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Abstract. Smooth bounded lineally convex domains of finite type constitute a natural
class of domains in complex analysis, since they are locally biholomorphically invariant.
A smooth family of holomorphic support functions is constructed by an almost explicit
formula on every such domain. It satisfies the best possible estimates near the point of sup-
port on every two-dimensional transverse affine intersection with the domain. Together
with a suitable pseudometric on these domains, it will allow to do precise quantitative
complex analysis by integral kernels on them.

1. Introduction

A very important tool for quantitative analysis on smoothly bounded pseudoconvex
domains D in C

n are smooth families of holomorphic support functions, i.e., smooth
mappings S : ∂D × U → C, which are holomorphic in the second variable on an
open neighborhood U of D and such that S(ζ, ζ ) = 0 and Re S|{ζ }×(D\{ζ }) < 0
for all ζ ∈ ∂D. If they satisfy in addition optimal estimates (depending on the
geometry of ∂D) near each ζ ∈ ∂D, they allow to use the whole machinery of
the so-called ∂-solving Cauchy-Fantappié kernels to solve all kinds of quantitative
problems of complex analysis in many different norms. Nice presentations of this
theory are, for instance, given in the books by Henkin and Leiterer ([16] and [15])
and the recent book by I. Lieb and J. Michel ([20]).

In there article [3] M. Andersson and B. Berndtsson modified the Henkin-
Ramirez formulas in such a way that they include certain weight factors and no
derivatives of S in the first variable. Both variations can be useful for the treatment
of certain quantitative problems (see e.g. [6]), however it seems, that often kernels
requiring higher regularity of S in the first variable are needed (see e.g. [10]).

We want to remark here, that it is still a remote goal to treat the decisive
quantitative problems of complex analysis, like the solution of the ∂-equations in
L∞-norms, via L2-estimates. In any case this method applied in the very special
cases where it can be made to work enforces a long detour which is unnecessary if
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smooth families of support functions can be directly constructed from the geometry
of the domains.

The machinery of the Cauchy-Fantappié kernels reduces the quantitative anal-
ysis of smoothly bounded pseudoconvex domains in C

n essentially to two
questions:

(a) the study of the local geometry at the boundary of the domains;
(b) the construction of smooth families of holomorphic support functions with

optimal estimates.

The remaining work has in many cases become almost a routine with some
additional considerations in each separate case (for recent work in this direction
see for instance [6], [14], [12]).

However, unfortunately, not all ‘decent’ domains admit smooth families of ho-
lomorphic support functions in the above sense. For a study of this phenomenon in
a series of examples, which have, in fact, all real-analytic boundaries of finite type,
see [13]. Altogether, it is highly important to construct such families for as many
classes of weakly pseudoconvex domains with smooth boundary as possible.

For strictly pseudoconvex domains this construction is standard (see for instance
[16]). But for bounded pseudoconvex domains D ⊂⊂ C

n with smooth boundary
the problem is in general much more delicate. It may still be relatively easy to
construct a holomorphic support function near each fixed boundary point ζ ∈ ∂D

satisfying optimal estimates. But since the rank of the Levi form restricted to the
holomorphic tangent bundle and the direction of its eigenvectors might jump from
point to point on the boundary, it is difficult to get families of holomorphic support
functions with optimal estimates which depend in a C∞ fashion on the boundary
point where they are attached, if classes of domains are considered where such a
jumping really can occur in a considerable manner.

Therefore, it was important to have an almost explicit construction of such
families for bounded smoothly bounded convex domains of finite type as given
by the authors in [7]. This construction became possible because of the so-called
Bruna-Nagel-Wainger Lemma from [5] on values of convex functions.

The purpose of this article is to extend this construction to a considerably wider
class of domains, namely the so-called bounded smoothly bounded weakly lineally
convex domains of finite type (for simplicity we will drop in this article the word
‘weakly’ from this lengthy expression). This class of domains which comprises all
bounded smoothly bounded convex domains of finite type, is considerably more
general and also has the advantage of being invariant under biholomorphic trans-
formations defined in a neighborhood of the closure of the respective domains.
They have been originally introduced by Behnke and Peschl in 1935 in [2] where
they were called ‘planarkonvex’. They were extensively studied by Chr. Kiselman
in [17], [18] and [19] and besides other related classes of domains also in [1]. In
particular, [19] contains a characterization by a differential inequality, the so-called
Behnke-Peschl condition, the necessity of which goes already back to [2] and will
be important for us.

Because of the possible jumping of the rank of the Leviform and the eigenvec-
tors of it for our domains, it is important to express the optimal estimates satisfied
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by S in such a way that the point ζ ∈ ∂D where they are attached can move and
such that they capture all directions in T 10

ζ ∂D well. We do this by stating these
estimates on all 2-dimensional slices spanned by the normal to ∂D at ζ and any
direction in T 10

ζ ∂D.
We can in many respects follow in our construction the scheme of [7] and will

quite often refer to this paper. However, one of the new real difficulties here is,
that lineally convex domains of course do not have convex defining functions such
that we cannot directly make use of the important Bruna-Nagel-Wainger Lemma.
However, we also cannot work without it. We, therefore, have to use our notion of
“almost convexity” and have to show that certain perturbations of the Taylor poly-
nomials arising from the defining functions of our domains are indeed convex (for
details see Lemma 4.8).All this work was not necessary for bounded smooth convex
domains of finite type. Because of the lack of convexity also the estimates of certain
remainder terms in our construction has become considerably more complicated
than in the convex case.

Once the C∞ family of supporting functions with optimal estimates is avail-
able, there are many applications possible. We will explain this further in the last
section. But we want to say already now, that an another important ingredient of
such applications is a study of the local geometry adapted to the jumping rank of
the Levi form and its eigenvectors. This has been extensively studied in the thesis
of M. Conrad at the University of Wuppertal following ideas of E. Stein, A. Nagel
and others for other classes of domains.

2. Notations and results

We consider in this article domains D ⊂⊂ C
n, 0 ∈ ∂D, with the property, that

there is an open neighborhood W = W(0) such that ∂D ∩ W is C∞-smooth and
lineally convex in the sense that for all z ∈ ∂D ∩ W the intersection

(
z + T 10

z ∂D
)

∩ (D ∩ W) = ∅
We, furthermore, suppose, that ∂D is of finite type at all points inside W . After
shrinking W we, then, may assume, that there is a C∞ defining function r : W → R

for D on W and a number η0 > 0 such that ∂r(z) �= 0 for all z ∈ W and all level
sets ∂Dη = {z ∈ W : r(z) = η} are lineally convex and of finite type for any
−η0 ≤ η ≤ η0. We put W0 := {z ∈ W : |r(z)| < η0} and write ∂Dz := {ζ ∈ W0 :
r(ζ ) = r(z)} for any z ∈ W0.

We observe at first, that the result of [4] does hold for lineally convex hy-
persurfaces of finite type. Hence the 1-type τ1(z) of ∂Dη at any point z ∈ ∂Dη,
−η0 ≤ η ≤ η0 is equal to the complex line-type. In particular, τ1 is upper semi-
continuous on W0. Therefore, we may assume, that τ1 attains its maximum, say
m̂ = 2m for some m ∈ N, at 0.

For any point ζ ∈ W0 we denote by nζ the exterior unit normal to ∂Dζ at ζ .
Together with a unit vector t ∈ T 10

ζ ∂Dζ \ {0}, we put

Aζ,t :=
{

z : zζ,t (w) := ζ − iw1nζ + w2t with w = (w1, w2) ∈ C
2
}

(2.1)
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and define

Dζ,t := {
w ∈ C

2 : zζ,t (w) := ζ − iw1nζ + w2t ∈ W0,

rζ,t (w) := r
(
zζ,t (w)

) − r(ζ ) < 0
}

(2.2)

Notice, that ∂Dζ,t is C∞-smooth and lineally convex of type ≤ m̂ near 0. In fact,
we have

D ∩ Aζ,t ∩ W0 = {
zζ,t (w) : w ∈ Dζ,t

}
(2.3)

We put for j = 2, . . . , 2m

P
j
ζ,t (w) :=

∑
k+l=j

1

k!

1

l!

∂j rζ,t (0)

∂wk
2∂wl

2

wk
2w

l
2 (2.4)

Notice, that the coefficients of P
j
ζ,t are C∞ in (ζ, t).

In order to be able to formulate our main result, we need the following notation:

Definition 2.1. For any polynomial
∑N

j=0
∑

|α|+|β|=j aαβzαzβ on any C
k we put

‖P ‖ :=
N∑

j=0

∑
|α|+|β|=j

∣∣∣aαβ

∣∣∣ (2.5)

With these notations and definitions our main result now can be stated as follows:

Theorem 2.2. For a suitable constant ĉ > 0 and any ε > 0 small enough there is
a function Ŝ(z, ζ ) ∈ C∞(Cn × W0) which is a holomorphic polynomial of degree
2m in z for any fixed ζ ∈ W0, and there is a radius d = d(ε), such that for ζ ∈ W0
one has Ŝ(ζ, ζ ) = 0 and for each unit vector t ∈ T 10

ζ ∂Dζ the following estimate

holds for the function Sζ,t (w) := Ŝ(zζ,t (w), ζ ) as a function of w on |w| < d:

Re Sζ,t (w) ≤ rζ,t (w)hζ,t (w) − εĉ

2m∑
j=2

∥∥∥P j
ζ,t

∥∥∥|w2|j (2.6)

where hζ,t (w) is a C∞ function of (ζ, t, w) of the form hζ,t (w) = h(ζ − iw1nζ +
w2t, ζ ) with a positive C∞ function h on {z ∈ C

n : |z| < d} × W0, bounded away
from 0.

Remark 2.3. The polynomial P
j
ζ,t also can be obtained in the following way: put

P
j
ζ (z) :=

∑
|α|+|β|=j

1

α!β!

∂j r(ζ )

∂zα∂zβ
(z − ζ )α

(
z − ζ

)β
(2.7)

Then one has the equation

P
j
ζ

(
zζ,t (w)

) = P
j
ζ,t (w) (2.8)
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The estimate (2.6) for Ŝ has been formulated on 2-dimensional transverse slices,
since it becomes more precise in this way. Depending on the respective purpose
different estimates on C

n can be derived from this. We formulate here the following
pointwise estimate, which, however, in general is much weaker than (2.6).

Corollary 2.4. Fix a point ζ ∈ W0 and choose coordinates z (produced by an
affine unitary cordinate change) centered at ζ which realize the multitype M =
(1, m2, . . . , mn) of ∂Dζ at ζ . Then one has for a suitable constant c > 0 in these
coordinates the estimate

Re Ŝ(z, 0) ≤ c


r(z)h(z) −

n∑
j=2

∣∣zj

∣∣mj


 (2.9)

for |z| small enough.

Remark 2.5. It should be noticed, that the constant c in the Corollary can, in general,
not be chosen independently of ζ .

The family of support functions Ŝ(z, ζ ) can be described quite explicitly. Namely,
one has the following supplementary statement which will be proved together with
Theorem 2.2:

Theorem 2.6. The C∞ family of support functions Ŝ(z, ζ ) with the properties of
Theorem 2.2 can be chosen in such a way, that the following holds true:

Let M, K > 0 be chosen sufficiently large and ε > 0 sufficiently small. Further-
more choose a C∞ family lζ (ẑ) of affine unitary transformations on W0 translating
ζ to 0 and rotating nζ to the vector (i, 0, . . . , 0) ∈ C

n. Then there is on ζ ∈ W0
a C∞ family of holomorphic polynomials Aζ , Aζ (0) = 0, such that the following
holds:

If we introduce new coordinates z̃ = (z̃1, z̃2, . . . , z̃n) = (z̃1, z̃
′) by putting z =

lζ (ẑ) and then ẑ = �ζ (z̃) with z̃1 = ẑ1(1 − Aζ (ẑ)) and z̃k = ẑk for k = 2, . . . , n,
meaning that z̃ = �−1

ζ ◦ l−1
ζ (z) =: �̃−1

ζ (z), then, for any ζ ∈ W0, the function

Sζ (z̃) := Ŝ(�̃ζ (z̃), ζ ) is given by the formula

Sζ (z̃) = z̃1 + Kz̃2
1 − ε

2m∑
j=2

M2j
σj

∑
|α|=j

α=(α2,... ,αn)

1

α!

∂j r̃ζ (0)

∂z̃α
z̃′α (2.10)

where r̃ζ (z̃) = r(�̃ζ (z̃), ζ ) − r(ζ ) and

σj :=




1 for j ≡ 0 mod 4
−1 for j ≡ 2 mod 4
0 otherwise

(2.11)

In the new z̃-coordinates the estimate satisfied by Re Sζ (z̃) and corresponding to
(2.6) can be replaced by the following slightly stronger estimate:
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Re Sζ (w1(−i, 0, . . . , 0) + w2t) ≤ r̃ζ,t (w̃)h̃ζ,t (w̃) − K

2
(Re w̃1)

2

−εc̃

2m∑
j=2

∥∥∥P̃ j
ζ,t

∥∥∥|w̃2|j (2.12)

where for any unit vector t ∈ T 10
ζ ∂Dζ we have put r̃ζ,t (w̃) := r̃ζ (w̃1(i, 0, . . . , 0)+

w̃2t) and where h̃ζ,t (w̃) is a C∞ function of all its arguments of the form h̃ζ,t (w̃) =
h̃(ζ, ζ + w̃1(−i, 0, . . . , 0)+ w̃2t) with a function h̃ζ (z̃) which is C∞ near (0, 0) in

all its arguments and positive and bounded away from 0. The polynomials P̃
j
ζ,t (w̃),

homogeneous of degree j , are defined to be P̃
j
ζ,t (w̃) := ∑

k+l=j
1

k!l!
∂j r̃ζ,t (0)

∂w̃k
2∂w̃

l

2

w̃k
2w̃

l

2.

Remark 2.7. It might be useful for the reader to observe already here, that the
transformations z̃ = �̃−1

ζ (z) map the affine spaces Aζ,t from (2.1) into the spaces

A0,t = {z̃ : z̃ = w1(−i, 0, . . . , 0) + w2t, w = (w1, w2) ∈ C
2}.

In preparation of the following sections we still want to introduce some additional
notations.

After using the coordinate transformations lζ (z) from Theorem 2.6 (but denot-
ing also the new coordinates by z), we can write ∂Dζ as a graph over the Im z1 = 0
hyperplane. This gives us defining functions of the form

r
g
ζ (z) = Im z1 + R̂ζ

(
Re z1, z

′)
= Im z1 + Pζ

(
z′) + Rζ

(
Re z1, z

′) (2.13)

with R̂ζ (0) = 0, dR̂ζ (0) = 0 and Pζ (z
′) consisting of all terms in z′ only up to

total order 2m of the Taylor series of R̂ζ .
We observe as in [7] that one has

∣∣Rζ

(
x1, z

′)∣∣ ≤ C
(
x2

1 + |x1|
∣∣z′∣∣ + ∣∣z′∣∣2m+1

)
(2.14)

for all (x1, z
′) close to 0 with a constant uniform in ζ ∈ W0. Furthermore, we have

Pζ

(
z′) =

2m∑
j=2

P
j
ζ

(
z′) (2.15)

with

P
j
ζ

(
z′) =

∑
|α|+|β|=j

1

α!β!

∂j r
g
ζ (0)

∂z′α∂z′β z′αz′β

=
∑

|α|+|β|=j

aαβ(ζ )z′αz′β (2.16)
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Remark 2.8. 1) In the following we will most of the time work with the defining
functions r

g
ζ . We, therefore, will denote them again by rζ , until the difference

between the two will have to be considered at the end of the article. In particular,
we also will use in (2.2) and (2.4) as rζ,t (w) the function

rζ,t (w) := r
g
ζ (−w1(i, 0, . . . , 0) + w2t) (2.17)

2) We point out, that rζ , r
g
ζ , Pζ , P

j
ζ are all C∞ in (z, ζ ).

Some parts of the proof of Theorems 2.2 and 2.6 carry over from the proof of
Theorem 2.3 in [7]. We will not repeat them in the following. However, we will
always make sure, that the reader can follow the proof of the Theorems in this
article directly, if he is willing to accept that certain Lemmas stated explicitly here
have been established in [7]. The important difference to [7] consists, of course,
in the fact, that we cannot use convexity of the defining functions here, such that
also the Bruna-Nagel-Wainger Lemma from [5], which was an extremely important
tool in [7], can no longer be used directly. We will, however, prove certain structure
Lemmas for defining functions of lineally convex domains which will allow us to
still apply this Lemma in a very useful way after suitable modifications (see for
instance Lemma 4.9 below).

3. Some estimates for lineally convex domains

We will need some basic estimates involving the real Hessian and the Leviform of
lineally convex domains. And since our construction of support functions will be
done for the domains Dζ,t ⊂ C

2 as defined in (2.2) (see also (2.3)), we will prove
these estimates here only for (locally near 0) lineally convex domains in C

2. For
this purpose we let D be one of the domains Dζ,t from (2.2) and denote from now
on the coordinates (w1, w2) as introduced in (2.1) by (w, z) ⊂ C

2 splitting w as
w = u + iv.

Let now r be an arbitrary defining function of D near 0 and let p ∈ ∂D be an
arbitrary point (close enough to 0). Then the complex tangent line to ∂D at p is
parametrized by

C 
 τ �−→ p + τ · (rw(p), −rz(p)) ∈ C
2

Hence, the condition of lineal convexity of D at p means that

g(τ) := r(p + τ(rw(p), −rz(p))) ≥ 0 (3.1)

Set A := gττ (p) and B := gττ (p)
2 . Since the second order part of the Taylor series

of g at 0 is

A|τ |2 + Bτ 2 + Bτ
2 ≥ 0

we get from (3.1) as condition for lineal convexity the inequality |B| ≤ A
2 . After a

small calculation this proves the following
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Lemma 3.1. Let p ∈ ∂D be arbitrary (close to 0) and set

A := rzz|rw|2 − rzwrzrw − rzwrzrw + rww|rz|2 (3.2)

and

2B := rzzr
2
w − rzwrwrz − rzwrzrw + rwwr2

z (3.3)

(all derivatives of r are taken at p). Then 2|B| ≤ A.

Remark 3.2. This Lemma gives the necessity of the so-called Behnke-Peschl con-
dition in the case of C

2. It has already been shown in C
n in [2]. Its sufficiency for

the characterization of smooth lineally convex domains has been proved in [19].
Our formulation (and proof) are adapted to our needs.

We now assume, that the domain D is of finite type m̂ = 2m and use the same
coordinates (w, z) ∈ C

2 as in (2.13) such that a D has near 0 a defining function
of the form r = v + R(u, z), in detail

r(w, z) = v + au2 + u

m∑
j=1

Qj(z) +
2m∑
l=2

P l(z) + O
(
u3, u2z, uzm+1, z2m+1

)

(3.4)

We now want to make Lemma 3.1 more explicit by calculating the expressions (3.2)
and (3.3) in terms of (3.4). We get at first the following expressions for the needed
derivatives of r:

rz = u

m∑
j=1

Q
j
z +

2m∑
l=2

P l
z + O

(
u2, uzm, z2m

)

rw = 1

2i
+ au + 1

2

m∑
j=1

Qj + O
(
u2, uz, zm+1

)

rzz = u

m∑
j=1

Q
j
zz +

2m∑
l=2

P l
zz + O

(
u2, uzm−1, z2m−1

)

rzz = u

m∑
j=1

Q
j

zz +
2m∑
l=2

P l
zz + O

(
u2, uzm−1, z2m−1

)

rzw = 1

2

m∑
j=1

Q
j
z + O

(
u, zm

)

rzw = 1

2

m∑
j=1

Q
j
z + O

(
u, zm

)

rww = a

2
+ O(u, z)

rww = a

2
+ O(u, z) (3.5)
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Using these expressions a straightforward although somewhat tedious calculation,
which we skip here, gives

rzz|rw|2 = u

4

m∑
j=1

Q
j

zz + u

4




m∑
j=1

Q
j

zz






m∑
j=1

Qj




2

+O
(
uz, zm+1

) 2m∑
l=2

P l
zz + 1

4

2m∑
l=2

P l
zz + 1

4

(
2m∑
l=2

P l
zz

)


m∑
j=1

Qj




2

+O
(
u2, uzm−1, z2m−1

)
(3.6)

In the same way we get

rww|rz|2 = O(u) ·
2m∑
l=2

P l
z +

(a

2
+ O(z)

)∣∣∣∣∣
2m∑
l=2

P l
z

∣∣∣∣∣
2

+O
(
u2, uzm−1, z2m−1

)
(3.7)

and

rzwrwrz = O
(
u, zm

) ·
(

2m∑
l=2

P l
z

)
+ u

4i

∣∣∣∣∣∣
m∑

j=1

Q
j
z

∣∣∣∣∣∣

2

+ u

4

∣∣∣∣∣∣
m∑

j=1

Q
j
z

∣∣∣∣∣∣

2
m∑

j=1

Qj

+1

2

m∑
j=1

Q
j
z ·


 1

2i
+ 1

2

m∑
j=1

Qj


 ·

(
2m∑
l=2

P l
z

)

+O
(
u2, uzm−1, z2m−1

)
(3.8)

and

rzzr
2
w = −u

4

m∑
j=1

Q
j
zz + u

4




m∑
j=1

Q
j
zz






m∑
j=1

Qj




2

+u




m∑
j=1

Q
j
zz


 · 1

2i




m∑
j=1

Qj




+O
(
uz, zm+1

) 2m∑
l=2

P l
zz − 1

4

(
2m∑
l=2

P l
zz

)
+ 1

4

(
2m∑
l=2

P l
zz

)


m∑
j=1

Qj




2

+au

i

2m∑
l=2

P l
zz + 1

2i

2m∑
l=2

P l
zz

m∑
l=2

Qj + O
(
u2, uzm−1, z2m−1

)
(3.9)

as well as
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rzwrwrz = O
(
u, zm

) ·
(

2m∑
l=2

P l
z

)
+ u

4i




m∑
j=1

Q
j
z




2

+ u

4




m∑
j=1

Q
j
z




2


m∑
j=1

Qj




+ 1

4i




m∑
j=1

Q
j
z



(

2m∑
l=2

P l
z

)
+ 1

4




m∑
j=1

Q
j
z






m∑
j=1

Qj



(

2m∑
l=2

P l
z

)

+O
(
u2, uzm−1, z2m−1

)
(3.10)

and finally

rww(rz)
2 = au




m∑
j=1

Q
j
z



(

2m∑
l=2

P l
z

)

+a

2

(
2m∑
l=2

P l
z

)2

+ O(zu)




m∑
j=1

Q
j
z



(

2m∑
l=2

P l
z

)

+O(z, u)

(
2m∑
l=2

P l
z

)2

+ O
(
u2, uzm−1, z2m−1

)
(3.11)

By putting all this into formula (3.2) one obtains after some lengthy calculation the
following important estimates for A:

A = O
(
u, zm

) ·
(

2m∑
l=2

P l
z

)
+ O(z)

∣∣∣∣∣
2m∑
l=2

P l
z

∣∣∣∣∣
2

+O
(
uz, zm+1

) 2m∑
l=2

P l
zz + 1

4

2m∑
l=2

P l
zz

+u

4

m∑
j=1

Q
j

zz + u

4




m∑
j=1

Q
j

zz






m∑
j=1

Qj




2

+1

4

(
2m∑
l=2

P l
zz

)


m∑
j=1

Qj




2

−u

2

∣∣∣∣∣∣
m∑

j=1

Q
j
z

∣∣∣∣∣∣

2
m∑

j=1

Qj + 1

2




m∑
j=1

Q
j

z




 1

2i
− 1

2

m∑
j=2

Qj



(

2m∑
l=2

P l
z

)

−1

2




m∑
j=1

Q
j
z




 1

2i
+ 1

2

m∑
j=1

Qj



(

2m∑
l=2

P l
z

)

+a

2

∣∣∣∣∣
2m∑
l=2

P l
z

∣∣∣∣∣
2

+ O
(
u2, uzm−1, z2m−1

)
(3.12)
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and for 2B

2B = O
(
u, zm

)( 2m∑
l=2

P l
z

)
+ O(z)

(
2m∑
l=2

P l
z

)2

+ O
(
uz, zm+1

) 2m∑
l=2

P l
zz − 1

4

2m∑
L02

P l
zz

−u

4

m∑
j=1

Q
j
zz + u

4




m∑
j=1

Q
j
zz






m∑
j=1

Qj




2

+ 1

4

(
2m∑
l=2

P l
zz

)


m∑
j=1

Qj




2

−u

2




m∑
j=1

Q
j
z




2


m∑
j=1

Qj


 −




m∑
j=1

Q
j
z




 1

2i
+ 1

2

m∑
j=1

Qj




2m∑
l=2

P l
z

+a

2

(
2m∑
l=2

P l
z

)2

+ a

i
u

2m∑
l=2

P l
zz + u

2i




m∑
j=1

Q
j
zz






m∑
j=1

Qj




+ 1

2i

2m∑
l=2

P l
zz

m∑
j=1

Qj − 1

2i
u




m∑
j=1

Q
j
z




2

+ O
(
u2, uzm−1, z2m−1

)
(3.13)

The formulas (3.12) and (3.13) will be the main tools for our further investigation
of the properties of the defining functions of lineally convex domains of finite type
in C

2.

4. Basic properties of defining functions

Let D ⊂⊂ C
2 be a domain whith a C∞-smooth boundary of finite type ≤ 2m near

0 ∈ ∂D. Suppose, the coordinates (w, z) on C
2 and a defining function r of D near

0 have been chosen such that (3.4) holds. Then the following holds

Lemma 4.1. Let P j0 be the lowest order non-vanishing term among all the P j

from (3.4). Then P j0 is convex.

Before we give the proof we remind the reader of the following Lemma 3.4 of [7]

Lemma 4.2. A real-valued C2-function λ on an open set U ⊂ C is convex on U if
and only if

�cλ(z) := ∂2λ

∂z∂z
(z) −

∣∣∣∣
∂2λ(z)

∂z2

∣∣∣∣ ≥ 0 ∀z ∈ U

Proof of Lemma 4.1. From (3.12) and (3.13) we get for u = 0

A = 1
4P

j0
zz + O

(
zj−1

)
2B = − 1

4P
j0
zz + O

(
zj−1

)

Hence one has because of Lemma 3.1∣∣∣P j0
zz

∣∣∣ ≤ P
j0
zz

Together with Lemma 4.2 this gives the convexity of P j0 . ��
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We now come back to the notations introduced in section 2, in particular, in
(2.13) to (2.17). We denote the coordinates by (w, z) instead of (w1, w2) and write
R for the family of defining functions rζ,t (w, z) appearing in (2.17). We put m := m̂

2
and denote by F the family of all polynomials Pζ,t (z) of degree ≤ 2m appearing
when the decomposition (2.13) is written down for the functions from R. Any
P ∈ F is decomposed in the form

P(z) =
2m∑
j=2

P j (z)

with P j homogeneous of order j . Notice that r0 := r
g

0,(1,0,... ,0) ∈ R and that
P0(z) := P0,(1,0,... ,0)(z) ∈ F . The families R and F are open neighborhoods of r0
and P0 respectively, which will have to be shrunk several times in the following.
Notice also, that, according to an observation from the beginning of section 2, the
type of the domain Dζ,(1,0,... ,0) may be assumed to be 2k ≤ 2m. Hence P

j
0 = 0

for all j = 2, . . . , 2k − 1 and P 2k
0 �= 0.

Our next goal is to carry over Lemma 4.2 from [7] to our new family F as defined
here. The difficulty in doing so is, of course, the possible failure of convexity for
the polynomials in F .

For radii 0 ≤ R′ ≤ R′′ we put AR′,R′′ := {z ∈ C : R′ ≤ |z| ≤ R′′}. Let R̂ > 0
be arbitrarily small. Then, after shrinking F (and R accordingly), we can conclude,
that for any P ∈ F there is a radius 0 ≤ R2k−1 < R2k =: R̂ such that

‖P2k‖|z|2k ≥ max
j �=2k

∥∥∥P j
∥∥∥|z|j ∀z ∈ AR2k−1,R2k

(4.1)

Continuing this argument we get by the same reasoning as before Lemma 4.1 from
[7]

Lemma 4.3. For any P ∈ F there are radii 0 = R1 ≤ · · · ≤ R2k = · · · = R2m

such that for all 2 ≤ l ≤ 2m and all z ∈ Al := ARl−1,Rl
the estimate

∥∥∥P l
∥∥∥|z|l > max

j �=l

∥∥∥P j
∥∥∥|z|j

holds.

It is crucial for the goal of this article that despite of the lack of convexity the
following analogue of Lemma 4.2 from [7] still can be proved

Lemma 4.4. For any number δ > 0 there is after shrinking F (and R accordingly)
to a sufficiently small neighborhood of P0, a number Lδ > 1, such that for any
P ∈ F and any k, 2 ≤ k ≤ 2m, for which the radii Rk−1,Rk chosen for P as in
Lemma 4.3 satisfy Rk

Rk−1
≥ Lδ one has

�c

(
P k

)
(z) ≥ −δ

∥∥∥P k
∥∥∥|z|k−2 ∀z (4.2)
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Proof. Notice at first that because of Lemma 4.2 for any P ∈ F the lowest order
term P k (meaning that P j = 0 for all 2 ≤ j < k) is convex. Hence, in this case,
we even have �c(P

k)(z) ≥ 0 ∀z.
Next we observe that for u = 0 the estimates (3.12) and (3.13) take the form

A = 1

4

2m∑
l=2

P l
zz + O

(
2m∑
l=2

∥∥∥P l
∥∥∥|z|l−1

)
+ O

(
z2m−1

)

2B = −1

4

2m∑
l=2

P l
zz + O

(
2m∑
l=2

∥∥∥P l
∥∥∥|z|l−1

)
+ O

(
z2m−1

)
(4.3)

From this we get using Lemma 3.1

�c

(
P k

)
= P k

zz −
∣∣∣P k

zz

∣∣∣

≥ 4


A − C

2m∑
l=2

∥∥∥P l
∥∥∥|z|l−1 − 1

4

∑
l �=k

P l
zz




−4

∣∣∣∣∣∣
−2B + 1

4

∑
l �=k

P l
zz

∣∣∣∣∣∣
− C

∑
l

∥∥∥P l
∥∥∥|z|l−1

≥ 4(A − 2|B|) − Ĉ
∑

l

∥∥∥P l
∥∥∥|z|l−1 − Ĉ

∑
l �=k

∥∥∥P l
∥∥∥|z|l−2

≥ −C̃
∑
l �=k

∥∥∥P l
∥∥∥|z|l−2 − C̃

∥∥∥P k
∥∥∥|z|k−1 (4.4)

We define for any 2 ≤ k ≤ 2m with Rk−1 �= 0

R̂k :=
√

Rk−1Rk

and put for fixed such k the quotient Rk

Rk−1
=: L. Then we choose l �= k and claim

∥∥∥P l
∥∥∥
(
R̂k

)l−2 ≤
∥∥∥P k

∥∥∥
(
R̂k

)k−2 1

L
|k−l|

2

(4.5)

For the case l > k the proof of this claim is as in [7] and for l < k the same proof
works as for l > k.

Putting (4.4) and (4.5) together and taking into account that L ≥ Lδ , we have
now proved for |z| = R̂k

�cPk ≥ −C‖Pk‖R̂k−2



∑
l �=k

1

L

|l−k|
2

δ

+ R̂k




If we suppose, that Lδ is chosen large enough and if R̂k small enough (this, of
course, means, that R and F have to be shrunk), the Lemma follows. ��
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We remind the reader of the following fact, which has been proved as Lemma
3.5 in [7]

Lemma 4.5. For every j , 2 ≤ j ≤ 2m there is a number δj > 0, such that the fol-
lowing holds: If P j (z) = ∑

l+k=j alkz
lzk is a real-valued polynomial on C which

is homogeneous of degree j and which is almost convex in the sense that there is a
0 < δ < δj such that

�cP
j ≥ −δ

∥∥∥P j
∥∥∥|z|j−2

then the inequality

σj Re
(
aj0z

j
)

≥ δ

∥∥∥P j
∥∥∥|z|j (4.6)

holds for all z ∈ C for which

P j (z) ≤ δ

∥∥∥P j
∥∥∥|z|j (4.7)

An immediate consequence of this Lemma is the following estimate

Lemma 4.6. Let P j , δ be as in the previous Lemma. Then one has for ε > 0 small
enough

∣∣∣P j (z)

∣∣∣ + ε Re
(
σjaj0z

j
)

≥ εδ

∥∥∥P j
∥∥∥|z|j ∀ z (4.8)

Proof. For those points z for which (4.7) holds, this follows directly from (4.6).
If, on the other hand, z is such that P j (z) > δ‖P j‖|z|j , then (4.8) also follows if
ε > 0 is small enough. ��

Since in Lemma 4.4 we only consider the degrees k, for which Rk

Rk−1
is “large”,

although in the final estimations all terms P k have to be taken into account, we will
have to use Lemma 4.3 from [7] without change. For the convenience of the reader
we state it here.

Lemma 4.7. Let δ > 0 be fixed and choose Lδ > 0 and the neighborhood F as
in Lemma 4.4. Also fix a constant Ĉ > 0. Then for any sufficiently large constant
M > 0 the following holds true:

Suppose the pair (j, k), 2 < j < k ≤ 2r , has the following properties with
respect to a P ∈ F:

a) Rl

Rl−1
≤ Lδ for all j < l < k,

b) Åj �= ∅ and Åk �= ∅.

Then one has

M2k
∥∥∥P k

∥∥∥|z|k + M2j
∥∥∥P j

∥∥∥|z|j > ĈM2l
∥∥∥P l

∥∥∥|z|l ∀j < l < k, ∀z

In contrast to the situation of convex domains of finite type our functions r ∈ R are
in general not convex. Hence, we cannot use Lemma 4.4 from [7] in our situation.
We replace it by the following slight variation.
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Lemma 4.8. For all η > 0 there is a constant Aη > 0 such that for any P ∈ F the
polynomial

ρη :=
2m∑
j=2

P j (z) + η

2m∑
j=2

∥∥∥P j
∥∥∥|z|j + Aη · |z|2m+1 (4.9)

is convex.

Proof. From the definition of ρη one obtains

ρη,zz =
2m∑
j=2

P
j

zz + η

2m∑
j=2

j2

4

∥∥∥P j
∥∥∥|z|j−2 + (2m + 1)2

4
Aη|z|2m−1

and

ρη,zz =
2m∑
j=2

Pzz

Hence together with 4.3 we get

1
4ρη,zz − 1

4

∣∣ρη,zz

∣∣ ≥ A(z, 0) − C
∑2m

l=2

∥∥P l
∥∥|z|l−1 +

(
(2m+1)2

4 Aη − C
)
|z|2m−1

+ η
4

∑2m
j=2

j2

4

∥∥P j
∥∥|z|j−2 − 2|B|

≥ 0

Because of Lemma 4.2 this means, that ρη is convex. ��
Applying the so-called Bruna-Nagel-Wainger-Lemma, Lemma 2.1 from [5],

we get

Lemma 4.9. There exists a universal constant Cm > 0, such that for any η > 0
there is a constant Aη > 0, such that one has for all P ∈ F the associated polyno-
mial ρη from (4.9) satisfies the inequality

ρη(z) ≥ Cm




2m∑
j=2

∣∣∣P j (z) + η

∥∥∥P j
∥∥∥|z|j

∣∣∣ + Aη · |z|2m+1


 ∀z

In the next Lemma much of the previous information is put together (and σj is
as in (2.11)). For simplicity of notation we call for any given P ∈ F an index j ,
2 ≤ j < 2m, good, if for a given δ > 0 and Lδ chosen according to Lemma 4.4
the corresponding annulus Aj satisfies

Rj

Rj−1
> Lδ . Otherwise, j obviously is bad.

Lemma 4.10. Choose F, δ, Lδ, M, Ĉ as above and let Cm be the constant from
Lemma 4.9. Then for all P ∈ F , any ε > 0 and any pair (η, Aη) as in Lemma 4.8
we have ∀z the estimate

∑2m
j=2 P j + η

∑2m
j=2

∥∥P j
∥∥|z|j + Aη|z|2m+1 + ε

∑2m
j=2 M2j

σj Re
(
aj0z

j
)

≥ Cm

(∑
j good

∣∣P j + η
∥∥P j

∥∥|z|j ∣∣ + Aη|z|2m+1
)

+ε
∑

j good M2j
(
σj Re

(
aj0z

j
) − 2m

Ĉ

∥∥P j
∥∥|z|j

)

(The coefficients aj0 come from writing the P ′s as in (2.16).)
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We omit the proof, since it is, except for some obvious small changes, the same as
the proof of Lemma 4.5 in [7].

We introduce the notation R0 := {ρ(z) = r(0, z) : r ∈ R}. Using everything
done in this section, we, finally, get

Lemma 4.11. Let δ > 0 be fixed as in Lemma 4.5 and choose the constant Lδ > 0
as in Lemma 4.4. Fix as the constant Ĉ from Lemma 4.7 Ĉ := 8m2

δ
and let M > 1 be

chosen according to Lemma 4.7. For any small enough ε > 0 define η := εδ
8m(1+Cm)

and then choose Aη according to Lemma 4.8. Finally choose a constant C > 0
such that ∣∣∣∣∣∣

ρ −
2m∑
j=2

P j (z)

∣∣∣∣∣∣
< C ∀|z| < 1

for all ρ ∈ R0. Set

Rε := εM2j
δ
∥∥P 2m

∥∥
16m

(
C + (1 + Cm)Aη

)

Then for all ρ ∈ R0

ρ(z) + ε

2m∑
j=2

M2j
σj Re

(
aj0z

j
)

≥ ε

2m∑
j=2

M2j
δ

16m

∥∥∥P j
∥∥∥|z|j ∀ |z| < Rε (4.10)

Proof. We just have to do the following chain of estimates

ρ(z) + ε

2m∑
j=2

M2j
σj Re

(
aj0z

j
)

=
2m∑
j=2

P j (z) + η

2m∑
j=2

∥∥∥P j
∥∥∥|z|j + Aη|z|2m+1 + ε

2m∑
j=2

M2j
σj Re

(
aj0z

j
)

+

ρ −

2m∑
j=2

P j (z)


 − η

2m∑
j=2

∥∥∥P j
∥∥∥|z|j − Aη|z|2m+1

Lemma 4.10
> Cm

( ∑
j good

∣∣∣P j (z) + η

∥∥∥P j
∥∥∥|z|j

∣∣∣ + Aη|z|2m+1
)

+ε
∑

j good

M2j
(

σj Re
(
aj0z

j
)

− 2m

Ĉ

∥∥∥P j
∥∥∥|z|j

)

−(
C + Aη

)|z|2m+1 − η

2m∑
j=2

∥∥∥P j
∥∥∥|z|j

≥ Cm

( ∑
j good

∣∣∣P j (z)

∣∣∣ + ε

Cm

∑
j good

M2j
σj Re

(
aj0z

j
))

−(
C + Aη + CmAη

)|z|2m+1

−

η(1 + Cm)

2m∑
j=2

∥∥∥P j
∥∥∥|z|j + ε2m

Ĉ

2m∑
j=2

M2j
∥∥∥P j

∥∥∥|z|j


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Lemma 4.6≥ Cm


 ∑

j good

εM2j

Cm

δ

∥∥∥P j
∥∥∥|z|j


 − (

C + Aη + CmAη

)|z|2m+1

−

η(1 + Cm)

2m∑
j=2

∥∥∥P j
∥∥∥||j + ε2m

Ĉ

2m∑
j=2

M2j
∥∥∥P j

∥∥∥|z|j



Lemma 4.5≥
2m∑
j=2

εM2j
δ

2m

∥∥∥P j
∥∥∥|z|j − (

C + Aη + CmAη

)|z|2m+1

−η(1 + Cm)

2m∑
j=2

∥∥∥P j
∥∥∥|z|j − ε2m

Ĉ

2m∑
j=2

M2j
∥∥∥P j

∥∥∥|z|j

≥ ε

2m∑
j=2

M2j
δ

4m

∥∥∥P j
∥∥∥|z|j − (

C + (
1 + Aη

))|z|2m+1 − η(1 + Cm)

2m∑
j=2

∥∥∥P j
∥∥∥|z|j

≥ ε

2m∑
j=2

M2j
δ

8m

∥∥∥P j
∥∥∥|z|j −(

C + (1+Cm)Aη

)|z|2m+1−(
C + (1+Cm)Aη

)|z|2m+1

≥ ε

2m∑
j=2

M2j
δ

16m

∥∥∥P j
∥∥∥|z|j +

(
εM2j

δ

16m

∥∥∥P 2m
∥∥∥|z|2m − (

C + (1 + Cm)Aη

)|z|2m+1

)

≥ ε

2m∑
j=2

M2j

16m

∥∥∥P j
∥∥∥|z|j if |z| <

εM2m
δ
∥∥P 2m

∥∥
16m

(
C + (1 + Cm)Aη

)

This proves Lemma 4.11 as stated. ��
At this stage we want to come back to the original situation in C

n as described
in section 2. Using the notations from there, we denote

R̂ := {
rζ : ζ ∈ W0

}

Furthermore, we write the coordinates, to which the transformations lζ from The-
orem 2.6 have already been applied, as (w, z) ∈ C × C

n−1 instead of (z1, z
′) and

put u+ iv = w. Again, we use m̂ = 2m is even and write out (2.13) for any rζ ∈ R
more explicitly as

rζ (w, z) = v +
2m∑
j=2

P
j
ζ (z) + u

m∑
l=1

Ql
ζ (z) + O

(
u2, |u||z|m+1, |z|2m+1

)
(4.11)

with P
j
ζ and Ql

ζ homogeneous of order j . Notice that all coefficients of the P
j
ζ and

the Ql
ζ depend in a C∞ way on ζ . Furthermore, also the remainder terms are C∞

in ζ . Furthermore, for any t ∈ T 10
ζ ∂D\{0}, we have for (w, z) ∈ C

2

rζ,t (w, z) = v +
2m∑
j=2

P
j
ζ,t (z) + u

m∑
j=1

Q
j
ζ,t (z) + O

(
u2, uzm+1, z2m+1

)
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where

P
j
ζ,t (z) = P

j
ζ

(
wnζ + zt

)
, Q

j
ζ,t (z) = Q

j
ζ

(
wnζ + zt

)
(4.12)

As an immediate consequence of Lemma 4.11 we get in C
n

Proposition 4.12. Let W and η0 be small enough. If M > 0 is large enough and
ε > 0 is small enough, then there is a radius Rε > 0 such that one has for all
r ∈ R

r(0, z) + ε

2m∑
j=2

M2j
σj Re




∑
|α|=j

α=(α1,... ,αn−1)

1

α!

∂j r(0)

∂zα
zα


 ≥ ε

2m∑
j=2

M2j
δ

16m

∥∥∥P j

t(z)

∥∥∥|z|j

(4.13)

for all z ∈ C
n−1, |z| < Rε. Here P

j

t(z)(τ ) = P j (τ t) where t ∈ C
n−1 is chosen in

such a way that z ∈ {τ t, τ ∈ C} and |t | = 1.

Proof. We work on Ŵ0 := {(ζ, t) ∈ W0 × C
n−1, |t | = 1} considering t as an ele-

ment of T 10
0 ∂Dζ . We can apply Lemma 4.11 to a sufficiently small neighborhood

R of any element ρ0(z) = rζ (0, z · t) with (ζ, t) ∈ Ŵ0 and choose the constants
of Lemma 4.11 accordingly. Notice, that a finite number of such neighborhoods R
will suffice to deal with all points (ζ, t) ∈ Ŵ0. We choose M so large, and ε and R

so small, that they work for all these neighborhoods. Then (4.13) follows directly
from (4.10). ��

5. Improving the Taylor series of the defining functions

In order to carry over the estimates of Proposition 4.12 in C
n−1 to estimates for the

desired support functions in C
n, we have to improve the coefficients in the Taylor

series (4.11). More precisely, we have to eliminate the purely harmonic terms in the
homogeneous polynomials Ql(z) for l = 1, . . . , m. This will be done by a finite
sequence of simple coordinate transformations. Although they will destroy lineal
convexity, the crucial estimate (4.13) will carry over to the new situation. We will
show at first

Lemma 5.1. Let W and η0 be as in Proposition 4.12. There is for each ζ ∈ W0 =
{ζ ∈ W : |r(ζ )| ≤ η0} a biholomorphic coordinate transformation (w, z) =
�ζ (w̃, z̃) on W introducing the new coordinates (w̃, z̃) in the form w = w̃ · (1 −
Aζ (z)), z = z̃ with a holomorphic function Aζ (z) depending in a C∞ way on ζ ,
Aζ (0) = 0, such that the domains D̃ζ := �−1(Dζ ) have defining functions r̃ = r̃ζ

near 0 ∈ W̃ := �−1(W) of the form

r̃(w̃, z̃) = ṽ +
2m∑
j=2

P j (z̃)
(
1 + Oj(z̃)

) + ũ

m∑
l=1

Q̂l(z̃) + O
(
ũ2, |ũ||z̃|m+1, |z̃|2m+1

)
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where the homogeneous terms Q̂l of order l do not contain any pluriharmonic
terms and where the homogeneous parts P j are the same as for the original defin-
ing function rζ (see (4.11)). In particular, the estimate (4.13) from Lemma 4.12 also
holds for r̃(0, z̃).

Proof. We fix a ζ ∈ W0. The sum of all pluriharmonic terms of minimal degree, say
d, in

∑m
l=1 Ql(z), Ql as in (4.11), can be written as the real part of the holomorphic

function

Ad(z) = Ad
ζ (z) =

∑
|α|=d

1

α!

∂d+1rζ (0)

∂u∂zα
zα =

∑
|α|=d

bζ,αzα

With this we define a holomorphic coordinate transformation (w, z) = �̃d(w̃, z̃)

by putting z = z̃, w = w̃ · (1 − iAd(z̃)). From this we get

u = ũ + ũ Im Ad(z̃) + ṽ Re Ad(z̃)

v = ṽ − ũ Re Ad(z̃) + ṽ Im Ad(z̃)

After plugging this into (4.11) we get the following expression

r ◦ �̃(w̃, z̃) = ṽ + ṽ Im Ad(z̃) +
2m∑
j=2

P j (z̃) + ũ

m∑
l=1

Q̂l(z̃)

+ṽ
(

Re Ad(z̃)
) m∑

l=1

Ql(z̃)

+O
(
ũ2, ũṽ Re Ad(z̃), ṽ2, |ũ||z̃|m+1, |ṽ||z|m+1+d , |z|2m+1

)
(5.1)

where the Q̂l are new homogeneous functions of degree l with the property, that
their lowest order pluriharmonic terms have degree > d.

Notice next, that the boundary ∂Dζ can again be written in the new coordinates
(w̃, z̃) as a graph over {ṽ = 0} near 0, namely, as the zero set of a new function
r̃(w̃, z̃) of the form

r̃ = ṽ +
2m∑
j=2

λj (z̃) + ũ

m∑
l=1

µl(z̃) + O
(
ũ2, |ũ||z̃|m+1, |z̃|2m+1

)
(5.2)

On r̃ = 0 we also have r ◦ �(w̃, z̃) = 0. Hence we can solve (5.2) for ṽ and can
plug the result into (5.1) obtaining the identity

0 =
[
−∑2m

j=2 λj (z̃) − ũ
∑m

l=1 µl(z̃)
][

1 + Im Ad(z̃) + Re Ad(z̃)
∑m

l=1 Ql(z̃)
]

+∑2m
j=2 P j (z̃) + ũ

∑m
l=1 Q̂l(z̃) + ∑2m

j=2 λj (z̃)Oj (|z̃|)
+ ũ

∑m
l=1 µl(z̃)Ol(|z̃|) + O

(
ũ2, |ũ||z̃|m+1, |z̃|2m+1

)

By comparing terms we get from this the equations

O
(
|z̃|2m+1

)
− ∑2m

j=2 λj (z̃)
(
1 + Oj(|z̃|)

) + ∑2m
j=2 P j (z̃) = 0

ũ · O
(
|z̃|m+1

)
− ũ

∑m
l=1 µl(z̃)(1 + Ol(|z̃|)) + ∑m

l=1 Q̂(z̃) = 0
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Hence the defining function r̃ has the form

r̃ = ṽ +
2m∑
j=2

P j (z)
(
1 + Oj(|z̃|)

) + ũ

m∑
l=1

Q̂l(z̃)(1 + Ol(|z̃|))

+ O
(
ũ2, |ũ||z̃|m−1, |z̃|2m+1

)
(5.3)

Notice now, that
∑m

l=1 Q̂l(z̃)(1+Ol(|z̃|)) does no longer contain any pluriharmon-
ic terms of degree ≤ d . After redefining the P j and the Ql such that in the new
coordinates, which we denote again by w = u + iv, z, we have as before

r̃ = v +
2m∑
j=2

P j (z) + u

m∑
l=1

Ql(z) + O
(
u2, |u||z|m+1, |z|2m+1

)

but now with
∑m

l=1 Ql(z) without pluriharmonic terms of degree ≤ d, we can
repeat the same procedure inductively until and including d = m. Keeping track
of the changes made at each step proves the Lemma. ��

It is very important for us to observe, that, although the coordinate transforma-
tions of Lemma 5.1 will, in general, destroy lineal convexity, the estimate (4.13)
from Proposition 4.12 remains true in the new coordinates with the new defining
functions. We have

Corollary 5.2. Let the coordinates (w̃, z̃) and the defining function r̃(w̃, z̃) corre-
sponding to r(w, z) be chosen as in Lemma 5.1. Then one has in analogy to (4.13)
the estimate

r̃(0, z̃) + ε

2m∑
j=2

M2j
σj Re




∑
|α|=j

α=(α1,... ,αn−1)

1

α!

∂j r(0)

∂z̃α


 ≥ ε

2m∑
j=2

M2j
δ

16m

∥∥∥P j

t(z̃)

∥∥∥|z̃|j

(5.4)

for all z̃ ∈ C
n−1, |z̃| < Rε. Here t (z̃) has been chosen in such a way that z̃ ∈

{τ t (z̃) : τ ∈ C} and |t (z̃)| = 1. Furthermore,

P j (z) =
∑

|α|+|β|=j

1

α!β!

∂j r(0)

∂zα∂zβ
zαzβ

and P
j

t(z̃)
(τ ) = P j (τ t (z̃)).

Proof. We write in total analogy to (4.11) the homogeneous decomposition

r̃(w̃, z̃) = ṽ +
2m∑
j=2

P̂ j (z̃) + ũ

m∑
l=1

Q̂(z̃) + O
(
ũ2, |ũ||z̃|m+1, |z̃|2m+1

)
(5.5)
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Then we get from Lemma 5.1

P̂ j (z̃) = P j (z̃) +
∑

2≤i<j

P i(z̃)h
j
i (z̃) (5.6)

with functions h
j
i homogeneous of order j − i. Furthermore, the Q̂(z̃) do not con-

tain pluriharmonic terms. Next, we observe from the proof of Proposition 4.12, that
it suffices to show that estimate (4.10) from Lemma 4.11 holds for the restrictions
ρ̃(z) := r̃(0, zt), z ∈ C, for any t ∈ C

n−1, |t | = 1. As follows from (5.5) they have
the form

ρ̃(z) =
2m∑
j=2

P̂ j (z) + O
(
z2m+1

)

where, for simplicity, we have written P̂ j (z) instead of P̂ (zt). From (5.6) we also
get for the purely holomorphic part of P̂ j (z) as compared to the holomorphic part
of P j (z) the estimate

Re âj0z
j = Re aj0z

j + O


 ∑

2≤i<j

∥∥∥P i
∥∥∥|z|j


 (5.7)

We will, however, not need this in the following.
By putting (5.6) into (4.10) we can estimate

∑2m
j=2 P̂ j (z) + ε

∑2m
j=2 M2j

σj Re
(
aj0z

j
)

≥ ∑2m
j=2 P j (z) + ε

∑2m
j=2 M2j

σj Re
(
aj0z

j
) − C

∑2m
j=2

∑
2≤i<j

∥∥P i
∥∥|z|j

(4.10)≥ ε
∑2m

j=2
M2j

δ
16m

∥∥P j
∥∥|z|j − C

∑2m
j=2

∑
2≤i<j

∥∥P i
∥∥|z|j

≥ ε
2

∑2m
j=2

M2j
δ

16m

∥∥P j
∥∥|z|j

for all z ∈ C with |z| ≤ Rε (after possibly shrinking Rε uniformly in ρ̃). Notice,
that the last inequality in this chain holds, since in the second term of the previous
line all ‖P i‖ appear for i < 2m, however always with the power |z|j as factor
which is higher than the power |z|i appearing with the same factor ‖P i‖ in the first
term. ��

6. Inequalities in C
2

Again as in [7] we next want to get the decisive estimates on the desired support
functions in C

2. Since, at this point, in [7] we strongly used the convexity of the
given domains, we have to replace those arguments. In fact, as it turns out, it is just
the pseudoconvexity of lineally convex domains which suffices for our purposes.
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In this situation in C
2 we choose coordinates, now again called (w, z) ∈ C

2, and
a defining function r̃(w, z) as in Corollary 5.2. We decompose it into homogeneous
terms in the form

r̃(w, z) = v +
2m∑
j=2

P̂ j (z) + u

m∑
l=1

Q̂l(z) + O
(
u2, uzm+1, z2m+1

)
(6.1)

and assume, that the Q̂l do not contain any harmonic terms (we may do so accord-
ing to Lemma 5.1). In particular, we need to sum in the second term of r̃ only
from l = 2. The pseudoconvexity of our original domains, which, of course, is not
destroyed by the coordinate transformations used in Lemma 5.1, tells us, that the
function A from (3.2) being the Levi form of the level sets of r̃ is ≥ 0. Therefore,
formula (3.12) gives us

0 ≤ A(u, z)

≤ C
(
u2 + |u||z|m−1 + |z|2m−1 + ∑2m

j=2

∥∥P j
∥∥|z|l−1 + |u|∑m

l=2

∥∥Qj
∥∥|z|j−1

)

+ 1
4

∑2m
l=2 P l

zz + u
4

∑m
l=2 Ql

zz

on a certain neighborhood of 0, independent of the choice of r̃ . From this we
immediately get

∣∣∣∣∣
u

4

m∑
l=2

Ql
zz

∣∣∣∣∣ ≤ C




2m∑
j=2

∥∥∥P j
∥∥∥|z|j−2 + |u|2 + |u|

m∑
l=2

∥∥∥Qj
∥∥∥|z|j−1


 (6.2)

since |uzm−1| � 2|u|2+‖P 2m‖|z|2m−2. By putting for any given z �= 0 the variable
u := (

∑2m
j=2 ‖P j‖|z|j−2)1/2 we, finally, get

Lemma 6.1. For the decomposition (6.1) one has for a small enough number d > 0



m∑
j=2

Q
j

zz




2

≤ C

2m∑
j=2

∥∥∥P j
∥∥∥|z|j−2 + C




m∑
j=2

∥∥∥Qj
∥∥∥|z|j−1




2

(6.3)

for all z with |z| ≤ d .

(Notice, that lineal convexity has not been used in proving (6.3).)
As a corollary of this Lemma we will derive from (6.3) an estimate of the Q’s

against the P ’s. Namely we have

Lemma 6.2. In the situation established at the beginning of this section there is a
constant C > 0, such that, after possibly shrinking d > 0,

m∑
i=2

∥∥∥Qi
∥∥∥|z|i ≤ C

√√√√ 2m∑
l=2

∥∥P l
∥∥|z|l |z|

and, hence, ∣∣∣∣∣u
m∑

i=2

Qi

∣∣∣∣∣ ≤ u2 + C2|z|2
2m∑
l=2

∥∥∥P l
∥∥∥|z|l (6.4)

for all |z| < d.
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Proof. The proof consists of two parts.

1) Let L > 0 be large enough (how large it has to be, will be specified later) and
suppose, there is a number a > 0 and an index j , 2 ≤ j ≤ m, such that one has
for all z ∈ C with a < |z| < La the estimates

∥∥∥Qj(z)

∥∥∥|z|j ≥
∥∥∥Qi(z)

∥∥∥|z|i ∀i �= j (6.5)

Write Qj(z) = ∑j−1
l=1 b

j
l zlzj−l and pick an index l such that |aj

l | ≥ 1
j
‖Qj‖.

Consider any z with |z| = a
√

L. From the fact, that (6.5) even holds for |z| = a,
one obtains for |z| = a

√
L and j ≥ i
∥∥Qj

∥∥|z|j−2

L
j−i

2

≥
∥∥∥Qi

∥∥∥|z|i−2

and, hence,

1√
L

∥∥∥Qj
∥∥∥|z|j−2 ≥

∥∥∥Qi
∥∥∥|z|i−2 (6.6)

for j > i. By starting with (6.5) on {|z| = La} the inequality also follows for
i > j , if |z| = a

√
L. With this one obtains

∣∣∣aj
l

∣∣∣|z|j−2

= 1
2π

∣∣∣∫ 2π

0 a
j
l zl−1zj−l−1ei(j−2l)θ dθ

∣∣∣
=

∣∣∣ 1
2π

∫ 2π

0
1

l(j−l)
∂2

∂z∂z
a

j
l zlzj−lei(j−2l)θ dθ

∣∣∣
= 1

2π

∣∣∣∫ 2π

0
1

l(j−l)
Q

j

zze
i(j−2l)θ dθ

∣∣∣
≤ 1

2πl(j−l)

∣∣∣∫ 2π

0

∑m
k=2 Qk

zze
i(j−2l)θ dθ

∣∣∣ + C
∑

i �=j

∥∥Qi
∥∥|z|i−2

(6.3) and (6.6)≤ C

√∑2m
k=2

∥∥P k
∥∥|z|k−2 + m√

L
C
∥∥Qj

∥∥|z|j−2 + C
∑

i

∥∥Qi
∥∥|z|i−1

(6.7)

We assume now, more precisely, that L has been chosen such that m√
L
C < 1

2m
.

Then it follows together with the choice of l that

∥∥∥Qj
∥∥∥|z|j−2 ≤ C

√√√√ 2m∑
k=2

∥∥P k
∥∥|z|k−2

and hence

∥∥∥Qi
∥∥∥|z|i−2 ≤ C

√√√√ 2m∑
k=2

∥∥P k
∥∥|z|k−2 (6.8)

for all i and |z| = a
√

L. Notice, however, that this implies, that, after changing
the constant C, one even has the same inequality (6.8) for all z with a

Lm < |z| <

aLm.
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2) Let now, for any r̃ as considered in this section, j be the minimal index between
2 and m such that Qj �= 0. Then it follows, that (6.5) holds with this j on a
small disc �η = �(0, η) around 0. Hence, (6.8) has been proved on �η (notice,
however, that η cannot be chosen uniformly in r̃). Let now d be as in Lemma
6.2. Then there is for any radius R, η ≤ R ≤ d, a j such that (6.5) holds for
|z| = R and, as can easily be seen, these indices j are monotonously increasing
in R. Hence, there are radii η = R1 < · · · < Rk = d with k < m, such that on
each annulus Ai := ARi−1,Ri := {Ri−1 ≤ |z| ≤ Ri} one Qj is dominating in

the sense of (6.5). We call such an annulus Ai thick, if Ri

Ri−1 ≥ L. We consider
1st case: There is no thick annulus. - Then, since

⋃
Ai = Aη,d and since there

are at most m annuli, we have d ≤ Lmη, hence (6.8) holds on �(0, d).
2nd case: there are thick annuli. - Let Ai be any of them and suppose there
is even a next one, say Aj for some j > i. Then, since j − i < m, we have
Rj−1 ≤ LmRi . Hence (6.8) does not only hold on Ai but even all the way up
to the radius Rj−1. In case, there is no next thick annulus after Ai , we get (6.8)
up to the radius d .

This proves the Lemma. ��
We now can prove an estimate which is essentially what we want to show in

Theorem 2.6 for the 2-dimensional slices Dζ,t . Namely, we have

Proposition 6.3. Let W and η0 as introduced in section 2 be small enough. Let
δ > 0 be small enough (chosen according to Lemma 4.5). Choose numbers M > 0
large enough and ε > 0 small enough. Denote by R̃ the set of all defining functions
r̃ obtained from the set R after the coordinate changes of Lemma 5.1 have been
made. Choose another number K > 0 large enough. Then there is a radius Rε such
that the following holds true: if one puts for any r̃ ∈ R̃

Sr̃ (w, z) := w

i
− Kw2 − ε

2m∑
j=2

M2j 1

j !
σj

∂j r̃(0)

∂zj
zj (6.9)

one has for (w, z) ∈ B(0, Rε) the estimate

Re (Sr̃ (w, z)) ≤ r̃(w, z)(1 + Kr̃(w, z)) − K

2
u2 − ε

2

2m∑
j=2

M2j
δ

16m

∥∥∥P j
∥∥∥|z|j (6.10)

where, of course,

P j (z) =
∑

k+l=j

1

k!l!

∂j r̃(0)

∂zk∂zl
zkzl

for j = 2, . . . , 2m.

Remark 6.4. If r̃ ∈ R̃ is the defining function associated with r ∈ R via the respec-
tive coordinate transformation of Lemma 5.1, then one also has

P j (z) =
∑

k+l=j

1

k!l!

∂j r(0)

∂zk∂zl
zkzl

as already mentioned in Lemma 5.1.
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Proof. It follows from (6.9), that one has

Re Sr̃ (w, z) = v − Ku2 + Kv2 − ε

2m∑
j=2

M2j
σj Re

(
aj0z

j
)

(6.11)

if, as usual, aj0 := 1
j !

∂j r̃(0)

∂zj = 1
j !

∂j r(0)

∂zj . In order to estimate this we substitute at
first for v what we get from (6.1), namely,

v = r̃(w, z) − r̃(0, z) − u

m∑
j=1

Qj(z) + O
(
u2, uzm+1, z2m+1

)

Then we get from (6.11) the estimate

Re Sζ (w, z)

= O
(
u2, uzm+1, z2m+1

) + (
r̃(w, z) − r̃(0, z) − u

∑m
l=2 Ql(z)

) − Ku2

+K
(
r̃(w, z) − ∑2m

j=2 P j (z) − u
∑m

l=2 Ql(z)
)2 − ε

∑2m
j=2 M2j

σj Re
(
aj0z

j
)

≤ O
(
u2, uzm+1, z2m+1

) + r̃(w, z)(1 + Kr̃(z, w))

−
[
r̃(0, z) + ε

∑2m
j=2 M2j

σj Re
(
aj0z

j
)] − u

∑m
l=2 Ql(z) − Ku2

+KC
(∑2m

j=2

∥∥P j
∥∥|z|j+2 + |u|∑m

l=2

∥∥Ql
∥∥|z|l+2 + |r̃(w, z)|∑2m

j=2

∥∥P j
∥∥|z|j

)

+KC|r̃(w, z)||u|∑m
l=2

∥∥Ql
∥∥|z|l

By using Corollary 5.2 and Lemma 6.2 we can after choosing Rε small enough,
uniformly in r̃ , proceed to

Re Sr̃ (w, z)

≤ O
(
u2, uzm+1, z2m+1

) + r̃(w, z)(1 + Kr̃(w, z)) − ε
∑2m

j=2
M2j

δ
16m

∥∥P j
∥∥|z|j

+(
1 + KC|z|2 + |r̃(w, z)|)

[
u2 + C2|z|2∑2m

l=2

∥∥P l
∥∥|z|l

]
− Ku2

+KC
(|z|2 + |r̃(w, z)|)∑2m

j=2

∥∥P j
∥∥|z|j

≤ r̃(w, z)(1 + Kr̃(w, z)) − 1
2Ku2 − ε

2

∑2m
j=2

M2j
δ

16m

∥∥P j
∥∥|z|j

This proves the Proposition. ��

7. Proof of Theorems 2.2 and Theorem 2.6

Notice, that Proposition 6.3 says essentially the same as Theorem 2.6 for n = 2,
the only difference being, that in Proposition 6.3 the defining functions are used,
which represent ∂D in the coordinates given by Lemma 5.1 as a graph over the
real tangent plane (these defining functions were called r

g
ζ in (2.13)), whereas in

Theorem 2.6 we allow arbitrary defining functions in these coordinates. So, in order
to complete the proof of Theorem 2.6 we still have two tasks:

1. We need to generalize Proposition 6.3 to arbitrary dimensions;
2. we need to replace the special defining functions by arbitrary ones.
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Generalizing Proposition 6.3 to arbitrary dimension is straightforward. Namely,
we make all hypotheses of Theorem 2.6 and choose the coordinates as described in
that Theorem. We take as defining function r̃ζ (z̃) := r̃ζ (z̃1, z̃

′) the corresponding
function r̃

g
ζ (z̃) from (2.13) and we define for every ζ ∈ W0 the function Sζ (z̃) by

the formula (2.10). Now, we just have to notice, what has been observed already
in Remark 2.3, namely, for any unit vector t = (0, t2, . . . , tn) we get after writing
r̃ζ,t (w̃) := r̃ζ (w̃1(i, 0, . . . , 0) + w̃2t)

1

j !

∂j r̃ζ,t (0)

∂w̃
j
2

w̃
j
2 =

∑
|α|=j

1

α!

∂j r̃ζ (0)

∂z̃′α t

′α
w̃

j
2 (7.1)

and

P̃
j
ζ,t (w̃2) =

∑
|α|+|β|=j

1

α!

1

β!

∂j r̃ζ (0)

∂z̃′α∂z̃′β
t ′αt ′βw̃

|α|
2 w̃2

|β|
(7.2)

With this the estimate (2.12) follows directly from (6.10), such that task 1 from
above has been done.

In order to get task 2 done, we again make all hypotheses as in Theorem 2.6
and let r̃ζ (z̃) be defined as there starting with an arbitrary defining function r of D.
Let us denote for a moment by r

g
ζ (z̃) the defining function representing D in the

z̃-coordinates as a graph as just used in treating task 1, in particular, in (7.1) and
(7.2). Then there is a strictly positive function h̃ζ (z̃), C∞ in (z̃, ζ ), such that we
have

r̃
g
ζ (z̃) = r̃ζ (z̃)h̃ζ (z̃) (7.3)

We denote for a moment by P̃
g,j
ζ,t (w̃2) the homogeneous polynomial from (7.2)

obtained by using r̃
g
ζ (z̃) and by P̃

j
ζ,t (w̃2) the one obtained from r̃ζ,t (w̃2). Then

(7.3) immediately gives the following estimates:

∑
|α|=j

1

α!

∂j r̃
g
ζ (0)

∂z̃′α t ′αw̃
j
2 = h̃ζ (0)

∑
|α|=j

1

α!

∂j r̃ζ (0)

∂z̃′α t ′αw̃
j
2 + O


∑

l<j

∥∥∥P̃ g,l
ζ,t

∥∥∥|w̃2|l+1




(7.4)

and

∑
|α|+|β|=j

1

α!

1

β!

∂j r̃
g
ζ (0)

∂z̃′α∂z̃′β
t ′αt ′βw̃

|α|
2 w̃

|β|
2

= h̃ζ (0)
∑

|α|+|β|=j

1

α!

1

β!

∂j r̃ζ (0)

∂z̃′α∂z̃′β
t ′αt ′βw̃

|α|
2 w̃

|β|
2

+O


∑

l<j

∥∥∥P̃ g,l
ζ,t

∥∥∥|w̃2|l+1


 (7.5)
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From this we get

2m∑
l=2

∥∥∥P̃ l
ζ,t

∥∥∥|w̃2|l ≤
2m∑
fl=2

(∥∥∥P̃ g,l
ζ,t

∥∥∥|w̃2|l + Cl

∥∥∥P̃ g,l
ζ,t

∥∥∥|w̃2|l+1
)

�
2m∑
l=2

∥∥∥P̃ g,l
ζ,t

∥∥∥|w̃2|l (7.6)

if |w̃2| is small enough. The analogous estimate, where the role of P̃ l
ζ,t and P̃

g,l
ζ,t is

just interchanged, also holds.
If we plug all this into (2.10) and (2.12) replacing thereby the defining functions

r̃
g
ζ by r̃ζ we get Theorem 2.6 in full generality (the calculations are similar to what

has been done in proving Corollary 5.2).
It remains to show how Theorem 2.2 follows from Theorem 2.6, more precisely,

how to derive estimate (2.6) from estimate (2.12). For this we drop at first the term
−K

2 (Re w̃1)
2 from (2.12). This does not destroy the estimate.After this we just have

to return to the original z-coordinates. We do this in two steps. Namely, at first, we
return to the coordinates denoted by ẑ in Theorem 2.6. This, however, does not
cause any difficulties, since, first of all, �̃ζ (0, z̃2, . . . , z̃n) = (0, z̃2, . . . , z̃n) and
since, secondly, as Corollary 5.2 shows, returning to the ẑ-coordinates just means
returning from the inequality (5.2) to the original inequality (4.13) from which (5.2)
had been derived. The second step, namely returning from the ẑ-ccordinates to the
original z-ccordinates is trivial, since this coordinate change is affine unitary. This
finishes the proof of Theorem 2.2. ��

8. Possible applications

The C∞-family of support functions constructed in [7] for convex domains of finite
type meanwhile has found many applications. However, for all of them another
tool was quite important, namely, the machinery of non-isotropic pseudoballs and
a corresponding metric on such domains. In his thesis (in preparation) Michael
Conrad, University of Wuppertal, now has developed this machinery also for line-
ally convex domains of finite type. Therefore, it can be expected, that Theorems 2.2
and 2.6 are the basis for generalizing the following results from convex domains
of finite type to lineally convex domains of finite type:

1. Hölder and Lp-estimates for solution operators of Andersson-Berndtsson type
for the ∂-equations (see the totally analogous work in the convex case [6], [12],
[14]);

2. Characterization of the zero sets of the Nevanlinna class (see [11]).

Many other obvious questions of quantitative complex analysis on our domains
can be treated. Let us mention as an example the question of the precise subellip-
ticity gain for the ∂-Neumann-problem on lineally convex domains of finite type.

Given the fact, that there are many critical counter-examples (see [21], [23],
[22], [8], [9]), but also a recent positive result for convex domains (see [10], based
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on [7]), it also might be very interesting to find out, what the situation is regarding
the possibility of L∞-bounded holomorphic extension of bounded holomorphic
functions on certain complex submanifolds of lineally convex domains of finite
type. We do not pursue this matter here.

As already said, it can be expected, that most of these applications will be more
or less routine based on the corresponding work for the convex finite type case. Only
where convexity has been used in an additional way except for the pseudometric
and the existence of the support functions with good estimates (like, for instance,
in [10]), new ideas will be required.
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