
Invent. math. 79, 253-291 (1985) Inventiones 
mathematicae 
�9 Springer-Verlag 1985 

Modules of finite projective dimension 
with negative intersection multiplicities 

Sankar P. Duttal ,  M. Hochster 1,2, and J.E. McLaughlin 

i The University of Pennsylvania, Philadelphia, PA 
and the Institute for Advanced Study, Princeton, NJ 08540, USA 
2 The University of Michigan, Ann Arbor, MI 48109, USA 

1. Introduction 

Let Xi, 1 < i < 4 ,  be indeterminates over a field K. Let S=K[X1, X2, X3, X43 
4 

and q-- ~ XIS. Throughout  this paper R shall denote the local three-dimen- 
i = l  

sional hypersurface 

SJ(XIX4-X2X3). 

Let x~ be the image of X~ in R. 
The main object of this paper is to study modules of finite length and finite 

projective dimension over R. One consequence of our study will be counterex- 
amples to several conjectures concerning the behavior of intersection multiplic- 
ities for modules of finite projective dimension. 

Let "/" denote length. If S is a Noetherian ring, M, N are finitely generated 
S-modules, l(M| ) is finite, and d=pdsM<~, we may define, following 
Serre IS] 

d 

Zs(M, N)= z(M, N) = ~ ( -  1)'/(TorS(M, N)). 
i = 0  

When S is regular, pdsM<dimS automatically. For regular local rings 
(S, m) such that the m-adic completion S of S is a formal power series ring over 
a field or discrete valuation ring, Serre proved that 

1) if dimM+dimN<dimS, then )~(M,N)=0. 

2) if dimM+dimN=dimS, then z (M,N)>0 .  

Serre proved that the hypothesis l (M@sN)<oo  implies d imM 
+ d i m N < d i m S  for any regular local ring S, and he conjectured that 1) and 2) 
remain valid for an arbitrary regular local ring S. This is still an open question. 

1 The first two authors were supported in part by grants from the National Science Foundation 
2 The second author was a Guggenheim Fellow while this research was being carried out 
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See [W], IS], [H,] ,  [H2], [H3], [M], [L], [PS2], [DI], [D2], [D3] , [D4], and 
[Ds] for additional background. 

It is natural to ask whether 1) and 2) continue to hold when the regularity 
condition on S is dropped, but it is required instead that pdsM be finite. 
Questions of this sort arise naturally in trying to study 1) and 2) even in the 
regular case. Some partial results have been obtained: see  [ P S 2 ]  , [D1], [D4] 
and [Ds]. 

However, in the sequel we shall exhibit modules M of finite length and 
finite projective dimension over the ring R described earlier such that 1) and 2) 
both fail. This disproves a large number of conjectures: see w It also follows 
that the Grothendieck group of modules of finite length and finite projective 
dimension over R is not generated by the classes of the modules of the form 
R/(u, v, w)R, where u, v, w is an R-sequence, nor even, in fact, by the classes of 
those modules of finite length and finite projective dimension which are ex- 
tended from unramified regular rings. This remains true even if we apply | Q 
to the Grothendieck group. This answers negatively questions raised in [HI]. 

We shall return to an examination of the consequences of our investigation 
in w 

It is worth mentioning that our "counterexample" modules are killed by I 
4 

=m3+(Xz ,  X4)m, where m =  ~ xiR, and that the counterexample of least 
i = 1  

length killed by this ideal has length 15. That is, there is a module M of finite 
projective dimension killed by I of length 15 such that 

Z (M, R/P)= - 1 

where P = xl  R + x 2 R. (However if M has finite projective dimension, l(M) < 15, 
and M is killed by I then x(M, N ) = 0  for all finitely generated R-modules N 
such that dim N < 3.) 

We shall also see that these "minimal" counterexamples of length 15 have 
no nonzero proper submodules (respectively, quotients) of finite projective 
dimension. 

The intense study of the behavior of x(R/P, M) undertaken here was moti- 
vated by an unpublished argument of S.P. Dutta which showed that the 
generalized Serre conjecture for R/P and an arbitrary module M of finite 
projective dimension implies the corresponding conjecture over a hypersurface 
when both modules have finite projective dimension. Moreover, his argument was 
also valid for hypersurfaces of the form V[[X1 . . . . .  X,]]/(F) with V a discrete 
valuation ring, with R replaced by RI=V[XI,X2, X3, X4]/(XIX4-XzX3) 
localized at m = mv+(Xi). Thus, the generalized Serre conjecture for R 1 would 
have implied the original Serre conjecture for ramified regular rings. 

The original Serre conjecture remains an open question, as does the gener- 
alized form if one assumes that both modules have finite projective dimension. 
(See 'Note added in proof', at the end of the references.) 

2. Finite length R-modules 

To give a module  M of length n over R is the same as to give the following 
data: 
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(2.1) 1) An n-dimensional K-vector space M. 

2) Four K-endomorphisms ~bl, ~b2, ~b3, ~b 4 of M such that 

a) ~bl ~bj = q~j ~b~, l<=i,j<4 

b) q~l q~4=q~2 @3 
c) q~ is nilpotent, 1 _< i _< 4. 

Given a module M, we obtain a K-vector space by restriction of scalars, 
and we let ~b i be the map u~.-~xiu , 1_<i_<4. Conversely, given M and the q~i, 
conditions 1) and 2a), 2b) suffice to guarantee that there is a unique 
K [ x l ,  x2, x3, x4]-module structure on M extending its K-vector space struc- 
ture and such that multiplication by x~ is the map q~i. Condition 2c) is then 
equivalent to the condition that M be an R-module, for this will be the case if 
and only if each x~ acts nilpotently on M. 

Given q~l, q~2, ~b3, q54: M---~M they determine an endomorphism qS: Mff )M 
-~ M O M  by 

(u | u') = (4} ~ (u) + r ~ (u')) | (~ 3 (u) + ~ ~ (u')), 

i.e. q~ is represented by the 2 x 2 matrix 

over Endg M. Note that matrices act on the left. 
Thus, there is a one-one correspondence between R-module structures on 

the K-vector space M and the subset of elements 

~ = [ : :  :2]~EndR ( M O M )  

such that the ~ satisfy the conditions 2abc) listed in (2.1). 
We make the following notational convention: if q~ ~ End R (M �9 M) and 

then 
4 =  43 '~4 - 4 3  4'1 " 

One readily checks that ~b v v = q~ and that conditions 2a), 2b) are equivalent to 

Moreover, ~b satisfies 2abc)c:~b v satisfies 2abc). 
Of course, if l(M) ( = d i m K M ) = n  we can choose a basis and so identify 

M-~ K". By iterating this basis we get an isomorphism M @ M ~ K 2". 
The 4}i then correspond to n • n matrices A i satisfying the analogues of 

conditions 2abc) listed in (2.1), and 4} to a matrix 

A = [ A1 A2 
I_A3 A4] 
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which may  be thought  of as a 2 x 2 matrix whose entries are n x n matrices, or 
as a single 2n x 2 n  matrix. We shall usually take the second viewpoint - 
always, when we deal with " rank" .  This ambiguity should not cause confusion. 
In this context 

A,, -A2] 
A v = _ A  3 A 1 ' 

We now fix some notation.  Let P = x I R + x z R  ( ~ - x 3 R + x 4  R as a module) 
and let Q = x l R + x 3 R  ( ~ - x 2 R + x 4 R  as a module). Let 

(2.2) 

and 

[ ] [ -12] x2 and X "  = X_~.  x l  x 4 

X 3 X 4 - - X  3 X 1 

Lemma.  a) The complexes 

. . . R  2 x R 2  x v x x v ~ R  2 , R  2 

R 

~ R  2 " P  ~0 

R 

. . . R  2 x v , R  2 x , R  2 x v ~ R  2 x _~R2 ) , Q  7 0  

are minimal free resolutions of P and Q, respectively, over R, periodic of 
period 2. 

b) P n Q = x l R ~ - R .  

Proof. a) It suffices to prove these results when " R "  is defined to be 
K [ X  1 , X z , X a , X 4 ] / ( X 1 X 4 - X 2 X 3 ) ,  without  localizing, for they are "pre- 
served" by localization, and we so redefine R for the course of  this proof. 

To show the exactness of  R 2 xv ~R ~ P at the middle spot we must  show 
that  all relations on x l ,  x 2 are spanned by (x 4, - x 3 )  and ( - x  2, xl). But if ux 1 
+ v x 2 = 0  we have, lifting this to K [ X  1, X 2, X 3, X4], 

U X  1 + V X  2 = H ( X 4 X  1 - X 2 X 3 )  

where each capital letter (e.g. U, V) represents a lifting of  the corresponding 
lower case letter. Equivalently, 

( U -  H X 4 ) X  1 = - (V + H X 3 ) X  2 

which implies X 2 [ ( U - H X 4 )  , i.e. U = H X 4 + G X  2. But then V = - H X 3 - G X  I 
and 

(u, v)=g(x2,  - X l ) + h ( x 4 ,  - x a )  , as required. 
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The relations on x3, x 4 or on the columns of r | x  a Xz/1 are the same, which 
/ X 3 X 4 ] 

shows the exactness of R z x - X ~ R  2 x , R  2 at the middle spot. Similarly, the 

relations on x 4, - x  2 or - x 3 ,  x 1 or on the columns of x4 are spanned 
- - X  3 X 1 

by (Xx,X3) and (x2,x4) , which shows the exactness of R 2 x ,R  2 x ,R  2 
at the middle spot. This proves that the first complex is a resolution. 
(Minimality is clear, since all the matrices have their entries in the ideal 
(X l ,  X2, X 3, X4)') 

The same facts yield the exactness of the second complex as well. Q.E.D. 

b) Suppose r ~ P n Q ,  say r = u x l  + v x 2 = u ' x l  + w x  3. Then v x 2 = ( u ' - u ) x  1 
+ w x 3 e ( x l , x 3 ) = Q ,  a prime, so that, since x2~ Q, we have veQ,  say v = s x l  
+ t x  3. Then 

r = u x  a q-(sx  1 + t x 3 ) x  2 = u x  1 + s x 2 x  1-I - tx2x  3 

= u x l  + s x 2 x l  + t x l x 4 = ( u + s x 2  + tx4 )x l  ~ x l R .  

But x l R c P c ~  Q is clear. Q.E.D. 

(2.3) Corollary. There are exact sequences: 

O--~ Q --, R 2 --* P--* O and O --+ P--~ R 2 --* Q--* O. 

Proof. In part a) of (2.2) the kernel of R 2 - - - P  is the column space (image) of 

/ x'/+ /-  /Projection on the second coordinate gives X v, i.e. R _ - x  s_ ~ ~xl a n  

isomorphism of this module with Q. The argument for the second sequence is 
similar. Q.E.D. 

Thus, each of P and Q is a first module of syzygies (or relations) for the 
other. Of course, eventual periodicity for minimal resolutions over a hyper- 
surface is expected: see [El. 

(2.4) Proposition. Let M be a finitely generated R-module. Let P = ( x l ,  X2) and 
Q = (x l, x3) , as above. Then the following conditions are equivalent: 

1) M has finite projective dimension. 

2) For all sufficiently large i, Tor  R (M, K)=0 .  

3) For all sufficiently large i, Tor/~ (M, P )=  0. 
4) For all sufficiently large i, Tori n (M, Q)--0. 

5) For all i > 1, Torl R (M, P) = 0. 

6) For all i > 1, Tor~ (M, Q) = 0. 

Proof. 1)r is well known, while it is clear that (2.3) implies 3 )~4 ) ,  and that 
1) implies both 3) and 4). We next show that 3) and 4) imply 2), which will 
show that 1), 2), 3), and 4) are equivalent. 

If 3) (or 4)) holds, both hold. Then, from the exact sequence 

O--, P c~ Q --~ P t~ Q -~ P + Q --+ O 
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and the fact that P ~ Q ~ - R  (by (2.2b)), we conclude that, if J = P + Q = x l R  
+ x 2 R + x 3  R, we have that T o r ~ ( M , J ) = 0  for all sufficiently large i and hence 
that Tor~ (M, R / J ) =0  for all sufficiently large i as well. But B = R / J  ~ - K [x4]tx,) 
so that 0 ~ B x4, B---, K ~ 0 is exact and so Tor~ (M, K) = 0 for all sufficiently 
large i. 

Thus, 1), 2), 3), and 4) are equivalent. By Corollary (2.3), Tor/R(M,P) 
=Tor~+ 2 (M, P) for i>  1 and the same holds with Q replacing P. Thus 3)=> 5) 
and 4)=> 6), while the converse implications are clear. Hence, all six conditions 
are equivalent. Q.E.D. 

(2.5) Theorem. Let M be an R-module of finite length n and let A be a 
corresponding 2 n x 2 n matrix. Then pd R M < oo r rank A + rank A v = 2 n. 

Proof. Consider the resolution of Q given in (2.2a). If we drop the augmen- 
tation and apply M | we get 

~ M  2 x v M 2  x M 2  x v x . . .  ~ ..... ~ ~ M  2 ~ M  2 T 0 ,  

where M E = M O M .  If we identify M E e K  2n this becomes: 

(2.6) ... , K  2" Av ~ K  2n A ~KEn A v , K 2 n  A_~K2 n ~0. 

The homology of this complex is TorR. (M, Q). By (2.4), pdRM<oor ) is 
acyclic, and, clearly, a necessary and sufficient condition for (2.6) to be acyclic 
is that r a n k A + r a n k A  ~ =2n .  Q.E.D. 

(2.7) Remarks. There is an involutive K-automorphism a of R such that ct maps 
X1,X2,X3, X 4 to X4, - -X2 , - -X3 ,X  1 respectively. Consider the map R ~ R .  
Both restriction of scalars and extension of scalars give the same exact 
functor, which we shall denote ~, from R-modules to themselves. (To see this 
let us write R = R o ~ - ~ R - Z - * R 2 = R .  Then there is a natural isomorphism 
R2(~gM~-Ro M if we identify both R 2 and R o as R again: in fact, the map is 
given by r 2 (~)u l - -* tx ( r2 )u . )  

Evidently, if M has finite length n and has 2 n x 2 n matrix A, the matrix of 
M ~ is A ~ 

We also note that the Matlis dual M* of M, which may be thought of as 
Hom K (M, K), has 2 n x 2 n matrix 

[ At AtE] " t"  
A * =  A~ A~]'  where denotes transpose. 

This matrix has the same rank as its transpose [ A1 An] (they are, of 
course, similar as 2n x 2n matrices), and [A2 A4 

] 

so that A* and A v are similar as 2n x 2n matrices and have the same rank. 
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(2.8) Proposition. Let M be any R-module of finite length n and let A be the 
corresponding 2n x 2 n matrix. Then 

l(Q | M) = l(P | M*) = l(P | M v) = 2 n - rank A 
and 

l(P | M) = I(Q | M*) = t(Q | M v) = 2 n -  rank A v 

Proof. Since REX-~R2--rQ--~O is a presentation of  Q, if we apply |  we 
find Q|  which implies l ( Q |  Similarly 
l ( P |  v. Replacing M by M v interchanges A and A v here. 
Replacing M by M* results in the substitution of  A* for A: but A* has the 
same rank as A v and A* ~ = A v * has the same rank as A ~ ~ = A. Q.E.D. 

(2.9) Proposition. Let M be an R-module of finite length n and finite projective 
dimension, and let A be the corresponding matrix. Then 

z(M, R/Q) = x(M ~, R/P) = x(M*, R/P) = rank A - n 
and 

z(M, R/P) = z (M ~, R/Q) = z(M*, R/Q) = rank A ~ - n. 

(Note: rank A ~ - n = n -  rank A = - (rank A - n) here.) 

Proof. z ( M , R / Q ) = z ( M , R ) - x ( M , Q ) = I ( M | 1 7 4  since R and Q are 
Cohen-Macau lay  of dimension 3, and this is l ( M ) -  l(M | Q) = n - (2 n - rank A) 
= rank A - n .  The other parts follows similarly, using (2.8). Q.E.D. 

3. R-modules killed by m 3 + (x2, x4) m 

The objective of  this section is a detailed study of finite length R-modules  
killed by m a + ( x 2 ,  x4)m. Ult imately we shall construct  such modules M with 
pdRM finite and zR(M, R/Q)< O. 

First consider an arbi t rary finite length R-module  M with l (M)=n such 
that m 3 M = 0 .  Choose  a filtration 

M = M  o D M  1 ~ M  2 ~ M  s = 0  

such that  m M i c M ~ +  1, 0 < i < 2 .  E.g. we may choose M i = m i M ,  0 < i < 3 ,  or  M i 
= A n n u m  3-~, 0 < i < 3 :  if these two filtrations are different, many  choices may 
be possible. Let  t, s, r denote the respective lengths of  M / M  1, M1/M 2, and M 2, 
and let ul , . . . ,u , . ,  ur+ 1 . . . .  ,u,+ s, and u,.+s+~,...,u,.+s+, be sets of  vectors in 
M z, Mx, and M respectively whose images in the respective quot ient  vector 
spaces M 2 / M 3 = M  2, M1/ME, and M / M  1 are K-vector  space bases for those 
quotients. Thus, u~ . . . . .  u, is a K-basis  for M. Let U', V ~, and W t denote  

r+ s  r + s + t  

Kui, ~ Kui, and L Kui,  respectively. 
i= 1 i = r +  1 i = r + s +  1 

Multipl icat ion by x~ maps  W t--, U"~)V"'~ U"• V s, maps  V S ~  U',  and kills 
U', and so is determined by the matrices a~, b~, c~ of  the induced maps  

Vs___.~ U r, Wt_.-~ V s, Wt-.o. U r 
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respectively. In block form the matrix A~ of multiplication by x~ with respect to 
the basis u~ . . . .  , u, is 

r s t 

s 0 b i 

t 0 0 

where the letters "r" ,  "s",  " t "  have been placed to indicate the sizes of the 

blocks. For  matrices et i with this block form we have AIAj= 0 , so 

0 
that eliAj=eljeli if and only if a~bj=ajbi, while eliel~elk=O automatically for 
all choices of i, j, k. 

Thus, any four such matrices A~ in block form satisfying a~bj=ajb~ for all 
i,j and alb4=a2b a determine an R-module M having a filtration in which the 
lengths of the factors are r, s, t. 

Now suppose, in addition, that (xz, x4)mM=O, or, equivalently, that 
(x2, x 4 ) M c A n n u m .  Then we may choose a filtration which satisfies the ad- 
ditional conditions (xz, x 4 ) M c M  z and (xz, x,,)Ml=O, e.g. M I = m M ,  M 2 
= m 2 M  +(x2, x4)M ( c m M c ~  Ann um) .  

These constraints on the filtration imply that  az=a4=O and b 2 = b 4 = 0 .  
The A i then have the following form: 

I~ ax c~] [ i  0 ! ]  
A 1 = 0 A 2 = 0 

0 0 

A 3 = 0 A 4 = 0 . 

0 0 

(3.1) 

We also note: 

(3.2) Given matrices A i as in (3.1) above: 
a) AiAjAk=O for all i,j, k. 
b) AiAj=AjAi=O if i or j is even. 
c) The A i commute in pairs if and only if A1Aa=A3A1, and this holds if 

and only if alb3=aab 1. 

Thus, to give an R-module M of length n killed by m3+(x2 ,  x4)m is 
equivalent to giving nonnegative integers r, s, t with r+s +t=n together with 
two r x s matrices a l ,  a 3 over K, two s x t matrices bl,  b 3 o v e r  K satisfying 

(3.3) alb3=a3b 1 

and four arbitrary s x t matrices c i over K. The integers r, s, t and the matrices 
a i, bi, c~ are not uniquely determined by M, but every M arises from data of this 
sort. 
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Our next objective is to give necessary and sufficient conditions on 
al ,a3,  b t , b  3 satisfying (3.3) above for there to exist c~ such that the corre- 
sponding module M has finite projective dimension. We first note 

(3.4) Lemma. Let q , r , s , t>O be integers. Let a,b be fixed q x s  and r x t  
matrices, respectively, over a field K. Let r a n k a = e  and rankb=f l .  Let dtq,, be 
the variety of q x t matrices over K (of course ~'q,t may be identified with ARt). 
Then the maximum possible rank for a matrix whose block form is 

s t 

as c varies in ~r is min{q+f l ,  t+ct}, and this maximum is achieved on a 
nonempty Zariski open subset of J[q,, (consequently dense when K is infinite, but 
nonempty even when K is finite). 

Proof. We may perform column operations on the first s columns and row 
operations on the last r rows without affecting the issue. We may also perform 
row operations on the first q rows and column operations on the last t 
columns: the only observation we need is that the effect on c is simply an 
invertible linear change of coordinates in JCq, t_-__A~. Hence there is no loss of 
generality in assuming 

a =  , b=  , and then = 0 1 a ' 

0 0 

and the rank of this last matrix is easily seen to be 0 t+f l+rankc  4. Since c 4 is 
size ( q - e ) x  (t-/~), its maximum possible rank is rain {q-at,  t- /~}, and so the 
maximum possible rank for A is e + ~ + { m i n q - e ,  t - / ~ } = m i n { q + ~ ,  t 
+ct}. Q.E.D. 

(3.5) Notation. Given a pair of matrices a l , a  3 (respectively, b 1, b3)  of the 
same size over a field K we let eh (respectively, fib) denote the rank of [a I a3] 

(respectively [b 1 b3] ) and ctv (respectively, /~v)the rank of / a l l  /respectively, 
L J \ a 3 

[b l ] ) .  (The subscripts "h" and "v" stand for "horizontal" and "vertical", 
b3 

respectively.) 
We shall see later that the modules M over R of finite length and finite 

projective dimension such that mZM=O behave as expected with respect to 
multiplicities. Hence, our real interest is in the case r, s, t > O. 

(3.6) Proposition. Let r , s , t>O be given integers and let a l , a  3 be r x s  and 
bl,  b 3 be s • t matrices over an infinite field K such that a~ b3=a3b 1. 

Then there exist r x t matrices ci, 1 <=i<=4, such that the matrix A determined 
from the ai, bi, c i as in (3.1) corresponds to a module M of finite projective 
dimension if and only if the following three conditions hold: 
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a) a~=flh=s. 

b) ~h>S+2(r--t) .  

c) f l o > s - 2 ( r - t ) .  

I f  these conditions hold then rank  A = 2 t + s, rank  A v = 2 r + s, and, hence, 
r ank  A = rank  A v if  and only if t = r. 

Proof. Let  n = r + s + t. By Theo rem (2.5), pd R M < oo ,**- rank  A + rank  A v = 2 n 

A =  

=2(r +s+t) .  N o w  

-0 a 1 c 1 0 0 c 2- 

0 0 b I 0 0 0 

0 0 0 0 0 0 

0 a 3 c a 0 0 co. 

0 0 b 3 0 0 0 

0 0 0 0 0 0 

After d r o p p i n g  the rows and co lumns  which are  0 and  pe rmut ing  the rows 
we ob ta in :  s 2 t  

2 r  al  c, 
C 3 

bl 
2s b3 

By L e m m a  (3.4) for any  choice of the c i in sufficiently general  pos i t ion  (i.e. 
off a p rope r  c losed subvar ie ty  of  ~,1 ~ A 4rt~ the  rank  of this mat r ix  will be  " ~  2r, 2t = K ! 
min {2 r + flu, 2 t + %}. Similarly,  

-0 0 

0 0 

0 0 
A V =  

0 - - a  3 

0 0 

0 0 

c 4 0 0 - c  2 
0 0 0 0 

0 0 0 0 

- c  3 0 a~ c~ 

- b  3 0 0 b 

0 0 0 0 

and after d r o p p i n g  the rows and co lumns  which are  0 a n d  pe rmut ing  the rows 
and  co lumns  we get :  

2s  2 t  

1 
- - C  2 

2 r  
- -  3 - - a l  - - c 3  Cl 

s 0 - b  3 b 1 

Since fib= rank  [b 1 b3] = rank  [ - b  3 b l ]  while 

~h=rank[al  a 3 ] = r a n k [ - a a a l ] = r a n k  [ 0 ~1 
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we again obtain from L e m m a  (3.4) that  for c~ in sufficiently general posit ion we 
have r ankA ~ = m i n  {2r+flh,  2t+~h}.  

The sum of the min's is the same as the min of the four possible "cross 
sums", and the condit ion for pd R M < ~ becomes:  

i) 2 r + f l o + 2 r + f l h > 2 r + 2 s + 2 t  

ii) 2 r + f l ~ + 2 t + ~ h > 2 r + 2 s + 2 t  

iii) 2t + a . + 2 r + f l h > 2 r + 2 s + 2 t  

iv) 2t+C%+2t+C~h>2r+2s+2s  

or i') ~ o + f l h > 2 s - 2 ( r - t )  

or ii') fl~+Oth>2S 

or iii') f lh+~v>2s 

or iv') ~o+~h>2s+2(r-- t ) .  

(These condit ions say that  rank A + rank A v > 2 n: of course, when this happens 
we actually get equality.) Now, flh<S since [b lb3]  is s x 2 t  and ~v<s since 

/a l l  is 2 r •  Thus, i i i ' )ho lds  if and only if flh=~v=S. If we substitute s for 
k _1 a 3 

fib, c% in i'), iv') and subtract  s from both  sides we obtain the conditions b), c) 
stated in the proposit ion,  while ii') is redundant :  it follows from b) and c) by 
adding them. 

By taking the c i in general posit ion we can simultaneously maximize the 
ranks of A and A v. But then rankA=min{2r+f l v ,  2 t + s } = 2 t + s  (by b)) and 
r a n k A V = m i n { 2 r + s ,  2 t + ~ h } = 2 r + s  (by c)). Q.E.D. 

(3.7) Theorem. Let K be an infinite field. Let r, s, t > 0  be integers. Let al,  a 3 
be given r x s matrices over K. 

Let 6=6(a l ,  a3) be the greatest integer such that there exist f-dimensional 
subspaces D 1 , D a c K  s and an isomorphism 2: D 1 ~ D  3 satisfying D 1ND3=0 and 
a12=a3iol (i.e. 6 is the greatest integer such that there exist vectors dxx . . . .  , dla, 
d31 . . . . .  d3o in K s all independent, such that al(d3i)=aa(dll), 1<i<_6: 
dl a . . . . .  dxa correspond to a basis for DI, and d31 . . . .  , d3a to its image under 2). 

Let E = E(al,  a3) = a~- 1 (Im a 1 c~ Im a3) + a~ x (Im a 1 c~ Im a3). 
Let Z be the vector space consisting of all 2s x 1 column vectors with 

Zl ,  z 3 ~ K  s s u c h  t h a t  a 1 2 3 - - a 3 z  I . z3 

Then dimg Z = 2s - ~h (see (3.5) for notation). 
Moreover, there exist s • t matrices bl, b 3 o v e r  K satisfying 

a) aab3=aab I and 

b) 1) ~,=flh=S, 

2) o~h>=s+2(r--t), and 

3) f lo>s--2(r-- t)  

if and only if the following conditions hold: 

c) 1) K e r a l c ~ K e r a 3 = 0 ,  
2) E = K  s, 

__ Ct h --__ff_S 
3) Cth--S is even, and t = r  2 ' 

4) 2 r + 2 6 > ~ h + s ,  and 

5) 2r+~h>=3S. 

I f  these conditions hold b 1, b 3 may be chosen by taking - b l ]  to consist of t 
columns in sufficiently general position in Z. Lib3 
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The modules M of finite length n =r + s + t and finite projective dimension 
which may then be constructed by further choosing c i in sufficiently general 
position as in Proposition (3.6) will satisfy: 

XR (M, R/P) = r - t = ~ - s 
2 

O~h - -  S 
XR (M, R / Q )  = t - r = 2 

Proof. First note that there is a surjection Z - - ~ I m a l n l m a  3 which maps 

[bb:]~--~as(bl)(=al(bs) ). The kernel consists of precisely those columns such 

that bl e K e r a  3 and b 3 ~ K e r a  I and so is isomorphic to K e r n  t x Kern  3. 
Also, Z may be identified with the kernel of [a3-a~]  so that d im~:Z=2s  

- r a n k  [a 3 - a l ]  and rank [a 3 - a l ]  = rank [a t a 3 ]  =Gt h. 

Now, it is clear that fib<S, and flh, fl~ will be maximized when the t 
[b~] 

are chosen in general position in Z. When this is done it is columns of b3 

easy to see that 
2t if t_<_t5 

flh = 6 + t  if 6<_t<_dim~E-6 
[ d i m r  E if t>=dimrE. 

To verify this, first note that, by the definition of 6, for t__<6 we can choose 

- -   -/w ere . . . . .  . . . . .  are all independent. Also note 
_ _ _ b  3 Ld3t  . . . d s t  

that for all admissible choices of bl ,  b3, Im b~ c Im bt c~ Im ha, i = 1, 3, so that 
ImEb~bs]cE.  As we choose additional columns for 6 < t < d i m x E - 6 ,  so long 
as the span of all columns chosen so far in [b t b 3 ]  is not all of E we can 
choose a new column so that at least one of the two vectors which occur is not 
in the span of those already chosen. For  t in this range the rank of [b 1 bs] will 
be 2 ~ 5 + ( t - f i ) = 6 + t .  When t = d i m  K E - f i  this is dim r E ,  at which point 
Im [b 1 b3] = E  and cannot grow further. 

It is worth noting that 2 6 < d imr  E < s. 
Thus, in order that flh = S we must have dimx E = s and t > dim K E - 6  = s -  6. 

h i ]  general position we Moreover, with the columns of b3 in have 

fl {t if t < 2 s - c t  h 
v = _ 2 s - f l h  if t>-_2s-~  

since dim r Z = 2 s - ~h. 
Now, condition a) is simply equivalent to requiring that the columns of 

- - | b l |  lie in Z while condition b), i.e. 
k J ba 

1) ~v=/~h=s 
2) ~ h > s + 2 ( r - t )  or 2') ~h--S>2(r-- t )  

3) f l v > - s - Z ( r - t )  
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may now be analyzed as follows: 
ct~=s is easily seen equivalent to cl), K e r a l c ~ K e r a 3 = 0 ,  and, as we have 

are chosen in already seen, for the case where the columns of the matrix b3 

general position in Z, flh=S is equivalent to d i m ~ E = s  and t > d i m K E - 6 = s  
- 3 .  The condition d i m r E  = s  is evidently equivalent to E = K  ~. This explains 

conditions cl)  and c2). F rom our remarks above, with the columns of b3 

general position in Z (which gives the best chance of satisfying bl) ,  b3)) we 
have fl~=min {t, 2 s - e h }  and 3)becomes 

t>=s-2(r-t)  or 3') t<=2r-s 
and 

2S--eh>S--2(r--t ) or 3") 2(r--t)>eh--s. 

Clearly, 2') and 3") together are simply equivalent to 2 ( r - t ) = c q - s  or t=r 
~h - - S  

2 , which gives c3). Hence all conditions are satisfied if and only if the 

two remaining inequalities: 

t > s - 6  and 3') t < 2 r - s  

~h - -  S 
~ h - s  the first becomes r -  2 > s - 6  or 2 r - g  h are satisfied. Since t = r -  2 

O~h--S<2 r + S > 2 S - - 2 6  or 2r+26>gh+s, which is c4), while 3') becomes r -  2 = 
- s  or 2r-gh+s<=4r-2s or 2r+gh__>3S which is c5). 

It remains only to prove the last assertion. By Proposition (2.9) xR(M,R/P) 
will be rank A v _ n = (by the last part  of Proposition (3.6)) 2 r + s - (r + s + t) = r 

0~ h - -S  
- t =  2 , by c3). The argument for zR(M,R/Q) is similar. Q.E.D. 

(3.8) Remarks. Certain notions which we have discussed in matrix terms can 
be viewed more "invariantly" in module-theoretic terms. 

For  example, the maps a i were introduced as maps V ~ U  r. But 
V~-MI/M2 and Ur=M2 . Since each x~ kills M2, there is an induced map 
xi: M 1 / M E ~ M  2. In these terms, Cth=rank[ala3]=dimr(Imal +Ima3) 
= l((xl, x3)M1). 

Likewise, although b~ was introduced as a map W t ~  V ~, W'~-M/M~, and b~ 
simply corresponds to the map  M/M1---,M~/M z induced by multiplication by 
xi. We shall leave most other similar reinterpretations to the reader. 

4. The main results 

In this section we study in detail pairs of matrices a 1, a 3, of the same size, 
which satisfy the conditions c l ) -c5)  listed in (3.7). We call such a pair ad- 
missible. 
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By Theorem (3.7), the problem of finding modules M of finite length and 
finite projective dimension over R such that m3+(Xz, X4)m kills M and 
x(M,R/P)~eO is equivalent to finding pairs of matrices al ,  a 3 over K of the 
same size, say r x s, which are admissible, and such that cq + s. 

Henceforth, we assume that K is an infinite field, a l ,  a 3 will always denote 
matrices of the same size. We write r(a 0 or r(a3) for the number of rows, and 
s(al) o r  s ( a 3 )  for the number of columns. 

We write ct(al, a3) for rank [ala3]=dimK(Imal+Ima3):  this is a slight 
change from the preceding section, where the notation "eh" was used. We may 
omit the variable matrices al, a 3 from the notation if the meaning is clear. We 

~t--S 
define t ( a l , a a ) = r - -  ~ and n(al,aa)=r + s + t. 

6(al,a3) has the same meaning as in the second paragraph of Theorem 
(3.7). 

Let G(al ,aa)=Ima 1 c~Ima 3 and H=a~l(G)c~aal(G).  
Let g(al, a3) , h(al, 33) denote the dimensions of G and H, respectively. 
Let h'i(al, a3) = dim a/- 1 (G) - h, a nonnegative integer. 
The following result is the main technical tool we need in our analysis of 

the desired modules M. 

(4.1) Theorem. Let K be an infinite field. Let g, h be f ixed nonnegative 
integers. Then there exists an admissible pair of matrices 31, a 3 over K of some 
size r x s such that g(a l ,aa)=g and h(al,aa)=h if and only if: 

1) g - h  is even, and 

2) h<=2g. 

For fixed g, h satisfying 1) and 2) above and given integers h'l, h' 3 one can 
construct al, a 3 such that g(al ,aa)=g,  h(al,aa)=h , and h'i(al,aa)=h'i, i=1 ,  3, if 
and only if 

3) h'a, h'a>=g "-h 

where g-" h = max {g - h, 0}. For such 31, a3: 

4) s=h+h'~ +h' a 

5) c~ = g + h' 1 + h' 3 and, hence, 

c t - s  g - h  
6) and 

2 2 

g - h  
7) t = r - - -  Also, 

2 

8) n=h+h'~ +h'3-g~2h+ 2r. 

One can choose al, a 3 so that 6 > ( h - g ) / 2  and the smallest values one can 
take for r, n for f ixed g, h, h' 1, h' 3 satisfying 1), 2), 3) are 

9) r =h  i + h ;  +m a x  {g,3h-�89 

10) n=3(h+h'~ +h'a)+ 3 lg -h[  = 3 s + a l g - h [ .  
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For f i xed  g, h satisfying 1) and 2) the smallest possible values for  r, n are 
achieved when h' 1 = h' 3 = g "- h. 

Moreover, if a module M of  f ini te  projective dimension over R and length n 
is constructed from al, a 3 as in Theorem (3.7), then 

h - g  
z ( M , R / P ) =  and z ( M , R / Q ) =  2 

Proof  First  consider r x s  matrices al ,  a 3 satisfying condit ions c l ) - c5 )  of 
The o re m (3.7). Since a T X ( G ) + a 2 1 ( G ) = K  s, one can think of Hi=a[- l (G)  as 
H O H '  i, where dim H'i=h' i and so s = h + h '  l + h '  3 as asserted in 4): in fact K s 
= H O H'~ O H' 3. Now,  

I m a  1 + I m a  3 = a l ( H  1 ~ H ' 3 ) + a 3 ( H  3 OH' l )  

= G + al (H'3) + G + a3(n'1)= G + al (n'a) + az(n'l). 

But, K e r a  1 mH'3=O, for 

K e r a  I c~H; c H  1 c~H~ = H  1 n ( H  3 ~ H ~ )  = ( H  1 n H 3 ) n H '  3 = H c ~ H '  3 =0 ,  

and, similarly, H ' l c ~ K e r a 3 = 0 .  Thus, ai(H~_i)~H'4_i ,  i = 1 , 3 .  Likewise, 
G~al (n ' 3 )=O,  for v e H '  3 and 

al (v)eG ~ v~a~ l (G)= H1 ~ v~ H 1 n i l '  3 =0. 

Similarly, G c~ a 3 (H'I)  = 0, and 

al ( n 3 ) ~ a 3 ( n ' l ) c  l m a l  ~ I m a  3 = G ~ al ( n ' 3 )~a3 (H ' l ) ca l  (H'3)~G=O. 

Thus,  I m a l + I m a 3 ~ - G @ a 1 ( H ' 3 ) @ a 3 ( H ' l ) = G @ H ' 3 0 H '  1 and so ~ t = g + h ' l + h  ~, 
as asserted in 5). 6) is immedia te  f rom 4) and 5), and 7) (and 8)) from 6) and 
(3.7c3) (and the definition of n). Moreover ,  we have also established condit ion 
1) on g and h. Let  K ~ = K e r a  i and k i = d i m K K  i. Now,  a~ maps  H i onto  G and 
K i c H i ,  so that  k i = h + h ' i - g > O ,  i = 1 , 3 ,  whence h ' i > g - h .  Since h ' i>0 is clear, 
we have proved  3). 

Since (3.7cl)  asserts tha t  Kx ~ K 3 = 0  , w e  must  have k 1 +k3<=s o r  

, < h + h ' ~ - g + h + h 3 - g = h + h '  ~ +h' 3 

which is equivalent  to h ~ 2g. Thus,  2) is necessary. 
We  shall prove  the remaining s ta tements  in the course of construct ing al ,  

a 3 once g, h, h'l, h~ have been given. 
N o w  suppose tha t  g, h, h' 1, h~ satisfying 1), 2), and 3) have been specified. 

We shall show that  a a, a 3 can  be constructed for all sufficiently large r, and  we 
shall determine the least value of r for which they can be constructed.  

Note  that  we must  take s = h + h'~ + h;. 
Next,  choose arbi t rary  subspaces  H, H'  1, H' 3 of K ~ of dimensions h, h' 1, h~ 

respectively such that  K ~ = H @ H '  1 • H '  a. Let G = K g and T =  G G H~ G H'I. 
Then d i m T = 0 t  and, of course, we must  have r > e .  We shall construct  al ,  a 3 by 
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giving maps K ~  T (which we call fii or, when precision is not needed, al) and 
then composing them with any embedding T~--*K r for a suitable r >  ~ =g  +h '  1 
+h '  3. The earlier part of this proof showed that al, a 3 must "arise" in this way, 
with T = I m a  1 + I m a  3. 

Conditions 1), 2), 3) of (3.7c) only depend on ill, a3, as do s, ~ and 6. It is 
then clear that we may choose any value of r such that r > ~, 2r > c~ + s - 2 6 ,  

and 2 r > 3 s - a ,  provided that the value of t = r - g - - ~  - is positive, i.e. such that 

~ ,  > l t r >  Since we already have the condition r = ~ = g + h l + h 3 ,  this is auto- 

matic. Thus, we may choose any value of r satisfying 

2 r > m a x { 2 ~ , ~ + s - 2 6 , 3 s - ~ } .  

Clearly, to minimize r, we want to construct fia, fi3 with 6 as large as possible. 
We shall show that the fii can always be chosen (when 1), 2), 3) hold) with 

6 > ~ .  Once we have done this, we need not concern ourselves with whether 
2 

6 can be made still larger, for the terms 

2~, c~+s-26 ,  3 s - ~  
become 

2 ( g + h '~ + h '3 ) , g + h'a + h '3 + h + h 'l + h '3 - 2 6 , 3 ( h + h'~ + h'3 ) - ( g + h q + h'3 ) 

and the second is less than or equal to the first, since g + h - 2 6 < 2 g . r  

>=h-g.  Thus, the least value of 2r which can be used is 
2 

max {2(g + h'l + h'3), 3(h + h'l + h'3)-(g + h'l + h'3)} = 2(h'l + h'3) + 2 {maxg,  ~ }  , 

so that 

(4.2) r > h ' ~ + h ' 3 + m a x { g , ~ - ~ } ,  

which ultimately will prove 9). 
We return to the problem of minimizing r, n later. First we show suitable 

fi~, fi3 exist, and with 6>_ h - g  
- 2 " 

The idea is this: by 3), h' i > g - h, whence h' i + h > g, and so H i = H @ H' i can 
be mapped onto G, i =  1, 3. We shall define fi~ so that it maps H i onto G and 
takes H'4_ i to the copy of itself in T = G ~ H '  3 ~H' I  via the identity map. 
Regardless of how fi~, fia map H1, H3, respectively, onto G, we then have 
Imalc~Imf i3~G,  f i i - l(G)=Hi,  H~c~H3=H,  H I + H 3 = K  s, Imfi lq-Imfi3=T,  
and all the conditions we need will be satisfied provided we can define fii on H i 
so that: 

a) ?~i : Hi onto G 
b) Kerfi 1 c~Kerfi 3 = 0  

- g  

c) ~(fil, fi3)> h 2 
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Note  that  6(aa,a3) will equal  6(il l ,f3) , and the kernel  of a i will be the same 
as that  of  fil on K s, and will be contained in H i and so identified with the 
kernel  of the restricted fi:  Hi---" G. 

We use general posi t ion a rguments  to show we can do this. Let  ki=h+h'  i 
- g ,  i = 1 , 3 .  By 3), k~>0. Pick any basis w a . . . . .  wg for G. Pick bases u l l  . . . . .  ulh ~ 
for H 1 and u31 . . . .  ,u3h 3 for H 3 (where hi=dimHi=h+h'i) which are in "general  
posi t ion"  in the following precise sense: if O<ji<hi, i = l ,  3 and U~ is the span 
of a j i -e lement  subset of ui~ . . . . .  Uih ,, i = 1, 3, then d im K U x n U 3 = (j i +J3)-"  s. 

To  see that  this is possible we must  show that  a j~-dimensional  subspace U~ 
of H 1 in general posi t ion (i.e. off a p roper  closed subvarie ty  of the appropr ia te  
Grassmann ian)  meets  a j3-dimensional  subspace U 3 of H 3 in general  posi t ion 
in a subspace of d imension (ja + j3 ) - "  s. This would be clear if it were not  for 
the " t ag"  condit ions U~ = H v However ,  because H1 + H 3 = K s these condit ions 
do not  affect the issue. To  unders tand this, first note that  U~ n U3=H ~ n H 3 
= H ,  so that  UIAU3=(UIAH)A(U3~H ). For  U/ in general  posi t ion in Hi, 
U / n i l  has general  posi t ion in H and dimension ji+h'-(h+h'i)=Ji'--h' v Hence,  
U 1 n U 3 = (U x n H) n (U 3 n H) has d imension 

[(Jl--" h'l) + (J3 -" h'3)] -" h = (Jl +J3)-"  (h'l +h'3+h)=Jl +J3 "--s, 

as claimed. 
N o w  define fii by mapp ing  the first g elements in uia . . . . .  U~h ̀ to W x . . . . .  Wg 

respectively, and the remaining h i - g  elements to 0. 
It  is clear that  fix, f3 m a p  H x, H 3 respectively onto  G. The  kernels are 

subspaces of  Hx, H 3 respectively spanned by subsets of  the uix . . . . .  uih,, and 
their d imensions  are k l = h + h l - g  and k3=h+h'3-g.  Hence,  the intersection 
has d imension 

(k x +k3) " - s=(2h-2g+h '  ~ +h'3) "-(h+h l +h~)=h-" 2g=O 

since h < 2 g. 
Let q be a nonnegat ive  integer such that  

i) q<__min{h+h',,h+h'3} 

ii) 2q<=s. 

Then, by i), fl(Ull)=f3(u3i), l<=i<=q, and the general posi t ion condit ion 
implies, using ii), that  span {uxi } n span {u3i } =0 ,  for its d imension will be 2q- '-s ,  
showing that  Ulx . . . . .  Ulq, u3x . . . . .  U3q are independent .  Hence  for any  such q we 
shall have 6(fx, a3) > q. It suffices then, to complete  the p roo f  of the existence of 

ai, to show we can take q n ~ .  If  h = g  there is no p rob lem:  Let  q = 0 .  the If 

h+g then since g<h+h'i, i = 1 ,  3 we have 

2g<=2h+h'x +h' 3 = s + h < 2 s  

and equali ty can only hold if h ' x=h '3=0  and g=h. Thus  when g~=h, 2 g < 2 s  
and g < s =~ g + 1 _< s =~ (g + 1)/2 ~ s/2 and so 2 [(g + 1)/2] __< s. Let  q = [(g + 1)/2]. 
We  have 2q<=s, but  also, q<=g~min{h+h' 1, h+h'3} by 3). Thus  q= [(g + l )/2] 
satisfies bo th  i) and ii). But q>g/2>(h-g ) /2  since h=<2g by 2). 
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We already established 9) when we proved (4.2). Formula 8) shows that n is 
minimum when r is, and this value for 

n = h + h ' l + h ' s - ~ - ~ + 2 r  

=h+h'~ +h' 3 - ~ - ~  + 2(h' 1 + h~)+ max {2g, 3 h - g }  

= 3(h + h'l + h'3)- 2h - ~ @ ~ +  max {2g, 3h - g }  

=3(h+h' l+h '3)+max{2g-2h-g~2h,h-g-g~2h } 

= 3(h + h'~ + h'3) + 3max { g - h , h - g }  = 3(h + h'~ + h'3) + 31g-h[, 

as claimed. 
It is clear from 9) and 10) that both r and n are minimized by choosing h'~, 

h' 3 as small as possible. By 3), this means h' 1 = h' 3 --g-" h. 
The formulae for z(M,R/P), )~(M,R/Q) are immediate from Theorem (3.7) 

and 6). Q.E.D. 

(4.3) Theorem. Let ~[ be the class of R-modules of finite length and finite 
projective dimension killed by m 3 + (x 2, x4)m. 

a) There exists Me  JI  such that I(M)=15 and )~(M,R/P)=-1. Moreover, 
then M v e,r and z(M v, R/P)= 1. 

b) For Meal ,  if I(M)< 15 then z(M,R/P)=O. 
c) For every M~Jr 

I)~(M, R/P)I/I(M) < 1/15 

(equivalently, I(M) > 15 Ix(M, R/P)I). 

Proof All the real work has already been done in the proof of Theorem (4.1). 
We only need to analyze the possibilities as g and h vary. 

Let g, h be nonnegative integers such that I g -h [  is even and let I g - h l = 2 # .  
We consider two cases. 

1) g>-h. The condition h < 2 g  is automatic. We have g = h + 2 # ,  and we 
may assume p > 1. Then g--" h = 2# and we take h'~ = h' 3 = g--" h so that s = h + h'~ 
+h'3=h+2t~+21~=h+4 #. The smallest possible value for n for given #, h is 
then 3s+31g-hl=3h+12#+3t t=3h+15#.  Then 

I)~(M,R/P)I/I(M)<#/(3h+ 15#)< 1/15 

(or I r a n k A - l ( M ) l / l ( M ) <  1/15). The best possibility is h=0 ,  and M of smallest 
length occurs for # = 1. 

2) h >_ g. Then h = g + 2 #, where g > 0, # >= 1. The condition h < 2 g becomes g 
+ 2 ~ < 2 g  or g>2# .  Then g " -h=0 ,  and we should take s=h+h'~+h'3=h=g 
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+2/~. The smallest possible value of n for fixed /l, g is 3 (g+2~)+3(2 / l )=3g  
+ 9 # >  15#, since g>2/~. Again, this shows 

I)~ (M, R/P)Ill(M) < g/(3 g + 9 #) < 1/15. 

The smallest value of n = 3 g + 9 / ~  with # + 0  occurs for # = 1 ,  h=4 ,  g 
= 2 ( g > 2 # ) ,  and is, again, 15. Q.E.D. 

(4.4) Remark. The cases g > h  and h > g  are not really distinct: they cor- 
respond to x(M, R/P)> 0 and x(M, R/P)<0, and so are interchanged by replac- 
i n g M b y M *  o rMV 

5. The case  n = 1 5  

In this section we want to study in greater detail the most accessible of our 
examples: the R-modules M of the smallest length such that m3+(x2,x4)m 
kills M, pdRM is finite and z(M,R/P)+-O. These have length 15, and we 
already know by (4.3) that z (M,R/P)= +1 for such an M. Since we are free to 
replace M by M* or M v, we limit ourselves to the case x(M,R/P)= -1 .  

Because these modules are a new breed among modules of finite projective 
dimension, we feel they are worthy of close scrutiny. 

(5.1) Theorem. Let M be an R-module of length 15 such that M e J r  and 
z(M, R/P) <0. Then: 

a) z (M,R/P)= - 1 

b) dim r M/m M = 6 
c) dim r Annvt m = 5, and Ann~ m = m2 M A7 (X 2' X4) M 

d) d imrTor t (K,  M)=  17 

e) dimrTorE(K, M) = 16. 

For any such module M, for a suitable identification of M~-K 15, the matri- 
ces A i of the actions of the x i have the following form: 

5 4 6 5 4 6 

'liaxil l ,li0i] A 1 = 4  0 A2=4  0 

6 0 6 0 

5 4 6 5 4 6 

A3=4  0 A4=4  0 
6 0 6 0 0 
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(so that a2=a4=0  and b2=b4=0  ) where 

2 2 2 2 

2 2 [1 o o3:  [~ lo] 
2 2 2 2 2 2 

2 0 00] and b3 2 l [lo I~ o 
(Matrices with the specified form automatically commute, satisfy A I A4=A2A 3 
and define a module killed by ma+(x2,x4)m.) The module M defined by four 
matrices in this form satisfies pdRM < oo and z (M,R/P)= - 1  if and only if the 
entries of the four variable matrices c i are in sufficiently general position in the 
precise sense that if we write 

2 2 2 

2 [~il Ci2 Ci3] 
Ci= 3 L,.i 1 di 2 di3 

2 2 2 

then i) 3 [d21 da2 d23 ] 
3 Ld41 d42 d43_ I is invertible and 

2 2 2 2 

3 ~c41 C4.2 -- r C43-- C22 C23 ] 
ii) 2 [d41 d42-d21 d43-d22 d23 

3 Ld31 daE-d11 d33-d12 d13 
is invertible. 

(5.2) Remark. We have parametrized the isomorphism classes of the modules 
M in which we are interested by the points of a dense open set in A~ 2~ but 
this parametrization is by no means one-to-one. Two quadruples of matrices 
give the same isomorphism class if and only if they are simultaneously con- 
jugate. Thus, for example, we may do any row operation involving only the 
third, fourth and fifth rows (to all four matrices) without changing the isomor- 
phism class: the inverse column operation will have no effect, since the third, 
fourth, and fifth columns are zero. Later (Corollary 5.4) we shall impose further 
restrictions on the c v 

(5.3) Remark. The numbers given in b)-e) show that a minimal resolution of 
such a module M has the form 

O....~RS__.~R16_..~R 17_..~ R6_..~ M___~ 0. 

The number 17 represents the minimum number of generators for the relations 
on the 6 generators of M. By dualizing into R, we see that M* requires 5 
generators and 16 relations. R. Fossum has computed the resolution in detail 
for one choice of M [F2]. 
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Proof of Theorem (5.2). We shall first establish a), b), c) and then the lengthy 
remarks following statement e). We shall then return to the calculations neces- 
sary to establish d) and e). 

In the notation of (4.1) and (4.3) we have z(M,R/P)=(g-h)/2 and so we 
must be in case 2) of the proof of Theorem (4.3). In order to achieve the 
minimum length of 15 we must have h=4 ,  g=2 ,  and h' 1 =h'3=g'--h=O. Then s 
=h+h'l +h'a=4 , 

r=h'~ +h'3+max{g,~h-�89 } = 0 + 0 + m a x { 2 , 6 - 1 }  =5 

and t = r  - g - h  = 5 - ( - 1 ) = 6  are the values we must take to minimize n=r+s 
2 

+ t = 15. Thus, a module of length 15 which satisfies our requirements has only 
one admissible filtration M = M o ~ M I ~ M z ~ = O  satisfying mMicMr 1, 
0 < i < 2  and (x2,x4)McM z, (x2,x4)Ml=O. As observed earlier, M I = m M ,  M z 
=mZM+(x2,x4)M is always one such filtration: hence dim(M/mM)=t=6. 
However, when pdM<oo we may choose M2=AnnMm instead: the only 
problem is to see that AnnMm=mM.  But, if not, we can choose a minimal 
generator u of M such that mu=O, and then K~--~M via ]-~---*u splits: the 
submodule of M spanned by the terms other than u in a minimal basis for M 
containing u will be an R-module complement, M', for the copy of K. But M 
= K OR M' is impossible:pdRM < ~ then implies p dRK < o% a contradiction. 

It follows that Ann~tm = m 2 M  + (x z, x4)M, and both have dimension r =  5. 
To analyze the structure of such modules M further we adopt the viewpoint 

and notation of the proof of Theorem (4.1). We already know that M can be 
described by giving four matrices of the special form (3.1). From the proof of 
(4.1) and the discussion above we know that Ima~ c~Ima 3 = G  had dimension g 
=2  and that both a 1, a 3 map all of H=KS=K 4 into and, in fact, onto G~-K 2. 
Since K e r a l c ~ K e r a 3 = 0  we see that Kera~Kera3~-K  2 and K 4 
= K e r a ~ G K e r a  3. Choose bases for K 4, K 5 respectively so that a I maps the 
first two standard basis vectors to the first two standard basis vectors for K 5 
(set up the basis for K 5 so that G=Ket  +Ke2) and a~ kills the last two, while 
a 3 kills the first two standard basis vectors for K 4 and maps the last two to the 
standard basis for G ~ K 2 ~  K 5. These choices will guarantee 

2 2  2 2  

[1 ~ ] ~ 1] 2 0 and a 3 
al =3  0 =3  0 

where the numbers alongside the matrices are used to indicate the sizes of the 

2 [b'l] and b 3 2 [b'a] The condition alba=a3b ~ becomes blocks. Let b l =  2 I_b'~J = 2  [b'~J" 

b~=b'a: call their common value b*. After deleting the rows and columns 

consisting entirely of zeros, the matrices [~13 A2] and [ _ ~  - ~ ]  become 
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and 

2 

3 

2 

- 2 

A =  2 

3 

2 

2 

2 2 

-1 0 I 

0 0 

0 0 

0 0 

0 1 

0 0 

0 0 

_0 0 

2 2 

Cll  C12 

dl l  d12 
b~ 
b* 

C31 C32 

d31 d32 
b* 

b~ 

2 2 
C13 C21 

d13 d21 
0 

0 

r C41 

d33 d41 
0 

0 

2 2 

C22 C23 

d22 d23 
0 0 

0 0 

C42 C43 

d42 d43 
0 0 

0 0 

2 

2 0 

3 0 

/~=2 - 1  

3 ! 0 

2 0 i 

2 L 0 

2 2 2 

C41 C42 C43 

d41 d42 d43 

--C31 --C32 --C33 

-d31 -d32 -d33 
- b *  

-G 

2 2 

0 -c21  

0 -d21 

1 Cll 

0 d l l  
0 

0 

2 2 

-- C22 -- C2;  

-d22 -d23 
C12 C13 

d12 d13 
b~ 
b* 

respectively. The ranks of the these two can be seen to be at most 16 and 14, 
respectively, and so M will have finite projective dimension precisely when 
these ranks are 16 and 14,__ respectively. We delete the rows and columns of the 
two l's which occur in A: the rank of A is 2 + 2 + t h e  rank of the resulting 
matrix, which is 

66I : 6 

d12 
d32 
b'l 
b* 

b'~ 

d13 d21 
d33 d41 

6 d22  ] 
d42 

0 

and this matrix will have the required rank, 12, if and only if both 

[ ~ ]  and [ d2~ d22 d231 
b'3[ I-d41 d,~2 d43/ 

are invertible. But then we may choose a basis for K 6 so that the first of these 
becomes the identity, and this gives the forms stated for the A i in the theorem 
as well as condition i). It remains to verify that the second matr ix/~ has rank 
14 if and only if, in addition, condition ii) holds. Deleting the first column 
(actually, two columns) of/3, which are redundant, and substituting for b'~, b*, 

tl b3, we obtain 
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2 2 2 2 2 2 2 

C41 C42 C43 0 -- C21 -- C22 -- C2; 

d,1 d42 d43 0 -dE1 --dEE -d23  

-- C31 -- C32 -- C33 1 Cll C12 C13 

-d31  -d32  -d33  0 dl l  d12 d13 
0 - 1  0 0 1 0 0 

0 0 - 1  0 0 1 0 

If we add  the second co lumn to the fifth and  the th i rd  co lumn to the sixth, and  
then delete  the rows and co lumns  of  the  three l ' s  (each of  which is e i ther  the  
only nonze ro  e lement  in its row or  in its column),  we see that  B has r ank  2 + 2 
+ 2 + the rank  of 

2 2 2 2 

3 d41 d42 -d21 d43 -d22  -d23  

3 d31 - d 3 2 + d l l  - d 3 3 + d t 2  d13 

which mus t  have r ank  8, i.e. be invert ible,  in o rde r  tha t  /3 have r ank  14. But 
switching the signs on bo th  the last  row and the last  co lumn yields the matr ix  
given in ii). 

It  r emains  to es tabl ish d) and  e). W e  first note  that  the resolu t ion  of  K over  
R has the form:  

~R 7 q' ~R 4 . . . - -  ~R - K  , 0  

where  the matr ices  of  the maps  q~, ~ are then t ransposes  of the matr ices  

and 

L o =  

l-Xx x2 x3 x,]  

x 2 - x  I 0 0 

x 3 0 - x  1 0 

x 4 0 0 - x ~  

0 x 3 - x  2 0 

0 x4. 0 - x  2 

0 0 x 4 - x  3 

0 0 x 2 - x l .  

respectively.  (The first six rows are  Koszu l  relat ions.)  
If  we app ly  @ K M  we see tha t  T o r ~ ( K , M )  is the  homology ,  at the  center 

spot,  of 
M7 ~b| ~ M4 *| , M 

whence 

since 

d im K Tor  t (K, M)  = d im M 4 - r ank  ~ | id M - r ank  ~b | id M 

= 6 0 -  rank  ~b | id M - 9 = 51 - rank  ~ @ id M 

rank  ~b | id M = dimr(Im(q~ | idu)  ) = d i r e r  m M 

= l ( M )  - l ( M / m  M )  = 15  - 6 = 9 .  
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To complete the argument we need to show that rank ~, | id M is 34. If we 
identify M with K 15 we may replace $ |  u by a 6 0 x 1 0 5  matrix /2 which 
arises from/20 by replacing each x i by the matrix A i of the action of x i on M 

= K  15. In fact, we may use Ai instead of Ai, omitting the first five columns and 
last six rows of each A~, all of  which are 0. The result is shown below, in 
block form. All blocks are 2 x 2 except for the d's, which are 3 x 2, and the 
0' entries, which are 3 x 2 blocks of  O's. The numbers shown are simply to 
keep track of  rows and columns, not block sizes. The resulting matrix is 63 
x 40, but is presented as a 28 x 20 matrix of  2 x 2 and 3 x 2 blocks. 

Each of the entries in the spots (1, 6), (5, 2), (13, 7), and (21, 17) is + 1 and is 
the only nonzero entry in its column. Each of the entries in the spots (3, 8), 
(4, 9), (11, 18), (12, 19), (16, 10), and (24, 20) is + 1 and is the only nonzero entry 
in its row. These 10 (boldface) entries are in 10 distinct rows and 10 distinct 
columns. If we delete the rows and columns of these entries the rank will drop 
by 1 0 . 2 = 2 0 .  If we also delete all the rows and columns which are identically 0 
after these deletions, namely rows 15, 17, 18, 19, 20, 27 and 28 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

2O 

21 

22 

23 

24 

25 

26 

27 

28 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

--0 0 C21 C22 C23 - 1  0 - c ~  --C12 --C13 0 0 0 0 0 0 0 0 0 0 

O' O' d2l d22 d23 0 t O' - d l l  -d12 -d13  O' O' O' O' O' O' O' O' O' O' 
0 0 0 0 0 0 0 - 1  0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 - 1  0 0 0 0 0 0 0 0 0 0 0 

0 1 cal %2 c33 0 0 0 0 0 - 1  0 - c l t  -c1~ - c l s  0 0 0 0 0 

O' O' dat d32 d33 ff O' O' O' O' O' O' - d l t  -dr2  - d t 3  O' O' O' O' O' 

0 0 0 1 0 0 0 0 0 0 0 0 - 1  0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 --1 0 0 0 0 0 0 

0 0 c,,t c,,2 c43 0 0 0 0 0 0 0 0 0 0 - 1  0 - c l l - c 1 2 - - c ~ a  

O' O' d4l d42 d43 O' O' O' O' O' O' O' O' O' O' O' 0 t O' --d12 -d13 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1  0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1  0 

0 0 0 0 0 0 1 c3~ %2 c3~ 0 0 -c2~ --c2~ --c23 0 0 0 0 0 

O' O' O' O' O' O' O' d31 d32 da3 O' O ' -d21  --d22 -d23  O' O' O' O' Or 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 13 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 C41 C42 C43 0 0 0 0 0 0 0 - - r  

O' O' O' O' O' O' O' d41 d,2 d43 O' O' O' O' O' O' O ' - d 2 t  -d22 -d23 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 c41 c,~ c43 0 - 1 - c 3 1 - c 3 : - c 3 3  

O' O' O' O' O' O' O' O' O' O' O' O' d,l d,2 d,,3 O' O ' -d31  -d32 -d33 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1  0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1  

0 0 0 0 0 0 0 0 0 0 0 0 C21 C22 C23 --1 0 - -C l l - -C i2 - -C13  

O' O' O' O' 0 j O' O' O' O' O' O' 0 ~ d21 d22 d23 0 0 - -d l l  -d12 -d I3  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1  0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1  0 
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and columns 1, 11, and 12, we obtain 

1 
2 

3 

4 

5 

6 

7 

8 

9 

10 

2 3 4 5 6 7 

d21 d22 d23 O' O' O' 07 
d31 d32 d33 - d l l  -d12 -d13 O' 

0 1 0 - 1 0 0 0 

0 0 1 0 - 1 0 0 

C41 C42 C43 0 0 0 - 1 

d,1 d42 d43 O' O' O' O' 
O' O' O' -d21 -d22 -d23 O' 
O' O' O' d , i  d42 d43 O' 

0 0 0 C21 C22 C23 -- 1 

O' O' O' d21 d22 d23 O~ 

and it will suffice to show that the matrix has rank 14. We may 
which is the negative of  row I0, and we may also add the second 
fourth and the third to the fifth. This yields: 

1 2 

1 -d21 d22 

2 d31 d32 
3 0 1 

4 0 0 

5 c4t C42 
6 d,1 d42 
7 O' O' 

8 0' 0' 

9 0' 0' 

Deleting the second and third 
we then subtract  the next to 
numbered  5 above, we may 
column, which will d rop  the 
result, 

d21 
d31 
C41 

l d,~l 

O' 

O' 

3 4 5 6 7 

d23 d22 d23 O' 07 
d33 d32--dxl  d33 -d12 -d13 O' 

0 0 0 0 0 

1 0 0 0 ,0 

C43 C42 C43 0 -- 1 

d43 d42 d43 O' O' 
O' d41 d42 d43 O' 
0' C21 C22 C23 -- 1 

O' d21 d22 d23 O[ 

277 

delete row 7 
colum to the 

rows and columns will decrease the rank by 4. If  
last row (numbered 8 above) from the row now 
then delete the next to last row and the last 

rank by 2. We will then need to show that the 

d22 d23 I 
d32-d11 d33-d12 
C42--C21 C42-- C22 

d42 d,3 

d41 d42 
d21 d22 

t 

- d 1 3  

0 

0' 

d43 ] 
d23 
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which is 17 x 8, has rank 1 4 - 4 - 2 = 8 .  This follows because i), the submatrix 

d21 d22 d23 

d41 d42 d43] 

is invertible, rank 6, while the submatrix 

[ d43] 
d23J 

has rank 2: it is, after row permutation, the last two columns of the invertible 6 
x 6 matrix above, which are obviously independent. This completes the proof 
of d). 

Finally, e) follows from the fact that the alternating sum of the Betti 
numbers must be 0. Q.E.D. 

Note that by replacing M by M v we obtain a module with essentially the 
same properties as M (length 15, finite projective dimension, killed by m 3 
+(x2, x4)m ) but such that )~(MV,R/P)=I.  The Betti numbers for M v are 
those of M, but in reverse order. 

(5.4) Corollary. With notation as in Theorem (5.1), for every module M of 
length 15 killed by m3+(x2, xg)m such that ) ~ ( M , R / P ) = - t ,  a basis may be 
chosen for M so that the matrices c i described in (5.1) satisfy the following 
additional conditions: 

a) c1~=c3~=0, 1_<i<3 

b) d l t=dl2=0 
c) [d21 dz2d23 ] is in reduced row echelon form. (This 3 x 6 matrix will have 

rank 3.) 

We then have: 

5 2 2 2 2 2 5 2 2 2 2 2 

2 Ol o 2itoolc 1 c22 cii 3 [ ~ 0  o d 3 0 0 1 d d21 

A , = 2 [ ~ ;  ~ i l  A2=2 o o 0 2 2 0 1 2 0 0 0 0 
6 0 0 6 0 0 0 0 

5 2 2 2 2 2 5 2 2 2 2 2 

Lio oo ii [i ~176 c cii 3 0 0 d31 d32 d31 3 0 0 d4l d42 d41 ] 
A3= 2 0 0 0 1 A4= 2 0 0 0 0 

2 0 0 0 0 2 0 0 0 0 

6 0 0 0 0 6 0 0 0 0 
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and conditions i), hi) of Theorem (5.1) become: 

i) [ d21 d22 d231=A 
d4 t d42 d431 1 is invertible and 

[C41C42--C21C43--C22C23] 
ii) I,~1 d42-d21  d43 -d22  d23 / =A 2 is invertible. 

td 31 d32 d33 d133 

(Whenever i), ii) are satisfied, pd M < 0% I(M)= 15 and )~(M, R/P)= -1 . )  

Proof. First, we can arrange that Cll ~C12--C13=0 by subtracting multiples of 
the sixth and seventh columns from the last six columns: the inverse matrix 
acting on rows adds multiples of the last six rows, which are 0, to the sixth and 
seventh rows, with no effect. (Note that each operation is performed on all four 
matrices simultaneously.) We may use the eighth and ninth columns in a similar 
way to guarantee that c31 ~C32=C33~0. 

We may then use row operations involving the sixth and seventh rows to 
guarantee that d11=0 (the inverse column operations are "harmless"), and, 
similarly, we may use row operations involving the eighth and ninth rows to 
guarantee that d12 = 0 (d33 changes, but that doesn't matter). 

The matrix [d2~ d22d23] must  have rank 3, because the matrix listed in i) is 
invertible. Since row operations within the third, fourth and fifth rows preserve 
all the zeros we have introduced, while the corresponding columns are 0, we 
may assume Ed21d22d31] is in reduced row echelon form. The conditions i) 
and ii) listed are the same as in Theorem (5.1), simply taking account of the 
zeros we have introduced. Q.E.D. 

The parametrization of the isomorphism classes is still not one-to-one, even 
with these restrictions. 

(5.5) Corollary. For every field K, finite or infinite, there exists an R-module 
M of length 15 killed by m3+(x2,  x4)m of finite projective dimension such that 
z (M,R/P)= - 1 .  In .fact we may take c41 = 1, c21 =C22=C23=C42=C43=0, and 

d13=d43 = d21 = 

d23=d31=d32=d41=O, and d33=d42 = 

(5.4). 

, d22 -= 

[ :  101, and all other choices as' in 

10 01 
Proof. Since we are constructing M explicitly, the result does not depend on 
the general position arguments used earlier and we may allow K to be finite. 
With these choices A 1 is a 6 x 6 identity matrix, while A 2 is the direct sum of a 
2 x 2 identity, the upper triangular 4 x 4 matrix 
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- 1  1 

0 - 1  

0 0 

and another 2 x 2 identity matrix. Hence, A 1 and A 2 are both invertible. Q.E.D. 

6. Some positive results 

(6.1) Theorem. Let M be an R-module of finite length and suppose that at least 
one of the following conditions holds: 

a) M ~ M* (=  Hom K (M, K)) 
b) m2M=0 
c) xiM=O for some i, 1<_i_<4 

d) I(M)<7. 

Then l(M | P) > l(M) and l(M | Q) >= I(M). 
Moreover, if PdRM < ~ and any of the above conditions holds or 

c') M is killed by an element x e m - m  2 then )~(M,R/P)=z(M,R/Q)=O. 

Proof. From the exact sequence 

O--~ Q --~ R 2 --~ p -~ o 

we have that 2 z ( M , R ) = x ( M , P ) + x ( M , Q )  or 2 I ( M ) = I ( M | 1 7 4  when 
pd s M < 0o. Thus (l(M | P ) -  l(M)) + (I(M | Q) - l(M)) = 0 and if both terms in 
parentheses are nonnegative then both must vanish. Moreover, z(M,R/P)  
= z ( M , R ) - x ( M , P ) = I ( M ) - I ( M |  and similarly for Q. Thus, the first part of 
the theorem implies the second part, except for the statement referring to 
hypothesis c'). But if c') holds and we have x ~ A n n M ,  x ~ m - m  2, and M is of 
finite projective dimension over R/xR,  then since R = R / x R  has dimension 2 
the Grothendieck group of modules of finite length and finite projective dimen- 
sion is generated by the classes of the modules /~/(], z--) where ], ~- is an /~- 
sequence. But then the class of M in the corresponding Grothendieck group 
for R lies in the subgroup generated by the classes R/(x, y, z), when x, y, z is an 
R-sequence, and the multiplicities conjecture is known for modules with this 
form. See ILl.  

It remains to show that if any of a)-d) holds then I (M| the 
proof for P is entirely similar. 

We use the notation of Proposition (2.8): A t is the matrix of the action of 
x i. By (2.8), what we must show is that if the Ai commute and A~A4=A2A3, 
then a) or b) or c) or d) implies rank A < n, where 
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We first do the case where c) holds. Assume that  x iM=O:  this means that 
A i=0 .  Let Aj be the matrix in the opposite corner of  A, i.e. { i , j}={2,  3} or 
{1, 4}. There is no loss of  generality in assuming K is infinite. Consider the 
matrix A~ obtained by replacing Aj by Aj+2I ,  2 e K .  It will suffice to show 
that when A i +  21 is invertible, then rank A~_< n: for then, the n + 1 size minors  
of A ~, viewed as polynomials  in ), vanish for all but  finitely many  values of 2, 
and this means they vanish for all values of 2, including 2 = 0 .  But then, to 
complete the proof, it suffices to observe: 

(6.2) Lemma.  I f  A1,A2,  A3, A 4 are commuting n x n  matrices such that A I A  4 
= A 2 A  3 and one of them is invertible, then r ankA =n,  where 

Proof. We do the case where A 1 is invertible for definiteness: the proofs in the 
other cases are essentially the same. The idea is to subtract  A2 A?  1 times the 
"first" (n-fold) column from the second (n-fold) column. This produces 

A 4 - A 2 A I 1 A 3 ]  " 

But since A 1 A 4 = A z A 3 and the matrices commute  we have A 4 - A  2 A (1A 3 =0, 
and since A1 is invertible the rank of 

~ 
is n. Q.E.D. 

We now return to the rest of the proof  of Theorem (6.1). Assume a), that  
M ~ M * .  Then from (2.8) we have l ( M | 1 7 4  F r o m  the exact se- 
quence 

O--~ Q --~ R 2 -~ p ---~ O 

we obtain:  

M |  M2-~, M Q P--~O 

whence, a l though ~b may have a kernel, we still obtain 

I(M Q Q ) + I ( M  Q P)> 21(M). 

Since l(M @ Q) = l(M | P), we now have the desired result. 
Next, assume b), m 2 M = 0 .  Choose  a K-vector  space basis v I . . . .  , v, for M 

such that  v 1 . . . . .  v h is a basis for ruM. Let k = n - h .  Then all of  the matrices A i 
have block form 

h k 

a l ~  h 
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where d~ is an h x k block, and so 

rank[A13 AA:]=rank[ddl3 dd2]<=min{2h, 2k}<=n 

since h + k = n. 
It remains to handle the case where n=l(M)<=7. Because the length of the 

argument, which includes a tedious case analysis, is, in our judgment, dispro- 
portionate to the interest of the result, we have given it in an Appendix [ D H M ]  
to this paper. This Appendix is available as an unpublished "preprint"  and 
may be obtained by writing to one of the authors. Thus, for the remainder of 
the argument we simply refer to [DHM].  

We note that the first author has shown in [Dt ]  that if R is local 
Gorenstein ring of dimension 3, M has finite length and finite projective 
dimension, and M~Ext3(M,R) ,  then x ( M , N ) = 0  for all finitely generated 
modules N with dim N__< 2. 

7. Consequences and questions 

If A is a Cohen-Macaulay local ring, let ~E(A) denote the Grothendieck group 
of finite length A-modules of finite projective dimension. This is a special case 
of a notion studied in IF1], [FFI] .  There, when A is not C - M ,  ~E(A) is 
defined as the Grothendieck group of finite free complexes with finite length 
homology, under certain relations. 

It was previously not known whether, for an arbitrary local ring A,/E(A) 
would be generated by the classes of Koszul complexes of systems of parame- 
ters. In the case where A is C - M ,  in terms of the definition via modules given 
above, this question becomes, is .~E(A) generated by the classes 
[A/(u 1, u 2, ..., u,)] where u 1 . . . . .  u, is a system of parameters (equivalently, a 
maximal A-sequence) in A. This is known to be true for Cohen-Macaulay local 
rings A with dimA <2:  the idea of the proof can be found in [H1], although a 
complete argument for the general case does not seem to appear in detail in 
the literature. 

By virtue of our example we can now assert: 

(7.1) Proposition. Let G be the quotient of AF.(R) by the subgroup generated by 
the classes [R/(ul, u2, u3)], where ul ,u2,  u 3 is a system of parameters Jbr R. 
Then if M is a module of finite length and finite projective dimension such that 

X (M, R/P) = _+ 1, 

then [M] is not torsion in G, and, in fact, Z.  [M] is a direct summand of G as 
an abelian group (Z is the integers). 

Proof. Define h: /E(R)--~ Z 

by h([N])=x(N,R/P). By ILl ,  h kills each [R/(ul, u2, u3)], and so h induces a 
map 

h: G - ~ Z ~ Z -  [M] 
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such that h ( [M])=  + 1, i.e., h is surjective, which splits the inclusion Z .  [M] 
~-~G. Q.E.D. 

We have no idea just how large AF(R) is. One intriguing question is this: 

(7.2) Question. For modules M of finite length and finite projective dimension 
of R, let 

#(M) = Iz(M, R/P)I/I(M). 

What is suPM#(M ), and is there a module M for which the supremum is 
achieved? 

Note that the original generalized Serre conjecture had /I(M)=O, which is, 
of course, not true. For  modules M of finite length and finite projective 
dimension killed by (x z, x 4 ) m + m  3, we know/~(M)< 1/15. We do know that 

O < # ( M ) < I  

for every M, and so we know 

1/15 < SUPM I~(M) < 1. 

It would be interesting if # = s u p  M#(M) is not achieved, for the following 
reason: 

(7.3) Proposition. I f  SUpM/~(M) is not achieved, then there exist finite length R- 
modules of  finite projective dimension of arbitrarily great length possessing no 
proper nonzero submodules of finite projective dimension. 

Proof. If the conclusion is false, then there exists a fixed positive integer N 
such that every finite length module of finite projective dimension has a 
filtration in which every factor has finite projective dimension and length _<_ N. 

For any such module M of length <N,  ]z(M,R/P)[<__N, and so there are 
only finitely many possibilities for z(M, R/P), lying among the integers between 
- ( N -  1) and N -  1. 

Let (a l ,b l )  . . . . .  (ar, br) be the pairs of integers which can occur as 
(z(M,R/P), l(M)) with l (M)<N.  The b i are integers between 1 and N, while 
lail<b i. Then for a module M with a filtration containing ki copies of factors 
which yield (% bl), 1 < i < r, we have 

#(M) = I Z k~q,I/~ k,b, <= ~. k, l a, l /Z k,b, 

and since z ( M * , R / P ) = - z ( M , R / P )  there is no loss of generality in working 
only with pairs (ai, bi) with a i> O. 

a a' a+a '<a '  
But if b,b'>O and ~--<~7, then b,=b, .  From this fact and a trivial 

induction we see that b + 

~. ki al/~, ki bi < maxi {a]bl} . 

Thus, the supremum is actually achieved on some module of length 
<_N. Q.E.D. 
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If M is finitely generated and has finite projective dimension over a Noe- 
therian ring S, N is finitely generated, and M | N has finite length, then we 
may consider the truncated Euler characteristics 

)~i(M,N)=~(-1)Zl(TorS+,(M,N)), O < t < p d M - i ,  
t 

of which )~o(M,N)=)~(M,N) is the foremost example. Until the advent of the 
examples constructed here, it seemed to be a viable conjecture that zi(M, N)>  0 
whenever it is defined. This is true, for example, over unramified regular rings: 
see [L]. There it is shown that z~(M,N)=0, i>2,  implies Torj(M,N)=O, j>i.  
Recently, this was extended [H4] to the case i=  1 (but, still, only for unramified 
regular local rings). 

We want to point out that the examples given here lead to examples where 
z i (M ,N )<0  even when d i m S = 2 ,  i--1. 

The construction of these examples is based on our main counterexample 
and the following: 

(7.4) Proposition. Let A be a normal 3-dimensional Gorenstein local domain. 
Let M be an A-module of finite length and finite projective dimension. Let N be 
an A-module of depth 2 such that N ' = E x t  1 (N,A) has finite length. Let v denote 
the Matlis dual. Then 

z2(MV,N' )~z (M,N) .  

Proof. We first note that if W has finite length we may identify its Matlis dual 
W v with Ext3(W,A), a module of the same length. We also note that if W has 
finite projective dimension and finite length then 

i) Exti(W, V)---Tor3_i(W v, V), 

for if P, is a minimal projective resolution of W, then Hom (P,, A) is a minimal 
projective resolution of W v and Hom (P,, V), whose cohomology is Ext i (W, V), 
may be identified with Horn(P, ,  A) |  V. 

Let 

ii) W ij = Ext ~ (M, Ext j (N, A)). 

There are spectral sequences with E 2 terms Ext~(Torq(M,N),A) and W i~, 
respectively, which converge to (associated graded complexes of) the same E ~ 
complex. Since depth N > 2, Torq (M, N ) = 0  unless q =0  or 1. Now Torq(M, N) 
has finite length (since M does) so Exte(Torq(M,N),A) vanishes (A is Goren- 
stein) unless p = 3. It follows that E ~ is 0 except when p + q is 3 or 4, in which 
case it coincides with Ext 3 ( M |  N, A) or Ext 3 (Tor 1 (M, N), A), respectively. 

Since N has depth 2 and A is Gorenstein, Ext ~(N, A) vanishes except for j 
= 0, 1. The W ij then display the following pattern" 

1 W 1~ W 11 W 12 

0 W ~ 1 7 6  W ~  W ~ 

j/i 0 1 2 

W 13 

W 03 

where all W ~s not shown are 0. The two zeros in the bottom row occur 
because Hom(N,A)  is reflexive, hence of depth at least two, and so 
Ext i (M, Hom (N, A)) = 0 for i < 2. 
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From the fact that the 
associated graded complex 
sequence: 

--~ E~---~ Wll----~ W~ E~--~ W 12----~ 

li 
0 

The first six terms give an exact sequence: 

iii) 0 ,Extl(M,N')----~Ext3(M, Hom(N,A))  

, Ext2 (M, N,)____~ 0 

(where N ' =  Ext I (N, A)) while the last four give 

iv) Ext 3 (Tor 1 (M, N), A) - Ext 3 (M, N'). 
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homology of the total complex here yields an 
of E ~ we now obtain, as usual, a long exact 

W ~ ---,E~--~ W12--~ W ~ 

It 11 
0 0 

, Ext 3 (M | N, A) 

Since pdAM=3, since M has finite length, and since depth N = 2 ,  we know 
that Tor i (M, N) = 0, i > 2. Thus, 

v) z ( M , N ) = I ( M |  1 (M,N)). 

Now, ( M |  v _~Ext3(M|  and so 

I(M | N) = I((M | N) v) =/(Ext  3 (M | N, A)). 

Thus, from the surjectivity of a in iii) we have 

vi) I(M | N) >/(Ext 2 (M, N')) 

=/(Worl (MV,N ') (by i)). 
Also, 

Tor  1 (M, N) v ~ Ext 3 (Tor (M, N), A) 

- Ext 3 (M, N') (by iv)) 

M v | N' (by i)) 

and so 

vii) /(Tor 1 (M, N)) = / (Tor  1 (M, N) ~) = (M v | N'). 

Together, v), vi) and vii) yield 

viii) z ( M , N ) >  I(Torl ( M ~ , N ' ) ) - I ( M  v | N'). 

Now, M v has finite projective dimension and finite length and N' 
= Ext ~ (N, A) has finite length so that 

)~(M v, N') = 0 ~ / ( T o r  x (M, N')) - I(M v | N') 

= l(Tor 2 (M v, N ' ) ) - / ( T o r  3 (M v, N')) 

=Zz(M~,N  ') 

which, together with viii), yields the desired inequality. Q.E.D. 

(7.5) Remarks. We next want to discuss some implications of the existence of 
the counterexamples of Sect. 5 for questions about nonnegativity of Xi. It is not 
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surprising that counterexamples to this nonnegativity are immediately forth- 
coming. 

Specifically, consider an R-module M with I(M)=15, pdR M<oe  and 
x (M,R /P)=I ,  where, as before, P=(XI,X2). Since mZM=O, I (M/p tM)=I(M)  
= 15 for t > 3. The exact sequence 

O-~ p t - ,  R -~  R / pt--~ O 

yields 
0---~ Tor ~ (M,R/pt) jL~ M |  t ~ , M - ~  M/PtM----~O 

where ~ is an isomorphism for t > 3, and so fl is 0 and 7 is an isomorphism as 
well for t > 3. It follows that 

)~ i (M, RIP t) = )~ (M, Pt) = Z (M, R) - Z (M, RIP t) 

= I ( M ) - z ( M ,  RIP'). 

Since Re is a DVR, R/P t has a prime filtration with t factors ~ R / P  and all 
remaining factors of the form R/q, where q ~ P .  Since R/q is a torsion-module 
over the regular ring R/P, its class in the Grothendieck group of all finitely 
generated (R/P)-modules is 0, and this is also true in the Grothendieck group 
of all finitely generated R-modules. It follows that )~(M,R/q)=O for each such 
q, and hence 

z(M, R/U)=  t z(M, R/P)= t 

whence z(M, pt) = 1 (M) - t = 15 - t. 
Hence, for t _>_ 15, X (M, pt) < 0 and z(M, pt) < 0 for t > 16. 
Note also that z(M, PIS)=O=z1(M,R/P~5)  but 

Tor 1 (M,R/PIS) '~M | P is 4:0. 

(7.6) Remarks. It is not hard to see that U = W  ) for all integers t. For  this 
purpose, we briefly use R to denote K [Xi]/(X ~ X 4 -  X zX3), without localizing, 
and P = (X~, Xz)R.  It suffices to see that U =  P") here. The K-homomorphism 

K[X1, X2, X3, X 4 ] ~ K [ u l ,  u2, vt, v2] = T  

whichsends theen t r iesof [X~ Xz]  to thecorrespondingentr iesof[UlV~ u~ v2] 
X3 X4 u2 U1 U2 /)2 

has kernel ( X I X 4 - X 2 X 3 )  which enables us to identity R with the subring 
K[uivj] c T. Then P = ( u O n R  and P(~ and it is quite easy to see that 

(utOc~R =(utl v] v~ : i + j = t ) R  

= ptR. 

Thus, R / U = R / P  (') has depth 1, and so pt has length 2 as an R-module. 
Moreover, U becomes free if we localize at any prime except m 
=(x l ,  x2, x3, x4), since PRx, is principal, i=1,  2, 3, 4. 

We revert now to studying the local version of R. The remark above shows 
that for all t, pt has depth 2 and Exr  (pt, R) has finite length. 

We now put this together with Proposition (7.4). 
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(7.7) Proposition. For t >= 3 let 

N t = Ext 1 (U, R), 

an R-module o f  f inite length. Let M be an R-module o f  length 15 and finite 
projective dimension such that 

Z (M, R / P ) =  1. 

For t>16,  z2(MV,Nt)<0. 

Proof. By (7.4), ;(2(M v, Nt ) < x(M, pt) = 15 - t <0,  using the information in Re- 
marks (7.5), (7.6). Q.E.D. 

(7.8) Proposition. With notation as in (7.7) let Mj  be a f irst  module of  syzygies 
of  M v, let x e A n n N  t be any nonzero element of  R, let S = R / x R  and suppose 
t>16.  Then 

Z2 R (M ~, Nt) = X~ (M1, Nt) = X s (M f fx  M,  N )  < O. 

Proof. Tor/R (M v, Nt ) ~ T o r L  1 (M1, Nt), i > 2, while 

T o r R t  (M1, Nt) - - -  T o r S ,  ( M f f x  Mr,  Nt), 

all i, since x is a nonzero divisor on R, M 1 and kills N t. Q.E.D. 

Thus we obtain the example of a two-dimensional local ring S, which is, in 
fact, a complete intersection, an S-module of finite projective dimension /~ 
= M f f x M 1 ,  and an S-module of finite length, N t, with z I (M,N,)<0.  

(7.9) Remarks on rigidity. It remains an open question whether, if p d M <  oo 
and Torl (M, N) = 0 then Torj (M, N) = 0 for j > i. Here, M, N are finitely gener- 
ated modules over a Noetherian ring. So far as we know, this question, raised 
by M.Auslander in [A1], [A2], is open even if p d M = 2 .  It reduces to the case 
of local rings, even complete local rings, and is known if the ring is regular 
EL]. 

The examples given here suggest that this conjecture may be false. Our 
objective here is to present the simplest situation in which the question is still 
open in terms of a down-to-earth problem in linear algebra which will exhibit 
certain clear analogies with the problem solved earlier to give the counterex- 
ample for the generalized Serre conjecture on multiplicities. 

What we want to do is consider a completely concrete form of the rigidity 
conjecture for modules M with free resolutions of length 2 of the form 

O ---~ A ---, A b ---~ A b ---~ M -* O , b > 2 . 

Although it is not necessary, we restrict attention to the case where A contains 
field, for simplicity. In this situation one can show that it suffices to study a 
specific module M over a certain "generically" constructed ring A, together 
with an arbitrary A-module N of finite length. For more details about tile 
generic rings and complexes we refer the reader to [Hz]. 

These generic rings over a fixed field K are constructed as follows: 
Let U = [ u l ,  . . . ,ub],  V t = [ v t  . . . . .  Vb] SO that (superscript t denotes trans- 

pose) U, V are 1 x b and b x 1 matrices of indeterminates and let Z--(zi j  ) be a b 
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x b matrix of indeterminates. Let 

A = K Eu~, v~, z~j]/J 

where J is the ideal generated by det Z and the entries of the matrices UZ, Z V, 
and V U - a d j Z  (where adj denotes the classical adjoint, i.e., the transpose of 
the cofactor matrix). We write - to denote images modulo J. 

Then, with matrices acting on the right, 

0 > A ~ A  b z ~Ab___~M___~ 0 

is exact, where M is simply the cokernel of 2 .  To give an A-module N of finite 
length n, say N=K",  is then the same as to give b Z + 2 b  commuting n• 
matrices corresponding to the u j, v~, z~i, which satisfy the conditions which 
define J.  

Let j//,~e, respectively, be the n by bn and bn•  matrices obtained by 
replacing the entries of U, Z by the corresponding n x n matrices which give 
the actions of the entries on N = K". 

The rigidity conjecture then asserts that 

rank J//+ rank ~( = nb ~ rank ~//= n. 

An equivalent assertion is that 

rank q /+  rank ~( -- n b ~ rank ~e __< n (b - 1). 

We do not know whether this is true even when b = 3 .  When b = 2  the 
assertion rank ~f<=n is hard to give counterexamples to even under the mild 
hypotheses that the entries of 5 r commute and yield (2 • 2) determinant 0: one 
needs n_->8 and the smallest example we know of is the counterexample of 
Sect. 5, with n =  15. Of course, in the situation of rigidity there is much more 
hypothesis (in particular, the condition V U - - a d j Z ,  which, for b=2 ,  does 
imply rank ~ __< n). 

(7.10) Remarks  on the Gothendieck group of R. We want to note here that 
the Grothendieck group G of R is the free abelian group on the generators [R] 
and JR~P], and observe some consequences of this fact. 

To see that these two generate we note that it suffices to prove this instead 
where R = K [XI]/(X ~ X 4 -  X2X3) (not localized), and P = (X 1, X2)R. Every ele- 
ments of G is equivalent, modulo [R], to each of its modules of syzygies. Since 
Rx, is regular, these are eventually projective and hence free, for 
RxI~K[X1,X2 ,Xa]x l .  Let M be torsion-free such that Mxl is free. Then we 
can embed M---. R k for some k such that the cokernel is annihilated by a power 
of x 1. Thus, modulo JR], M is equivalent to the sum of the factors in a prime 
filtration of the cokernel. Each is a prime containing xl ,  and so contains either 
x 2 or x 3 and hence may be regarded as a module over the regular ring 
R/(xl, x~), j = 2  or 3, =K[x,,,  Xs_j], and so has a finite free resolution over 
R/(xl,xj). It follows that G is generated by [R], JR~P], JR~Q], where Q 
=(x l ,x3) .  But O-+R ~ " , Q ~ R / P ~ O )  is exact, showing that [Q]=[R/P] 
+ JR], which implies that JR~Q] = -JR~P]. 
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Now, the additive map given by torsion-free rank is 1 on [R] and 0 on 
[R/P], while if M is the example of Sect. 5 with pd M < ~ ,  l(M) = 15, x(M, R/P) 
=1,  then the additive map a(N)=z (M,N) -15rkN  is 0 on N=R,  1 on N 
= R/P. It follows that G is the free abelian group with generators [R], [R/P], 
and that for all N 

IN]  =(rk N)[R]  +(z(M, N ) -  15rk N)[R/P]. 

This shows that for any module M 1 of finite length and finite projective 
dimension, the behavior of x(M 1, N) for all finitely generated modules N is 
completely determined by the behavior of ~((M 1 , R) = l(M1) and x(MI, R/P). 

We also note that for such a module M~, x ( M 1 , N ) = 0  for d i m N < l :  see 
[D1], Proposition (1.3). 

(7.11) Remarks. Let S be a local ring, N a finitely generated S-module of 
dimension d with p d s N < ~ ,  and let P be a prime ideal of S such that N/PN 
has finite length and dimN+dimS/P<dimS.  Let e(P,N) denote d!a, where a 
is the coefficient of the degree d term of the Hilbert polynomial which agrees 
with l(N/P"N) for large n. 

If S is an equicharacteristic or, more generally, unramified regular local ring 
then, by [D3], Theorem (2.3): 

z(N, R/P) < e(P, N). 

We note here that this fails over the local ring S = R we have been studying, 
with P=(xl ,  x2)R as usual, for a class of modules N with dim N =  1, depth N 
= 0  and p d R N < ~ .  

To see this choose any module N o of dimension one with p d N o < ~  such 
that No/PN 0 has finite length. For  example, we may choose any R-sequence 
ul,  u 2 which is also an (R/P)-sequence and let No=R/(Ul,U2). Let M be of 
finite length and finite projective dimension over R with ~((M,R/P)>O. Let N k 
= No �9 M k. Then 

(N k, R/P) = )~ (N o, R/P) + k )~ (M, R/P) 

which can be made arbitrarily large by choosing k large, while 

e( P, Sk) = e( P, No) 

because l(Mk/p ". Mk) = l(M k) for all sufficiently large n, and so adding M k has 
no effect on the degree one term of the Hilbert polynomial of N 0. Evidently, 
then, 

Z(Nk, R/P) > e(P, Nk) 

for all sufficiently large k. 

(7.12) Remarks. Let (M,N) be a pair of finitely generated modules over a 
Gorenstein local ring S of positive prime characteristic p such that pdsM< ~ ,  
l(M| , and dimM+dimN<=dimS. Then we can define a "multiplici- 
ty" function in this situation as follows (see [D4] for details): 

Zoo(M, N) = l i m ~  o0 z(Fe(M), N)/P er176 
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where Fe(M) denotes the eth iterated Frobenius  functor of Peskine-Szpiro: see 
[PSi ] .  (If M = coker (alj), Fe(M)= coker (a~j), where q =pe.) 

Zoo behaves better than ;( in some ways:  by [D4],  we have 

i) 7~o~(M,N)=0 if d i m M + d i m N < d i m S ,  

ii) if M is Cohen-Macau lay  and d i m M + d i m N = d i m S  then Zoo(M,N)>O; 
in fact in this case 

;~ ~ (M, N) = lim e_ 00 I(F e (M) | N)/p e codim M. 

See [D4]  for details. 
We note  here that  for S = R  we can choose M , N  as above with dim M = 1, 

depth M = 0 such that 
;(o~(M, N) < 0 .  

In fact take N=R/P,  let u 1, u 2 be an R-sequence whose residues modulo  P 
form a maximal  R-sequence in R/P and let 

Mk = R/(u~, u2) + M~ 

where M o has finite length, finite projective dimension and ;~(M 0, R/P)<O. For  
large k we then have 

Z (Mk, R/P) = O. 
But: 

(7.13) Lemma.  Let M be any finitely generated module over R of dimension 
one with pd R M < ~ such that l(M/PM) is finite. Then 

Zo~ (M, R/P)= z(M, R/P). 

Proof. After a change of  fields we may  assume that K is algebraically closed. 
Given an R-module  N, let ~N denote the result of restricting scalars to the first 
copy of R under  the e th iterate F e of Frobenius,  F~: R--~ R. Then 

z(F~(M),N)=z(M, eN) 

(see [D4]  ). Since K is algebraically closed, if N = R/P, which is regular local of 
dimension 2, ~N is the direct sum of p2e copies of R/P, whence 

Z(Fe(M), N) =p2e z(M, N) 

and the result is now immediate  from the definition of  ;~oo. Q.E.D. 

Applying this with M = M k we see that  

)~ (M k, R/P) = z(M, R/P) < 0 

for all sufficiently large k. 
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Oblatum 16-V1-1984 

Note added in proof 

Independently, P. Roberts (n the vanishing of intersection multiplicities of perfect complexes, 
preprint 1984) and H. Gillet and C. Soul6 (K-th6orie et nullit6 des multiplicit~s d'intersection, to 
appear in C.R. Acad. Sci. Paris) have shown that if R is a local complete intersection, d imM 
+ d i m N < d i m R  and both M, N, have finite projective dimension, then I(M| implies 
x(M,N)=0. P. Roberts has also done the case where R has an isolated singularity. Both papers 
include the use where R is a possibly remified regular local ring. 


