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Perturbation Analysis for Periodic Heat Transfer 
in Radiating Fins 
A. A ziz, Riyadh, Saudi Arabia and T.Y. Na, Dearborn, Michigan, USA 

Abstract. A perturbation analysis is presented for periodic heat transfer in radiating fins of uniform thick- 
ness. The base temperature is assumed to oscillate around a mean value. The perturbation expansion is car- 
ried out in terms of dimensionless amplitude ~ of the base temperature oscillation. The zero-order problem 
which is nonlinear, and corresponds to the steady state fin behaviour, is solved by quasilinearization. A 
method of complex combination is used to reduce both the first and the second order problems to two, coupled 
linear boundary value problems which are subsequently solved by a neniterative numerical scheme. The sec- 
ond-order term is composed of an oscillatory component with twice the frequency of base temperatur@ oscil- 
lation and a time-independent term which causes a net change in the steady state values of temperature and 
heat transfer rate. Within the range of parameters used, the net effect is to decrease the mean temperature 
and increase the mean heat transfer rate. This is in constrast to the linear case of convecting fins where the 
mean values are unaffected by base temperature oscillations. Detailed numerical results are presented il- 
lustrating the effects of fin parameter N and dimensionless frequency B on temperature distribution, heat 
transfer rate, and time-average fin efficiency. The time-average fin efficiency is found to reduce significar{t- 
lyat low N and high B. 

St6rungsanalyse fiir periodische W~rmeiibertragung an Strahlungsrippen 

Zusammenfassung. Eine St6rungsanalyse wird ftir periodische W~irmetibertragung in Strahlungsrippen glei- 
cher Dicke vorgelegt. Die Ful~temperatur wird als um einen Mittelwert schwingend angenemmen. Die StS- 
rungsentwicklung wird in Termen einer dimensionslosen Amplitude a dieser Schwingung angesetzt. Das Pro- 
blem nullter Ordnung, das nichtlinear ist und den stationiiren Verhalten der Rippe entspricht, wird durch 
Quasilinearisierung gel6st. Eine Methode der komplexen Kombination wird angewandt, um die Probleme er- 
ster und zweiter Ordnung auf zwei gekoppelte Grenzwertprobleme zu reduzieren, die nacheinander nach einem 
niehtiterativen Schema gelSst werden. Der Term zweiter Ordnung besteht aus einer Schwingungskomponente 
nit der doppelten Frequenz der Schwingung der FuBtemperatur und einem zeitunabh~ingigen Term, der eine 
Netto~nderung der station~ren Werte der Temperatur und der Wiirmeiibertragung verursacht. I m verwendeten 
Bereich der Parameter tritt eine Abnahrne der mittleren Temperatur und eine Zunahme der mittleren W~rme- 
tibertragung auf. Das steht im Gegensatz zum linearen Fall der Konvektionsrippe, bet den die Mittelwerte 
durch Schwingungen der FuBtemperatur nicht beeinfiuBt werden. Detaillierte numerisohe Ergebnisse zeigen 
die Einfliisse des Rippenparameters N und der dimensionslosen Frequenz B auf Temperaturverteilung, W~r- 
metibertragung und zeitliches Mittel des Rippengiitegrades. Dieses zeitliche Mittel nimmt merklich ab bet 
kleinem N und hohem B. 

Nomenclature 

b fin thickness 
B dimensionless frequency, wL2/C~ 
E emissivity 
f0 '  fl functions of X 

go '  a t '  g2 functions of X 

h0, h 1 , h 2 functions of X 

k the rmal  conductivi ty 
L fin Length 
N fin p a r a m e t e r ,  2EcrL2TBrn/bk 

q heat transfer rate 
Q dimensionless heat transfer rat e, 

qL/kbTbm 
t t ime 
T temperature 
T b fin base temperature 

T effective sink temperature 
S 

Tbm 
X 

X 
E 

SS 

9 

e o 

e t 

9 2 

e2s 
k, k t , ~2 

mean fin base  t e m p e r a t u r e  

axial d is tance 
d imens ionless  axial  d is tance,  x/L 
d imens ionless  ampli tude of base  t em-  
p e r a t u r e  (s. Eqo2) 
the rmal  diffusivity 
instantaneous fin eff iciency 

t i m e - a v e r a g e  fin ef f ic iency 
steady state fin efficiency 

dimensionless temperature, T/Tbm 

zero-order approximation 

first-order approximation 

second-order approximation 

steady component of e 2 

constants 

complex function of X 
real part of 
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~2 imaginary part of 

complex function of X 
~I real part of 

Y2 imaginary part of Y 

dimensionless time, ~t/L 2 
frequency of base temperature oscilla- 
tion 

i Introduction 

Extended surfaces (or fins) used on electronic compo- 

nents, solar collectors, internal combustion engines 

etc. often operate under periodic thermal conditions. 

Under these circumstances , it is important to assess 

how the actual performance could deviate from the 

usual steady-state behaviour. The earliest analytical 

studies in this area considered purely convecting fins 

of uniform thickness. For example, Yang Ei~ studied 

a straight fin with oscillating base temperature and 

obtained a closed form solution using the method of 

complex combination. This was subsequently extended 

to an annular fin by Aziz E2~. A similar analysis for 

the case of oscillating environment temperature has 

been carried out recently E3]. Other periodic condi- 

tions such as oscillating base heat flux or convective 

heating of the fin by an oscillating ~empera~ure fluid 

have been analyzed by Suryanarayana E4~ using La- 

place transform. A more recent study by Aziz and 

Na E5] considered a convecting fin of arbitrary pro- 

file with either the base temperature or environment 

temperature oscillating with time. The solution was 

achieved by using method of complex combination in 

conjunction with a numerical scheme. The most im- 

portant conclusion which emerged from the afore- 

mentioned studies was that for fin parameter N is 

less than I, the time-average fin efficiency over a 

cycle is reduced with the increase in the amplitude 

and frequency of oscillation. 

As an extension to conveeting fin studies, more 

recent effort has been directed to radiating or com- 

bined radiating-convecting fins. The paper by Eslin- 

ger and Chung E6~ uses a finite element approach to 

analyze a straight fin with simultaneous convection 

and radiation and oscillating base temperature. Al- 

though the formulation incorporated refinements such 

as fin-to-base and fin-to-fin radiation interactions, 

the program execution required long time. A related 

study applicable to a single fin of annular geometry 

has been reported by Campo E7]. His approach was 

to discretize the position variable and thus generate 

a system of nonlinear ordinary differential equations 

in time. These were ultimately integrated with Runge- 

Kutta iterative scheme. 

In the present paper, we present a semi-numeri- 

cal approach to solve for steady periodic heat trans- 

fer in a radiating fin with oscillating base temperature. 

The dimensionless amplitude of the base temperature 

is chosen as a perturbation parameter ~ and the tem- 

perature is expressed as a series in ~. The zero-order 

problem then corresponds to the known steady-state 

behaviour. The first and the second order problems 

constitute two linear partial differential equations. 

Using the method of complex combination, each of 

them can be reduced to two, coupled linear boundary 

values which are finally integrated numerically by a 

noniterative procedure. The approach offers two dis- 

tinct advantages. First, it reveals some interesting 

features associated with the nonlinear radiation which 

tend to remain obscure with the direct numerical 

schemes such as in Z6, 7]. Second, the computation is 

indeed very fast. All the data presented were gener- 

ated within CPU time of 15 seconds on Amdahl 

470V/7 system of the University of Michigan. 

2 Problem Formulation 

Consider a straight fin of uniform thickness b and 

length L with its base temperattlre varying periodical- 

ly as shown in Fig.i. The fin surface radiates to an 

environment with zero effective Sink temperature~ 

Other usual assumptions involved in the analysis are : 

i) conduction is one-dimensional, 2) the fin tip is 

insulated, 3) there is no fin-to-base radiative inter- 

action and 4) all thermal properties are constant. 

This simple model is chosen because the purpose is 

to demonstrate how to handle the radiation nonlineari- 

ty. However, the analysis can be readily generalized 

to accomodate surface convection and nonzero sink 

temperature and different fin configurations with some 

additional algebraic manipulation. 
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Based on the above, the fin equation and boundary 

conditions in dimensionless form can be written as 
i 

I b �9 
~e (~) [ b28 N O 4 :  

bX 2 

b0 
X : 0 ,  e : 1 +  r  X :  1 ,  -8~- :0 (2) 

where the symbols are as defined in the nomenclature. 

3 So lu t ion  Method 

Since the dimensionless amplitude parameter r would 

in practice remain below unity (Fig.1) we assume a 

regular perturbation expansion for 8 in terms of r as 

e ( x , r  : e o ( X ) +  ~ e l ( x , { ) ,  s z e 2 ( x , r  + . . .  (s) 

Substituting (3) into Eqs. (1,  2) and equating the coef- 

ficients of like powers of r on both sides of Eqs. (I, 

2) we have 

o " 
s : e o - NO : o (4) 

x : o ,  S o : l ;  x : l ,  sS :o  (s) 

where primes in Eqs. (4, 5) and in all subsequent 

equations denote total differentiation with respect to 

X. 

be 1 
1 :  --b2el - 4N9 3 e  1 = (6) 

bX 2 b~ 

b0 1 
X = 0 ,  8. i : cosBr X : I ,  -8~- : 0 (7) 

s 2 : ~ 2 e 2  4Ne3 e2 6Ne02 2 be2 
bX'-'-" ~ - - (91 = ~ ( 8 )  

b6 2 
X : 0 , .  8 : 0 ;  X : 1 ,  - ~ -  : 0 . (9) 

Higher-order equations can be written in a similar 

manner. However, we truncate the expansion at the 

third term because this would be found sufficiently 

accurate upto r = 0.4 which means a maximum of 

40 per cent deviation of base temperature from its 

mean value. In most practical situations, deviations 

�9 T s - - 0  

L 

-,X 

I T 

Ts=O 
0 

I I 

0 IT 2IT 

u Jr 

Fig. I. Fin geometry and base temperature oscillation 

would fall within this limit. Indeed, in previous stud- 

ies [1, 6] the maximum value assigned to s was 0.2. 

The zero-order problem corresponds to the steady- 

state condition and its solution is known, both in ex- 

act but implicit form and in numerical form [8, 9]. 

However, we had to generate our own numerical solu- 

tion for use in the subsequent solutions of first and 

second order equations. This was obtained by using 

quasilinearization in conjunction with the method of 

superposition as described later. 

To solve Eqs. (6, 7) we follow the method of com- 

plex combination and assume the solution of the form 

e l ( X , [ )  = R [ ~ ( X ) e x p ( i B ~ ) ]  ( lo)  

where R[ ] represents the real part of the quantity 

in brackets. Using (10) in Eqs. (6, 7) the equation 

for ~ becomes 

r  (4N803+ iB)r  : 0 (11) 

X = O, {D = 1 ~  X = 1 ,  ~ '  = 0 . (12) 

Letting 

: ~1 + i~2 (13) 

equations for ~1 and {[2 now constitute two coupled, 

linear boundary value problems as follows 
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r - 4NO r ~ Br = 0 (14) 

x = 0 ,  r  X = l ,  r 1 7 6  (15) 

a n d  

" ~ 3 
r  4Ne r  B~I = 0 (IG) 

X = O ,  r  X = l ,  r  (17) 

The solut ion of Eqs .  (14 ) - (17 )  by a noni tera t ive  nu- 

mer i ca l  s c h e m e  will be d i scussed  l a t e r .  

Coming to the solution of Eqs .  (8, 9) we note that 

~2 is associated with one of the terms of Eq. (8) Us- 
I 

ing Eq. (I0) it can be shown that 

912 =2"1 (r + r + IR[r exp(i2B~)] . (18) 

This suggests that the solution for @2 must be ex- 

pressed as the sum of a steady component ~2S and an 

oscillatory component of frequency 2B. Thus, we write 

92(X, [ )  = e 2 s  + R [ ~ ( X ) e x p ( i 2 B r  (19) 

Substituting (19) into Eqs .  (8, 9) the equations govern-  

i n g  ~2s and Y a r e  obtained as 

e" .. e3 2 2 r = 0 26 - a'~ Oe2s - 3Ne0(r + (20) 

X = 0 ,  e2s = 0 ;  X = 1 ,  e'2s = 0 (21) 

F ' -  (4Ne03 + 2iB)Y - 3Ne0212 = 0 ( 2 2 )  

X = 0 ,  Y = 0 ;  X = 1 ,  Y' : 0 . (23) 

By letting 

= Y1 ~- i t2  (24) 

two coupled,  l inear  boundary  value p rob l ems  for  T1 

and Y2 appear as 

" _  , _ 2 _ r  = 0 (25 )  
2 

X = o ,  h = ~  x = 1 ,  ~i =~  (26) 

i r  

T2- 4 N 9 3 ~ 2 -  2B#I - 6N902r162 : 0 (27) 

x = o ,  ~2 =~ X = l ,  7 ~ = 0 .  (28) 

The numer ica l  solutions of Eqs .  (20, 21 ) and Eqs .  

(25 ) - (28)  a r e  d i scussed  in the following sec t ion .  

4 Numerical Schemes 

Consider the solution of Eqs. (4, 5). Using quasiline- 

arization [10] Eq. (4) can be approximated as 

9~ 7 . 1 ) ' ' -  4N@0 (7)3 e07+1 = - 3 N ~  ?)4 (29) 

where  "7" r e f e r s  to the number  of i t e ra t ion .  By a s -  

suming the f i rs t  approx imat ion  as 

(I) = 1 (3O) 
@0 

successive approximations can be found by solving 

Eq. (29) subject to the following boundary conditions 

(which follow from Eq. (5)) 

x = o ,  e (>1 )  = t ,  x = 1 ,  e~ ~r =o . (31) 

Since there is only one missing derivative at X = 0, 

i.e. 90~7+1)" the solution is assumed as 

9~ ?~1) = f0 ~ kf I (32) 

where k is the missing derative e~ ?.I)' at X = 0. 

Using (32) in (29) and (31) gives the following initial 

value problems for f0 and fl 

f 0 -  4N9 f0 = -3N8 (33 

X = 0 ,  f0 = t ,  f~ = 0 (34 

and 

,, o(?) 3 fl - 4N@ fl = 0 (35) 

X = 0 ,  f l  = 0 ,  f i  = I . ( 3 6 )  

Equations (33-36) are now integrated without itera- 

tion using a fourth-order Runge-Kutta scheme. To 

find k, we use the terminal values of derivatives, 

i . e .  f~ (1) and r i (1) and invoke the boundary  condi-  

tion (31) at X = I to obtain 
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%(1) ~ ~f~(1) = 0 (37) 

f r o m  which 

k = - f~) (1) / f i (1 )  (38) 

Using the solution for f0 and f~ and k in (32) gives 

the second approximation for 9 ~(2) The procedure is 
0 " 

repeated until the solution converges. In all the cal- 

culations performed, convergence was achieved with 

very few iterations. 

Next we consider the solution of Eqs. (14-17). 

Since there are two missing initial derivatives at 

X = 0, i.e. $~ and ~2' the solutions are assumed as 

~1 = go ~ k l g l  ~ k292 (39) 

~2 = h0 + k l h l  ~ k2h2 (40) 

where k I and k 2 are the missing derivatives ~ ( 0 )  

and ~(0) respectively. Using (39) and (40) in Eqs. 

(14-17) gives the following initial value problems for 

go' g1' g2' h0' hi and h 2 

go - 4N9 go + Bh0 = 0 (41) 

II 

h 0- 4N93h 0- Bg 0 = 0 (42) 

gl - 4N9 gl ~ Bhl = 0 (43) 

h i - 4Ne h I - Bg 1 : 0 (44) 

~ 3 g2 - 4N9 g2 ~ Bh2 : 0 (45) 

H 

h 2 -  4 N e ~ h  2 -  Bg 2 : 0 (46) 

with the  i n i t i a l  c o n d i t i o n s  

X = O ,  g o : l ,  gl=g2:O, h o : h l = h 2 = O  (47) 

X=O ' -0 ,  ' =1, ' =0 ' g o -  gl  g2 , h ~ = O ,  h i=O,  h~=l 
(4s) 

Using a fourth-order Runge-Kutta scheme Eqs. (41- 

48) are integrated without iteration. To find ~1 and 

k 2 we use the terminal values of derivatives i.e. 

g[(1), g[(1), g[(1), %(1), hi(t) and hi(l)  in 
b o u n d a r y  c o n d i t i o n s  at  X : 1 i n  E q s .  (15,  17) to g ive  

%(1) ~ xlg:~(1). ~,2g[(1) = 0 (49) 

and  

h8(1)~ h ~ ( 1 ) ~  ~2h~(1)= O. (so) 

Solving (49, 50) simultaneously, we get 

h 6 ( i ) g [ ( 1 )  - g ~ ( 1 ) h [ ( 1 )  

kl = h [ ( 1 ) g [ ( 1 )  - g [ ( 1 ) h i ( 1 )  (51) 

and 

hi(1)g~(1)- gi(1)hS(1) 
k2 = h [ ( 1 ) g ~ [ t ) -  g ~ ( 1 ) h ~ ( 1 )  " (52) 

The solutions for ~I and ~2 are thus completely de- 

termined. 

Turning to the solution of Eqs. (20, 21 ), since 

there is one missing derivative at X = 0 i.e. 9~s(0) 

we follow exactly the same procedure as detailed pre- 

viously Eqs. (32-38) except that no iteration would be 

needed in this case. Finally considering the solution 

of Eqs. (25-28) , there are two missing derivatives at 

X = 0, i.e. Y~(0) and ~(0) and therefore the same 

procedure as detailed by Eqs. (39-52) is applicable. 

It should be emphasized that all computations ex- 

cept for 90 are carried out noniteratively. 

5 R e s u l t s  and  D i s c u s s i o n  

A sample solution for 90, 92s , }1' ~2' YI and Y2 is 

shown inFig.2. Using Eqs.(t0, 19) inEq.(3) the 

solution for the temperature distribution in terms of 

quantities determined is 

9 = 90 ~ 8292s ~ s(~ 1 cosB[ - ~2 sinB~) 

. a2(Y 1 cosZB~ - Y2 sinZB~) ~ O(s 3) . (53) 

The instantaneous heat transfer rate can now be eval- 

uated in terms of the temperature gradient at the base 

(X = 0). In dimensionless form it is 
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Fig.2. Sample solutions for 8o, s r177 r Y• and 
Y2; N : 1,  B : 1 

-Q = 0G(0)+ ~20~s(0)+ sE{~ (0) cosBC-  {~ (0 )  s inBC]  

2[yj(0)cos2B~ Y~(0)sin2BC]+0(r 3) (54) 4- E - �9 

The instantaneous fin efficiency ~ follows as 

= q (55 )  
N(1  ~ r  4 

The  t i m e - a v e r a g e  f in  e f f i c i e n c y  [ o v e r  a c y c l e  c a n  b e  

o b t a i n e d  a s  

2??  

i / Q d (BC ) 
= ~ (1 ~ 8cosBC) 4 

0 

(56) 

6 Temperature Distribution 

The perturbation solution for 8, Eq. (53) shows that 

the second-order term has a steady component e2s 

which causes a net change in the steady state value 

60 in the absence of oscillation. For all parametric 

values of N and B used in the computations, ~2s at 

all axial locations is always negative (Fig. 2 for ex- 

ample) there is a reduction in the mean temperature 

throughout the fin. This is a consequence of the non- 

linear radiative cooling mechanism and is in contrast 
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Fig. 3. Effect of parameter B on temperature distri- 
bution; N-- I, r -- 0.1 

to  t h e  l i n e a r  c a s e  of  c o n v e c t i n g  f in  w h e r e  t h e  m e a n  

v a l u e s  r e m a i n  a n d  u n a f f e c t e d  b y  b a s e  t e m p e r a t u r e  

o s c i l l a t i o n .  H o w e v e r ,  t h e  r e d u c t i o n  in  m e a n  t e m p e r -  

a t u r e  i s  s m a l l  b e c a u s e  @2s w a s  i n v a r i a b l y  a n  o r d e r  

of  m a g n i t u d e  l e s s  t h a n  ~0 ( F i g . 2  f o r  e x a m p l e ) .  

A n o t h e r  n o t e w o r t h y  f e a t u r e  of  t h e  s o l u t i o n  i s  t h e  

p r e s e n c e  of  a s e c o n d - o r d e r  o s c i l l a t o r y  c o m p o n e n t  

w i t h  t w i c e  t h e  f r e q u e n c y  of  b a s e  t e m p e r a t u r e  o s c i l l a -  

t i o n .  T h i s  a g a i n  i s  r e l a t e d  to  t h e  n o n l i n e a r i t y  of  t h e  

p r o b l e m  a n d  i s  a b s e n t  in  t h e  l i n e a r  c a s e  of t h e  c o n -  

v e c t i n g  f in  [ 1 ] .  

To d e m o n s t r a t e  t h e  e f f e c t s  of  t h e  f r e q u e n c y  p a r a -  

m e t e r  B on  t e m p e r a t u r e  d i s t r i b u t i o n ,  a t y p i c a l  s e t  

of  r e s u l t s  i s  p l o t t e d  i n F i g . 3  fo r  N = 1 a n d  r = 0 . 1 .  

The  v a l u e  of  N c h o s e n  i s  r e p r e s e n t a t i v e  of  t h e  v a l u e s  

e n c o u n t e r e d  in  p r a c t i c e  [ 9 ] .  The  a m p l i t u d e  of  o s c i l -  

l a t i o n  i s  s e e n  to  d e c r e a s e  s i g n i f i c a n t l y  a s  o n e  p r o -  

c e e d s  f r o m  t h e  b a s e  (X = 0) to  t h e  t i p  (X = 1) w h i l e  

t h e  p h a s e  a n g l e  i n c r e a s e s .  A t  a n y  a x i a l  l o c a t i o n ,  t h e  

e f f e c t  of  i n c r e a s i n g  t h e  f r e q u e n c y  i s  to  r e d u c e  t h e  
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amplitude but increase the phase angle. The same pat- 

tern also exists in the case of convecting fin [I]. 

7 H e a t  T r a n s f e r  R a t e  

Examining Eq(54) it is seen that the presence of the 

~20~s (0) changes the steady heat transfer rate t e r m  

w h i c h ,  in  t h e  a b s e n c e  of o s c i l l a t i o n ,  i s  g i v e n  by  

9 ~ ( 0 ) .  S i n c e  ~ s ( 0 )  t u r n e d  out  to  b e  n e g a t i v e  f o r  a l l  

v a l u e s  of  B a n d  N u s e d  ( s e e  F i g . 2  f o r  e x a m p l e )  i t  

i m p l i e s  a n  i n c r e a s e  i n  t h e  m e a n  h e a t  t r a n s f e r  r a t e .  

C o n t r a r y  to i t s  s m a l l  e f f e c t  on  m e a n  t e m p e r a t u r e ,  t h e  

e f f e c t  of  o s c i l l a t i o n  on  m e a n  h e a t  t r a n s f e r  r a t e  i s  

s i g n i f i c a n t  b e c a u s e  t h e  m a g n i t u d e s  of  e~  (0)  a n d  e 25 (0)  

a r e  c o m p a r a b l e .  F o r  e x a m p l e ,  w i t h  N = 1, B = 1 a n d  

e = 0 . 2 ,  t h e  i n c r e a s e  in  m e a n  h e a t  t r a n s f e r  r a t e  i s  

a b o u t  6 p e r  c e n t .  

F i g u r e  4 s h o w s  h o w  t h e  i n s t a n t a n e o u s  h e a t  t r a n s f e r  

r a t e  i s  i n f l u e n c e d  by  p a r a m e t e r s  B a n d  N w i t h  8 

f i x e d  a t  0 . 1 .  At  a g i v e n  B ,  t h e  a m p l i t u d e  of o s c i l l a -  

t i o n  increases as N increases. This effect is most 

pronounced at B = 1. For a given N, the increase in 

B causes both the amplitude and phase angle to in- 

crease. In contrast to the temperature (at any axial 

location) which lags behind the base temperature (Fig. 

3), the heat transfer rate always leads the base tem- 

perature (Fig. 4). 

As the amplitude ~ of the base temperature oscil- 

lation increases, the instantaneous heat transfer 

curves exhibit an interesting feature as shown in 

Fig.5 which corresponds to ~ = 0.2. At N = 2, the 

heat transfer is positive throughout the cycle for all 

three values of B. However, as N is reduced to 

unity, the heat transfer becomes negative for part of 

cycle for B = 10. With N reduced to 0.5, the nega- 

tive heat flow is further increased and occurs even 

a t  B = 5. T h i s  n e g a t i v e  h e a t  f low m e a n s  t h a t  t h e  h e a t  

a c t u a l l y  f l ows  b a c k  i n to  t h e  f in  b a s e  i n s t e a d  of  f l o w -  

i ng  o u t .  The  p h e n o m e n o n  of  b a c k  h e a t  f low a t  low N 

and high B has also been noted in convecting fin 

studies [I, 2] and obviously results in deterioration 

in the overall heat transfer capability of the fin. 



252 W~rme- und Stoff~ibertragung 15 (1981) 

0.4 

0.3 

0.2 

0.1 

0.5 

0.4 

0.3 

0.2 
0.8 

. . . . .  F.= 0.1 

~_ 0.2----'- 

N = 2 ,  ?ss = 0 . 4 2  

I I 1 I I I I I 

. 3 ~ s =  0.5 4 

0.6 

'~ 0.4 

0.2 

E=O.1 N= 0.5, ~Tss= 0.66 

2 3 4 5 6 7 8 
i 

9 10 

Fig.6. Effect of parameters B, N and r on time- 
average fin efficiency 

optimum radiating fin the base temperature oscilla- 

tions can prove quite detrimental to its overall per- 

formance. With purely convecting fins of rectangular 

shape, on the other hand, the time-average efficiency 

is significantly reduced only for N (as defined in [I] ) 

below unity and since the optimum value of N is 

1. 4192, the performance of an optimum convecting 

fin is not likely to be affected significantly as a result 

of base temperature oscillation. It must, however be 

emphasized that the foregoing conclusions are valid 

within the ranges of parameters used in the present 

study. 

A final remark may be made concerning the accu- 

racy of the perturbation solution. At r = 0.3 and 0.4, 

the accuracy may seem questionable. However, a 

similar analysis for a convecting fin shows that the 

two-term perturbation solution (the rest of the terms 

being identically zero) reproduces the exact solution 

available in [1]. This clearly shows that the perturba- 

tion solution should be quite accurate even at a = 0.4. 

The exact solution also provided a check on the valid- 

ity and accuracy of the numerical scheme used. 

8 Fin Efficiency 

The time-average fin efficiency calculated using Eq. 

(56) has been plotted in Fig.6 for a range of parame- 

ters involved. The steady state fin efficiency for con- 

stant base temperature, denoted by ~Iss , is given to 

indicate the extent of departure of the time-average 

fin efficiency. With r = 0.1 which means a ten per 

cent deviation of base temperature from its mean 

value, the time-average efficiency is practically un- 

affected at low values of B but gradually deminishes 

as B increases. For example with N = 0.5, the re- 

duction at B = I0 is about 12 per cent compared to 

~I . As r increases further it brings about drastic 
ss 

reduction in time-average efficiency particularly at 

low N and high B. 

The results for N = 0.5 and 1.0 are of immediate 

practical significance because they encompass the re- 

gion of optimum dimensioned radiating fin of rectan- 

gular profile, i.e. N = 0.8045 [8]. Therefore, for an 
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