{-} \mid\left[x_{k}, y\right]_{-}\right)_{0}$.

Proof. Putting $x_{k}^{*}=-\omega_{0}\left(x_{k}\right),\left\{x_{k}\right\}$ and $\left\{x_{k}^{*}\right\}$ are bases of n_{+}and n_{-}, dual under (.|.). Since the operators Ω_{0} and Ω_{1} can be expressed using arbitrary dual bases of \mathbf{n}_{-}and n_{+}, we have:

$$
\Omega_{0}(v)=\sum_{k} x_{k}^{*}\left(x_{k}(v)\right) \quad \text { and } \quad \Omega_{1}(y)=\sum_{k}\left[x_{k}^{*},\left[x_{k}, y\right]\right] .
$$

The lemma follows.
To state our estimates, we need some notation. Choose an inner product (,) on \mathfrak{h}. The induced norm on \mathfrak{b}^{*} satisfies: $|\Lambda(h)| \leqq|\Lambda||h|$ for all $\Lambda \in \mathfrak{h}^{*}, h \in \mathfrak{h}$. For $z \in \mathfrak{g}$, write $z=z_{-}+z_{0}+z_{+}$, where $z_{ \pm} \in \mathfrak{r}_{ \pm}, z_{0} \in \mathfrak{h}$, and define an inner product (,) on g by: $\left(z, z^{\prime}\right)=\left(z_{-} \mid z_{-}^{\prime}\right)_{0}+\left(z_{0}, z_{0}^{\prime}\right)+\left(z_{+} \mid z_{+}^{\prime}\right)_{0}$. We will write $|z|$ for $(z, z)^{\frac{1}{2}}$, and also $|v|$ for $H(v, v)^{\frac{1}{2}}$, where $v \in L(\Lambda), A \in P_{+}$. Define $d \in \operatorname{Der}(\mathfrak{g})$ by $d(x)$ $=h t(\alpha) x$ for $x \in g_{\alpha}$, and $d \in \operatorname{End} L(\Lambda)$ by $d(v)=-h t(\Lambda-\lambda) v$ for $v \in L(\Lambda)_{\lambda}$.

Put $C_{1}=0$ if $n=1, \quad C_{1}=\left(\max _{1 \leqq i, j \leqq n}-\left(\alpha_{i} \mid \alpha_{j}\right)\right)^{\frac{1}{2}} \quad$ otherwise; $C_{2}=\max _{1 \leqq i \leqq n}\left|\alpha_{i}\right| ; C_{3}$ $=\max _{1 \leqq i \leqq n}\left|\nu^{-1}\left(\alpha_{i}\right)\right|$. Then we have, for all $\alpha \in Q_{+}$:

$$
\begin{align*}
T_{0}(\alpha) & \leqq \frac{1}{2} C_{1}^{2} h t(\alpha)^{2} ; \quad|\alpha| \leqq C_{2} h t(\alpha) ; \tag{3.2}\\
\left|v^{-1}(\alpha)\right| & \leqq C_{3} h t(\alpha)
\end{align*}
$$

Indeed, for $\alpha=\sum k_{i} \alpha_{i} \in Q_{+}$, we have:

$$
C_{1}^{2} h t(\alpha)^{2}-2 T_{0}(\alpha)=C_{1}^{2} \sum_{i} k_{i}^{2}+\sum_{i}\left(k_{i}^{2}-k_{i}\right)\left(\alpha_{i} \mid \alpha_{i}\right)+\sum_{i \neq j}\left(C_{1}^{2}+\left(\alpha_{i} \mid \alpha_{j}\right)\right) k_{i} k_{j} \geqq 0 .
$$

The rest of (3.2) is obvious.
Put $C_{4}=4 C_{1}+2 C_{2}+2 C_{3}$.
Below, we shall use the Schwarz inequality, etc., without comment.
Proposition 3.1. If $x \in \mathfrak{n}_{+}, z, z^{\prime} \in \mathfrak{g}, A \in P_{+}$and $v \in L(\Lambda)$, then:
a) $|[x, z]| \leqq C_{1}|x||d(z)|$.
b) $\quad\left|\left[z, z^{\prime}\right]\right| \leqq C_{4}\left(|d(z)|\left|z^{\prime}\right|+|z|\left|d\left(z^{\prime}\right)\right|\right)$.
c) $|x(v)| \leqq|A||x||v|+C_{4}|x||d(v)|$.
d) $|z(v)| \leqq 3|\Lambda||z||v|+C_{4}(|d(z)||v|+|z||d(v)|)$.

Proof. Let $x \in \mathfrak{n}_{+} ; y, y^{\prime} \in \mathfrak{n}_{-} ; z, z^{\prime} \in \mathfrak{g} ; h \in \mathfrak{h}$. We claim:

$$
|[x, y]|^{2} \leqq|x|^{2}\left(\Omega_{1}(y), y\right) .
$$

Indeed, we may assume that $|x|=1$, complete $\{x\}$ to an orthonormal basis of n_{+}, and apply Lemma 3.1b. Furthermore, $\left(\Omega_{1}(y), y\right) \leqq C_{1}^{2}|d(y)|^{2}$ by (3.2) and Lemma 2.1, yielding:

$$
\begin{equation*}
\left|[x, y]_{-}\right| \leqq C_{1}|x||d(y)| . \tag{3.3}
\end{equation*}
$$

Let $y^{\prime \prime} \in \mathfrak{n}_{-}$satisfy $d\left(y^{\prime \prime}\right)=\left[y, y^{\prime}\right]$. Then:

$$
\begin{aligned}
\left|\left[y, y^{\prime}\right]\right|^{2} & =\left|\left(\left[y, y^{\prime}\right], d\left(y^{\prime \prime}\right)\right)\right|=\left|\left(d\left(\left[y, y^{\prime}\right]\right), y^{\prime \prime}\right)\right|=\left|\left(\left[d(y), y^{\prime}\right]+\left[y, d\left(y^{\prime}\right)\right], y^{\prime \prime}\right)\right| \\
& =\left|\left(d(y),\left[\omega_{0}\left(y^{\prime}\right), y^{\prime \prime}\right]_{-}\right)-\left(d\left(y^{\prime}\right),\left[\omega_{0}(y), y^{\prime \prime}\right]_{-}\right)\right| \\
& \leqq|d(y)|\left|\left[\omega_{0}\left(y^{\prime}\right), y^{\prime \prime}\right]_{-}\right|+\left|d\left(y^{\prime}\right)\right|\left|\left[\omega_{0}(y), y^{\prime \prime}\right]_{-}\right| .
\end{aligned}
$$

Applying (3.3) to estimate the right-hand side, we obtain, using $d\left(y^{\prime \prime}\right)=\left[y, y^{\prime}\right]$:

$$
\begin{equation*}
\left|\left[y, y^{\prime}\right]\right| \leqq C_{1}\left(|d(y)|\left|y^{\prime}\right|+|y|\left|d\left(y^{\prime}\right)\right|\right) . \tag{3.4}
\end{equation*}
$$

Write $z=\Sigma z_{\alpha}, z^{\prime}=\Sigma z_{\alpha}^{\prime}$, where $z_{\alpha}, z_{\alpha}^{\prime} \in \mathfrak{g}_{\alpha}$. Then

$$
|[h, z]|^{2}=\Sigma|\alpha(h)|^{2}\left|z_{\alpha}\right|^{2} \leqq C_{2}^{2}|h|^{2} \Sigma h t(\alpha)^{2}\left|z_{\alpha}\right|^{2}=C_{2}^{2}|h|^{2}|d(z)|^{2},
$$

so:

$$
\begin{equation*}
|[h, z]| \leqq C_{2}|h||d(z)| . \tag{3.5}
\end{equation*}
$$

Using (1.2), we have:

$$
\begin{aligned}
\left|\left[z, z^{\prime}\right]_{0}\right| & \leqq \Sigma\left|\left(z_{\alpha} \mid z_{-\alpha}^{\prime}\right)\right|\left|v^{-1}(\alpha)\right| \leqq \Sigma\left|z_{\alpha}\right|\left|z_{-\alpha}^{\prime}\right|\left|v^{-1}(\alpha)\right| \leqq C_{3} \Sigma\left|z_{\alpha}\right|\left|z_{-\alpha}^{\prime}\right||h t(\alpha)| \\
& =C_{3} \Sigma\left|d\left(z_{\alpha}\right)\right|\left|z_{-\alpha}^{\prime}\right| \leqq C_{3}\left(\Sigma\left|d\left(z_{\alpha}\right)\right|^{2}\right)^{\frac{1}{2}}\left(\Sigma\left|z_{-\alpha}^{\prime}\right|^{2}\right)^{\frac{1}{2}} \\
& =C_{3}|d(z)|\left|z^{\prime}\right|,
\end{aligned}
$$

so:

$$
\begin{equation*}
\left|\left[z, z^{\prime}\right]_{0}\right| \leqq C_{3}|d(z)|\left|z^{\prime}\right| . \tag{3.6}
\end{equation*}
$$

Applying (3.3-5) and the triangle inequality to

$$
\left[z, z^{\prime}\right]_{-}=\left[z_{-}, z_{-}^{\prime}\right]+\left[z_{+}, z_{-}^{\prime}\right]_{-}+\left[z_{-}, z_{+}^{\prime}\right]_{-}+\left[z_{0}, z_{-}^{\prime}\right]+\left[z_{-}, z_{0}^{\prime}\right]
$$

we obtain:

$$
\begin{equation*}
\left|\left[z, z^{\prime}\right]\right| \leqq\left(2 C_{1}+C_{2}\right)\left(|d(z)|\left|z^{\prime}\right|+|z|\left|d\left(z^{\prime}\right)\right|\right) \tag{3.7}
\end{equation*}
$$

Using (3.6), (3.7) and an analogous estimate for $\left|\left[z, z^{\prime}\right]_{+}\right|$, the triangle inequality applied to $\left[z, z^{\prime}\right]=\left[z, z^{\prime}\right]_{-}+\left[z, z^{\prime}\right]_{0}+\left[z, z^{\prime}\right]_{+}$gives:

$$
\begin{equation*}
\left|\left[z, z^{\prime}\right]\right| \leqq\left(4 C_{1}+2 C_{2}+C_{3}\right)\left(|d(z)|\left|z^{\prime}\right|+|z|\left|d\left(z^{\prime}\right)\right|\right) \tag{3.8}
\end{equation*}
$$

Now, let $\Lambda \in P_{+}$. Using (3.2) and $T_{\Lambda}(\Lambda-\lambda)=T_{0}(\Lambda-\lambda)+(\Lambda \mid \Lambda-\lambda)$, we have, for all $\lambda \in P(L(A)) \subset \Lambda-Q_{+}$:

$$
T_{\Lambda}(\Lambda-\lambda) \leqq \frac{1}{2} C_{1}^{2}(h t(\Lambda-\lambda))^{2}+C_{3}|\Lambda| h t(\Lambda-\lambda)
$$

Hence, by (3.1) and Lemma 3.1 a, we have

$$
\begin{aligned}
|x(v)|^{2} & \leqq|x|^{2} H\left(\Omega_{0}(v), v\right) \leqq|x|^{2}\left(\frac{1}{2} C_{1}^{2}|d(v)|^{2}+C_{3}|A| H(-d(v), v)\right) \\
& \leqq|x|^{2}\left(|\Lambda||v|+\left(C_{1}+C_{3}\right)|d(v)|\right)^{2}
\end{aligned}
$$

so:

$$
\begin{equation*}
|x(v)| \leqq|\Lambda||x||v|+\left(C_{1}+C_{3}\right)|x||d(v)| . \tag{3.9}
\end{equation*}
$$

We also have, for $v=\sum v_{\lambda}, v_{\lambda} \in L(\Lambda)_{\lambda}$,

$$
\begin{aligned}
|h(v)|^{2} & =\Sigma|\lambda(h)|^{2}\left|v_{\lambda}\right|^{2} \leqq|h|^{2} \Sigma|\lambda|^{2}\left|v_{\lambda}\right|^{2} \leqq|h|^{2} \Sigma\left(|A|+C_{2} h t(\Lambda-\lambda)\right)^{2}\left|v_{\lambda}\right|^{2} \\
& =|h|^{2}| | \Lambda\left|v-C_{2} d(v)\right|^{2},
\end{aligned}
$$

so that:

$$
\begin{equation*}
|h(v)| \leqq|\Lambda||h||v|+C_{2}|h||d(v)| . \tag{3.10}
\end{equation*}
$$

We now take $y \in n_{-}$, and put $x^{\prime}=\omega_{0}(y)$ and $s=\left[y, x^{\prime}\right]$, so that $\omega_{0}\left(s_{-}\right)=-s_{+}$. Using the contravariance of H, we obtain:

$$
|y(v)|^{2}=\left|x^{\prime}(v)\right|^{2}+2 \operatorname{Re} H\left(s_{+}(v), v\right)+H\left(s_{0}(v), v\right)
$$

so:

$$
|y(v)|^{2} \leqq\left|x^{\prime}(v)\right|^{2}+2\left|s_{+}(v)\right||v|+\left|s_{0}(v)\right||v| .
$$

We estimate $\left|x^{\prime}(v)\right|$ and $\left|s_{+}(v)\right|$ using (3.3 and 9), and $\left|s_{0}(v)\right|$ using (3.6 and 10). From this, we obtain:

$$
\begin{equation*}
|y(v)| \leqq|\Lambda||y||v|+\left(C_{1}+C_{3}\right)|d(y)||v|+\left(C_{1}+C_{2}+C_{3}\right)|y||d(v)| . \tag{3.11}
\end{equation*}
$$

Finally, (3.9-11) combine to show:

$$
\begin{equation*}
|z(v)| \leqq 3|\Lambda||z||v|+\left(C_{1}+C_{3}\right)|d(z)||v|+2\left(C_{1}+C_{2}+C_{3}\right)|z||d(v)| . \tag{3.12}
\end{equation*}
$$

(3.3, 8, 9 and 12) prove the proposition.

Remark. It is not difficult to sharpen these inequalities. Also, using $|H(v, d(v))| \leqq|d(v)|^{2}$, we have an alternative version of (3.9):

$$
\begin{equation*}
|x(v)| \leqq\left(|\Lambda|+C_{1}+C_{3}\right)|x||d(v)| . \tag{3.13}
\end{equation*}
$$

§4. A convexity theorem

4.1. We first recall the construction of the group G associated to g and its unitary form K, and related results from [11]. Put $V=\oplus_{\Lambda \in P_{+}} L(\Lambda)$ and $V^{0}=$ $\sum \mathbb{C} v_{A} \subset V$. We endow V and \mathfrak{g} with the finest topology which induces the metric topology on finite-dimensional subspaces. Since the elements e_{i} and f_{i} are locally nilpotent on V, we have the one-parameter groups $\exp t e_{i}$ and $\exp t f_{i}$ $(t \in \mathbb{C})$ for all i; they generate a subgroup G of $G L(V)$. G acts on each $L(\Lambda)$, $\Lambda \in P_{+}$, say by π_{A}, and also on \mathfrak{g} via the adjoint action Ad. We have: $\pi_{A}(\operatorname{Ad}(g) x)=\pi_{A}(g) \pi_{A}(x) \pi_{A}(g)^{-1}$ for $g \in G$ and $x \in \mathfrak{g}$.

The involution ω_{0} lifts to G; let \mathfrak{f} and K be its fixed point sets in \mathfrak{g} and G. Note that K preserves the Hermitian forms (.|. $)_{0}$ on g and H on $L(\Lambda)$.

Let $B=\left\{g \in G \mid g\left(V^{0}\right) \subset V^{0}\right\}, H=B \cap \omega_{0}(B)$, and let N be the normalizer in G of H. These definitions are equivalent to the ones in [11]. (B is denoted B_{+}in [111.)
$\mathfrak{h} \subset \mathfrak{g}$ is $\operatorname{Ad}(N)$-invariant and $\operatorname{Ad}(H)$-fixed. Hence, we have an action of the Weyl group $W:=N / H$ on \mathfrak{h}; moreover, this action is faithful. W is generated by the set $S=\left\{r_{i}\right\}_{i=1}^{n}$, where $r_{i}(h)=h-\alpha_{i}(h) h_{i}(h \in \mathfrak{h})$, and (W, S) is a Coxeter system (cf. [8] or [9]). $C:=\left\{h \in \mathfrak{b}_{\mathrm{R}} \mid x_{i}(h) \geqq 0\right.$ for $\left.i=1, \ldots, n\right\}$ is called the fundamental chamber for W. The set $X=\bigcup_{w \in W} w(C)$ is a convex cone in $\mathfrak{h}_{\mathbb{R}}$, called the Tits cone. Note that $X=\mathfrak{h}_{\mathbb{R}}$ if and only if $\operatorname{dim} \mathfrak{g}<\infty$ (cf. [9]). Let \leqq be the Bruhat order on W (see e.g. [10]).

For $w \in W$, put $K_{w}=K \cap B w B$. Then [11]:

$$
\begin{equation*}
K=\coprod_{w \in W} K_{w} . \tag{4.1}
\end{equation*}
$$

Fix $\Lambda \in P_{+}$. Since $G=K B[11]$, and hence $K_{w} B=B w B$, we deduce:

$$
\begin{equation*}
\mathbb{C}^{*} K_{w}\left(v_{A}\right)=\mathbb{C}^{*} B w B\left(v_{A}\right) . \tag{4.2}
\end{equation*}
$$

For $v \in L(\Lambda)$, denote by supp v the set of all $\lambda \in \mathfrak{b}^{*}$ such that v has a non-zero component in $L(\Lambda)_{\lambda}$. We have by [11, Theorem 1]:

$$
\begin{equation*}
\text { If } v \in K_{w}\left(v_{A}\right) \text {, then } \operatorname{supp} v \subset\left[\left\{w^{\prime}(A) \mid w^{\prime} \leqq w\right\}\right] \text {. } \tag{4.3}
\end{equation*}
$$

(Here and further on, the convex hull of a subset M of a real vector space is denoted by $[M]$.)

Put $\tilde{H}=\operatorname{Hom}\left(Q, \mathbb{C}^{*}\right)$; this is a group isomorphic to $\left(\mathbb{C}^{*}\right)^{n}$. Define a homomorphism Ad: $\tilde{H} \rightarrow \operatorname{Aut}(\mathfrak{g})$ by $\operatorname{Ad}(h) x=h(\alpha) x$ if $x \in \mathrm{~g}_{\alpha}$, and an action of \tilde{H} on $L(\Lambda)$ by: $h(v)=h(\beta) v$ if $v \in L(\Lambda)_{\Lambda_{+} \rho}$. \hat{H} normalizes G and B under these actions
and commutes with H; since the centralizer of H in G is H [11], we have, using (4.2):

$$
\begin{equation*}
\mathbb{C}^{*} \tilde{H} K_{w}\left(v_{A}\right)=\mathbb{C}^{*} K_{w}\left(v_{A}\right) . \tag{4.4}
\end{equation*}
$$

There exists a finest topology on G such that (cf. [10]):
a) G is a topological group;
b) the maps $t \mapsto \exp t e_{i}(i=1, \ldots, n)$ are continuous on \mathbb{C} with the usual topology.

We fix this topology on G. Then G is Hausdorff and the action of G on V and \mathfrak{g} is continuous. ω_{0} is continuous and hence K is a closed subgroup of G. Furthermore, each $\bar{K}_{r_{i}}$ is a compact subgroup of K, and the commutator subgroup (\bar{K}_{r}, \bar{K}_{r}) is isomorphic to $S U_{2}$ as a topological group. (Here and further on, \bar{M} denotes the closure of M.) Let $w \in W$, and write $w=r_{i_{1}} \ldots r_{i_{s}}$, where s is minimal. Then

$$
K_{w}=K_{r_{i_{1}}} \ldots K_{r_{i_{s}}} .
$$

This is shown by the same argument as in [13, Sect.8]. In particular, \bar{K}_{w} is compact.

Fix $w \in W$. Put $L(\Lambda ; w)=\underset{\lambda \geqq w(\Lambda)}{\oplus} L(\Lambda)_{\lambda} ;$ clearly, $\operatorname{dim} L(\Lambda ; w)<\infty$. Then $B w B\left(v_{A}\right) \subset L(\Lambda ; w)$ is irreducible in the Zariski topology (see [11, Theorem 1]). Since the closure of $B w B\left(\mathbb{C} v_{A}\right)$ in the Zariski topology is $\bigcup_{w^{\prime} \leq w} B w^{\prime} B\left(\mathbb{C} v_{A}\right)$ [11, Theorem 1c], we obtain, using (4.2):

There exists $v \in K_{w}\left(v_{A}\right)$ such that $\operatorname{supp} v \supset\left\{w^{\prime}(\Lambda) \mid w^{\prime} \leqq w\right\}$.
4.2. Denote by p the projection of \mathfrak{g} on \mathfrak{b} with respect to the root space decomposition. Now we can prove the following convexity theorem.

Theorem 2. a) If $h \in C$ and $w \in W$, then

$$
\begin{equation*}
p\left(\operatorname{Ad}\left(\overline{K_{w}}\right) h\right)=\left[\left\{w^{\prime}(h) \mid w^{\prime} \leqq w\right\}\right] . \tag{4.6}
\end{equation*}
$$

b) If $h \in X$, then

$$
\begin{equation*}
p(\operatorname{Ad}(K) h)=[W(h)] . \tag{4.7}
\end{equation*}
$$

Proof. Formula (4.7) follows from (4.6) and the following
Lemma 4.1. If $w_{1}, w_{2} \in W$, then there exists $w \in W$ such that $w \geqq w_{1}$ and $w \geqq w_{2}$.
Proof of Lemma 4.1. Induction on $l\left(w_{1}\right)+l\left(w_{2}\right)$ using the following two facts: $l\left(r_{i} w\right)>l(w)$ implies $r_{i} w>w ; r_{i} w \geqq w, w^{\prime}$ implies $r_{i} w \geqq r_{i} w^{\prime}$.

To prove (4.6), we employ the moment map. Let a be if or $\mathfrak{h}_{\mathbb{R}}$. Fix $\Lambda \in P_{+}$. We define the moment map M_{a} from the projective space $\mathbb{P}(L(\Lambda))$ to \mathfrak{a} by:

$$
\left(x \mid M_{\mathbf{a}}(v)\right)_{0}=H(x(v), v) / H(v, v) \quad \text { for } x \in \mathfrak{a}
$$

(we can make this definition thanks to Theorem 1). Notice that $M_{i t}$ is $K-$ equivariant and that $M_{i t}\left(v_{A}\right)=\nu^{-1}(\Lambda)$. We also have:

$$
\begin{equation*}
M_{\mathfrak{i} \mathbb{R}}\left(\sum_{\lambda} v_{\lambda}\right)=\sum_{\lambda} H\left(v_{\lambda}, v_{\lambda}\right) v^{-1}(\lambda) / \sum_{\lambda} H\left(v_{\lambda}, v_{\lambda}\right), \quad \text { where } v_{\lambda} \in L(\Lambda)_{\lambda} . \tag{4.8}
\end{equation*}
$$

Let $w \in W$. The crucial observation is:

$$
\begin{equation*}
M_{\text {lo }}\left(\mathbb{C}^{*} \bar{K}_{w}\left(v_{A}\right)\right)=\left[\left\{w^{\prime}\left(v^{-1}(\Lambda)\right) \mid w^{\prime} \leqq w\right\}\right] . \tag{4.9}
\end{equation*}
$$

The inclusion \subset in (4.9) follows from (4.8) and (4.3). On the other hand, by Theorem 2 from [1] applied to the action of the complex torus \tilde{H} on the finitedimensional projective space $\mathbb{P}(L(\Lambda ; w)), M_{\text {GR }}(\tilde{H}(v))$ is convex for every non zero $v \in L(\Lambda ; w)$. The reverse inclusion now follows from (4.4), (4.5) and (4.8).

The following properties of the moment map are clear:

$$
\begin{aligned}
M_{\mathfrak{\dagger} \mathbb{R}} & =p \circ M_{i t} \\
M_{i \mathbf{1}}\left(k\left(v_{A}\right)\right) & =\operatorname{Ad}(k) v^{-1}(\Lambda) \quad \text { for } k \in K .
\end{aligned}
$$

Using this, (4.9) implies (4.6) for all $h \in C$ such that $\alpha_{i}(h) \in \mathbb{Q}(i=1, \ldots, n)$. Using the compactness of $\overline{K_{w}}$, we deduce that (4.6) holds for all $h \in C$.

Remarks. a) If $\operatorname{dim} \mathfrak{g}<\infty$, then K is a compact group and $X=h_{\mathbb{R}}$; in this case, (4.7) is due to Schur-Horn-Kostant and (4.6) to Heckman (references may be found in [1]).
b) We have $p(\operatorname{Ad}(K) X)=X$ by Theorem 2 . What are $[\operatorname{Ad}(K) X]$ and $\{x \in i f \mid p(\operatorname{Ad}(K) x) \subset X\}$?
c) Let $h \in C$ have finite stabilizer in W and let $h^{\prime} \in h+\sum_{s} \mathbb{R} h_{s}$. Put

$$
\left|h^{\prime}\right|_{s}=\sup _{k \in K} \Lambda_{s}\left(p\left(\operatorname{Ad}(k) h^{\prime}\right)\right) \quad \text { for } s=1, \ldots, n .
$$

Then the following are equivalent:
(i) $h^{\prime} \in[\operatorname{Ad}(K) h]$.
(ii) $h^{\prime} \in[W(h)]$.
(iii) $\left|h^{\prime}\right|_{s} \leqq \Lambda_{s}(h) \quad$ for $s=1, \ldots, n$.

This is immediate from Theorem 2, W $\left(h^{\prime}\right) \subset \operatorname{Ad}(K) h^{\prime}$, and:

$$
[W(h)]=\bigcap_{w \in W} w\left(h-\sum_{s} \mathbb{R}_{+} h_{s}\right), \quad \text { where } \mathbb{R}_{+}=\{t \in \mathbb{R} \mid t \geqq 0\} .
$$

The latter formula follows from [14, Proposition 2.4] and the fact that if M is a bounded subset of $[W(h)]$, then $\rho\left(h-w\left(h^{\prime}\right)\right) \rightarrow \infty$ as $l(w) \rightarrow \infty$, uniformly for $h^{\prime} \in M$.
d) The previous remark implies that, in the case $\operatorname{dim} g<\infty$, one has for $h \in \mathfrak{h}_{\mathbb{R}}$ (using that all K-orbits in $i \neq$ intersect $\left.\mathfrak{h}_{\mathbb{R}}\right):[\operatorname{Ad}(K) h]=\{x \in i f \mid(p(\operatorname{Ad}(k) x))$ $\leqq \Lambda_{s}(h)$ for $s=1, \ldots, n$ and all $\left.k \in K\right\}$.
e) Using the proposition below and the fact that $M_{\mathrm{b}_{\mathbb{R}}}\left(e^{h}(v)\right)$ $=\frac{1}{2} \operatorname{grad} \log H\left(e^{h}(v), e^{h}(v)\right)$ for $h \in \mathfrak{h}_{\mathbb{R}}$, one can avoid the reference to [1].

Proposition 4.1. Let V be a finite-dimensional real vector space and let S be a finite subset of V^{*} such that $[S]$ has non-empty interior. Let $c_{\lambda}(\lambda \in S)$ be positive real numbers. Put $G(v)=\sum_{\lambda \in S} c_{\lambda} e^{\lambda(v)}$ and $F(v)=\log G(v)$. Then the image of $(\operatorname{grad} F): V \rightarrow V^{*}$ is the interior of $[S]$.

Proof. First, let $f: V \rightarrow \mathbb{R}$ be an arbitrary convex function. For $l \in V^{*}$, put $\tilde{f}(l)$ $=\inf \{f(v)-l(v) \mid v \in V\} \in \mathbb{R} \cup\{-\infty\} ;$ put $T_{f}=\left\{l \in V^{*} \mid \tilde{f}(l)>-\infty\right\}, T_{f}^{\prime}=\left\{l \in T_{f} \mid f(v)\right.$ $-l(v)=\tilde{f}(l)$ for some $v \in V\}$. Then:

$$
\begin{equation*}
\text { Interior }\left(T_{f}\right) \subset T_{f}^{\prime} \subset T_{f} \tag{4.10}
\end{equation*}
$$

Indeed, if $l \in T_{f} \backslash T_{f}^{\prime}$, choose $v_{1}, v_{2}, \ldots \in V$ such that $f\left(v_{n}\right)-l\left(v_{n}\right) \rightarrow \tilde{f}(l)$. The continuity of f forces $\left|v_{n}\right| \rightarrow \infty$, so that by choosing a subsequence if necessary, there exists $l^{\prime} \in V^{*}$ such that $l^{\prime}\left(v_{n}\right) \rightarrow+\infty$. Hence, $l+\varepsilon l^{\prime} \notin T_{f}$ for all $\varepsilon>0$, and so $l \notin \operatorname{Interior}\left(T_{f}\right)$. This proves (4.10).

Let G and F satisfy the hypothesis of the proposition. Then it is easy to check that $T_{F}=[S]$ and that F is of class C^{∞}. Moreover, one calculates that

$$
2 G^{2}\left(D_{\beta}^{2} F\right)=\sum_{\lambda, \mu \in \mathbf{S}} c_{\lambda} c_{\mu}(\lambda(\beta)-\mu(\beta))^{2} e^{\lambda+\mu}
$$

so that $\left(D_{\beta}^{2} F\right)(v)>0$ for all $\beta, v \in V$ such that $\beta \neq 0$. In particular, F is convex and of class C^{1}, and therefore $T_{F}^{\prime}=(\operatorname{grad} F)(V)$. Moreover, $D(\operatorname{grad} F)$ is surjective at each $v \in V$, so that $\operatorname{grad} F$ is an open map and hence $(\operatorname{grad} F)(V)$ is open. Applying (4.10), the proposition follows.
4.3. Example. Let $K \subset G L_{r}(\mathbb{C})$ be a connected simply-connected compact simple Lie group, with Lie algebra $\mathfrak{f} \subset \mathfrak{g} \mathrm{l}_{r}(\mathbb{C})$, and let T be a maximal torus of K, with Lie algebra $\mathfrak{t} \subset \mathfrak{f}$. For a subset A of a finite-dimensional vector space U over \mathbb{C}, we denote by \tilde{A} the set of all polynomial loops on A, i.e., the set of all maps $f: S^{1} \rightarrow A$ such that $f\left(e^{i \theta}\right)=p\left(e^{i \theta}, e^{-i \theta}\right)$ for some polynomial map p : $\mathbb{C}^{2} \rightarrow U$. If $f \in \tilde{U}$, then we write f^{\prime} for $\frac{d}{d \theta} f\left(e^{i \theta}\right)$ and $\int f$ for $(2 \pi)^{-1} \int_{0}^{2 \pi} f\left(e^{i \theta}\right) d \theta$. We regard $G L_{r}(\mathbb{C})$ and $g \underline{l}_{r}(\mathbb{C})$ as subsets of $\operatorname{Mat}_{r}(\mathbb{C})$. Using pointwise multiplication and addition in $\overparen{\operatorname{Mat}_{r}(\mathbb{C})}, \overparen{G L_{r}(\mathbb{C})}$ becomes a group and $\overparen{\mathrm{gl}_{r}(\mathbb{C})}$ a Lie algebra.

The unitary form of the Kac-Moody algebra $\hat{\mathfrak{g}}$ associated to the extended Cartan matrix of K (a "non-twisted affine Lie algebra") is $\hat{\mathfrak{f}}:=\mathbb{R} d \oplus \tilde{\mathbf{f}} \oplus \mathbb{R} c$, with bracket (for $x, y \in \tilde{f}$):

$$
[x, y]=(x y-y x)+\left(\int \operatorname{tr}\left(x^{\prime} y\right)\right) c ; \quad[d, x]=x^{\prime} ; \quad[c, \hat{\jmath}]=(0)
$$

We put $\hat{\mathfrak{t}}:=\mathbb{R} d \oplus \mathrm{t} \oplus \mathbb{R} c$ (its complexification is the Cartan subalgebra of $\hat{\mathfrak{g}}$). We define a $\hat{\mathbb{f}}$-invariant symmetric \mathbb{R}-bilinear form (.|.) on $\hat{\mathfrak{f}}$ by (for $x, y \in \hat{f}$):

$$
\begin{equation*}
(x \mid y)=\int \operatorname{tr}(x y) ; \quad(c \mid d)=1 ; \quad(x \mid c)=(x \mid d)=(c \mid c)=(d \mid d)=0 \tag{4.11}
\end{equation*}
$$

As we shall see in a moment, the unitary form \hat{K} of the group \hat{G} associated to $\hat{\mathfrak{g}}$ is a central extension $\sigma: \hat{K} \rightarrow \hat{K}$ of the loop group \tilde{K}. (One can show that $\operatorname{Ker} \sigma \simeq S^{1}$.) We proceed to compute the adjoint representation Ad of \hat{K} on \hat{f}.

We extend the obvious action of \tilde{f} on $\widetilde{\mathbb{C}^{r}}$ to a representation $\hat{\pi}$ of $\hat{\mathrm{f}}$ by putting $\hat{\pi}(c)=0, \hat{\pi}(d) f=f^{\prime}$. Then $\hat{\pi}$ is an integrable representation (cf. [11]), and hence induces a representation $\hat{\pi}$ of \hat{K} on $\widetilde{\mathbb{C}^{r}}$ satisfying:

$$
\hat{\pi}(\operatorname{Ad}(k) z)=\hat{\pi}(k) \hat{\pi}(z) \hat{\pi}(k)^{-1} \quad \text { for } k \in \hat{K}, \alpha \in \hat{\mathbf{I}}
$$

On the other hand, it is easy to check that the obvious representation $\tilde{\pi}$ of the group \tilde{K} on $\widetilde{\mathbb{C}^{r}}$ is faithful, and that $\hat{\pi}(\hat{K}) \subset \tilde{\pi}(\tilde{K})$. Hence, there exists a homomorphism $\sigma: \widehat{K} \rightarrow \tilde{K}$ such that $\hat{\pi}=\tilde{\pi} \circ \sigma$; we write \tilde{k} for $\sigma(k)$.

For $a \in \tilde{K}$ and $x \in \tilde{f}$, one easily calculates:

$$
\tilde{\pi}(a) \hat{\pi}(x) \tilde{\pi}(a)^{-1}=\hat{\pi}\left(a \times a^{-1}\right) ; \quad \tilde{\pi}(a) \hat{\pi}(d) \tilde{\pi}(a)^{-1}=\hat{\pi}\left(d-a^{\prime} a^{-1}\right) .
$$

For $k \in \hat{K}$ and $x \in \hat{I}$, we find:

$$
\hat{\pi}(\operatorname{Ad}(k) x)=\hat{\pi}(k) \hat{\pi}(x) \hat{x}(k)^{-1}=\tilde{\pi}(\tilde{k}) \hat{\pi}(x) \tilde{\pi}(\tilde{k})^{-1}=\hat{\pi}\left(\tilde{k} x \tilde{k}^{-1}\right)
$$

and, similarly, $\hat{\pi}(\operatorname{Ad}(k) d)=\hat{\pi}\left(d-\tilde{k}^{\prime} \tilde{k}^{-1}\right)$. Now, $\operatorname{Ker}(\hat{\pi})=\mathbb{R} c$, and (.|.) is $\operatorname{Ad}(\hat{K})-$ invariant. Hence, using (4.11), we obtain for $k \in \hat{K}$ (cf. [2]):

$$
\begin{align*}
& \operatorname{Ad}(k) d=d-\tilde{k}^{\prime} \tilde{k}^{-1}-\frac{1}{2}\left(\int \operatorname{tr}\left(\tilde{k}^{\prime} \tilde{k}^{-1}\right)^{2}\right) c ; \\
& \operatorname{Ad}(k) x=\tilde{k} x \tilde{k}^{-1}+\left(\int \operatorname{tr}\left(\tilde{k}^{\prime} x \tilde{k}^{-1}\right)\right) c \quad(x \in \tilde{f}) ; \tag{4.12}\\
& \operatorname{Ad}(k) c=c .
\end{align*}
$$

We proceed to write (4.7) more explicitly. Put $Q^{\vee}=\{\gamma \in \mathrm{t} \mid \exp (2 \pi \gamma)=1 \in K\}$, and define an injective homomorphism $\psi: Q^{\vee} \rightarrow \tilde{K}$ by: $(\psi(\gamma))\left(e^{i \theta}\right)=\exp (\theta \gamma)$. Now, regard K as the group of constant loops in \tilde{K}. Letting N (resp. \tilde{N}) be the normalizer in K (resp. $\tilde{K})$ of T, it is easy to see that $\tilde{T}=T \times \psi\left(Q^{\vee}\right)$ and \tilde{N} $=N \ltimes \psi\left(Q^{\vee}\right)$. Put

$$
\hat{T}=\{k \in \hat{K} \mid \operatorname{Ad}(k) x=x \text { for all } x \in \hat{\mathfrak{t}}\}, \quad \hat{N}=\{k \in \hat{K} \mid \operatorname{Ad}(k) \hat{\mathfrak{t}}=\hat{\mathfrak{t}}\} .
$$

Using (4.12), we have:

$$
\hat{T}=\sigma^{-1}(T), \quad \hat{N}=\sigma^{-1}(\tilde{N}) .
$$

Since K is connected and simply-connected, the standard construction of \hat{N} using the Chevalley generators of $\hat{\mathfrak{g}}$ shows that $\tilde{N} \subset \sigma(\hat{N})$. Putting $W=N / T$ and $\hat{W}=\hat{N} / \hat{T}$, we therefore have:

$$
\begin{align*}
& \sigma \text { induces an isomorphism } \hat{W} \rightarrow \tilde{N} / T ; \\
& \tilde{N} / T=\left(N \ltimes \psi\left(Q^{\vee}\right)\right) / T \cong W \ltimes Q^{\vee} . \tag{4.13}
\end{align*}
$$

Moreover, \hat{W} is the Weyl group of \hat{K}, and its natural action on $\hat{\mathrm{t}}$ is that described in Sect. 4.1.

Theorem 2c in [11] implies that $\tilde{K}=\tilde{N} \sigma(\hat{K})$. But, as we have seen above, \tilde{N} $=\sigma(\hat{N}) \subset \sigma(\hat{K})$. Hence, we have:

$$
\begin{equation*}
\tilde{K}=\sigma(\hat{K}) . \tag{4.14}
\end{equation*}
$$

Let p be the orthogonal projection of t onto t (i.e., the projection along $[\mathrm{t}, \mathrm{f}]$). Then the projection of Sect. 4.2, denoted here by \hat{p}, is given by:

$$
\hat{p}(\lambda d+x+\mu c)=\lambda d+p\left(\int x\right)+\mu c .
$$

Now, let $x \in t$; then $d+x \in \pm i X$, where X is the Tits cone (cf. [9, Proposition 1.9]). Applying (4.7), we obtain:

$$
\begin{equation*}
\hat{p}(\operatorname{Ad}(\hat{K})(d+x))=[\hat{W}(d+x)] \quad \text { for all } x \in t . \tag{4.15}
\end{equation*}
$$

Finally, taking $x=0$ and transforming (4.15) using (4.12-14), we obtain:

$$
\begin{equation*}
\left\{\left.p\left(\int a^{\prime} a^{-1}\right)+\frac{1}{2}\left(\int \operatorname{tr}\left(a^{\prime} a^{-1}\right)^{2}\right) c \right\rvert\, a \in \tilde{K}\right\}=\left[\left\{\left.\gamma+\frac{1}{2}(\gamma \mid \gamma) c \right\rvert\, \gamma \in Q^{\vee}\right\}\right], \tag{4.16}
\end{equation*}
$$

which is due to Atiyah-Pressley (according to Guillemin). ${ }^{1}$

§ 5. On a $K A K$-decomposition

The following results are due to the second author [12]. Proof will appear elsewhere.

We regard G and \tilde{H} as subgroups of $G L(V), V=\oplus_{A \in P_{+}} L(A)$, so that $\tilde{H} \cap G$ $=(I)$ and \tilde{H} normalizes G, defining $\tilde{G}:=\tilde{H} \ltimes G \subset G L(V)$. We denote the action of \tilde{G} on $L(\Lambda)$ by π_{A}.

If \mathscr{H} is a Hilbert space, let $\mathscr{B}(\mathscr{H})$ be the algebra of all bounded operators on \mathscr{H}. For $\Lambda \in P_{+}$, let \mathscr{H}_{A} be the completion of the pre-Hilbert space $L(\Lambda)$ with inner product $H(.,$.$) . Put \tilde{G}^{\text {cont }}=\left\{g \in \tilde{G} \mid \pi_{\Lambda}(g)\right.$ is a bounded operator on $L(\Lambda)$ for all $\left.\Lambda \in P_{+}\right\}$, and define $\pi_{A}: \tilde{G}^{\text {cont }} \rightarrow \mathscr{B}\left(\mathscr{H}_{A}\right), \Lambda \in P_{+}$, in the obvious way. Then $K \subset \tilde{G}^{\text {cont }}$ acts unitarily on $\mathscr{H}_{\boldsymbol{A}}$.

Let \bar{K} be the closure, in the strong operator topology, of

$$
\left\{\left(\pi_{A}(k), \pi_{A}(k)^{*}\right)_{A \in P_{+}} \mid k \in K\right\} \subset \mathscr{B}\left(\oplus_{A \in P_{+}}\left(\mathscr{H}_{A} \oplus \mathscr{H}_{A}\right)\right) .
$$

We identify K with a subset of \bar{K}, and extend the π_{A} to \bar{K} in the obvious way. We have the following strong "rigidity" statement.

Proposition 5.1. A sequence k_{1}, k_{2}, \ldots of elements of \bar{K} converges in the strong operator topology if and only if the sequences

$$
\pi_{A_{i}}\left(k_{1}\right) v_{A_{i}}, \pi_{A_{i}}\left(k_{2}\right) v_{A_{i}}, \ldots \quad \text { and } \quad \pi_{A_{i}}\left(k_{1}\right)^{*} v_{\Lambda_{i}}, \pi_{A_{i}}\left(k_{2}\right)^{*} v_{A_{i}}, \ldots
$$

converge, in norm, for all $i, 1 \leqq i \leqq n$.
Put $\tilde{G}^{c p t}=\left\{g \in \tilde{G}^{\text {cont }} \mid \pi_{A}(g)\right.$ is a compact operator for all $\left.\Lambda \in P_{+}\right\}$, and let $\bar{G}^{c p t}$ be the norm-closure of $\tilde{G}^{\text {cpt }}$ in $\mathscr{B}\left(\bigoplus_{i=1}^{n} \mathscr{H}_{A_{2}}\right)$, so that $\bar{G}^{c p t}$ is a semigroup of compact operators. Then $\bar{G}^{\text {cpt }}$ acts on $\mathscr{H}_{\Lambda}, \Lambda \in P_{+}$, in a natural way, denoted by π_{A}. Let A_{c} be the norm closure of $(\tilde{H} \times H) \cap \tilde{G}^{c p t}$ in $\mathscr{B}\left(\underset{i=1}{\oplus_{i}} \mathscr{H}_{A_{i}}\right)$. Then $\bar{G}^{c p t}$ $=\bar{K} A_{c} \bar{K}$ in the following sense.

[^1]Theorem 3. If $g \in \bar{G}^{c p t}$, then there exist $k_{1}, k_{2} \in \bar{K}$ and $a \in A_{c}$ such that for all $\Lambda \in P_{+}$:
and

$$
\pi_{A}(g)=\pi_{A}\left(k_{1}\right) \pi_{A}(a) \pi_{A}\left(k_{2}\right)^{*}
$$

$$
\pi_{A}(a) v_{\Lambda}=\left\|\pi_{\Lambda}(g)\right\| v_{A} .
$$

Moreover, a is uniquely determined by these conditions, and is, in the normtopology on $\mathscr{B}\left(\oplus_{i=1}^{n} \mathscr{H}_{A_{i}}\right)$, a continuous function of g.

References

1. Atiyah, M.F.: Convexity and commuting hamiltonians. Bull. London Math. Soc. 14, 1-15 (1982)
2. Frenkel, I.B.: Orbital theory for affine Lie algebras. Preprint
3. Gabber, O., Kac, V.G.: On defining relations of certain infinite-dimensional Lie algebras. Bull. Amer. Math. Soc., New ser. 5, 185-189 (1981)
4. Garland, H.: Arithmetic theory of loop algebras. J. of Algebra 53, 480-551 (1978)
5. Guillemin, V., Sternberg, S.: Convexity properties of the moment mapping. Invent. Math. 67, 491-513 (1982)
6. Kac, V.G.: Simple irreducible graded Lie algebras of finite growth. Math. USSR-Izvestija 2, 1271-1311 (1968)
7. Kac, V.G.: Infinite-dimensional Lie algebras and Dedekind's η-function. J. Functional Anal. Appl. 8, 68-70 (1974)
8. Kac, V.G.: Infinite-dimensional algebras, Dedekind's η-function, classical Möbius function and the very strange formula. Adv. in Math. 30, 85-136 (1978)
9. Kac, V.G., Peterson, D.H.: Infinite-dimensional Lie algebras, theta functions and modular forms. Adv. in Math,, to appear
10. Kac, V.G., Peterson, D.H.: Regular functions on certain infinite-dimensional groups. In: Arithmetic and Geometry, pp. 141-166. Boston: Birkhäuser 1983
11. Peterson, D.H., Kac, V.G.: Infinite flag varieties and conjugacy theorems. Proc. Natl. Acad. Sci. USA 80, 1778-1782 (1983)
12. Peterson, D.H.: Characters and a $K A K$-decomposition for certain infinite-dimensional groups (in preparation)
13. Steinberg, R.: Lectures on Chevalley groups. Yale Univ. Lect. Notes, 1967
14. Looijenga, E.: Invariant theory for generalized root systems. Invent. Math. 61, 1-32 (1980)
15. Atiyah, M.F., Pressley, A.N.: Convexity and loop groups. In: Arithmetic and Geometry, pp. 33-63. Boston: Birkhäuser 1983

Oblatum 26-V-1983

Note added in proof

(a) We take this opportunity to correct a misprint in [11]: in line 5 of the proof of Theorem 1, replace $\mathbb{Q}(\lambda-S(v))$ by $\mathbb{Q}_{+}(-\lambda+S(v))$.
(b) We have recently computed the cohomology ring of the topological space K and of the Lie algebra \mathfrak{g}^{\prime}. In particular, it turned out that $H^{*}\left(\mathfrak{g}^{\prime}, \mathbb{C}\right) \simeq H^{*}(K, \mathbb{C})$, and that in the case when A is indecomposable and not of finite or affine type, the algebra $H^{*}(K, \mathbb{C})$ is a free graded commutative algebra on ε generators of degree 3 and a_{j} generators of degree $2 j, j=2,3, \ldots$, where $\varepsilon=1$ or 0 according as A is symmetrisable or not and a_{2}, a_{3}, \ldots are determined from the formula:

$$
\sum_{w \in W} t^{l(w)}=(1-t)^{-n}\left(1-t^{2}\right)^{\varepsilon-a_{2}}\left(1-t^{3}\right)^{-a_{3}}\left(1-t^{4}\right)^{-a_{4}} \ldots
$$

[^0]: * Partially supported by NSF grant MCS-8203739

[^1]: 1 Note added in proof. This result has already appeared in [15]

