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Turbulent Natural Convection Over a Slender 
Circular Cylinder 
T.Y. Na and J.P. Chiou 

Abstract. The transverse-curvature effect on the heat transfer in the turbulent natural convection flow from the 
outer surface of a slender vertical circular cylinder is studied by an improved integral method for various values 
of Prandtl numbers and for various values of a transverse curvature parameter. 

Turbulente natiirliche Konvektion an einem schlanken Kreiszylinder 

Zusammenfassun~. Der EinfluB der Querkrtimmung auf die W~rmeiibertragung yon der AuBenoberfl~che eines d[in- 
nen senkrechten Kreiszylinders in die turbulente, nattirliche KonvektionsstrSmung wird mittels eines verbesserten 
Integral-Verfahrens fiir verschiedene Werte der Prandtl-Zahlen und der Querkriimmungsparameter untersucht. 

Nomenclature 

c heat capacity, keal/kg~ 
P 

g gravitational acceleration 
L, m, n constants 
q heat flux, kcal/m2h 
r 0 radius of cylinder 

T temperature, ~ 
u velocity in x-direction, m/h 
u B velocity head due to buoyancy, m/h 

2 
u B . f g~(t - too)dx 

v velocity in y-direction, m/h 
x flow direction, m 
y normal direction to flow, m 

r r 0 - y 

w �9 friction velocity, 
+ + 

u dimensionless velocity, u = u/v* 

T + dimensionless temperature, 

T + = (T w - T)cpgTw/qw v* 

x + dimensionless coordinate, x + = xv*/v 
+ 

y dimensionless coordinate, y+ -- yv*/v 
Re x local Reynolds number, Rex = ux/v 

Nu 
x 

Pr 
X 

Gr 
X 

ira 
X 

local Nusselt number, Nu = hx/k 
X 

Prandtl number, ~Cp/k 

Grashof number, Gr x = g~ x3(T w - Too)/v 2 

Rayleigh number, Ra x = Gr x Pr 

Greek Symbols 

body expansion coefficient, I/~ 
8 boundary-layer thickness, m 

eddy diffusivity, m2/h 
dimensionless temperature 

v kinematic viscosity, m2/h 

p density, kg/m 3 

T shear stress, N/m 2 
+ 

8 dimensionless boundary-layer thickness, 

8 + = V* 8/~ 

Subsc,ripts 

w wall condition 
oo condition far from the wall 

1 Introduction 

When the radius of a circular cylinder is of the same 

order-of-magnitude as the thickness of the boundary 

layer, the transverse-curvature effect becomes very 

important. The resultant changes in the skin friction 

and the heat transfer characteristics are no longer 

negligible. Many studies have been made on the ef- 

fect of transverse curvature on the forced eonvec- 

tion over slender circular cylinders. These include 

both laminar and turbulent flows. For the case of 

natural convection over such bodies, however, pub- 

lished results are limited to the case of laminar 

flows [I-3]. It is, therefore, the purpose of this 

paper to study the natural convection over a slender 

curcular cylinder where the flow is in the turbulent 

regime. The method to be used in this analysis is 

the one originally developed by Kato, Nishiwaki and 
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Fig. 1. Schematic Diagram of the Cylinder 

Hirata E4], which is basically an improved integral 

method. The method is very simple and has been 

proved (in reference 4 as well as in the present 

paper) to be quite accurate for a large range of 

Prandtl numbers. Due to lack of both theoretical 

and experimental works on the natural convection 

flow in the turbulent regime for geometries other 

than the semi-infinite flat plate, solutions obtained 

from the present analysis offer not only useful heat 

transfer data but also some insight into turbulent 

natural convection flows over other geometries. 

2 A n alysis 

The boundary layer equations for natural convection 

flow of incompressible fluids over an isothermal ver- 

tical cylinder (Fig. 1 ) can be written as : 

b ( ru)  + b ( rv)  = 0 (1) b-'~ -~" 

( ~u ~u) 1 ~ (rT) (2) p u%-~+v~-~ = p g ~ ( T - T o o )  +~--~- 

[ u  bT bT) 1 b ( rq)  (3) 
p Cp\ ~-~+ v~-~- = r br 

subject to the boundary conditions: 

r = r0: u= O, v= 0, T = T w 

r =co: u= 0, T= Too 

The fluid properties are assumed to be constant 

except the change of density inside the boundary layer 

which creates the buoyancy force. The boundary layer 

is assumed to be turbulent starting from the leading 

edge (x = 0) of the cylinder. 

Similar to Kato, Nishiwaki and Hirata [41, the 

integral form of the boundary layer equations will 

now he derived. FromEq.(1), we get: 

r 

r 0 

which can be substi tuted into E q. (2) and the resul t ing  

equation integrated over  the boundary l ayer  thick-  

ness .  We then get:  

ro+ 8 ro+ 8 

roTw= p f gBr(T - Too)dr - 0 f b(ru2) bx dr  ( 5 ) 

r 0 r 0 

If a function u B is defined such that 

bru~ 

g~r(T - Too) - bx ( 6 )  

Equation (5) can be writ ten as :  

r0+ 8 

d I r (u~ - u2)dr  rOTw = P h-~ 

r 0 

(7) 

Next, E q. (4) can be substituted into E q. ( 3 ) and the 

resulting equation integrated over the thermal bound- 

ary thickness. We then get: 

r0+6 t 
d 

J ru(T - Tco)dr r0q w = ~ep~-~ 

r 0 

(8) 

In terms of the dimensionless variables defined by: 

+ xv* y+ yv* + u8 u + u 
x - ~ , = u , u 8 = ~-~, = v- ~ , 

T + = epTw(T w- T) 

qw v* 
(9) 

the momentum integral equation, Eq. (7), and the 

energy integral equation, Eq. (8), become: 

I = 

1 = 

§ 

d 1 +--%- (u; 2 u+2)dy+ 

dx + r 0 

+ 

8 t 

d I ~- u t co )dY+ 
dx + r 0 
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which can be integrated to give : 

6 + 

x : --~ ( u  2~ - u + 2 ) d y  + 

0 r o  
+ 

8t + 

x 1 ~ -  u k co )dy  
0 r o  

Equation (16) becomes: 

(10)  rT + p 

(11) 

The improvement made by Kato, Nishiwaki and 

Hirata E4] over the classical integral method of 

Eckert and Jackson [5] is that, instead of assuming 

the velocity and the temperature profiles, they are 

derived by simplifying the momentum and the energy 

equations and by assuming the eddy viscosity and the 

turbulent Prandtl number to be: 

s = 0 . 4 y + [ 1  - e x p ( - 0 . 0 0 1 7 y + 2 ) ]  (12) 
M 

P r  t = 1 (13) 

Details are given below: 

First, the inertial terms in Eq. (2) and the con- 

vective terms in Eq. (3) are dropped, which gives: 

1 b (rr )  = 0 (14) PgB(T - T c e ) +  ~ - - ~  

(rq) = 0 (15)  
br 

Let  us  f i r s t  c o n s i d e r  E q .  ( 1 4 ) .  I n t e g r a t i n g  o v e r  r 

and app ly ing  the b o u n d a r y  c o n d i t i o n  

r = r  0 : v = T  w 

Equation (14) becomes: 

r 

r 0 

r ( T  - t e a ) d r  = r0T w rT + pg~ 

wh ich ,  upon app ly ing  E q .  ( 6 ) ,  b e c o m e s :  

r b ( r u ~ )  

rT + p f bx " d r  = r07  w (16)  

r 0 

Following Kato, Nishiwaki and Hirata [4], we assume 

b ( r u ~ )  ru~  
~x : "x-' (17)  

r 2 
f r u  B 

d r  = r0T w 
X 

r 0 

(18)  

With the  a s s u m p t i o n  in E q .  ( 1 7 ) ,  E q . ( 6 )  b e c o m e s :  

2 
ru B 

x = g S r ( T  - Too) (19) 

On the cylinder surface, r = r0, u B = U~w. We get: 

2 
roUBw 

x = gBr0(T  w - Too ) (20) 

B a s e d  on E q s . ( 1 9 )  and ( 2 0 ) ,  i t  c an  be shown tha t :  

2 2(Vro)(W ) rub  r0u• w + 
- ~ I + ~ -  Z I ---~-- 

X 
Too 

(21) 

which ,  t o g e t h e r  wi th :  

~ w -  1 + bu+ 
by + 

(22) 

reduces Eq.(18) to: 

+ 2 

( ,4)( 1 +  1 +  5 + +  
r 0 y x 

+ 

I + 1 - dy + = I 

0 

Which can be integrated to five: 

u + = 0 dy + 

(23) 

Next, Eq. (15) gives: 

rq = r0q w (24)  

Since for turbulent flows, 

~._.7_ T 
q = - p Cp(~ + Sm ) 

bY 
(25)  
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Equation (24), in terms ofthe dimensionless quan- 

titles defined in (9), becomes, 

1 = ~ 1 + r ~  1 + p r  t dY + 
(26) 

Which can be integrated to give: 

+ 

T + = , , P r  d y ,  ( 2 7 )  

0 1 + 1 + p r  t 

With u + and T + found fromEqs.(23) and (27), 

they can be substituted back into Eqs. (I0) and (II). 

This completes the derivation of the equations neces- 

sary for the solution of the problem. 
+ + 

It should be noted that the ratio y /r 0 inEqs.(10), 

(II), (23) and (27) represent the relative impor- 

tance of the transverse curvature. Let us re-write 
+ + 

the factor (I + y /r 0) as: 

1 1 
+ I k~ + y+ 

1 + rLo= 1 + Gr---~01 3 y = 1 +  gk 3 

where 

g~(Tw-Tco)r~ 1 / 3  (U~w)2 
G r 0  = 2 ' g = G r ~  ~ and  k - + 

M X 

(28) 

For cylinders with radius r 0 very large com- 

pared with the boundary layer thickness, the ratio 

becomes negligible, i.e. , 

1 +  -~1 
r 0 

Equations (i0), (11), (23) and 27) then become 

identical to the equations for the turbulent natural 

convection over a semi-infinite plate, treated by 

Kato, Nishiwaki and Hirata [4]. 

This is consistent with the physical observation 

that when the radius of the cylinder is large, the ef- 

fect of transverse curvature is negligible and the 

boundary layer is the same as that over a semi-in- 

finite plate. 

The parameter g is therefore seen as the para- 

meter indicating the effect of transverse curvature. 

Since it is inversely proportional to the radius of the 

cylinder, the effect is more pronounced for cylinders 

with smaller radius. Numerical solutions for a few 

v~lues of ~ will be presented in a later section. 

Even though the solution of the above equations 

involve only integration, an iteration process is 

needed [4]. The steps followed will now be outlined 

briefly. For a given Pr and ~, a value of 8 + is 

first chosen. With am/~ and Pr t givenbyEqs.(12) 
+ 

and (13) , Eq.(27) can be integrated from y = 0 

to y+ = 8 + . With T + (y+) known, a value of the ratio 

+ 2 

k = (U~w-----~'~ ( 2 9 )  
+ 

X 

is assumed and the velocity distribution can be ob- 
+ y+ 

tained from y = 0 to = 8 by integrating E q. (23). 

Different values of X are assumed until the values 

of x + from bothEqs.(10) and (II) agree with each 

other. Successive approximations are guided by the 

+ = 8 �9 requirement that u equals to zero at y+ + 

The above scheme gives a pair of values of k and 
+ 

x for one value of 8 + . The thermal boundary layer 
+ 

thickness, 8 t , and the temperature at the edge of 

the thermal boundary layer, T + co ' can be identified 

by an inspection of the numerical results. 

It can be shown that Eq. (20) gives 

gB(T w - Tc~)x  3 3 
G r x  = 2 = ~x+ ( 3 0 )  

M 

Also, the local Nusselt number can be written as 

hx qw x Pr x + 
Nu 

x = - k  = (T w -  T c o ) k  = T + 
C O  

( 3 1 )  

It is now clear that we have found one pair of the data 

required in a tabulation of Nu x - vs - Gr x- 

Other values of 6 + can be assigned and the above 

scheme repeated. A table of Nu x - vs - Gr x for a 

given pair of values of Pr and ~ can now be gener- 

ated. 

3 Results and Discussions 

Based on the method outlined above, numerical solu- 

tions have been generated for Prandtl numbers of 0.7, 
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Fig. 2. Experimental data vs theoretical r e s u l t s  

based on present method. (Pr = 1.0) 
o Jakob [7] A Saunders [8] 

Fig. 4. Experimental data vs theoretical results 
based on present method. (Pr = 40) 
Fujii [ 9 ] Touloukian et al. [ I0 ] 

1.0, I0, and I00 and for a few values of {. For the 

case of ~ = 0, solutions for three more Prandtl num- 

bers (Pr = 5, 40 and 60) are obtained for the pur- 

pose of comparing with experimental data. 

Experimental data for turbulent natural convec- 

tion over circular cylinders are available only for 

the case of large cylinder radius where the effect of 

transverse curvature is negligible [6]. For'this case, 

the boundary layer flow is the same as the flow over 

a semi-infinite flat plate. Experimental data from 

references 7, 8, 9 and I0 can, therefore, be used 

along with those from reference 6. 

Figures 2 through 6 show the local Nusselt num- 

ber, NUx, based on the present integral method as 

compared with those from experimental data for 

Prandtl numbers of 1, 5, 40, 60 and I00, respec- 

tively. In the original work of Kato, Nishiwaki and 

Hirata E4], comparison between theory and experi- 

mental data are made for Prandtl numbers of 1 and 

40, respectively. The close agreement shown in 

Figures 2 through 6 further demonstrate the accur- 

acy of this method. Similarly good agreement shown 

in Fig. 2 and Fig.3 of reference 7 are also observed 

for the velocity and the temperature profiles. 

For the cases of slender cylinders where the ef- 

fect of transverse curvature is not negligible, num- 

erical solutions are obtained by using the integral 

method outlined above for a few values of ~, namely, 
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and for Prandtl numbers of 0.7, I, I0 and I00 re- 

spectively Table I through Table 4 give Nu x as a func- 

tion of Rax, each for a family of values of the trans- 

verse curvature parameter ~. The results are also 

plotted in Fig.7 for the case of Pr = I, based on the 

data of Table 2. The results show clearly that the ef- 

fect of transverse curvature is to increase the Nus- 

self number. This is in agreement with the conclu- 

sions obtained for laminar natural convection flow 

over slender cylinders [2]. The same trend is ob- 

served for all other Prandtl numbers, as seen from 

the data given in Table I through Table 4. Figures 

such as Fig. 7 for other Prandtl numbers can easily 

be plotted based on the data shown in these tables. 

Inspection of Tables 1 through Table 4 shows that the 
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Fig.7. Effect of Transverse Curvature for Pr = 1.0 

effect of transverse curvature is more pronounced 

for smaller Prandtl numbers. 

For the turbulent natural convection of a given 

fluid (~, v, k and Pr are known) over a given slen- 

der cylinder ( r 0 is known) with known surface tem- 

perature (Tw) and temperature of the surrounding 

fluid (Too), we can calculate Gr 0 by 

Gr 0 = 
gB(T w - T o o ) r o  3 

2 

from which the transverse curvature parameter can 

be calculated by 

1 

= Gr 0 

With ~ known, the method outlined in this paper 

can be followed and a Nu - vs - l~a curve, such 
X X 

as the one shown in Fig.7 can then be generated. 

From the definition of Rax, 

gB(T w - T c e ) x  3 ~Cp 
Ra = Gr Pr = 

x x 2 k 

it is seen that all the physical constants are given 

quantities, except x. Now, if a location x is chosen, 

Ra can be calculated from this expression. From 
x 

the Nu x - vs - Ra x figure, the corresponding value 

of Nu x can be found. Based on the definition of NUx, 

namely, 

hx qw x 
NUx = ~ = (T w- Toa)k 

the local heat transfer rate for this location, qw' 

can be obtained. The above can be repeated for other 

locations by changing the values of x. 

The method is seen to be very useful in obtaining 

numerical solutions for turbulent natural convection 

problems. The results are quite accurate and the 

method is simple to apply since it involves only in- 

tegrations. 

Due to the apparent lack in both theoretical and 

experimental works in turbulent natural convection 

flows for geometries other than the semi-infinite 

flat plate, the theoretical results presented in this 

work should be useful. 
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Table I. Solutions of Eqs.(1) - (3) for Pr = 0.7 Table 3. Solutions of Eqs.(1) - (3) for Pr = I0 

Ba Nu ~ Ra Nu 
X X X X 

O. 1 . 2 4  X 109 1 2 4 . 5  O. 1 . 7 0  • 10 •176 3 0 3 . 2  
5 . 7 8  • 109 2 1 3 . 3  1 . 0 3  • 101~ 5 8 2 . 9  
2 . 8 9  X 1019 3 7 9 . 6  6 . 1 7  X 1011 1 1 3 2 . 5  
1 . 3 0  • 10 •  6 6 0 . 8  3 . 3 8  X 1012 2 1 6 4 . 1  

5 . 4 5  • 10 i l  1 1 2 9 . 6  0 . 0 1  9 . 2 7  X 109 3 0 3 . 9  
2 . 1 4  X 10 !2 1 9 0 5 . 7  4 . 3 2  X 101~ 5 0 1 . 4  

0 . 0 1  1 . 3 7  X 109 2 2 3 . 3  2 . 0 9  X 1011 8 3 8 . 5  
5 . 4 3  X 109 3 4 7 . 6  1 . 0 2  X 10 ! s  1 4 1 4 . 1  
2 . 1 7  X 10 • 5 4 3 . 4  5 . 0 6  X 10 ~'2 2 3 9 6 . 9  

8 . 6 8  X 10 •176 8 5 2 . 5  0 . 1  9 . 7 9  X 109 3 5 5 . 1  
3 . 4 8  X 10 •  1 3 4 1 . 3  4 . 8 8  • 10 •176 5 8 9 . 9  
1 . 4 0  • 10 t2 2 1 1 5 . 1  2 . 4 8  X 10 !1  9 8 9 . 3  

0 . 1  1 . 8 4  X 102 3 0 9 . 5  1 . 2 7  X 1012 2 8 2 9 . 6  

7 . 8 2  X 109 4 8 5 . 3  1 . 0  1 . 1 2  X 101~ 4 5 4 . 8  
3 .33  • 101~ 763 .2  5 .82  X 101~ 752 .9  
1 .42  X 10 '0  1203.3  3 . 0 5  X 101' 1254 .6  
6 . 0 6  X 10 t•  1 9 0 1 . 7  1 . 6 1  • 1012 2 1 0 4 . 4  

1 . 0  2 . 4 6  X 109 4 5 8 . 4  8 . 4 9  X 10 i2 3 5 3 4 . 4  

1 . 1 0  X 101~ 7 1 9 . 1  1 0 . 0  1 . 3 1  X 101~ 6 2 9 . 1  
4 . 9 3  X 10 • 1 1 3 0 . 7  6 . 9 9  X 10 ~~ 1 0 3 3 . 3  
2 . 2 1  X 10 ~1 1 7 8 1 . 7  3 . 7 5  X 1011 1 7 0 5 . 5  
9 . 8 9  X 10 I •  2 8 1 3 . 4  2 . 0 2  X 1012 2 8 2 6 . 4  

1 . 0 9  X lO l s  4 7 0 1 . 2  

! Table 4. Solutions ofEqs.(1) - (3) for Pr = I00 

Table 2. Solutions of Eqs.(1) - (3) for Pr = 1 
Ra Nu 

x x 
Ra Nu 

x x 0. 1.30 • 1011 488.1 

8.12 • 10 I• 934.2 
0. 1.53 x 109 137.2 

6.60 x l0 is 1984.7 
8.62 • 109 252.9 4.52 x 1013 4023.6 
4.39 • I0 ~~ 456.3 2.83 X I0 i~ 8036.3 
2.02 x I0 ~I 804.7 
8 . 5 1  X 10 I1  1 3 9 1 . 8  0 . 0 1  1 . 5 2  • 101• 5 6 6 . 8  

7 . 9 5  X 10 •  9 7 5 . 1  
0 . 0 1  1 . 5 7  X 109 2 2 5 . 2  

4.35 X l O  is 1 7 0 4 . 3  
6 . 3 8  x 109 353 .6  

2 .44  X 10 • 3007 .6  
2.61 X I0 i~ 558.2 
1 . 0 8  • 1011 8 8 4 . 6  0 . 1 0  2 . 6 6  x 101~ 3 5 4 . 4  
4 . 4 3  • 1011 1 4 0 6 . 3  1 . 4 0  x 1011 6 0 1 . 9  
1 . 8 3  x 1019 2 2 4 0 . 8  7 . 6 7  x 10 t l  1 0 4 0 . 0  

4 . 3 3  X 1012 1 8 1 6 . 6  
0 . 1 0  2 . 0 4  x 109 3 0 3 . 8  

8 . 8 7  x 109 4 8 0 . 5  1 . 0 0  1 . 4 2  x 10 !1  6 9 7 . 3  
3 . 8 8  • 10 • 7 6 2 . 7  8 . 0 2  x 10 • 1 1 9 7 . 0  
1 . 7 0  x 10 I i  1 2 1 4 . 4  4 . 5 8  x 1012 2 0 7 1 . 5  
7 . 4 3  x 10 •  1 9 3 8 . 4  2 . 6 4  • l 0  l s  3 6 0 7 . 8  
3 . 2 4  • 1012 3 1 0 0 . 2  1 . 5 3  x 10 • 6 3 1 6 . 1  

1 . 0  2 . 6 7  x 109 4 4 0 . 5  1 0 . 0  1 . 5 5  x 10 l l  8 7 8 . 9  
1 . 2 2  x 10 I ~  6 9 6 . 4  8 . 8 4  X 1011 1 4 9 1 . 1  
5 . 6 1  x 101~ 1 1 0 4 . 4  5 . 0 9  x 10 t s  2 5 4 5 . 6  
2 . 5 7  x 10 l l  1 7 5 5 . 6  2 . 9 4  x 10 ~-3 4 3 6 9 . 5  
1 . 1 8  x 10 ~s 2 7 9 7 . 3  1 . 7 1  • 10 J'4 7 5 3 7 . 3  



164 W~rme- und Stoff~ibertragung 14 (1980) 

References 

I. Sparrow, E.M.; Gregg, J.L.: Laminar Free 
Convection Heat Transfer From the Outer Sur- 
face of a Vertical Circular Cylinder. Trans. 
ASME, V 78 (1956) 1823 

2. Cebeci, T. : Laminar-Free-Convective-Heat 
Transfer From the Outer Surface of a Vertical 
Slender Circular Cylinder. 5th International 
Heat Transfer Conference, Tokyo, Japan, 1974 

3. Cebeci, T.; Qasim, J.; Na, T.Y.: Free Con- 
vection Heat Transfer From Slender Cylinders 
Subject to Uniform Wall Heat Flux. Heat and 
Mass Transfer, I (1974) 159-162 

4. Kato, H.; Nishiwaki, N.; Hirata, M.: Onthe 
Turbulent Heat Tr3nsfer by Free Convection 
From a Vertical Plate. International Journal of 
Heat and Mass Transfer. II (1968) II17-1125 

5. Eckert, E.R.G.; Jackson, T.W.: Analysis of 
Turbulent Free-Convection-Boundary Layer on 
Flat Plate. NACA Report I015 (1951) 

6. Fujii, T.; Takeuchi, M.; Fujii, M.; Suzaki, K.; 
Uehara, H. �9 Experiments on Natural-Convection 
Heat Transfer From the Outer Surface of a Ver- 
tical Cylinder to Liquids. International Journal 
of Heat and Mass Transfer. 13 (1970) 753-787 

7. Jacob, M. : Heat Transfer. New York: John 
Wiley (1949) 

8. Saunders, O.A. : The Effect of Pressure Upon 
Natural Convection in Air. Proc. Roy. Soc., 
Series A, A157 (1936) 278-291 

9. Fujii, T. : Experimental Studies of Free Convec- 
tion Heat Transfer. Bull. J.S.M.E., 2 (1959) 
555-558 

10. Touloukian, Y.S.; Hawkin, G.A.; Jacob, M.: 
Heat Transfer by Free Convection From Heated 
Vertical Surface to Liquids. Trans. ASME, 
(1948) 13-23 

T.Y. Na 
Professor of Mechanical Engineering 
University of Michigan - Dearborn 
Dearborn, Michigan 48128, USA 

J. P. Chiou 
Professor of Mechanical Engineering 
University of Detroit 
Detroit, Michigan, 48221, USA 

Received May 2, 1980 


