Rigidity of Minimal Surfaces in \mathbb{S}^{3}

Jayakumar Ramanathan

Isometric deformations of compact minimal surfaces in the standard three-sphere are studied. It is shown that a given surface admits only finitely many noncongruent minimal immersions into S^{3} with the same first fundamental form.

0. Introduction

The purpose of this paper is to prove a rigidity result for compact surfaces minimally immersed in the standard three sphere. Let 《, > denote the standard inner product on \mathbb{R}^{4} and let $S^{3}=\left\{x \in \mathbf{R}^{4}:\langle x, x\rangle=1\right\}$ with the induced metric. The main result is stated below.

Theorem 1 Let M be a compact surface and $\mathrm{x}: \mathrm{M} \rightarrow \mathrm{S}^{3}$ a branched minimal immersion into the three sphere. Then there are at most finitely many pairwise noncongruent, minimal immersions $\mathrm{x}^{(\mathrm{p})}: \mathrm{M} \rightarrow \mathrm{S}^{3}, \mathrm{p}=1, \ldots, \mathrm{~N}$ such that

$$
\left\langle d x^{(p)}, d x^{(p)}\right\rangle=\langle d x, d x\rangle \text { for } p=1, \ldots, N
$$

1. Preliminaries

Let $x: M \rightarrow S^{3}$ be an immersion of an oriented surface M. Let $d s^{2}=\langle d x, d x\rangle$ be the induced metric on M. Since M is oriented, the unit normal to M is a globally defined function $\nu: M \rightarrow \mathbf{S}^{3}$. Locally the metric on M can be written as $d s^{2}=\left(\omega^{1}\right)^{2}+\left(\omega^{2}\right)^{2}$ where ω^{1}, ω^{2} is an orthonormal coframe. The classical structure equations for such an immersion are

$$
\begin{aligned}
& d x=e_{1} \omega^{1}+e_{2} \omega^{2} \\
& d e_{1}=-x \omega^{1}+e_{1} \omega_{1}^{1}+e_{2} \omega_{1}^{2}+\nu \psi_{1} \\
& d e_{2}=-x \omega^{2}+e_{1} \omega_{2}^{1}+e_{2} \omega_{1}^{2}+\nu \psi_{2} \\
& d \nu=- \\
& -e_{1} \psi_{1}-e_{2} \psi_{2}
\end{aligned}
$$

where $\left(e_{i}\right)_{i=1,2}$ is the orthonormal frame dual to the coframe $\left(\omega^{i}\right),\left(\omega_{j}^{i}\right)$ is the 2×2 matrix of connection one forms and $\left(\psi_{i}\right)_{i=1,2}$ are one forms that determine the second fundamental form of the immersion. The components of the second fundamental form with respect to the given coframe are given by the formulae

$$
\Psi_{i}=\sum_{i=1,2} h_{i j} \omega_{j} \quad i=1,2
$$

The mean curvature of the immersion is given by $H=h_{11}+h_{22}$.
Let $x: M \rightarrow \mathbb{S}^{3}$ be a minimal immersion of an oriented surface M. In particular $H \equiv 0$. Choose a local frame as above and set $h=h_{11}-h_{12}$. The Gauss equation in this context, can be written as

$$
1-K=|h|^{2}
$$

where K is the Gaussian curvature of M.

The following two results, due to Lawson [L1], are needed later.
Proposition 2[L1] Let $\left(\mathrm{M}, \mathrm{ds}_{\mathrm{M}}^{2}\right)$ be a surface M with a Riemannian metric $\mathrm{ds}_{\mathrm{M}}^{2}$ such that $\mathrm{K} \not \equiv 1$.
a) If $\mathrm{x}, \tilde{\mathrm{x}}: \mathrm{M} \rightarrow \mathbb{S}^{3} \subseteq \mathbb{R}^{4}$ are two minimal immersions both inducing the given metric on M , then

$$
\tilde{h}=\tilde{h}_{11}-i \tilde{h}_{12}=\exp (i \theta)\left(h_{11}-i h_{12}\right)=\exp (i \theta) h
$$

where $\theta \in[0,2 \pi)$. Moreover, x and x are congruent if and only if $\theta=0$ or $\theta=\pi$.
b) Suppose $\mathrm{x}: \mathrm{M} \rightarrow \mathbb{S}^{3}$ is a minimal inmersion inducing the given metric on M. The for any simply connected domain $U \subseteq M$ and $\theta \in[0,2 \pi)$, there is a minimal immersion $\tilde{x}=\mathrm{x}_{\theta}: \mathrm{U} \rightarrow \mathrm{S}^{3}$ satisfying equation 2 .

Lemma 3 [L1] Let $x: M \rightarrow \mathbb{S}^{3}$ be a minimal immersion of an oriented surface M such that $K \not \equiv 1$. Then the normal map $v: M \rightarrow S^{3}$ is a branched
minimal immersion with the induced metric given by $\langle\mathrm{d} v, \mathrm{~d}\rangle\rangle=(1-\mathrm{K})\langle\mathrm{dx}, \mathrm{dx}\rangle$.
Remark 4 Let $x, x^{\prime}: M \rightarrow S^{3}$ be two immersions of a surface M such that their normal maps $\nu, \nu^{\prime}: M \rightarrow S^{3}$ are also immersions. For any $T \in O(4), x^{\prime}=T \circ x$ if and only if $\nu^{\prime}=T \circ \nu$. (The proof is straight-forward.)

2. Proof of Main Result and an Application

The proof of Theorem 1 depends on the following lemma.
Lenma 5 Let $\left(\mathrm{M}, \mathrm{ds}_{\mathrm{M}}^{2}\right.$) be a surface with Gaussian curvature $\mathrm{K} \not \equiv 1$. Let $\mathrm{x}^{(1)}, \ldots, \mathrm{x}^{(\mathrm{N})}$ be pairwise noncongruent minimal immersions of M inducing the metric $\mathrm{ds}_{\mathrm{M}}^{2}$, If

$$
\sum_{p=1}^{N}\left\langle v_{p}, x^{(p)}\right\rangle=0 \quad v_{p} \in \mathbb{R}^{4}
$$

then $v_{p}=0$ for $p=1, \ldots, N$.
Proof Suppose such a nontrivial relation exists, with each $v_{p} \neq 0$ for $\mathrm{p}=1, \ldots, \mathrm{~N}$. Applying the exterior differentiation operator to this relation gives the following

$$
\sum_{p=1}^{N}\left\langle V_{p}, e_{i}^{(p)}\right\rangle=0 \quad i=1,2
$$

where $\left(e_{i}^{(p)}\right.$) are the images in \mathbb{R}^{4} under $d x^{(p)}$ of the same local oriented orthonormal frame field on M. Applying the exterior differentiation operator to equation 6 and then using the structure equations, equations 5 and 6 yields the following relations

$$
\sum_{p=1}^{N}\left\langle v_{p}, \nu^{(p)}\right\rangle \psi_{i}^{(p)}=0 \quad i=1,2
$$

$$
0=\sum_{p=1}^{N}\left\langle v_{p}, \nu^{(p)}\right\rangle h^{(p)}
$$

Proposition 2 implies that $h^{(q)}=\exp \left(i \theta^{(q)}\right) h^{(1)}$ where $\theta^{(q)} \in \mathbb{R}$ and $q=2, \ldots, N$. Since the immersions $X^{(p)}$ are pairwise noncongruent, Proposition 1 implies that $\theta^{(q)} \not \equiv 0(\bmod \pi)$ and $\theta^{(p)} \not \equiv \theta^{(q)}(\bmod \pi)$ for distinct $p, q=2, \ldots, N$. The assumption that $K \not \equiv 1$ and the Gauss equation 3 imply that $h^{(1)} \neq 0$. This
implies the relation

$$
0=\left\langle v_{1}, \nu^{(1)}\right\rangle+\sum_{p=2}^{\mathrm{K}}\left\langle\mathrm{v}_{\mathrm{p}}, \nu^{(\mathrm{p})}\right\rangle \exp \left(i \theta^{(p)}\right)
$$

The imaginary part of equation 9 is a nontrivial relation among the normal $\operatorname{maps} v^{(2)}, \ldots, \nu^{(N)}$. By Lemma 3 and Remark 4, these normal maps are also conformal minimal immersions of M into S^{3} that induce the same metric on M and are pairwise noncongruent. Therefore the preceding argument may be iterated until one finally has either

$$
0 \equiv\left\langle v, x^{(N)}\right\rangle \text { for some } v \in R^{4} \backslash\{0\}
$$

or

$$
0 \equiv\left\langle\mathrm{v}, \nu^{(N)}\right\rangle \text { for some } \mathrm{v} \in \mathbb{R}^{4} \backslash\{0\}
$$

The first possibility implies that $K \equiv 1$ since $x^{(N)}(M)$ is then forced to lie in a totally geodesic two sphere in \mathbb{S}^{3}. This is impossible. The second conclusion implies that $v^{(N)}(M)$ must be contained in a totally geodesic two sphere in \mathbb{S}^{3}. Since $\left\langle\mathrm{d} v^{(N)}, \mathrm{d} \nu^{(N)}\right\rangle=(1-\mathrm{K}\rangle \mathrm{ds}_{\mathrm{M}}^{2}$ and $\mathrm{K} \neq 1, \nu^{(N)}$ must be an immersion on some open neighborhood of M. It follows that $x^{(N)}$ must be degenerate on this neighborhood. This is also impossible. Therefore no nontrivial relation like equation 5 can hold.■

Proof of Theorem 1 Suppose $x^{(1)}, \ldots, x^{(N)}, \ldots$ is an infinite sequence of pairwise noncongruent minimal immersions of a compact surface M into S^{3}. Then Lemma 5 implies that the coordinate functions of these immersions, $\left\{\mathrm{x}_{\mathrm{i}}^{(N)}: N \in \mathbb{Z}^{+}, i=1, \ldots, 4\right\}$, are linearly independent. However, it is well known that all these functions satisfy the equation $\Delta u=-2 u$, where Δ is the Laplace-Beltrami operator of M with the induced metric. It is well known that the space of solutions to this equation is finite dimensional if M is compact. Contradiction.

The following example, due to R. Bryant, shows that one cannot expect Theorem 1 to hold in arbitrary codimensions. (See also the paper [B].) Remark 6 Consider the map $f_{t}: \mathbb{R}^{2} \rightarrow \mathbb{S}^{7} \subseteq \mathbb{C}^{4}$ defined by setting $f_{t}(x, y)$
to be
$(1 / 2)\left((1-t)^{1 / 2} e^{i(2 x+y)},(1-t)^{1 / 2} e^{i(x-2 y)},(1+t)^{1 / 2} e^{i(2 x-y)},(1+t)^{1 / 2} e^{i(x+2 y)}\right)$. It is easy to verify that $\left\langle d f_{t}, d f_{t}\right\rangle=(5 / 2)\left(d x^{2}+d y^{2}\right)$ and that f_{t} factors to a minimal immersion of the torus \mathbb{R}^{2} / Λ, where $\Lambda=\{(2 \pi a, 2 \pi b): a, b \in \mathbb{Z}\}$, for every t such that $|t|<1$. Moreover, f_{t} and f_{s} are noncongruent for $s \neq t$.

Theorem 7 Let $\mathrm{x}: \mathrm{M} \rightarrow \mathrm{S}^{3}$ be a minimal immersion from a compact orientable surface. Suppose that M admits a one parameter group of isometries $\Phi_{t}: M \rightarrow M$ with respect to the induced metric. Then there exists a one parameter family of orientation preserving isometries $\Phi_{t}: S^{3} \rightarrow S^{3}$ such that $\mathrm{x} \circ \phi_{\mathrm{t}}=\Phi_{\mathrm{t}}{ }^{\circ} \mathrm{X}$ for all $\mathrm{t} \in \mathbb{R}$.

Proof Let $x^{(1)}, \ldots, x^{(N)}: M \rightarrow S^{3}$ be a maximal family of isometic, pairwise noncongruent, minimal immersions of M into S^{3}. $1 N<\infty$ by Theorem 1.) Continuity of the second fundamental form of $x \circ \phi_{t}$, with respect to the parameter t, implies that
a) $x \circ \phi_{t}$ is congruent to exactly one $x^{(i)}$ for all $t \in \mathbb{R}$ and
b) $\quad h_{t} \equiv h^{(i)}$ or $h_{t} \equiv-h^{(i)}$ for any oriented frame e_{1}, e_{2} of M and for all $t \in \mathbb{R}\left(h_{t}\right.$ and $h^{(i)}$ are defined as in equation 4.
If $h_{t} \equiv h^{(i)}$ (resp. $h_{t} \equiv-h^{(i)}$) then $x \circ \phi_{t}$ is congruent to $x^{(i)}$ by an orientation preserving (resp. reversing) isometry of S^{3}. Since $x^{\circ} \phi_{0}=x, x^{\circ} \phi_{t}$ is congruent to x for all $t \in \mathbb{R}$ by an orientation preserving isometry of \mathbb{S}^{3}. Note that this orientation preserving isometry is uniquely determined by the constraints that it must take $x(p)$ to $x\left(\phi_{t}(p)\right)$, and $d x\left(e_{i}\right)$ to $d x\left(d \phi_{t}\left(e_{i}\right)\right)$, $i=1,2$, where $p \in M$ is some fixed point and e_{1} and e_{2} is an oriented orthonormal frame at p. Denote this congruence by $\Phi_{t}: \mathbb{S}^{3} \rightarrow \mathbb{S}^{3}$. The smooth dependence of Φ_{t} on t and the fact that Φ_{t} is a one parameter group of SO(4) follow easily from the above discussion.

Remark 8 Hsaing and Lawson [HL] have classified all minimal immersions of compact surfaces in \mathbb{S}^{3} admitting a continuous group of anbient
symmetries. The above result implies that their work also classifies minimally immersed, compact surfaces with a continuous group of intrinsic isometries.

References

[B] Bryant, R.: Minimal Surfaces of Constant Curvature in \mathbb{S}^{n}. Trans. Amer. Math. Soc., 290 No. 1, 259-271, 1985
[HL] Hsiang, W-Y. and Lawson Jr., H.B.: Minimal Submanifolds of Low Cohomogeneity. Jour. of Differential Geometry, 5, 1-38, 1971
[L1] Lawson Jr., H.B.: Complete Minimal Surfaces in \mathbb{S}^{3}. Annals of Mathematics, 90, 335-374, 1970

Jayakumar Ramanathan
Dept. of Mathematics
University of Michigan
Ann Arbor, Michigen 48109

Current Address:
1409 W. Green St.
Dept. of Mathematics
University of Illinois,
Champaign-Urbana
Urbana, IL. 61801

> (Received September 9,$1987 ;$
> in revised form October 1987)

