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Rigidity of Minimal Surfaces in S 3 

J a y a k t a ~ r  ~ t h a n  

Isometric deformations of compact minimal 
surfaces in the standard three-sphere are 
studied. It is shown that s given surface 
admits only finitely many noncongruent minimal 
i~mersions into S~ with the same first funda- 
mental form. 

O. Introduction 

The purpose of this paper is to prove a rigidity result for compact 

surfaces minimally immersed in the standard three sphere. Let < , > denote 

the standard inner product on ~4 and let S 3 = [ x e R4: <x,x> = i} with the 

induced metric. The main result is stated below. 

Theorem I Let M be a compaot surface and x:M --+ S 3 a branohed minimal 

immersion into the three sphere. Then there are at most fini tel.v many pairwise 

noncongruent, minimal immersions x(P):M--~ S 3, p = I,...,N such that 

<dx(P),dx(P)> : <dx,dx> for p=l,...,N. 

I. Preliminaries 

Let x:M --+ S 3 be an immersion of an oriented surface M. Let dsZ=<dx,dx> 

be the induced metric on M. Since M is oriented, the unit normal to M is 

a globally defined function p:M -+ S 3. Locally the metric on M can be 

dsZ= 1 Z written as ( 1)Z+( Z)2 where ~ ,~ is an orthonormal coframe. The 

classical structure equations for such an immersion are 
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1 2 
dx = e1~o + e26~ 

1 2 
de1= -x~ + et~1 + e2~)I + ~)1 

2 1 2 
de2= -x(o + eis176 + e26)1 + ~2 

ch~ : - el~ I - e2~) 2 

where (ei)i=1, 2 is the orthonormal frame dual to the coframe (el), (e~j) is the 

2• matrix of connection one forms and (~i)i I 2 are one forms that determine 
= , 

the second fundamental form of the immersion. The components of the second 

fundamental form with respect to the given coframe are given by the formulae 

2) 1~i = Z i = l , 2  hij~) j i = 1 , 2 .  

The mean c u r v a t u r e  o f  t h e  immersion i s  g i v e n  by H = h l l  + h22. 

Le t  x:M - ~  S 3 be a minimal  immersion o f  an  o r i e n t e d  s u r f a e e  H. In 

particular H --- 0. Choose a local frame as above and set h = h 
11 

Gauss equation in this context, can be written as 

3) 1 - K : lh] 2 

- /h12. The 

where K is the Gaussian curvature of M. 

The following two results, due to Lawson [LI], are needed later. 

Let (M,ds 2 ) be a surface M with a Riemannian metric Proposition _2 [Ul] 

ds 2 such that K ~ i. 
M 

a) If x,x: M -'-> S 3 c ~4 - are two minimal immersions both inducing the 

given metric on M, then 

4) h : h11- ~Iz = exp(i0) (h11- /h12) = exp(i0) h 

where @ e [0,2~). Moreover~ x and x are congruent if and only if e : 0 or 

8:~. 

b) Suppose x:M -~ S 3 is a minimal immersion inducing the given 

metric on M. The for any simply connected domain U c M and @ 6 [0,2to), there 

is a minimal immersion x = x@ : U --9 S 3 satisfying equation 2. 

Le~ma 3 [LI] Let x:M --~ S 3 be a minimal immersion of an oriented 

surface M such that K ~ i. Then the normal map u:M --* S 3 is a branched 
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minimal immersion with the induced metric given by <dy,d~> = (I-K) <dx,dx>. 

Remark 4 Let x,x' :M --9 S 3 be two immersions of a surface M such that 

their normal maps p,u':M --+ S 3 are also immersions. For a~vT 6 O(4), x' : Tox 

if and only if u' = Tou. (The proof is straight-forward. ) 

2. Proof of Main Result and an Application 

The proof of Theorem 1 depends on the following lemma. 

Lenm~ 5 Let (M,ds z ) be a surface with Geussisn curvature K ~ 1. Let 

(1)  (N) 
x ,... ,x be pairwise noncongruent minimal immersions of M inducing the 

metric ds 2 If 
M' 

.N . ( p )  ~4 
5) Lp=1~vp,x > = 0 Vp e 

then v = 0 for p = I,...,N. p 

Proof Suppose such a nontrivial relation exists, with each v #0 for p 

p=l,... ,N. Applying the exterior differentiation operator to this relation 

gives the following 

6) 7," <v ,e(P)> = 0 i=I,2 
p=l p i 

where (elP)) are the images in R 4 under dx (p) of the same local oriented 

orthonormal frame field on M. Applying the exterior differentiation operator 

to equation 6 and then using the structure equations, equations 5 and 6 

yields the following relations 

r,,N . . ( p ) . .  ( p )  
7) Lp= ~ ~Vp 'v ;~i = 0 i:i,2. 

Let v2(P)=i ~'j-1- ,2h(P)~)Jij and h (p): h (p)11 - /h(P)'12 Note that equation 7 implies 

~N . (p)__(p) 
8) 0 = ?.p=1~Vp,U >n . 

Proposition 2 implies that h(q)= exp(iS(q))h(1) where @(q)e ~ and q=2,...,N. 

Since the immersions x (p) are p~irwise noncongruent, Proposition i implies 

that 8(q)~ 0 (rood to) and 8(P)~ 0 (q) (rood /~) for distinct p,q= 2,...,N. The 

assumption that K ~ I and the Gauss equation 3 imply that h(1)~ 0. This 
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implies the relation 

N ( p )  
9) 0 = <v I,u(I)> + ~p=2<Vp,p > exp(iO (p)) 

The imaginary part of equation 9 is a nontrivial relation among the normal 

maps u (2),...,u (s). By Lemma 3 and Remark 4, these normal maps are also 

conformal minimal immersions of M into S 3 that induce the same metric 

on M and are pairwise noneongruent. Therefore the preceding argtm~nt may be 

iterated until one finally has either 

0 =- <v,x(~)> for some v e R4\[0} 

or 

0 =- <v,u(")> for some v e R4\{0}. 

The first possibility implies that K=-I since x (N) (M) is then forced to lie in 

a totally geodesic two sphere in S 3. This is impossible. The second 

conclusion implies that v (N) (M) must be contained in a totally geodesic two 

sphere in S 3. Since <d2(~),du(N)> = (I-K) ds 2 and K#I, v (N) must be an 
M 

(N) 
inanersion on some open neighborhood of M. It follows that x must be 

degenerate on this neighborhood. This is also impossible. Therefore no 

nontrivial relation like equation 5 can hold.m 

(1) (N) 
Proof of Theorem 1 Suppose x ,... ,x ,... is an infinite sequence 

of pairwise noncongruent minimal immersions of a compact surface M into S 3 . 

Then Lemma 5 implies that the coordinate f~nctions of these immersions, 

x i : N e •§ i = I,...,4}, are linearly independent. However, it is well 

known that all these functions satisfy the equation Au = -2u, where A is the 

Laplace-Beltrami operator of M with the induced metric. It is well 

known that the space of solutions to this equation is finite 

dimensional if M is compact. Contradiction.m 

The following example, due to R. Bryant, shows that one cannot expect 

Theorem i to hold in arbitrary codimensions. { See also the paper [B]. ) 

:~2 --~ $7 c Q4 defined by setting ft(x,y) Remark 6 Consider the map ft 
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to be 

(1/2) ((l-t)I/2ei(Z• 

It is easy to verify that <dft,dft> = (5/2) (dx 2 + dy 2) and that ft factors 

to a minimal immersion of the torus R2/A, where A={ (2xa,2xb): a,b e Z}, for 

every t such that Itl<l. Moreover, ft 

Theorem _7 Let x:M --* S 3 be 

and f are noncongruent for s # t. 
S 

a minimal immersion from a compact 

orientable surface. Suppose that M admits a one parameter group of isometries 

@t:M --* M with respeot to the induced metric Then there exists a one 

parameter famil.F of orientation preserving isometries �9 :S 3 --~ S 3 such that 
t 

xo$tz#tox for all t 6 ~. 

Proof Let x (I) (~):M S 3 ,... ,x --~ be a maximal family of isomeric, 

pairwise noncongruent, minimal i~ersions of M into S 3 . ( N < ~ by Theorem 

i. ) Continuity of the second fundamental form of xoSt, with respect to the 

parsmeter t, implies that 

ci) 
a) xo~b t is congruent to exactly one x for all t E ~ and 

b) h t ~ h (i) or ht=- -h (i) for any oriented frame el,e 2 of M and 

for all t e R ( h and h (i) are defined as in equation 4. 
t 

h(i) (i) If h t --- ( resp. ht =- -h( i ) ) then xo~b t is congruent to x by an 

orientation preserving (resp. reversing) isometry of S 3. Since xor ~ = x, xor t 

is congruent to x for all t e R by an orientation preserving isometry 

of S 3 . Note that this orientation preserving isometry is uniquely determined 

by the eonstraints that it must take x(p) to x(~bt(p)), and dx(ei) to 

dx(dCt(ei)) , i=i,2, where p e M is some fixed point and e I and e 2 is an 

oriented orthonormal frame at p. Denote this congruence by St:S 3 --) S 3 . The 

smooth dependence of #t on t and the fact that ~t is a one parameter group of 

S0(4) follow easily from the above discussion.m 

Remark 8 Hsaing and Luwson [HL] have classified all minimal immersions 

of compact surfaces in S 3 admitting a continuous group of ambient 
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symmetries. The above result implies that their work also classifies 

minimally inmnersed, compact surfaces with a continuous group of 

intrinsie isometries. 
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