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PREFACE

This thesis presents with the development and characterization of a novel packaging
structure that is realized for high frequency circuit applications using silicon
micromachining techniques. This self-packaged topology results from the merger of two
technologies, silicon micromachining and high frequency circuit design techniques used
in microwave and millimeter wave applications. Extensions of the technology have been
used to explore its potential to improve the performance of microstrip antennas, such as
the rectangular patch, in order to provide an alternative means for reducing surface wave
excitation in high index materials. The design, fabrication and testing procedures are
discussed herein, and measured results are shown for representative planar circuits and

antenna elements typically used in high frequency applications.
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CHAPTER 1

INTRODUCTION

1.1 PACKAGING IN HIGH FREQUENCY APPLICATIONS

Since the 1950’s, packaging has played an increasing important role in the advance-
ment and direction of circuit designs in the electronics industry. Packaging for low fre-
quency (LF) circuit applications have advanced significantly to accommodate high
volume cost effective circuits used in commercial applications below 1 GHz. On the other
hand, packaging for high frequency (HF) applications has experienced limited growth due
to high performance, low volume design requirements. Electrical performance improve-
ments are significantly impacted by the present limitations in HF package development.
Processing technologies used to make LF circuits and design/analysis (D/A) techniques
used in HF circuits can be combined to realize novel packaging concepts for planar mono-
lithic and microwave integrated circuits (MICs and MMICs). At high frequencies,
research on optimum device and component performance were given the highest priority.
This resulted in the development of sophisticated D/A tools and an extensive circuit
design library. In the last few years, packaging effects are now identified as one of the
most important parameters affecting substantial performance improvements in many HF
circuits.

Several packaging approaches have been implemented thus far in high frequency
applications. Multi-function circuits and arrays use STRATEDGE™ [1] and WAFFLE-

LINE [3] for example to accommodate MIC and MMIC designs. Quartz hermetic pack-
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ages have been successfully developed for multi-chip-modules (MCM) at millimeter wave
frequencies [2]. Common to each of the aforementioned approaches is the incorporation of
packages at the last phase of product development. Since package integration does affect
circuit performance, several design iterations are usually implemented before design
requirements are satisfied. Monolithic packaging is a novel approach that provides inte-
gration at the circuit design level which offers several advantages. First, the packaging
parameters extend the number of design variables to enhance design flexibility. Second,
circuit evaluation is inclusive since the package has been integrated simultaneously in the
fabrication procedure.

Silicon micromachining techniques can be used toward the development of monolithic
packages. To date several micromachined circuits which consist of antenna elements,
TM; waveguide structures, and planar designs have been implemented using this tech-
nique. Rutledge et. al [5] introduced a pyramidal horn antenna with a planar dipole inte-
grated monolithically onto a thin membrane' dielectric in the millimeter-wave region.
Soon thereafter, one waveguide structure was developed using similar techniques [10] for
W-band applications. Since that time, high performance planar transmission lines such as
the microshield have been investigated [6] using membrane supported technology.

The planar circuits can be improved significantly by reducing loss mechanisms com-
mon to many planar topologies: (a) dielectric and (b) radiation loss. Complete elimination
of dielectric losses is achieved through substrate removal that produces planar lines sup-
ported on membranes. Demonstrations have been shown for components that include fil-
ters to power dividers for frequencies between tens of gigahertz (X-Band) to hundreds of
gigahertz (above W-Band). In fact, an extensive collection of planar lowpass to bandpass
filters exist based on tuning stubs [6], couples lines [7-8], and lumped elements[9]. An

alternative that reduces the loss mechanisms associated with the dielectric can be achieved

1. Membrane is a tri-dielectric layer consisting of silicon dioxide/ silicon nitride/ silicon
dioxide having thicknesses of 7500A/3500A/4500A.
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by controlling the excitation of substrate modes in the form of surface waves and higher
order modes.

Both radiation and dielectric loss are addressed in the development of self-packages
that incorporate a monolithic shielding package around planar circuit elements using
micromachining techniques. Typical to many planar circuits are the excitation of substrate
modes, parasitic radiation and package resonances. Together, each of these mechanisms
can severely degrade the electrical performance of planar circuits. As the fréquency of
operation increases to millimeter waves and above, the use of conventional planar trans-
mission lines is diminished since the losses are very high in comparison to the signal
strength propagating though the circuit. In order to benefit from existing circuit designs to
develop high frequency systems, novel solutions are required to minimize the aforemen-
tioned unwanted properties that are inherit to conventional planar designs.

To reduce substrate modes effects, the formation of the lower cavity regions isolates
the dielectric medium propagating the undesired mode from the continuity in the substrate
Once metallized this shielding can reduce or eliminate unwanted electromagnetic effects
that oftentime decreases the amount of useful power available in the circuit. This dimen-
sion can be chosen such that any resonance occurs outside of the desired frequency range
of operation. Since this type of excitation is detrimental for both planar circuit and anten-
nas elements, use of silicon micromachining technology can open an entirely new arena in
high frequency design with an unlimited number of potential applications. To address
radiation issues, individual shielding to circuits can offer improved circuit performance by
isolating the circuit from neighboring circuits and by reducing interference of random
electronic signals.

In addition to decreasing radiation, this approach addresses a number of problems
associated with high frequency package design. There are a number of problems that arise
from poorly designed electronic packages at high frequencies. One of them, mentioned

above, is caused from parasitics in planar transmission lines while the other is associated



with the package layout and configuration. Planar circuits are lightweight. low cost. and
conformal and many are easily integrable with active elements. Unwanted parasitics. how-
ever, are the cause of many problems in circuit performance and occur whenever disconti-
nuities arise in a circuit design to cause radiation. Package layout and the configuration
1ssues on the other hand influence proximity (or near neighbor) coupling and package res-
onances that also contribute to performance degradation. Resolution to these problems can
be addressed in a variety of ways, either through improved circuit designs or though pack-
aging. The investigation of this novel packaging concept is the subject of the work pre-

sented herein.

1.2 OVERVIEW

In this work, a novel approach is proposed that considers the package as an additional
parameter to the circuit design and allows monolithic integration with the circuit. This
approach presents for first time a monolithic package that has been extensively character-
ized for microwave and millimeter wave applications. With the use of advanced process-
ing techniques that have been traditionally associated with sensor technology and high
frequency circuit design techniques, this packaging concept can be realized and applied to
a number of basic circuits that are commonly used in many high frequency applications.

This dissertation is organized into two main sections, the development/characteriza-
tion and evaluation of the micromachined self-package and circuits. The packaged config-
uration 1s described by its cross-sectional geometry and categorized as partial or
completely shielded. Next, extensions of this two dimensional topology can be in a
straight (linear) or bending (non-linear) direction which is referred to as “in-line” or “‘con-
formal” packaging. The conformal package can also be used with multiple input paths to a
circuit. Three techniques are required to completely develop and characterize the struc-

ture: fabrication, measurement and theoretical.



Chapter 2 presents the fabrication techniques required to develop this structure and
various phases of the self-packaged circuit topology are discussed with the merits and
problems associated with each design. In Chapter 3, the measurement and theoretical tech-
niques utilized to characterize the package and circuit are discussed with a summary of the
factors contributing to measurement error. Next, demonstrations of the concept is applied
for various packaging configurations.

The results presented in Chapter 4 indicate the performance of stubs and filters indeed
show improved performance over conventional open structures of similar design due to
the reduction of parasitic radiation. Basic designs such as a detector circuit and double
right angle bend have also been evaluated to show the flexibility of using micromachining
as a conformal package. While many issues of planar circuit performance are significantly
impacted by the excitation of substrate modes, this packaging approach has been extended
to include planar radiating elements such as the microstrip patch. In Chapter 5, the micro-
machining approach is applied to an antenna problem where the effective dielectric con-
stant is reduced underneath the antenna while maintaining the feeding networks on high
index substrates for design compactness. Chapter 6 concludes this work with a summary

and suggestions for future work in this area.



CHAPTER 11

DEVELOPMENT OF MICROMACHINED PACKAGES

2.1 INTRODUCTION

For millimeter and sub-millimeter wave applications, system development is required
with transmission and radiating elements as well as sources and respective circuitry in
order to communicate with existing hardware. Waveguide and aperture based systems
have been successfully implemented at these frequencies since these structures only
require Scaling of dimensions and rely on existing manufacturing technologies. An alter-
native approach for an aperture-based system that was observed in the late eighties were a
monolithic integrated horn array [5] and a monolithic waveguide structure [10]. At that
time, one of the main limiting factors in the realization of high frequency systems was the
availability of adequate planar transmission line geometries. Since loss mechanisms found
in traditional planar circuits in the form of radiation and parasitic coupling cause extreme
performance degradation at higher frequencies, a need existed for exploration and devel-
opment of novel circuit geometries that overcome these mechanisms. This motivated a
large scale investigation into alternative methods that offer improved characteristics. One
approach focuses on the use of silicon micromachining techniques to provide an alterna-
tive method for the development of such geometries and is the topic of this work.

In many circuit and array applications, design flexibility is extremely important there-
fore novel transmission line geometriesbthat offer generic shapes and an increase design

parameters are desirable in order to develop circuits with optimum performance. Many



limitations observed in specific circuit designs can be attributed to the inherit behavior of a
planar line along with those effects caused by the surrounding environment. Existing pla-
nar lines, such as microstrip and stripline, have well known electromagnetic behavior. As a
result, extensive geometry libraries are currently available for circuit realization. In recent
years, however, monolithic integration of active and passive elements motivated interest
in the use of coplanar waveguide lines since these provide more flexibility in accommo-
dating design requirements. While each of the above lines provides certain advantages to
high frequency applications, all of these suffer from losses associated with the dielectric
and conductor, which ultimately limits their use for frequencies at and above the millime-
ter wave region. In addition, external factors associated with proximity coupling to neigh-
boring circuits and electronic package resonances can also result in detrimental effects on
electrical performance.

Circuits that geometrically and physically resemble coplanar transmission line tech-
nology and have cavity shielding on one side of the circuit were first proposed by Katehi
and Dib [10-12] in 1991. In a comparison to the conventional coplanar waveguide (CPW)
in an open medium, these geometries, which can exist with or without the substrate under-
neath the conducting line (Figure 2.1a), offer the advantage of lower radiation, thereby
providing an alternative topology with improved performance. Of the two proposed solu-
tions, one performs optimally as a result of the removal of material underneath the con-
ducting line. This eliminates dielectric loss such that a membrane-supported line
propagates a purely TEM mode and offers a non-dispersive behavior up to the terahertz
frequency range [13]. The other solution is a topology that results in improved perfor-
mance by providing shielding around the transmission line to form a microcavity (Figure
2.2). This reduces the radiation effects caused by parasitic coupling and substrate mode
excitation while providing additional design parameters that can used to enhance circuit

design flexibility.
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Figure 2.1 Novel Geometries for Microwave and Millimeter-wave Technology. (a) Dielectric
membrane supported transmission line, called the microshield. The metal conductors are supported
by the membrane and a lower shielding cavity is below the conducting line. (b) Dielectric shielded line
has conductors supported by the substrate while a shielding cavity is mounted above the conducting
line.
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Figure 2.2 Self-Packaged Circuit Topology. Constructed out of two silicon substrate wafers. The
upper wafer has an air-filled cavity that is mounted over the metallic conductors. The bottom wafer
has a silicon-filled cavity is defined by the sidewalls of the v-grooves below the outer conductors.



In planar circuit designs, this micromachining technology has provided a flexible
approach to the development of very low loss transmission lines [13] as well as micro-
packages that provide self-packaging to individual planar circuit components. Investiga-
tion of the latter novel structure, the micropackage, is the primary focus of this dissertation
which is intended to address the requirements of low-cost lightweight circuits in applica-
tions such as communication systems. In this study of an alternative packaging approach.
the following topics are of interest in order to evaluate its potential to high frequency
design. The primary issues include:

* characterization of micromachined topologies on CPW based circuits,

* demonstration of the shielding effects on simple high frequency planar
elements,

* realization of a package that conforms to the shape and path of the elec-
trical signal line, and

* integration capability with designs that include active elements integrated
either hybridly or monolithically.

Before addressing the above topics, however, this chapter will present the evolution of
the “self-packaged” circuit shown in Figure 2.2 and will discuss the critical factors associ-
ated with the development and fabrication of micropackaged topologies using silicon

micromachining.

2.2 MOTIVATION AND OBJECTIVES

In the past, machine milling technology has been the primary method for developing
metallic structures such as waveguides and test fixtures. To date, the smallest standard
rectangular waveguide produced is WR!-3 while custom designs can be as small as WR-1

[13]. While this represents one approach for the development of small cavities that can be

1. Rectangular waveguide is denoted WR by the Electronic Industry Association (EIA)
and represents the inside width of the rectangular waveguide dimension in english units of mils.
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used to shield individual circuit components, there are fundamental limitations to this
method regarding product development. As applications require size and space reduction.
these metallic structures can add considerably to the overall weight and volume. The fabri-
cation of specific circuit designs using this approach may be limited to low-volume appli-
cations, however it requires the cavity and planar circuit to be manufactured then tested
separately, followed by additional re-evaluation. This method is extremely time intensive
and costly in the fabrication and testing of prototype designs. An alternative approach will
be presented in this chapter that addresses the need to develop low-cost lightweight cir-
cuits that exhibit improved performance over conventional planar circuits. This explora-
tion focuses on the use of silicon micromachining to implement multiple package
topologies that address the requirements of high frequency planar circuit designs.

While several factors motivated the investigation of high frequency packaging tech-
niques, planar designs for use in millimeter and submillimeter applications will be tremen-
dously impacted by the outcome. The investigation depends on identifying and addressing
fabrication issues as well as circuit performance characterization which must be consid-
ered during the initial planning phases of this study. Moreover, accurate evaluation of cir-
cuit performance is best obtained using high performance circuits and testing methods. In
order to achieve such accuracy, a state of the art on-wafer probing measurement system
for high frequency characterization will be employed. The various calibration techniques
available will be discussed in Chapter 3, however, it is important to introduce the subject
of the measurement tool at this time since it has an essential role in the geometrical evolu-
tion of the packaged topologies discussed herein.

High frequency planar circuit characterization results from a combination of good
design techniques and accurate measurement techniques. Since many calibration methods
rely on the use of several circuit elements which vary in line lengths, a flexible measure-
ment apparatus must be employed. While commercially available test fixtures can be used,

the flexibility to measure novel complex three-dimensional structures such as planar cir-
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cuits with shielded environments becomes more challenging. Custom-made fixtures may
be designed to measure the specific circuit topologies of interest. however this may require
additional time for test fixture development and evaluation. This may ultimately impact
overall cost depending on the number of design modifications required to meet the circuit
requirements. If separate fixtures are needed to accommodate each circuit, for example,
many coaxial connectors may be required which can introduce measurement inaccuracies
due to unreliable connector repeatability and increased cost.

One simple solution that is both cost effective and very accurate is to use measurement
techniques such as on-wafer probing [14] which allow for testing of many circuits on a
single wafer. This probing technique is the most accurate method for evaluating large
numbers of planar circuits and can accommodate a variety of planar<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>